bnx2x_main.c 375 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839
  1. /* bnx2x_main.c: Broadcom Everest network driver.
  2. *
  3. * Copyright (c) 2007-2013 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  10. * Written by: Eliezer Tamir
  11. * Based on code from Michael Chan's bnx2 driver
  12. * UDP CSUM errata workaround by Arik Gendelman
  13. * Slowpath and fastpath rework by Vladislav Zolotarov
  14. * Statistics and Link management by Yitchak Gertner
  15. *
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/kernel.h>
  21. #include <linux/device.h> /* for dev_info() */
  22. #include <linux/timer.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/bitops.h>
  34. #include <linux/irq.h>
  35. #include <linux/delay.h>
  36. #include <asm/byteorder.h>
  37. #include <linux/time.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/mii.h>
  40. #include <linux/if_vlan.h>
  41. #include <net/ip.h>
  42. #include <net/ipv6.h>
  43. #include <net/tcp.h>
  44. #include <net/checksum.h>
  45. #include <net/ip6_checksum.h>
  46. #include <linux/workqueue.h>
  47. #include <linux/crc32.h>
  48. #include <linux/crc32c.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/zlib.h>
  51. #include <linux/io.h>
  52. #include <linux/semaphore.h>
  53. #include <linux/stringify.h>
  54. #include <linux/vmalloc.h>
  55. #include "bnx2x.h"
  56. #include "bnx2x_init.h"
  57. #include "bnx2x_init_ops.h"
  58. #include "bnx2x_cmn.h"
  59. #include "bnx2x_vfpf.h"
  60. #include "bnx2x_dcb.h"
  61. #include "bnx2x_sp.h"
  62. #include <linux/firmware.h>
  63. #include "bnx2x_fw_file_hdr.h"
  64. /* FW files */
  65. #define FW_FILE_VERSION \
  66. __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
  67. __stringify(BCM_5710_FW_MINOR_VERSION) "." \
  68. __stringify(BCM_5710_FW_REVISION_VERSION) "." \
  69. __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  70. #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  71. #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  72. #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  73. /* Time in jiffies before concluding the transmitter is hung */
  74. #define TX_TIMEOUT (5*HZ)
  75. static char version[] =
  76. "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  77. DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  78. MODULE_AUTHOR("Eliezer Tamir");
  79. MODULE_DESCRIPTION("Broadcom NetXtreme II "
  80. "BCM57710/57711/57711E/"
  81. "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  82. "57840/57840_MF Driver");
  83. MODULE_LICENSE("GPL");
  84. MODULE_VERSION(DRV_MODULE_VERSION);
  85. MODULE_FIRMWARE(FW_FILE_NAME_E1);
  86. MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  87. MODULE_FIRMWARE(FW_FILE_NAME_E2);
  88. int num_queues;
  89. module_param(num_queues, int, 0);
  90. MODULE_PARM_DESC(num_queues,
  91. " Set number of queues (default is as a number of CPUs)");
  92. static int disable_tpa;
  93. module_param(disable_tpa, int, 0);
  94. MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
  95. int int_mode;
  96. module_param(int_mode, int, 0);
  97. MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
  98. "(1 INT#x; 2 MSI)");
  99. static int dropless_fc;
  100. module_param(dropless_fc, int, 0);
  101. MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
  102. static int mrrs = -1;
  103. module_param(mrrs, int, 0);
  104. MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
  105. static int debug;
  106. module_param(debug, int, 0);
  107. MODULE_PARM_DESC(debug, " Default debug msglevel");
  108. struct workqueue_struct *bnx2x_wq;
  109. struct bnx2x_mac_vals {
  110. u32 xmac_addr;
  111. u32 xmac_val;
  112. u32 emac_addr;
  113. u32 emac_val;
  114. u32 umac_addr;
  115. u32 umac_val;
  116. u32 bmac_addr;
  117. u32 bmac_val[2];
  118. };
  119. enum bnx2x_board_type {
  120. BCM57710 = 0,
  121. BCM57711,
  122. BCM57711E,
  123. BCM57712,
  124. BCM57712_MF,
  125. BCM57712_VF,
  126. BCM57800,
  127. BCM57800_MF,
  128. BCM57800_VF,
  129. BCM57810,
  130. BCM57810_MF,
  131. BCM57810_VF,
  132. BCM57840_4_10,
  133. BCM57840_2_20,
  134. BCM57840_MF,
  135. BCM57840_VF,
  136. BCM57811,
  137. BCM57811_MF,
  138. BCM57840_O,
  139. BCM57840_MFO,
  140. BCM57811_VF
  141. };
  142. /* indexed by board_type, above */
  143. static struct {
  144. char *name;
  145. } board_info[] = {
  146. [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
  147. [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
  148. [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
  149. [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
  150. [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
  151. [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
  152. [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
  153. [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
  154. [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
  155. [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
  156. [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
  157. [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
  158. [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
  159. [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
  160. [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
  161. [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
  162. [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
  163. [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
  164. [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
  165. [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
  166. [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
  167. };
  168. #ifndef PCI_DEVICE_ID_NX2_57710
  169. #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
  170. #endif
  171. #ifndef PCI_DEVICE_ID_NX2_57711
  172. #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
  173. #endif
  174. #ifndef PCI_DEVICE_ID_NX2_57711E
  175. #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
  176. #endif
  177. #ifndef PCI_DEVICE_ID_NX2_57712
  178. #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
  179. #endif
  180. #ifndef PCI_DEVICE_ID_NX2_57712_MF
  181. #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
  182. #endif
  183. #ifndef PCI_DEVICE_ID_NX2_57712_VF
  184. #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
  185. #endif
  186. #ifndef PCI_DEVICE_ID_NX2_57800
  187. #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
  188. #endif
  189. #ifndef PCI_DEVICE_ID_NX2_57800_MF
  190. #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
  191. #endif
  192. #ifndef PCI_DEVICE_ID_NX2_57800_VF
  193. #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
  194. #endif
  195. #ifndef PCI_DEVICE_ID_NX2_57810
  196. #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
  197. #endif
  198. #ifndef PCI_DEVICE_ID_NX2_57810_MF
  199. #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
  200. #endif
  201. #ifndef PCI_DEVICE_ID_NX2_57840_O
  202. #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
  203. #endif
  204. #ifndef PCI_DEVICE_ID_NX2_57810_VF
  205. #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
  206. #endif
  207. #ifndef PCI_DEVICE_ID_NX2_57840_4_10
  208. #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
  209. #endif
  210. #ifndef PCI_DEVICE_ID_NX2_57840_2_20
  211. #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
  212. #endif
  213. #ifndef PCI_DEVICE_ID_NX2_57840_MFO
  214. #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
  215. #endif
  216. #ifndef PCI_DEVICE_ID_NX2_57840_MF
  217. #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
  218. #endif
  219. #ifndef PCI_DEVICE_ID_NX2_57840_VF
  220. #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
  221. #endif
  222. #ifndef PCI_DEVICE_ID_NX2_57811
  223. #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
  224. #endif
  225. #ifndef PCI_DEVICE_ID_NX2_57811_MF
  226. #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
  227. #endif
  228. #ifndef PCI_DEVICE_ID_NX2_57811_VF
  229. #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
  230. #endif
  231. static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
  232. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
  233. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
  234. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
  235. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
  236. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
  237. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
  238. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
  239. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
  240. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
  241. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
  242. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
  243. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
  244. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
  245. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
  246. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
  247. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
  248. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
  249. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
  250. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
  251. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
  252. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
  253. { 0 }
  254. };
  255. MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
  256. /* Global resources for unloading a previously loaded device */
  257. #define BNX2X_PREV_WAIT_NEEDED 1
  258. static DEFINE_SEMAPHORE(bnx2x_prev_sem);
  259. static LIST_HEAD(bnx2x_prev_list);
  260. /****************************************************************************
  261. * General service functions
  262. ****************************************************************************/
  263. static void __storm_memset_dma_mapping(struct bnx2x *bp,
  264. u32 addr, dma_addr_t mapping)
  265. {
  266. REG_WR(bp, addr, U64_LO(mapping));
  267. REG_WR(bp, addr + 4, U64_HI(mapping));
  268. }
  269. static void storm_memset_spq_addr(struct bnx2x *bp,
  270. dma_addr_t mapping, u16 abs_fid)
  271. {
  272. u32 addr = XSEM_REG_FAST_MEMORY +
  273. XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
  274. __storm_memset_dma_mapping(bp, addr, mapping);
  275. }
  276. static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
  277. u16 pf_id)
  278. {
  279. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
  280. pf_id);
  281. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
  282. pf_id);
  283. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
  284. pf_id);
  285. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
  286. pf_id);
  287. }
  288. static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
  289. u8 enable)
  290. {
  291. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
  292. enable);
  293. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
  294. enable);
  295. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
  296. enable);
  297. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
  298. enable);
  299. }
  300. static void storm_memset_eq_data(struct bnx2x *bp,
  301. struct event_ring_data *eq_data,
  302. u16 pfid)
  303. {
  304. size_t size = sizeof(struct event_ring_data);
  305. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
  306. __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
  307. }
  308. static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
  309. u16 pfid)
  310. {
  311. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
  312. REG_WR16(bp, addr, eq_prod);
  313. }
  314. /* used only at init
  315. * locking is done by mcp
  316. */
  317. static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
  318. {
  319. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  320. pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
  321. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  322. PCICFG_VENDOR_ID_OFFSET);
  323. }
  324. static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
  325. {
  326. u32 val;
  327. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  328. pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
  329. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  330. PCICFG_VENDOR_ID_OFFSET);
  331. return val;
  332. }
  333. #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
  334. #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
  335. #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
  336. #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
  337. #define DMAE_DP_DST_NONE "dst_addr [none]"
  338. static void bnx2x_dp_dmae(struct bnx2x *bp,
  339. struct dmae_command *dmae, int msglvl)
  340. {
  341. u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
  342. int i;
  343. switch (dmae->opcode & DMAE_COMMAND_DST) {
  344. case DMAE_CMD_DST_PCI:
  345. if (src_type == DMAE_CMD_SRC_PCI)
  346. DP(msglvl, "DMAE: opcode 0x%08x\n"
  347. "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
  348. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  349. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  350. dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
  351. dmae->comp_addr_hi, dmae->comp_addr_lo,
  352. dmae->comp_val);
  353. else
  354. DP(msglvl, "DMAE: opcode 0x%08x\n"
  355. "src [%08x], len [%d*4], dst [%x:%08x]\n"
  356. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  357. dmae->opcode, dmae->src_addr_lo >> 2,
  358. dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
  359. dmae->comp_addr_hi, dmae->comp_addr_lo,
  360. dmae->comp_val);
  361. break;
  362. case DMAE_CMD_DST_GRC:
  363. if (src_type == DMAE_CMD_SRC_PCI)
  364. DP(msglvl, "DMAE: opcode 0x%08x\n"
  365. "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
  366. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  367. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  368. dmae->len, dmae->dst_addr_lo >> 2,
  369. dmae->comp_addr_hi, dmae->comp_addr_lo,
  370. dmae->comp_val);
  371. else
  372. DP(msglvl, "DMAE: opcode 0x%08x\n"
  373. "src [%08x], len [%d*4], dst [%08x]\n"
  374. "comp_addr [%x:%08x], comp_val 0x%08x\n",
  375. dmae->opcode, dmae->src_addr_lo >> 2,
  376. dmae->len, dmae->dst_addr_lo >> 2,
  377. dmae->comp_addr_hi, dmae->comp_addr_lo,
  378. dmae->comp_val);
  379. break;
  380. default:
  381. if (src_type == DMAE_CMD_SRC_PCI)
  382. DP(msglvl, "DMAE: opcode 0x%08x\n"
  383. "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
  384. "comp_addr [%x:%08x] comp_val 0x%08x\n",
  385. dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
  386. dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
  387. dmae->comp_val);
  388. else
  389. DP(msglvl, "DMAE: opcode 0x%08x\n"
  390. "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
  391. "comp_addr [%x:%08x] comp_val 0x%08x\n",
  392. dmae->opcode, dmae->src_addr_lo >> 2,
  393. dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
  394. dmae->comp_val);
  395. break;
  396. }
  397. for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
  398. DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
  399. i, *(((u32 *)dmae) + i));
  400. }
  401. /* copy command into DMAE command memory and set DMAE command go */
  402. void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
  403. {
  404. u32 cmd_offset;
  405. int i;
  406. cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
  407. for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
  408. REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
  409. }
  410. REG_WR(bp, dmae_reg_go_c[idx], 1);
  411. }
  412. u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
  413. {
  414. return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
  415. DMAE_CMD_C_ENABLE);
  416. }
  417. u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
  418. {
  419. return opcode & ~DMAE_CMD_SRC_RESET;
  420. }
  421. u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
  422. bool with_comp, u8 comp_type)
  423. {
  424. u32 opcode = 0;
  425. opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
  426. (dst_type << DMAE_COMMAND_DST_SHIFT));
  427. opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
  428. opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
  429. opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
  430. (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
  431. opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
  432. #ifdef __BIG_ENDIAN
  433. opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
  434. #else
  435. opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
  436. #endif
  437. if (with_comp)
  438. opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
  439. return opcode;
  440. }
  441. void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
  442. struct dmae_command *dmae,
  443. u8 src_type, u8 dst_type)
  444. {
  445. memset(dmae, 0, sizeof(struct dmae_command));
  446. /* set the opcode */
  447. dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
  448. true, DMAE_COMP_PCI);
  449. /* fill in the completion parameters */
  450. dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
  451. dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
  452. dmae->comp_val = DMAE_COMP_VAL;
  453. }
  454. /* issue a dmae command over the init-channel and wait for completion */
  455. int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
  456. u32 *comp)
  457. {
  458. int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
  459. int rc = 0;
  460. bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
  461. /* Lock the dmae channel. Disable BHs to prevent a dead-lock
  462. * as long as this code is called both from syscall context and
  463. * from ndo_set_rx_mode() flow that may be called from BH.
  464. */
  465. spin_lock_bh(&bp->dmae_lock);
  466. /* reset completion */
  467. *comp = 0;
  468. /* post the command on the channel used for initializations */
  469. bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
  470. /* wait for completion */
  471. udelay(5);
  472. while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
  473. if (!cnt ||
  474. (bp->recovery_state != BNX2X_RECOVERY_DONE &&
  475. bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
  476. BNX2X_ERR("DMAE timeout!\n");
  477. rc = DMAE_TIMEOUT;
  478. goto unlock;
  479. }
  480. cnt--;
  481. udelay(50);
  482. }
  483. if (*comp & DMAE_PCI_ERR_FLAG) {
  484. BNX2X_ERR("DMAE PCI error!\n");
  485. rc = DMAE_PCI_ERROR;
  486. }
  487. unlock:
  488. spin_unlock_bh(&bp->dmae_lock);
  489. return rc;
  490. }
  491. void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
  492. u32 len32)
  493. {
  494. int rc;
  495. struct dmae_command dmae;
  496. if (!bp->dmae_ready) {
  497. u32 *data = bnx2x_sp(bp, wb_data[0]);
  498. if (CHIP_IS_E1(bp))
  499. bnx2x_init_ind_wr(bp, dst_addr, data, len32);
  500. else
  501. bnx2x_init_str_wr(bp, dst_addr, data, len32);
  502. return;
  503. }
  504. /* set opcode and fixed command fields */
  505. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
  506. /* fill in addresses and len */
  507. dmae.src_addr_lo = U64_LO(dma_addr);
  508. dmae.src_addr_hi = U64_HI(dma_addr);
  509. dmae.dst_addr_lo = dst_addr >> 2;
  510. dmae.dst_addr_hi = 0;
  511. dmae.len = len32;
  512. /* issue the command and wait for completion */
  513. rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
  514. if (rc) {
  515. BNX2X_ERR("DMAE returned failure %d\n", rc);
  516. bnx2x_panic();
  517. }
  518. }
  519. void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
  520. {
  521. int rc;
  522. struct dmae_command dmae;
  523. if (!bp->dmae_ready) {
  524. u32 *data = bnx2x_sp(bp, wb_data[0]);
  525. int i;
  526. if (CHIP_IS_E1(bp))
  527. for (i = 0; i < len32; i++)
  528. data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
  529. else
  530. for (i = 0; i < len32; i++)
  531. data[i] = REG_RD(bp, src_addr + i*4);
  532. return;
  533. }
  534. /* set opcode and fixed command fields */
  535. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
  536. /* fill in addresses and len */
  537. dmae.src_addr_lo = src_addr >> 2;
  538. dmae.src_addr_hi = 0;
  539. dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
  540. dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
  541. dmae.len = len32;
  542. /* issue the command and wait for completion */
  543. rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
  544. if (rc) {
  545. BNX2X_ERR("DMAE returned failure %d\n", rc);
  546. bnx2x_panic();
  547. }
  548. }
  549. static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
  550. u32 addr, u32 len)
  551. {
  552. int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
  553. int offset = 0;
  554. while (len > dmae_wr_max) {
  555. bnx2x_write_dmae(bp, phys_addr + offset,
  556. addr + offset, dmae_wr_max);
  557. offset += dmae_wr_max * 4;
  558. len -= dmae_wr_max;
  559. }
  560. bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
  561. }
  562. static int bnx2x_mc_assert(struct bnx2x *bp)
  563. {
  564. char last_idx;
  565. int i, rc = 0;
  566. u32 row0, row1, row2, row3;
  567. /* XSTORM */
  568. last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
  569. XSTORM_ASSERT_LIST_INDEX_OFFSET);
  570. if (last_idx)
  571. BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  572. /* print the asserts */
  573. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  574. row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  575. XSTORM_ASSERT_LIST_OFFSET(i));
  576. row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  577. XSTORM_ASSERT_LIST_OFFSET(i) + 4);
  578. row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  579. XSTORM_ASSERT_LIST_OFFSET(i) + 8);
  580. row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  581. XSTORM_ASSERT_LIST_OFFSET(i) + 12);
  582. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  583. BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  584. i, row3, row2, row1, row0);
  585. rc++;
  586. } else {
  587. break;
  588. }
  589. }
  590. /* TSTORM */
  591. last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
  592. TSTORM_ASSERT_LIST_INDEX_OFFSET);
  593. if (last_idx)
  594. BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  595. /* print the asserts */
  596. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  597. row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  598. TSTORM_ASSERT_LIST_OFFSET(i));
  599. row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  600. TSTORM_ASSERT_LIST_OFFSET(i) + 4);
  601. row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  602. TSTORM_ASSERT_LIST_OFFSET(i) + 8);
  603. row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  604. TSTORM_ASSERT_LIST_OFFSET(i) + 12);
  605. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  606. BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  607. i, row3, row2, row1, row0);
  608. rc++;
  609. } else {
  610. break;
  611. }
  612. }
  613. /* CSTORM */
  614. last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
  615. CSTORM_ASSERT_LIST_INDEX_OFFSET);
  616. if (last_idx)
  617. BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  618. /* print the asserts */
  619. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  620. row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  621. CSTORM_ASSERT_LIST_OFFSET(i));
  622. row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  623. CSTORM_ASSERT_LIST_OFFSET(i) + 4);
  624. row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  625. CSTORM_ASSERT_LIST_OFFSET(i) + 8);
  626. row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  627. CSTORM_ASSERT_LIST_OFFSET(i) + 12);
  628. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  629. BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  630. i, row3, row2, row1, row0);
  631. rc++;
  632. } else {
  633. break;
  634. }
  635. }
  636. /* USTORM */
  637. last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
  638. USTORM_ASSERT_LIST_INDEX_OFFSET);
  639. if (last_idx)
  640. BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  641. /* print the asserts */
  642. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  643. row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
  644. USTORM_ASSERT_LIST_OFFSET(i));
  645. row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
  646. USTORM_ASSERT_LIST_OFFSET(i) + 4);
  647. row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
  648. USTORM_ASSERT_LIST_OFFSET(i) + 8);
  649. row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
  650. USTORM_ASSERT_LIST_OFFSET(i) + 12);
  651. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  652. BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  653. i, row3, row2, row1, row0);
  654. rc++;
  655. } else {
  656. break;
  657. }
  658. }
  659. return rc;
  660. }
  661. #define MCPR_TRACE_BUFFER_SIZE (0x800)
  662. #define SCRATCH_BUFFER_SIZE(bp) \
  663. (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
  664. void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
  665. {
  666. u32 addr, val;
  667. u32 mark, offset;
  668. __be32 data[9];
  669. int word;
  670. u32 trace_shmem_base;
  671. if (BP_NOMCP(bp)) {
  672. BNX2X_ERR("NO MCP - can not dump\n");
  673. return;
  674. }
  675. netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
  676. (bp->common.bc_ver & 0xff0000) >> 16,
  677. (bp->common.bc_ver & 0xff00) >> 8,
  678. (bp->common.bc_ver & 0xff));
  679. val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
  680. if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
  681. BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
  682. if (BP_PATH(bp) == 0)
  683. trace_shmem_base = bp->common.shmem_base;
  684. else
  685. trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
  686. /* sanity */
  687. if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
  688. trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
  689. SCRATCH_BUFFER_SIZE(bp)) {
  690. BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
  691. trace_shmem_base);
  692. return;
  693. }
  694. addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
  695. /* validate TRCB signature */
  696. mark = REG_RD(bp, addr);
  697. if (mark != MFW_TRACE_SIGNATURE) {
  698. BNX2X_ERR("Trace buffer signature is missing.");
  699. return ;
  700. }
  701. /* read cyclic buffer pointer */
  702. addr += 4;
  703. mark = REG_RD(bp, addr);
  704. mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
  705. if (mark >= trace_shmem_base || mark < addr + 4) {
  706. BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
  707. return;
  708. }
  709. printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
  710. printk("%s", lvl);
  711. /* dump buffer after the mark */
  712. for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
  713. for (word = 0; word < 8; word++)
  714. data[word] = htonl(REG_RD(bp, offset + 4*word));
  715. data[8] = 0x0;
  716. pr_cont("%s", (char *)data);
  717. }
  718. /* dump buffer before the mark */
  719. for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
  720. for (word = 0; word < 8; word++)
  721. data[word] = htonl(REG_RD(bp, offset + 4*word));
  722. data[8] = 0x0;
  723. pr_cont("%s", (char *)data);
  724. }
  725. printk("%s" "end of fw dump\n", lvl);
  726. }
  727. static void bnx2x_fw_dump(struct bnx2x *bp)
  728. {
  729. bnx2x_fw_dump_lvl(bp, KERN_ERR);
  730. }
  731. static void bnx2x_hc_int_disable(struct bnx2x *bp)
  732. {
  733. int port = BP_PORT(bp);
  734. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  735. u32 val = REG_RD(bp, addr);
  736. /* in E1 we must use only PCI configuration space to disable
  737. * MSI/MSIX capability
  738. * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
  739. */
  740. if (CHIP_IS_E1(bp)) {
  741. /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
  742. * Use mask register to prevent from HC sending interrupts
  743. * after we exit the function
  744. */
  745. REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
  746. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  747. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  748. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  749. } else
  750. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  751. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  752. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  753. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  754. DP(NETIF_MSG_IFDOWN,
  755. "write %x to HC %d (addr 0x%x)\n",
  756. val, port, addr);
  757. /* flush all outstanding writes */
  758. mmiowb();
  759. REG_WR(bp, addr, val);
  760. if (REG_RD(bp, addr) != val)
  761. BNX2X_ERR("BUG! Proper val not read from IGU!\n");
  762. }
  763. static void bnx2x_igu_int_disable(struct bnx2x *bp)
  764. {
  765. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  766. val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
  767. IGU_PF_CONF_INT_LINE_EN |
  768. IGU_PF_CONF_ATTN_BIT_EN);
  769. DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
  770. /* flush all outstanding writes */
  771. mmiowb();
  772. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  773. if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
  774. BNX2X_ERR("BUG! Proper val not read from IGU!\n");
  775. }
  776. static void bnx2x_int_disable(struct bnx2x *bp)
  777. {
  778. if (bp->common.int_block == INT_BLOCK_HC)
  779. bnx2x_hc_int_disable(bp);
  780. else
  781. bnx2x_igu_int_disable(bp);
  782. }
  783. void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
  784. {
  785. int i;
  786. u16 j;
  787. struct hc_sp_status_block_data sp_sb_data;
  788. int func = BP_FUNC(bp);
  789. #ifdef BNX2X_STOP_ON_ERROR
  790. u16 start = 0, end = 0;
  791. u8 cos;
  792. #endif
  793. if (disable_int)
  794. bnx2x_int_disable(bp);
  795. bp->stats_state = STATS_STATE_DISABLED;
  796. bp->eth_stats.unrecoverable_error++;
  797. DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
  798. BNX2X_ERR("begin crash dump -----------------\n");
  799. /* Indices */
  800. /* Common */
  801. BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
  802. bp->def_idx, bp->def_att_idx, bp->attn_state,
  803. bp->spq_prod_idx, bp->stats_counter);
  804. BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
  805. bp->def_status_blk->atten_status_block.attn_bits,
  806. bp->def_status_blk->atten_status_block.attn_bits_ack,
  807. bp->def_status_blk->atten_status_block.status_block_id,
  808. bp->def_status_blk->atten_status_block.attn_bits_index);
  809. BNX2X_ERR(" def (");
  810. for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
  811. pr_cont("0x%x%s",
  812. bp->def_status_blk->sp_sb.index_values[i],
  813. (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
  814. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  815. *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  816. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  817. i*sizeof(u32));
  818. pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
  819. sp_sb_data.igu_sb_id,
  820. sp_sb_data.igu_seg_id,
  821. sp_sb_data.p_func.pf_id,
  822. sp_sb_data.p_func.vnic_id,
  823. sp_sb_data.p_func.vf_id,
  824. sp_sb_data.p_func.vf_valid,
  825. sp_sb_data.state);
  826. for_each_eth_queue(bp, i) {
  827. struct bnx2x_fastpath *fp = &bp->fp[i];
  828. int loop;
  829. struct hc_status_block_data_e2 sb_data_e2;
  830. struct hc_status_block_data_e1x sb_data_e1x;
  831. struct hc_status_block_sm *hc_sm_p =
  832. CHIP_IS_E1x(bp) ?
  833. sb_data_e1x.common.state_machine :
  834. sb_data_e2.common.state_machine;
  835. struct hc_index_data *hc_index_p =
  836. CHIP_IS_E1x(bp) ?
  837. sb_data_e1x.index_data :
  838. sb_data_e2.index_data;
  839. u8 data_size, cos;
  840. u32 *sb_data_p;
  841. struct bnx2x_fp_txdata txdata;
  842. /* Rx */
  843. BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
  844. i, fp->rx_bd_prod, fp->rx_bd_cons,
  845. fp->rx_comp_prod,
  846. fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
  847. BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
  848. fp->rx_sge_prod, fp->last_max_sge,
  849. le16_to_cpu(fp->fp_hc_idx));
  850. /* Tx */
  851. for_each_cos_in_tx_queue(fp, cos)
  852. {
  853. txdata = *fp->txdata_ptr[cos];
  854. BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
  855. i, txdata.tx_pkt_prod,
  856. txdata.tx_pkt_cons, txdata.tx_bd_prod,
  857. txdata.tx_bd_cons,
  858. le16_to_cpu(*txdata.tx_cons_sb));
  859. }
  860. loop = CHIP_IS_E1x(bp) ?
  861. HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
  862. /* host sb data */
  863. if (IS_FCOE_FP(fp))
  864. continue;
  865. BNX2X_ERR(" run indexes (");
  866. for (j = 0; j < HC_SB_MAX_SM; j++)
  867. pr_cont("0x%x%s",
  868. fp->sb_running_index[j],
  869. (j == HC_SB_MAX_SM - 1) ? ")" : " ");
  870. BNX2X_ERR(" indexes (");
  871. for (j = 0; j < loop; j++)
  872. pr_cont("0x%x%s",
  873. fp->sb_index_values[j],
  874. (j == loop - 1) ? ")" : " ");
  875. /* fw sb data */
  876. data_size = CHIP_IS_E1x(bp) ?
  877. sizeof(struct hc_status_block_data_e1x) :
  878. sizeof(struct hc_status_block_data_e2);
  879. data_size /= sizeof(u32);
  880. sb_data_p = CHIP_IS_E1x(bp) ?
  881. (u32 *)&sb_data_e1x :
  882. (u32 *)&sb_data_e2;
  883. /* copy sb data in here */
  884. for (j = 0; j < data_size; j++)
  885. *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  886. CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
  887. j * sizeof(u32));
  888. if (!CHIP_IS_E1x(bp)) {
  889. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
  890. sb_data_e2.common.p_func.pf_id,
  891. sb_data_e2.common.p_func.vf_id,
  892. sb_data_e2.common.p_func.vf_valid,
  893. sb_data_e2.common.p_func.vnic_id,
  894. sb_data_e2.common.same_igu_sb_1b,
  895. sb_data_e2.common.state);
  896. } else {
  897. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
  898. sb_data_e1x.common.p_func.pf_id,
  899. sb_data_e1x.common.p_func.vf_id,
  900. sb_data_e1x.common.p_func.vf_valid,
  901. sb_data_e1x.common.p_func.vnic_id,
  902. sb_data_e1x.common.same_igu_sb_1b,
  903. sb_data_e1x.common.state);
  904. }
  905. /* SB_SMs data */
  906. for (j = 0; j < HC_SB_MAX_SM; j++) {
  907. pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
  908. j, hc_sm_p[j].__flags,
  909. hc_sm_p[j].igu_sb_id,
  910. hc_sm_p[j].igu_seg_id,
  911. hc_sm_p[j].time_to_expire,
  912. hc_sm_p[j].timer_value);
  913. }
  914. /* Indices data */
  915. for (j = 0; j < loop; j++) {
  916. pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
  917. hc_index_p[j].flags,
  918. hc_index_p[j].timeout);
  919. }
  920. }
  921. #ifdef BNX2X_STOP_ON_ERROR
  922. /* event queue */
  923. BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
  924. for (i = 0; i < NUM_EQ_DESC; i++) {
  925. u32 *data = (u32 *)&bp->eq_ring[i].message.data;
  926. BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
  927. i, bp->eq_ring[i].message.opcode,
  928. bp->eq_ring[i].message.error);
  929. BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
  930. }
  931. /* Rings */
  932. /* Rx */
  933. for_each_valid_rx_queue(bp, i) {
  934. struct bnx2x_fastpath *fp = &bp->fp[i];
  935. start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
  936. end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
  937. for (j = start; j != end; j = RX_BD(j + 1)) {
  938. u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
  939. struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
  940. BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
  941. i, j, rx_bd[1], rx_bd[0], sw_bd->data);
  942. }
  943. start = RX_SGE(fp->rx_sge_prod);
  944. end = RX_SGE(fp->last_max_sge);
  945. for (j = start; j != end; j = RX_SGE(j + 1)) {
  946. u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
  947. struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
  948. BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
  949. i, j, rx_sge[1], rx_sge[0], sw_page->page);
  950. }
  951. start = RCQ_BD(fp->rx_comp_cons - 10);
  952. end = RCQ_BD(fp->rx_comp_cons + 503);
  953. for (j = start; j != end; j = RCQ_BD(j + 1)) {
  954. u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
  955. BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
  956. i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
  957. }
  958. }
  959. /* Tx */
  960. for_each_valid_tx_queue(bp, i) {
  961. struct bnx2x_fastpath *fp = &bp->fp[i];
  962. for_each_cos_in_tx_queue(fp, cos) {
  963. struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
  964. start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
  965. end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
  966. for (j = start; j != end; j = TX_BD(j + 1)) {
  967. struct sw_tx_bd *sw_bd =
  968. &txdata->tx_buf_ring[j];
  969. BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
  970. i, cos, j, sw_bd->skb,
  971. sw_bd->first_bd);
  972. }
  973. start = TX_BD(txdata->tx_bd_cons - 10);
  974. end = TX_BD(txdata->tx_bd_cons + 254);
  975. for (j = start; j != end; j = TX_BD(j + 1)) {
  976. u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
  977. BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
  978. i, cos, j, tx_bd[0], tx_bd[1],
  979. tx_bd[2], tx_bd[3]);
  980. }
  981. }
  982. }
  983. #endif
  984. bnx2x_fw_dump(bp);
  985. bnx2x_mc_assert(bp);
  986. BNX2X_ERR("end crash dump -----------------\n");
  987. }
  988. /*
  989. * FLR Support for E2
  990. *
  991. * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
  992. * initialization.
  993. */
  994. #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
  995. #define FLR_WAIT_INTERVAL 50 /* usec */
  996. #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
  997. struct pbf_pN_buf_regs {
  998. int pN;
  999. u32 init_crd;
  1000. u32 crd;
  1001. u32 crd_freed;
  1002. };
  1003. struct pbf_pN_cmd_regs {
  1004. int pN;
  1005. u32 lines_occup;
  1006. u32 lines_freed;
  1007. };
  1008. static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
  1009. struct pbf_pN_buf_regs *regs,
  1010. u32 poll_count)
  1011. {
  1012. u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
  1013. u32 cur_cnt = poll_count;
  1014. crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
  1015. crd = crd_start = REG_RD(bp, regs->crd);
  1016. init_crd = REG_RD(bp, regs->init_crd);
  1017. DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
  1018. DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
  1019. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
  1020. while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
  1021. (init_crd - crd_start))) {
  1022. if (cur_cnt--) {
  1023. udelay(FLR_WAIT_INTERVAL);
  1024. crd = REG_RD(bp, regs->crd);
  1025. crd_freed = REG_RD(bp, regs->crd_freed);
  1026. } else {
  1027. DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
  1028. regs->pN);
  1029. DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
  1030. regs->pN, crd);
  1031. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
  1032. regs->pN, crd_freed);
  1033. break;
  1034. }
  1035. }
  1036. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
  1037. poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
  1038. }
  1039. static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
  1040. struct pbf_pN_cmd_regs *regs,
  1041. u32 poll_count)
  1042. {
  1043. u32 occup, to_free, freed, freed_start;
  1044. u32 cur_cnt = poll_count;
  1045. occup = to_free = REG_RD(bp, regs->lines_occup);
  1046. freed = freed_start = REG_RD(bp, regs->lines_freed);
  1047. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
  1048. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
  1049. while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
  1050. if (cur_cnt--) {
  1051. udelay(FLR_WAIT_INTERVAL);
  1052. occup = REG_RD(bp, regs->lines_occup);
  1053. freed = REG_RD(bp, regs->lines_freed);
  1054. } else {
  1055. DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
  1056. regs->pN);
  1057. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
  1058. regs->pN, occup);
  1059. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
  1060. regs->pN, freed);
  1061. break;
  1062. }
  1063. }
  1064. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
  1065. poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
  1066. }
  1067. static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
  1068. u32 expected, u32 poll_count)
  1069. {
  1070. u32 cur_cnt = poll_count;
  1071. u32 val;
  1072. while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
  1073. udelay(FLR_WAIT_INTERVAL);
  1074. return val;
  1075. }
  1076. int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
  1077. char *msg, u32 poll_cnt)
  1078. {
  1079. u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
  1080. if (val != 0) {
  1081. BNX2X_ERR("%s usage count=%d\n", msg, val);
  1082. return 1;
  1083. }
  1084. return 0;
  1085. }
  1086. /* Common routines with VF FLR cleanup */
  1087. u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
  1088. {
  1089. /* adjust polling timeout */
  1090. if (CHIP_REV_IS_EMUL(bp))
  1091. return FLR_POLL_CNT * 2000;
  1092. if (CHIP_REV_IS_FPGA(bp))
  1093. return FLR_POLL_CNT * 120;
  1094. return FLR_POLL_CNT;
  1095. }
  1096. void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
  1097. {
  1098. struct pbf_pN_cmd_regs cmd_regs[] = {
  1099. {0, (CHIP_IS_E3B0(bp)) ?
  1100. PBF_REG_TQ_OCCUPANCY_Q0 :
  1101. PBF_REG_P0_TQ_OCCUPANCY,
  1102. (CHIP_IS_E3B0(bp)) ?
  1103. PBF_REG_TQ_LINES_FREED_CNT_Q0 :
  1104. PBF_REG_P0_TQ_LINES_FREED_CNT},
  1105. {1, (CHIP_IS_E3B0(bp)) ?
  1106. PBF_REG_TQ_OCCUPANCY_Q1 :
  1107. PBF_REG_P1_TQ_OCCUPANCY,
  1108. (CHIP_IS_E3B0(bp)) ?
  1109. PBF_REG_TQ_LINES_FREED_CNT_Q1 :
  1110. PBF_REG_P1_TQ_LINES_FREED_CNT},
  1111. {4, (CHIP_IS_E3B0(bp)) ?
  1112. PBF_REG_TQ_OCCUPANCY_LB_Q :
  1113. PBF_REG_P4_TQ_OCCUPANCY,
  1114. (CHIP_IS_E3B0(bp)) ?
  1115. PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
  1116. PBF_REG_P4_TQ_LINES_FREED_CNT}
  1117. };
  1118. struct pbf_pN_buf_regs buf_regs[] = {
  1119. {0, (CHIP_IS_E3B0(bp)) ?
  1120. PBF_REG_INIT_CRD_Q0 :
  1121. PBF_REG_P0_INIT_CRD ,
  1122. (CHIP_IS_E3B0(bp)) ?
  1123. PBF_REG_CREDIT_Q0 :
  1124. PBF_REG_P0_CREDIT,
  1125. (CHIP_IS_E3B0(bp)) ?
  1126. PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
  1127. PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
  1128. {1, (CHIP_IS_E3B0(bp)) ?
  1129. PBF_REG_INIT_CRD_Q1 :
  1130. PBF_REG_P1_INIT_CRD,
  1131. (CHIP_IS_E3B0(bp)) ?
  1132. PBF_REG_CREDIT_Q1 :
  1133. PBF_REG_P1_CREDIT,
  1134. (CHIP_IS_E3B0(bp)) ?
  1135. PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
  1136. PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
  1137. {4, (CHIP_IS_E3B0(bp)) ?
  1138. PBF_REG_INIT_CRD_LB_Q :
  1139. PBF_REG_P4_INIT_CRD,
  1140. (CHIP_IS_E3B0(bp)) ?
  1141. PBF_REG_CREDIT_LB_Q :
  1142. PBF_REG_P4_CREDIT,
  1143. (CHIP_IS_E3B0(bp)) ?
  1144. PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
  1145. PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
  1146. };
  1147. int i;
  1148. /* Verify the command queues are flushed P0, P1, P4 */
  1149. for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
  1150. bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
  1151. /* Verify the transmission buffers are flushed P0, P1, P4 */
  1152. for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
  1153. bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
  1154. }
  1155. #define OP_GEN_PARAM(param) \
  1156. (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
  1157. #define OP_GEN_TYPE(type) \
  1158. (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
  1159. #define OP_GEN_AGG_VECT(index) \
  1160. (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
  1161. int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
  1162. {
  1163. u32 op_gen_command = 0;
  1164. u32 comp_addr = BAR_CSTRORM_INTMEM +
  1165. CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
  1166. int ret = 0;
  1167. if (REG_RD(bp, comp_addr)) {
  1168. BNX2X_ERR("Cleanup complete was not 0 before sending\n");
  1169. return 1;
  1170. }
  1171. op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
  1172. op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
  1173. op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
  1174. op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
  1175. DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
  1176. REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
  1177. if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
  1178. BNX2X_ERR("FW final cleanup did not succeed\n");
  1179. DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
  1180. (REG_RD(bp, comp_addr)));
  1181. bnx2x_panic();
  1182. return 1;
  1183. }
  1184. /* Zero completion for next FLR */
  1185. REG_WR(bp, comp_addr, 0);
  1186. return ret;
  1187. }
  1188. u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
  1189. {
  1190. u16 status;
  1191. pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
  1192. return status & PCI_EXP_DEVSTA_TRPND;
  1193. }
  1194. /* PF FLR specific routines
  1195. */
  1196. static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
  1197. {
  1198. /* wait for CFC PF usage-counter to zero (includes all the VFs) */
  1199. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1200. CFC_REG_NUM_LCIDS_INSIDE_PF,
  1201. "CFC PF usage counter timed out",
  1202. poll_cnt))
  1203. return 1;
  1204. /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
  1205. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1206. DORQ_REG_PF_USAGE_CNT,
  1207. "DQ PF usage counter timed out",
  1208. poll_cnt))
  1209. return 1;
  1210. /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
  1211. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1212. QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
  1213. "QM PF usage counter timed out",
  1214. poll_cnt))
  1215. return 1;
  1216. /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
  1217. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1218. TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
  1219. "Timers VNIC usage counter timed out",
  1220. poll_cnt))
  1221. return 1;
  1222. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1223. TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
  1224. "Timers NUM_SCANS usage counter timed out",
  1225. poll_cnt))
  1226. return 1;
  1227. /* Wait DMAE PF usage counter to zero */
  1228. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1229. dmae_reg_go_c[INIT_DMAE_C(bp)],
  1230. "DMAE command register timed out",
  1231. poll_cnt))
  1232. return 1;
  1233. return 0;
  1234. }
  1235. static void bnx2x_hw_enable_status(struct bnx2x *bp)
  1236. {
  1237. u32 val;
  1238. val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
  1239. DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
  1240. val = REG_RD(bp, PBF_REG_DISABLE_PF);
  1241. DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
  1242. val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
  1243. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
  1244. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
  1245. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
  1246. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
  1247. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
  1248. val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
  1249. DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
  1250. val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
  1251. DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
  1252. val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
  1253. DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
  1254. val);
  1255. }
  1256. static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
  1257. {
  1258. u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
  1259. DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
  1260. /* Re-enable PF target read access */
  1261. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  1262. /* Poll HW usage counters */
  1263. DP(BNX2X_MSG_SP, "Polling usage counters\n");
  1264. if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
  1265. return -EBUSY;
  1266. /* Zero the igu 'trailing edge' and 'leading edge' */
  1267. /* Send the FW cleanup command */
  1268. if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
  1269. return -EBUSY;
  1270. /* ATC cleanup */
  1271. /* Verify TX hw is flushed */
  1272. bnx2x_tx_hw_flushed(bp, poll_cnt);
  1273. /* Wait 100ms (not adjusted according to platform) */
  1274. msleep(100);
  1275. /* Verify no pending pci transactions */
  1276. if (bnx2x_is_pcie_pending(bp->pdev))
  1277. BNX2X_ERR("PCIE Transactions still pending\n");
  1278. /* Debug */
  1279. bnx2x_hw_enable_status(bp);
  1280. /*
  1281. * Master enable - Due to WB DMAE writes performed before this
  1282. * register is re-initialized as part of the regular function init
  1283. */
  1284. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  1285. return 0;
  1286. }
  1287. static void bnx2x_hc_int_enable(struct bnx2x *bp)
  1288. {
  1289. int port = BP_PORT(bp);
  1290. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1291. u32 val = REG_RD(bp, addr);
  1292. bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
  1293. bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
  1294. bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
  1295. if (msix) {
  1296. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1297. HC_CONFIG_0_REG_INT_LINE_EN_0);
  1298. val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1299. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1300. if (single_msix)
  1301. val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
  1302. } else if (msi) {
  1303. val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
  1304. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1305. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1306. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1307. } else {
  1308. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1309. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1310. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1311. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1312. if (!CHIP_IS_E1(bp)) {
  1313. DP(NETIF_MSG_IFUP,
  1314. "write %x to HC %d (addr 0x%x)\n", val, port, addr);
  1315. REG_WR(bp, addr, val);
  1316. val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
  1317. }
  1318. }
  1319. if (CHIP_IS_E1(bp))
  1320. REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
  1321. DP(NETIF_MSG_IFUP,
  1322. "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
  1323. (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1324. REG_WR(bp, addr, val);
  1325. /*
  1326. * Ensure that HC_CONFIG is written before leading/trailing edge config
  1327. */
  1328. mmiowb();
  1329. barrier();
  1330. if (!CHIP_IS_E1(bp)) {
  1331. /* init leading/trailing edge */
  1332. if (IS_MF(bp)) {
  1333. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1334. if (bp->port.pmf)
  1335. /* enable nig and gpio3 attention */
  1336. val |= 0x1100;
  1337. } else
  1338. val = 0xffff;
  1339. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  1340. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  1341. }
  1342. /* Make sure that interrupts are indeed enabled from here on */
  1343. mmiowb();
  1344. }
  1345. static void bnx2x_igu_int_enable(struct bnx2x *bp)
  1346. {
  1347. u32 val;
  1348. bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
  1349. bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
  1350. bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
  1351. val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1352. if (msix) {
  1353. val &= ~(IGU_PF_CONF_INT_LINE_EN |
  1354. IGU_PF_CONF_SINGLE_ISR_EN);
  1355. val |= (IGU_PF_CONF_MSI_MSIX_EN |
  1356. IGU_PF_CONF_ATTN_BIT_EN);
  1357. if (single_msix)
  1358. val |= IGU_PF_CONF_SINGLE_ISR_EN;
  1359. } else if (msi) {
  1360. val &= ~IGU_PF_CONF_INT_LINE_EN;
  1361. val |= (IGU_PF_CONF_MSI_MSIX_EN |
  1362. IGU_PF_CONF_ATTN_BIT_EN |
  1363. IGU_PF_CONF_SINGLE_ISR_EN);
  1364. } else {
  1365. val &= ~IGU_PF_CONF_MSI_MSIX_EN;
  1366. val |= (IGU_PF_CONF_INT_LINE_EN |
  1367. IGU_PF_CONF_ATTN_BIT_EN |
  1368. IGU_PF_CONF_SINGLE_ISR_EN);
  1369. }
  1370. /* Clean previous status - need to configure igu prior to ack*/
  1371. if ((!msix) || single_msix) {
  1372. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1373. bnx2x_ack_int(bp);
  1374. }
  1375. val |= IGU_PF_CONF_FUNC_EN;
  1376. DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
  1377. val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1378. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1379. if (val & IGU_PF_CONF_INT_LINE_EN)
  1380. pci_intx(bp->pdev, true);
  1381. barrier();
  1382. /* init leading/trailing edge */
  1383. if (IS_MF(bp)) {
  1384. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1385. if (bp->port.pmf)
  1386. /* enable nig and gpio3 attention */
  1387. val |= 0x1100;
  1388. } else
  1389. val = 0xffff;
  1390. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  1391. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  1392. /* Make sure that interrupts are indeed enabled from here on */
  1393. mmiowb();
  1394. }
  1395. void bnx2x_int_enable(struct bnx2x *bp)
  1396. {
  1397. if (bp->common.int_block == INT_BLOCK_HC)
  1398. bnx2x_hc_int_enable(bp);
  1399. else
  1400. bnx2x_igu_int_enable(bp);
  1401. }
  1402. void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
  1403. {
  1404. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1405. int i, offset;
  1406. if (disable_hw)
  1407. /* prevent the HW from sending interrupts */
  1408. bnx2x_int_disable(bp);
  1409. /* make sure all ISRs are done */
  1410. if (msix) {
  1411. synchronize_irq(bp->msix_table[0].vector);
  1412. offset = 1;
  1413. if (CNIC_SUPPORT(bp))
  1414. offset++;
  1415. for_each_eth_queue(bp, i)
  1416. synchronize_irq(bp->msix_table[offset++].vector);
  1417. } else
  1418. synchronize_irq(bp->pdev->irq);
  1419. /* make sure sp_task is not running */
  1420. cancel_delayed_work(&bp->sp_task);
  1421. cancel_delayed_work(&bp->period_task);
  1422. flush_workqueue(bnx2x_wq);
  1423. }
  1424. /* fast path */
  1425. /*
  1426. * General service functions
  1427. */
  1428. /* Return true if succeeded to acquire the lock */
  1429. static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
  1430. {
  1431. u32 lock_status;
  1432. u32 resource_bit = (1 << resource);
  1433. int func = BP_FUNC(bp);
  1434. u32 hw_lock_control_reg;
  1435. DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
  1436. "Trying to take a lock on resource %d\n", resource);
  1437. /* Validating that the resource is within range */
  1438. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1439. DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
  1440. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1441. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1442. return false;
  1443. }
  1444. if (func <= 5)
  1445. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1446. else
  1447. hw_lock_control_reg =
  1448. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1449. /* Try to acquire the lock */
  1450. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1451. lock_status = REG_RD(bp, hw_lock_control_reg);
  1452. if (lock_status & resource_bit)
  1453. return true;
  1454. DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
  1455. "Failed to get a lock on resource %d\n", resource);
  1456. return false;
  1457. }
  1458. /**
  1459. * bnx2x_get_leader_lock_resource - get the recovery leader resource id
  1460. *
  1461. * @bp: driver handle
  1462. *
  1463. * Returns the recovery leader resource id according to the engine this function
  1464. * belongs to. Currently only only 2 engines is supported.
  1465. */
  1466. static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
  1467. {
  1468. if (BP_PATH(bp))
  1469. return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
  1470. else
  1471. return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
  1472. }
  1473. /**
  1474. * bnx2x_trylock_leader_lock- try to acquire a leader lock.
  1475. *
  1476. * @bp: driver handle
  1477. *
  1478. * Tries to acquire a leader lock for current engine.
  1479. */
  1480. static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
  1481. {
  1482. return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1483. }
  1484. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
  1485. /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
  1486. static int bnx2x_schedule_sp_task(struct bnx2x *bp)
  1487. {
  1488. /* Set the interrupt occurred bit for the sp-task to recognize it
  1489. * must ack the interrupt and transition according to the IGU
  1490. * state machine.
  1491. */
  1492. atomic_set(&bp->interrupt_occurred, 1);
  1493. /* The sp_task must execute only after this bit
  1494. * is set, otherwise we will get out of sync and miss all
  1495. * further interrupts. Hence, the barrier.
  1496. */
  1497. smp_wmb();
  1498. /* schedule sp_task to workqueue */
  1499. return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  1500. }
  1501. void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
  1502. {
  1503. struct bnx2x *bp = fp->bp;
  1504. int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1505. int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1506. enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
  1507. struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  1508. DP(BNX2X_MSG_SP,
  1509. "fp %d cid %d got ramrod #%d state is %x type is %d\n",
  1510. fp->index, cid, command, bp->state,
  1511. rr_cqe->ramrod_cqe.ramrod_type);
  1512. /* If cid is within VF range, replace the slowpath object with the
  1513. * one corresponding to this VF
  1514. */
  1515. if (cid >= BNX2X_FIRST_VF_CID &&
  1516. cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
  1517. bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
  1518. switch (command) {
  1519. case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
  1520. DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
  1521. drv_cmd = BNX2X_Q_CMD_UPDATE;
  1522. break;
  1523. case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
  1524. DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
  1525. drv_cmd = BNX2X_Q_CMD_SETUP;
  1526. break;
  1527. case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
  1528. DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
  1529. drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  1530. break;
  1531. case (RAMROD_CMD_ID_ETH_HALT):
  1532. DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
  1533. drv_cmd = BNX2X_Q_CMD_HALT;
  1534. break;
  1535. case (RAMROD_CMD_ID_ETH_TERMINATE):
  1536. DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
  1537. drv_cmd = BNX2X_Q_CMD_TERMINATE;
  1538. break;
  1539. case (RAMROD_CMD_ID_ETH_EMPTY):
  1540. DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
  1541. drv_cmd = BNX2X_Q_CMD_EMPTY;
  1542. break;
  1543. default:
  1544. BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
  1545. command, fp->index);
  1546. return;
  1547. }
  1548. if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
  1549. q_obj->complete_cmd(bp, q_obj, drv_cmd))
  1550. /* q_obj->complete_cmd() failure means that this was
  1551. * an unexpected completion.
  1552. *
  1553. * In this case we don't want to increase the bp->spq_left
  1554. * because apparently we haven't sent this command the first
  1555. * place.
  1556. */
  1557. #ifdef BNX2X_STOP_ON_ERROR
  1558. bnx2x_panic();
  1559. #else
  1560. return;
  1561. #endif
  1562. /* SRIOV: reschedule any 'in_progress' operations */
  1563. bnx2x_iov_sp_event(bp, cid, true);
  1564. smp_mb__before_atomic_inc();
  1565. atomic_inc(&bp->cq_spq_left);
  1566. /* push the change in bp->spq_left and towards the memory */
  1567. smp_mb__after_atomic_inc();
  1568. DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
  1569. if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
  1570. (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
  1571. /* if Q update ramrod is completed for last Q in AFEX vif set
  1572. * flow, then ACK MCP at the end
  1573. *
  1574. * mark pending ACK to MCP bit.
  1575. * prevent case that both bits are cleared.
  1576. * At the end of load/unload driver checks that
  1577. * sp_state is cleared, and this order prevents
  1578. * races
  1579. */
  1580. smp_mb__before_clear_bit();
  1581. set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
  1582. wmb();
  1583. clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
  1584. smp_mb__after_clear_bit();
  1585. /* schedule the sp task as mcp ack is required */
  1586. bnx2x_schedule_sp_task(bp);
  1587. }
  1588. return;
  1589. }
  1590. irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
  1591. {
  1592. struct bnx2x *bp = netdev_priv(dev_instance);
  1593. u16 status = bnx2x_ack_int(bp);
  1594. u16 mask;
  1595. int i;
  1596. u8 cos;
  1597. /* Return here if interrupt is shared and it's not for us */
  1598. if (unlikely(status == 0)) {
  1599. DP(NETIF_MSG_INTR, "not our interrupt!\n");
  1600. return IRQ_NONE;
  1601. }
  1602. DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
  1603. #ifdef BNX2X_STOP_ON_ERROR
  1604. if (unlikely(bp->panic))
  1605. return IRQ_HANDLED;
  1606. #endif
  1607. for_each_eth_queue(bp, i) {
  1608. struct bnx2x_fastpath *fp = &bp->fp[i];
  1609. mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
  1610. if (status & mask) {
  1611. /* Handle Rx or Tx according to SB id */
  1612. for_each_cos_in_tx_queue(fp, cos)
  1613. prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
  1614. prefetch(&fp->sb_running_index[SM_RX_ID]);
  1615. napi_schedule(&bnx2x_fp(bp, fp->index, napi));
  1616. status &= ~mask;
  1617. }
  1618. }
  1619. if (CNIC_SUPPORT(bp)) {
  1620. mask = 0x2;
  1621. if (status & (mask | 0x1)) {
  1622. struct cnic_ops *c_ops = NULL;
  1623. rcu_read_lock();
  1624. c_ops = rcu_dereference(bp->cnic_ops);
  1625. if (c_ops && (bp->cnic_eth_dev.drv_state &
  1626. CNIC_DRV_STATE_HANDLES_IRQ))
  1627. c_ops->cnic_handler(bp->cnic_data, NULL);
  1628. rcu_read_unlock();
  1629. status &= ~mask;
  1630. }
  1631. }
  1632. if (unlikely(status & 0x1)) {
  1633. /* schedule sp task to perform default status block work, ack
  1634. * attentions and enable interrupts.
  1635. */
  1636. bnx2x_schedule_sp_task(bp);
  1637. status &= ~0x1;
  1638. if (!status)
  1639. return IRQ_HANDLED;
  1640. }
  1641. if (unlikely(status))
  1642. DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
  1643. status);
  1644. return IRQ_HANDLED;
  1645. }
  1646. /* Link */
  1647. /*
  1648. * General service functions
  1649. */
  1650. int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
  1651. {
  1652. u32 lock_status;
  1653. u32 resource_bit = (1 << resource);
  1654. int func = BP_FUNC(bp);
  1655. u32 hw_lock_control_reg;
  1656. int cnt;
  1657. /* Validating that the resource is within range */
  1658. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1659. BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1660. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1661. return -EINVAL;
  1662. }
  1663. if (func <= 5) {
  1664. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1665. } else {
  1666. hw_lock_control_reg =
  1667. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1668. }
  1669. /* Validating that the resource is not already taken */
  1670. lock_status = REG_RD(bp, hw_lock_control_reg);
  1671. if (lock_status & resource_bit) {
  1672. BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
  1673. lock_status, resource_bit);
  1674. return -EEXIST;
  1675. }
  1676. /* Try for 5 second every 5ms */
  1677. for (cnt = 0; cnt < 1000; cnt++) {
  1678. /* Try to acquire the lock */
  1679. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1680. lock_status = REG_RD(bp, hw_lock_control_reg);
  1681. if (lock_status & resource_bit)
  1682. return 0;
  1683. usleep_range(5000, 10000);
  1684. }
  1685. BNX2X_ERR("Timeout\n");
  1686. return -EAGAIN;
  1687. }
  1688. int bnx2x_release_leader_lock(struct bnx2x *bp)
  1689. {
  1690. return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1691. }
  1692. int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
  1693. {
  1694. u32 lock_status;
  1695. u32 resource_bit = (1 << resource);
  1696. int func = BP_FUNC(bp);
  1697. u32 hw_lock_control_reg;
  1698. /* Validating that the resource is within range */
  1699. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1700. BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1701. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1702. return -EINVAL;
  1703. }
  1704. if (func <= 5) {
  1705. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1706. } else {
  1707. hw_lock_control_reg =
  1708. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1709. }
  1710. /* Validating that the resource is currently taken */
  1711. lock_status = REG_RD(bp, hw_lock_control_reg);
  1712. if (!(lock_status & resource_bit)) {
  1713. BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
  1714. lock_status, resource_bit);
  1715. return -EFAULT;
  1716. }
  1717. REG_WR(bp, hw_lock_control_reg, resource_bit);
  1718. return 0;
  1719. }
  1720. int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
  1721. {
  1722. /* The GPIO should be swapped if swap register is set and active */
  1723. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1724. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1725. int gpio_shift = gpio_num +
  1726. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1727. u32 gpio_mask = (1 << gpio_shift);
  1728. u32 gpio_reg;
  1729. int value;
  1730. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1731. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1732. return -EINVAL;
  1733. }
  1734. /* read GPIO value */
  1735. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1736. /* get the requested pin value */
  1737. if ((gpio_reg & gpio_mask) == gpio_mask)
  1738. value = 1;
  1739. else
  1740. value = 0;
  1741. DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
  1742. return value;
  1743. }
  1744. int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1745. {
  1746. /* The GPIO should be swapped if swap register is set and active */
  1747. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1748. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1749. int gpio_shift = gpio_num +
  1750. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1751. u32 gpio_mask = (1 << gpio_shift);
  1752. u32 gpio_reg;
  1753. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1754. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1755. return -EINVAL;
  1756. }
  1757. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1758. /* read GPIO and mask except the float bits */
  1759. gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
  1760. switch (mode) {
  1761. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1762. DP(NETIF_MSG_LINK,
  1763. "Set GPIO %d (shift %d) -> output low\n",
  1764. gpio_num, gpio_shift);
  1765. /* clear FLOAT and set CLR */
  1766. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1767. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
  1768. break;
  1769. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1770. DP(NETIF_MSG_LINK,
  1771. "Set GPIO %d (shift %d) -> output high\n",
  1772. gpio_num, gpio_shift);
  1773. /* clear FLOAT and set SET */
  1774. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1775. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
  1776. break;
  1777. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1778. DP(NETIF_MSG_LINK,
  1779. "Set GPIO %d (shift %d) -> input\n",
  1780. gpio_num, gpio_shift);
  1781. /* set FLOAT */
  1782. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1783. break;
  1784. default:
  1785. break;
  1786. }
  1787. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1788. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1789. return 0;
  1790. }
  1791. int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
  1792. {
  1793. u32 gpio_reg = 0;
  1794. int rc = 0;
  1795. /* Any port swapping should be handled by caller. */
  1796. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1797. /* read GPIO and mask except the float bits */
  1798. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1799. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1800. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
  1801. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
  1802. switch (mode) {
  1803. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1804. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
  1805. /* set CLR */
  1806. gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
  1807. break;
  1808. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1809. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
  1810. /* set SET */
  1811. gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
  1812. break;
  1813. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1814. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
  1815. /* set FLOAT */
  1816. gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1817. break;
  1818. default:
  1819. BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
  1820. rc = -EINVAL;
  1821. break;
  1822. }
  1823. if (rc == 0)
  1824. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1825. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1826. return rc;
  1827. }
  1828. int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1829. {
  1830. /* The GPIO should be swapped if swap register is set and active */
  1831. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1832. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1833. int gpio_shift = gpio_num +
  1834. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1835. u32 gpio_mask = (1 << gpio_shift);
  1836. u32 gpio_reg;
  1837. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1838. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1839. return -EINVAL;
  1840. }
  1841. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1842. /* read GPIO int */
  1843. gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
  1844. switch (mode) {
  1845. case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
  1846. DP(NETIF_MSG_LINK,
  1847. "Clear GPIO INT %d (shift %d) -> output low\n",
  1848. gpio_num, gpio_shift);
  1849. /* clear SET and set CLR */
  1850. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1851. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1852. break;
  1853. case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
  1854. DP(NETIF_MSG_LINK,
  1855. "Set GPIO INT %d (shift %d) -> output high\n",
  1856. gpio_num, gpio_shift);
  1857. /* clear CLR and set SET */
  1858. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1859. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1860. break;
  1861. default:
  1862. break;
  1863. }
  1864. REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
  1865. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1866. return 0;
  1867. }
  1868. static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
  1869. {
  1870. u32 spio_reg;
  1871. /* Only 2 SPIOs are configurable */
  1872. if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
  1873. BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
  1874. return -EINVAL;
  1875. }
  1876. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1877. /* read SPIO and mask except the float bits */
  1878. spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
  1879. switch (mode) {
  1880. case MISC_SPIO_OUTPUT_LOW:
  1881. DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
  1882. /* clear FLOAT and set CLR */
  1883. spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
  1884. spio_reg |= (spio << MISC_SPIO_CLR_POS);
  1885. break;
  1886. case MISC_SPIO_OUTPUT_HIGH:
  1887. DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
  1888. /* clear FLOAT and set SET */
  1889. spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
  1890. spio_reg |= (spio << MISC_SPIO_SET_POS);
  1891. break;
  1892. case MISC_SPIO_INPUT_HI_Z:
  1893. DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
  1894. /* set FLOAT */
  1895. spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
  1896. break;
  1897. default:
  1898. break;
  1899. }
  1900. REG_WR(bp, MISC_REG_SPIO, spio_reg);
  1901. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1902. return 0;
  1903. }
  1904. void bnx2x_calc_fc_adv(struct bnx2x *bp)
  1905. {
  1906. u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
  1907. switch (bp->link_vars.ieee_fc &
  1908. MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
  1909. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
  1910. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1911. ADVERTISED_Pause);
  1912. break;
  1913. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
  1914. bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
  1915. ADVERTISED_Pause);
  1916. break;
  1917. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
  1918. bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
  1919. break;
  1920. default:
  1921. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1922. ADVERTISED_Pause);
  1923. break;
  1924. }
  1925. }
  1926. static void bnx2x_set_requested_fc(struct bnx2x *bp)
  1927. {
  1928. /* Initialize link parameters structure variables
  1929. * It is recommended to turn off RX FC for jumbo frames
  1930. * for better performance
  1931. */
  1932. if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
  1933. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
  1934. else
  1935. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
  1936. }
  1937. static void bnx2x_init_dropless_fc(struct bnx2x *bp)
  1938. {
  1939. u32 pause_enabled = 0;
  1940. if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
  1941. if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
  1942. pause_enabled = 1;
  1943. REG_WR(bp, BAR_USTRORM_INTMEM +
  1944. USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
  1945. pause_enabled);
  1946. }
  1947. DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
  1948. pause_enabled ? "enabled" : "disabled");
  1949. }
  1950. int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
  1951. {
  1952. int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
  1953. u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
  1954. if (!BP_NOMCP(bp)) {
  1955. bnx2x_set_requested_fc(bp);
  1956. bnx2x_acquire_phy_lock(bp);
  1957. if (load_mode == LOAD_DIAG) {
  1958. struct link_params *lp = &bp->link_params;
  1959. lp->loopback_mode = LOOPBACK_XGXS;
  1960. /* do PHY loopback at 10G speed, if possible */
  1961. if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
  1962. if (lp->speed_cap_mask[cfx_idx] &
  1963. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
  1964. lp->req_line_speed[cfx_idx] =
  1965. SPEED_10000;
  1966. else
  1967. lp->req_line_speed[cfx_idx] =
  1968. SPEED_1000;
  1969. }
  1970. }
  1971. if (load_mode == LOAD_LOOPBACK_EXT) {
  1972. struct link_params *lp = &bp->link_params;
  1973. lp->loopback_mode = LOOPBACK_EXT;
  1974. }
  1975. rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1976. bnx2x_release_phy_lock(bp);
  1977. bnx2x_init_dropless_fc(bp);
  1978. bnx2x_calc_fc_adv(bp);
  1979. if (bp->link_vars.link_up) {
  1980. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  1981. bnx2x_link_report(bp);
  1982. }
  1983. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  1984. bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
  1985. return rc;
  1986. }
  1987. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  1988. return -EINVAL;
  1989. }
  1990. void bnx2x_link_set(struct bnx2x *bp)
  1991. {
  1992. if (!BP_NOMCP(bp)) {
  1993. bnx2x_acquire_phy_lock(bp);
  1994. bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1995. bnx2x_release_phy_lock(bp);
  1996. bnx2x_init_dropless_fc(bp);
  1997. bnx2x_calc_fc_adv(bp);
  1998. } else
  1999. BNX2X_ERR("Bootcode is missing - can not set link\n");
  2000. }
  2001. static void bnx2x__link_reset(struct bnx2x *bp)
  2002. {
  2003. if (!BP_NOMCP(bp)) {
  2004. bnx2x_acquire_phy_lock(bp);
  2005. bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
  2006. bnx2x_release_phy_lock(bp);
  2007. } else
  2008. BNX2X_ERR("Bootcode is missing - can not reset link\n");
  2009. }
  2010. void bnx2x_force_link_reset(struct bnx2x *bp)
  2011. {
  2012. bnx2x_acquire_phy_lock(bp);
  2013. bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
  2014. bnx2x_release_phy_lock(bp);
  2015. }
  2016. u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
  2017. {
  2018. u8 rc = 0;
  2019. if (!BP_NOMCP(bp)) {
  2020. bnx2x_acquire_phy_lock(bp);
  2021. rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
  2022. is_serdes);
  2023. bnx2x_release_phy_lock(bp);
  2024. } else
  2025. BNX2X_ERR("Bootcode is missing - can not test link\n");
  2026. return rc;
  2027. }
  2028. /* Calculates the sum of vn_min_rates.
  2029. It's needed for further normalizing of the min_rates.
  2030. Returns:
  2031. sum of vn_min_rates.
  2032. or
  2033. 0 - if all the min_rates are 0.
  2034. In the later case fairness algorithm should be deactivated.
  2035. If not all min_rates are zero then those that are zeroes will be set to 1.
  2036. */
  2037. static void bnx2x_calc_vn_min(struct bnx2x *bp,
  2038. struct cmng_init_input *input)
  2039. {
  2040. int all_zero = 1;
  2041. int vn;
  2042. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  2043. u32 vn_cfg = bp->mf_config[vn];
  2044. u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
  2045. FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
  2046. /* Skip hidden vns */
  2047. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
  2048. vn_min_rate = 0;
  2049. /* If min rate is zero - set it to 1 */
  2050. else if (!vn_min_rate)
  2051. vn_min_rate = DEF_MIN_RATE;
  2052. else
  2053. all_zero = 0;
  2054. input->vnic_min_rate[vn] = vn_min_rate;
  2055. }
  2056. /* if ETS or all min rates are zeros - disable fairness */
  2057. if (BNX2X_IS_ETS_ENABLED(bp)) {
  2058. input->flags.cmng_enables &=
  2059. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  2060. DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
  2061. } else if (all_zero) {
  2062. input->flags.cmng_enables &=
  2063. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  2064. DP(NETIF_MSG_IFUP,
  2065. "All MIN values are zeroes fairness will be disabled\n");
  2066. } else
  2067. input->flags.cmng_enables |=
  2068. CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  2069. }
  2070. static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
  2071. struct cmng_init_input *input)
  2072. {
  2073. u16 vn_max_rate;
  2074. u32 vn_cfg = bp->mf_config[vn];
  2075. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
  2076. vn_max_rate = 0;
  2077. else {
  2078. u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
  2079. if (IS_MF_SI(bp)) {
  2080. /* maxCfg in percents of linkspeed */
  2081. vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
  2082. } else /* SD modes */
  2083. /* maxCfg is absolute in 100Mb units */
  2084. vn_max_rate = maxCfg * 100;
  2085. }
  2086. DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
  2087. input->vnic_max_rate[vn] = vn_max_rate;
  2088. }
  2089. static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
  2090. {
  2091. if (CHIP_REV_IS_SLOW(bp))
  2092. return CMNG_FNS_NONE;
  2093. if (IS_MF(bp))
  2094. return CMNG_FNS_MINMAX;
  2095. return CMNG_FNS_NONE;
  2096. }
  2097. void bnx2x_read_mf_cfg(struct bnx2x *bp)
  2098. {
  2099. int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
  2100. if (BP_NOMCP(bp))
  2101. return; /* what should be the default value in this case */
  2102. /* For 2 port configuration the absolute function number formula
  2103. * is:
  2104. * abs_func = 2 * vn + BP_PORT + BP_PATH
  2105. *
  2106. * and there are 4 functions per port
  2107. *
  2108. * For 4 port configuration it is
  2109. * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
  2110. *
  2111. * and there are 2 functions per port
  2112. */
  2113. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  2114. int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
  2115. if (func >= E1H_FUNC_MAX)
  2116. break;
  2117. bp->mf_config[vn] =
  2118. MF_CFG_RD(bp, func_mf_config[func].config);
  2119. }
  2120. if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
  2121. DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
  2122. bp->flags |= MF_FUNC_DIS;
  2123. } else {
  2124. DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
  2125. bp->flags &= ~MF_FUNC_DIS;
  2126. }
  2127. }
  2128. static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
  2129. {
  2130. struct cmng_init_input input;
  2131. memset(&input, 0, sizeof(struct cmng_init_input));
  2132. input.port_rate = bp->link_vars.line_speed;
  2133. if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
  2134. int vn;
  2135. /* read mf conf from shmem */
  2136. if (read_cfg)
  2137. bnx2x_read_mf_cfg(bp);
  2138. /* vn_weight_sum and enable fairness if not 0 */
  2139. bnx2x_calc_vn_min(bp, &input);
  2140. /* calculate and set min-max rate for each vn */
  2141. if (bp->port.pmf)
  2142. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
  2143. bnx2x_calc_vn_max(bp, vn, &input);
  2144. /* always enable rate shaping and fairness */
  2145. input.flags.cmng_enables |=
  2146. CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
  2147. bnx2x_init_cmng(&input, &bp->cmng);
  2148. return;
  2149. }
  2150. /* rate shaping and fairness are disabled */
  2151. DP(NETIF_MSG_IFUP,
  2152. "rate shaping and fairness are disabled\n");
  2153. }
  2154. static void storm_memset_cmng(struct bnx2x *bp,
  2155. struct cmng_init *cmng,
  2156. u8 port)
  2157. {
  2158. int vn;
  2159. size_t size = sizeof(struct cmng_struct_per_port);
  2160. u32 addr = BAR_XSTRORM_INTMEM +
  2161. XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
  2162. __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
  2163. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  2164. int func = func_by_vn(bp, vn);
  2165. addr = BAR_XSTRORM_INTMEM +
  2166. XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
  2167. size = sizeof(struct rate_shaping_vars_per_vn);
  2168. __storm_memset_struct(bp, addr, size,
  2169. (u32 *)&cmng->vnic.vnic_max_rate[vn]);
  2170. addr = BAR_XSTRORM_INTMEM +
  2171. XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
  2172. size = sizeof(struct fairness_vars_per_vn);
  2173. __storm_memset_struct(bp, addr, size,
  2174. (u32 *)&cmng->vnic.vnic_min_rate[vn]);
  2175. }
  2176. }
  2177. /* init cmng mode in HW according to local configuration */
  2178. void bnx2x_set_local_cmng(struct bnx2x *bp)
  2179. {
  2180. int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
  2181. if (cmng_fns != CMNG_FNS_NONE) {
  2182. bnx2x_cmng_fns_init(bp, false, cmng_fns);
  2183. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2184. } else {
  2185. /* rate shaping and fairness are disabled */
  2186. DP(NETIF_MSG_IFUP,
  2187. "single function mode without fairness\n");
  2188. }
  2189. }
  2190. /* This function is called upon link interrupt */
  2191. static void bnx2x_link_attn(struct bnx2x *bp)
  2192. {
  2193. /* Make sure that we are synced with the current statistics */
  2194. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2195. bnx2x_link_update(&bp->link_params, &bp->link_vars);
  2196. bnx2x_init_dropless_fc(bp);
  2197. if (bp->link_vars.link_up) {
  2198. if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
  2199. struct host_port_stats *pstats;
  2200. pstats = bnx2x_sp(bp, port_stats);
  2201. /* reset old mac stats */
  2202. memset(&(pstats->mac_stx[0]), 0,
  2203. sizeof(struct mac_stx));
  2204. }
  2205. if (bp->state == BNX2X_STATE_OPEN)
  2206. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2207. }
  2208. if (bp->link_vars.link_up && bp->link_vars.line_speed)
  2209. bnx2x_set_local_cmng(bp);
  2210. __bnx2x_link_report(bp);
  2211. if (IS_MF(bp))
  2212. bnx2x_link_sync_notify(bp);
  2213. }
  2214. void bnx2x__link_status_update(struct bnx2x *bp)
  2215. {
  2216. if (bp->state != BNX2X_STATE_OPEN)
  2217. return;
  2218. /* read updated dcb configuration */
  2219. if (IS_PF(bp)) {
  2220. bnx2x_dcbx_pmf_update(bp);
  2221. bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
  2222. if (bp->link_vars.link_up)
  2223. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2224. else
  2225. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2226. /* indicate link status */
  2227. bnx2x_link_report(bp);
  2228. } else { /* VF */
  2229. bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
  2230. SUPPORTED_10baseT_Full |
  2231. SUPPORTED_100baseT_Half |
  2232. SUPPORTED_100baseT_Full |
  2233. SUPPORTED_1000baseT_Full |
  2234. SUPPORTED_2500baseX_Full |
  2235. SUPPORTED_10000baseT_Full |
  2236. SUPPORTED_TP |
  2237. SUPPORTED_FIBRE |
  2238. SUPPORTED_Autoneg |
  2239. SUPPORTED_Pause |
  2240. SUPPORTED_Asym_Pause);
  2241. bp->port.advertising[0] = bp->port.supported[0];
  2242. bp->link_params.bp = bp;
  2243. bp->link_params.port = BP_PORT(bp);
  2244. bp->link_params.req_duplex[0] = DUPLEX_FULL;
  2245. bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
  2246. bp->link_params.req_line_speed[0] = SPEED_10000;
  2247. bp->link_params.speed_cap_mask[0] = 0x7f0000;
  2248. bp->link_params.switch_cfg = SWITCH_CFG_10G;
  2249. bp->link_vars.mac_type = MAC_TYPE_BMAC;
  2250. bp->link_vars.line_speed = SPEED_10000;
  2251. bp->link_vars.link_status =
  2252. (LINK_STATUS_LINK_UP |
  2253. LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
  2254. bp->link_vars.link_up = 1;
  2255. bp->link_vars.duplex = DUPLEX_FULL;
  2256. bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
  2257. __bnx2x_link_report(bp);
  2258. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2259. }
  2260. }
  2261. static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
  2262. u16 vlan_val, u8 allowed_prio)
  2263. {
  2264. struct bnx2x_func_state_params func_params = {NULL};
  2265. struct bnx2x_func_afex_update_params *f_update_params =
  2266. &func_params.params.afex_update;
  2267. func_params.f_obj = &bp->func_obj;
  2268. func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
  2269. /* no need to wait for RAMROD completion, so don't
  2270. * set RAMROD_COMP_WAIT flag
  2271. */
  2272. f_update_params->vif_id = vifid;
  2273. f_update_params->afex_default_vlan = vlan_val;
  2274. f_update_params->allowed_priorities = allowed_prio;
  2275. /* if ramrod can not be sent, response to MCP immediately */
  2276. if (bnx2x_func_state_change(bp, &func_params) < 0)
  2277. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
  2278. return 0;
  2279. }
  2280. static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
  2281. u16 vif_index, u8 func_bit_map)
  2282. {
  2283. struct bnx2x_func_state_params func_params = {NULL};
  2284. struct bnx2x_func_afex_viflists_params *update_params =
  2285. &func_params.params.afex_viflists;
  2286. int rc;
  2287. u32 drv_msg_code;
  2288. /* validate only LIST_SET and LIST_GET are received from switch */
  2289. if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
  2290. BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
  2291. cmd_type);
  2292. func_params.f_obj = &bp->func_obj;
  2293. func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
  2294. /* set parameters according to cmd_type */
  2295. update_params->afex_vif_list_command = cmd_type;
  2296. update_params->vif_list_index = vif_index;
  2297. update_params->func_bit_map =
  2298. (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
  2299. update_params->func_to_clear = 0;
  2300. drv_msg_code =
  2301. (cmd_type == VIF_LIST_RULE_GET) ?
  2302. DRV_MSG_CODE_AFEX_LISTGET_ACK :
  2303. DRV_MSG_CODE_AFEX_LISTSET_ACK;
  2304. /* if ramrod can not be sent, respond to MCP immediately for
  2305. * SET and GET requests (other are not triggered from MCP)
  2306. */
  2307. rc = bnx2x_func_state_change(bp, &func_params);
  2308. if (rc < 0)
  2309. bnx2x_fw_command(bp, drv_msg_code, 0);
  2310. return 0;
  2311. }
  2312. static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
  2313. {
  2314. struct afex_stats afex_stats;
  2315. u32 func = BP_ABS_FUNC(bp);
  2316. u32 mf_config;
  2317. u16 vlan_val;
  2318. u32 vlan_prio;
  2319. u16 vif_id;
  2320. u8 allowed_prio;
  2321. u8 vlan_mode;
  2322. u32 addr_to_write, vifid, addrs, stats_type, i;
  2323. if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
  2324. vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
  2325. DP(BNX2X_MSG_MCP,
  2326. "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
  2327. bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
  2328. }
  2329. if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
  2330. vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
  2331. addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
  2332. DP(BNX2X_MSG_MCP,
  2333. "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
  2334. vifid, addrs);
  2335. bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
  2336. addrs);
  2337. }
  2338. if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
  2339. addr_to_write = SHMEM2_RD(bp,
  2340. afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
  2341. stats_type = SHMEM2_RD(bp,
  2342. afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
  2343. DP(BNX2X_MSG_MCP,
  2344. "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
  2345. addr_to_write);
  2346. bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
  2347. /* write response to scratchpad, for MCP */
  2348. for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
  2349. REG_WR(bp, addr_to_write + i*sizeof(u32),
  2350. *(((u32 *)(&afex_stats))+i));
  2351. /* send ack message to MCP */
  2352. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
  2353. }
  2354. if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
  2355. mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
  2356. bp->mf_config[BP_VN(bp)] = mf_config;
  2357. DP(BNX2X_MSG_MCP,
  2358. "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
  2359. mf_config);
  2360. /* if VIF_SET is "enabled" */
  2361. if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
  2362. /* set rate limit directly to internal RAM */
  2363. struct cmng_init_input cmng_input;
  2364. struct rate_shaping_vars_per_vn m_rs_vn;
  2365. size_t size = sizeof(struct rate_shaping_vars_per_vn);
  2366. u32 addr = BAR_XSTRORM_INTMEM +
  2367. XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
  2368. bp->mf_config[BP_VN(bp)] = mf_config;
  2369. bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
  2370. m_rs_vn.vn_counter.rate =
  2371. cmng_input.vnic_max_rate[BP_VN(bp)];
  2372. m_rs_vn.vn_counter.quota =
  2373. (m_rs_vn.vn_counter.rate *
  2374. RS_PERIODIC_TIMEOUT_USEC) / 8;
  2375. __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
  2376. /* read relevant values from mf_cfg struct in shmem */
  2377. vif_id =
  2378. (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  2379. FUNC_MF_CFG_E1HOV_TAG_MASK) >>
  2380. FUNC_MF_CFG_E1HOV_TAG_SHIFT;
  2381. vlan_val =
  2382. (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  2383. FUNC_MF_CFG_AFEX_VLAN_MASK) >>
  2384. FUNC_MF_CFG_AFEX_VLAN_SHIFT;
  2385. vlan_prio = (mf_config &
  2386. FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
  2387. FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
  2388. vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
  2389. vlan_mode =
  2390. (MF_CFG_RD(bp,
  2391. func_mf_config[func].afex_config) &
  2392. FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
  2393. FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
  2394. allowed_prio =
  2395. (MF_CFG_RD(bp,
  2396. func_mf_config[func].afex_config) &
  2397. FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
  2398. FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
  2399. /* send ramrod to FW, return in case of failure */
  2400. if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
  2401. allowed_prio))
  2402. return;
  2403. bp->afex_def_vlan_tag = vlan_val;
  2404. bp->afex_vlan_mode = vlan_mode;
  2405. } else {
  2406. /* notify link down because BP->flags is disabled */
  2407. bnx2x_link_report(bp);
  2408. /* send INVALID VIF ramrod to FW */
  2409. bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
  2410. /* Reset the default afex VLAN */
  2411. bp->afex_def_vlan_tag = -1;
  2412. }
  2413. }
  2414. }
  2415. static void bnx2x_pmf_update(struct bnx2x *bp)
  2416. {
  2417. int port = BP_PORT(bp);
  2418. u32 val;
  2419. bp->port.pmf = 1;
  2420. DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
  2421. /*
  2422. * We need the mb() to ensure the ordering between the writing to
  2423. * bp->port.pmf here and reading it from the bnx2x_periodic_task().
  2424. */
  2425. smp_mb();
  2426. /* queue a periodic task */
  2427. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  2428. bnx2x_dcbx_pmf_update(bp);
  2429. /* enable nig attention */
  2430. val = (0xff0f | (1 << (BP_VN(bp) + 4)));
  2431. if (bp->common.int_block == INT_BLOCK_HC) {
  2432. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  2433. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  2434. } else if (!CHIP_IS_E1x(bp)) {
  2435. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  2436. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  2437. }
  2438. bnx2x_stats_handle(bp, STATS_EVENT_PMF);
  2439. }
  2440. /* end of Link */
  2441. /* slow path */
  2442. /*
  2443. * General service functions
  2444. */
  2445. /* send the MCP a request, block until there is a reply */
  2446. u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
  2447. {
  2448. int mb_idx = BP_FW_MB_IDX(bp);
  2449. u32 seq;
  2450. u32 rc = 0;
  2451. u32 cnt = 1;
  2452. u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
  2453. mutex_lock(&bp->fw_mb_mutex);
  2454. seq = ++bp->fw_seq;
  2455. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
  2456. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
  2457. DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
  2458. (command | seq), param);
  2459. do {
  2460. /* let the FW do it's magic ... */
  2461. msleep(delay);
  2462. rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
  2463. /* Give the FW up to 5 second (500*10ms) */
  2464. } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
  2465. DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
  2466. cnt*delay, rc, seq);
  2467. /* is this a reply to our command? */
  2468. if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
  2469. rc &= FW_MSG_CODE_MASK;
  2470. else {
  2471. /* FW BUG! */
  2472. BNX2X_ERR("FW failed to respond!\n");
  2473. bnx2x_fw_dump(bp);
  2474. rc = 0;
  2475. }
  2476. mutex_unlock(&bp->fw_mb_mutex);
  2477. return rc;
  2478. }
  2479. static void storm_memset_func_cfg(struct bnx2x *bp,
  2480. struct tstorm_eth_function_common_config *tcfg,
  2481. u16 abs_fid)
  2482. {
  2483. size_t size = sizeof(struct tstorm_eth_function_common_config);
  2484. u32 addr = BAR_TSTRORM_INTMEM +
  2485. TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
  2486. __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
  2487. }
  2488. void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
  2489. {
  2490. if (CHIP_IS_E1x(bp)) {
  2491. struct tstorm_eth_function_common_config tcfg = {0};
  2492. storm_memset_func_cfg(bp, &tcfg, p->func_id);
  2493. }
  2494. /* Enable the function in the FW */
  2495. storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
  2496. storm_memset_func_en(bp, p->func_id, 1);
  2497. /* spq */
  2498. if (p->func_flgs & FUNC_FLG_SPQ) {
  2499. storm_memset_spq_addr(bp, p->spq_map, p->func_id);
  2500. REG_WR(bp, XSEM_REG_FAST_MEMORY +
  2501. XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
  2502. }
  2503. }
  2504. /**
  2505. * bnx2x_get_common_flags - Return common flags
  2506. *
  2507. * @bp device handle
  2508. * @fp queue handle
  2509. * @zero_stats TRUE if statistics zeroing is needed
  2510. *
  2511. * Return the flags that are common for the Tx-only and not normal connections.
  2512. */
  2513. static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
  2514. struct bnx2x_fastpath *fp,
  2515. bool zero_stats)
  2516. {
  2517. unsigned long flags = 0;
  2518. /* PF driver will always initialize the Queue to an ACTIVE state */
  2519. __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
  2520. /* tx only connections collect statistics (on the same index as the
  2521. * parent connection). The statistics are zeroed when the parent
  2522. * connection is initialized.
  2523. */
  2524. __set_bit(BNX2X_Q_FLG_STATS, &flags);
  2525. if (zero_stats)
  2526. __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
  2527. __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
  2528. __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
  2529. #ifdef BNX2X_STOP_ON_ERROR
  2530. __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
  2531. #endif
  2532. return flags;
  2533. }
  2534. static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
  2535. struct bnx2x_fastpath *fp,
  2536. bool leading)
  2537. {
  2538. unsigned long flags = 0;
  2539. /* calculate other queue flags */
  2540. if (IS_MF_SD(bp))
  2541. __set_bit(BNX2X_Q_FLG_OV, &flags);
  2542. if (IS_FCOE_FP(fp)) {
  2543. __set_bit(BNX2X_Q_FLG_FCOE, &flags);
  2544. /* For FCoE - force usage of default priority (for afex) */
  2545. __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
  2546. }
  2547. if (!fp->disable_tpa) {
  2548. __set_bit(BNX2X_Q_FLG_TPA, &flags);
  2549. __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
  2550. if (fp->mode == TPA_MODE_GRO)
  2551. __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
  2552. }
  2553. if (leading) {
  2554. __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
  2555. __set_bit(BNX2X_Q_FLG_MCAST, &flags);
  2556. }
  2557. /* Always set HW VLAN stripping */
  2558. __set_bit(BNX2X_Q_FLG_VLAN, &flags);
  2559. /* configure silent vlan removal */
  2560. if (IS_MF_AFEX(bp))
  2561. __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
  2562. return flags | bnx2x_get_common_flags(bp, fp, true);
  2563. }
  2564. static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
  2565. struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
  2566. u8 cos)
  2567. {
  2568. gen_init->stat_id = bnx2x_stats_id(fp);
  2569. gen_init->spcl_id = fp->cl_id;
  2570. /* Always use mini-jumbo MTU for FCoE L2 ring */
  2571. if (IS_FCOE_FP(fp))
  2572. gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
  2573. else
  2574. gen_init->mtu = bp->dev->mtu;
  2575. gen_init->cos = cos;
  2576. }
  2577. static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
  2578. struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
  2579. struct bnx2x_rxq_setup_params *rxq_init)
  2580. {
  2581. u8 max_sge = 0;
  2582. u16 sge_sz = 0;
  2583. u16 tpa_agg_size = 0;
  2584. if (!fp->disable_tpa) {
  2585. pause->sge_th_lo = SGE_TH_LO(bp);
  2586. pause->sge_th_hi = SGE_TH_HI(bp);
  2587. /* validate SGE ring has enough to cross high threshold */
  2588. WARN_ON(bp->dropless_fc &&
  2589. pause->sge_th_hi + FW_PREFETCH_CNT >
  2590. MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
  2591. tpa_agg_size = TPA_AGG_SIZE;
  2592. max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
  2593. SGE_PAGE_SHIFT;
  2594. max_sge = ((max_sge + PAGES_PER_SGE - 1) &
  2595. (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
  2596. sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
  2597. }
  2598. /* pause - not for e1 */
  2599. if (!CHIP_IS_E1(bp)) {
  2600. pause->bd_th_lo = BD_TH_LO(bp);
  2601. pause->bd_th_hi = BD_TH_HI(bp);
  2602. pause->rcq_th_lo = RCQ_TH_LO(bp);
  2603. pause->rcq_th_hi = RCQ_TH_HI(bp);
  2604. /*
  2605. * validate that rings have enough entries to cross
  2606. * high thresholds
  2607. */
  2608. WARN_ON(bp->dropless_fc &&
  2609. pause->bd_th_hi + FW_PREFETCH_CNT >
  2610. bp->rx_ring_size);
  2611. WARN_ON(bp->dropless_fc &&
  2612. pause->rcq_th_hi + FW_PREFETCH_CNT >
  2613. NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
  2614. pause->pri_map = 1;
  2615. }
  2616. /* rxq setup */
  2617. rxq_init->dscr_map = fp->rx_desc_mapping;
  2618. rxq_init->sge_map = fp->rx_sge_mapping;
  2619. rxq_init->rcq_map = fp->rx_comp_mapping;
  2620. rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
  2621. /* This should be a maximum number of data bytes that may be
  2622. * placed on the BD (not including paddings).
  2623. */
  2624. rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
  2625. BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
  2626. rxq_init->cl_qzone_id = fp->cl_qzone_id;
  2627. rxq_init->tpa_agg_sz = tpa_agg_size;
  2628. rxq_init->sge_buf_sz = sge_sz;
  2629. rxq_init->max_sges_pkt = max_sge;
  2630. rxq_init->rss_engine_id = BP_FUNC(bp);
  2631. rxq_init->mcast_engine_id = BP_FUNC(bp);
  2632. /* Maximum number or simultaneous TPA aggregation for this Queue.
  2633. *
  2634. * For PF Clients it should be the maximum available number.
  2635. * VF driver(s) may want to define it to a smaller value.
  2636. */
  2637. rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
  2638. rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
  2639. rxq_init->fw_sb_id = fp->fw_sb_id;
  2640. if (IS_FCOE_FP(fp))
  2641. rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
  2642. else
  2643. rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  2644. /* configure silent vlan removal
  2645. * if multi function mode is afex, then mask default vlan
  2646. */
  2647. if (IS_MF_AFEX(bp)) {
  2648. rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
  2649. rxq_init->silent_removal_mask = VLAN_VID_MASK;
  2650. }
  2651. }
  2652. static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
  2653. struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
  2654. u8 cos)
  2655. {
  2656. txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
  2657. txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
  2658. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
  2659. txq_init->fw_sb_id = fp->fw_sb_id;
  2660. /*
  2661. * set the tss leading client id for TX classification ==
  2662. * leading RSS client id
  2663. */
  2664. txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
  2665. if (IS_FCOE_FP(fp)) {
  2666. txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
  2667. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
  2668. }
  2669. }
  2670. static void bnx2x_pf_init(struct bnx2x *bp)
  2671. {
  2672. struct bnx2x_func_init_params func_init = {0};
  2673. struct event_ring_data eq_data = { {0} };
  2674. u16 flags;
  2675. if (!CHIP_IS_E1x(bp)) {
  2676. /* reset IGU PF statistics: MSIX + ATTN */
  2677. /* PF */
  2678. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2679. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2680. (CHIP_MODE_IS_4_PORT(bp) ?
  2681. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2682. /* ATTN */
  2683. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2684. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2685. BNX2X_IGU_STAS_MSG_PF_CNT*4 +
  2686. (CHIP_MODE_IS_4_PORT(bp) ?
  2687. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2688. }
  2689. /* function setup flags */
  2690. flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
  2691. /* This flag is relevant for E1x only.
  2692. * E2 doesn't have a TPA configuration in a function level.
  2693. */
  2694. flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
  2695. func_init.func_flgs = flags;
  2696. func_init.pf_id = BP_FUNC(bp);
  2697. func_init.func_id = BP_FUNC(bp);
  2698. func_init.spq_map = bp->spq_mapping;
  2699. func_init.spq_prod = bp->spq_prod_idx;
  2700. bnx2x_func_init(bp, &func_init);
  2701. memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
  2702. /*
  2703. * Congestion management values depend on the link rate
  2704. * There is no active link so initial link rate is set to 10 Gbps.
  2705. * When the link comes up The congestion management values are
  2706. * re-calculated according to the actual link rate.
  2707. */
  2708. bp->link_vars.line_speed = SPEED_10000;
  2709. bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
  2710. /* Only the PMF sets the HW */
  2711. if (bp->port.pmf)
  2712. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2713. /* init Event Queue - PCI bus guarantees correct endianity*/
  2714. eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
  2715. eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
  2716. eq_data.producer = bp->eq_prod;
  2717. eq_data.index_id = HC_SP_INDEX_EQ_CONS;
  2718. eq_data.sb_id = DEF_SB_ID;
  2719. storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
  2720. }
  2721. static void bnx2x_e1h_disable(struct bnx2x *bp)
  2722. {
  2723. int port = BP_PORT(bp);
  2724. bnx2x_tx_disable(bp);
  2725. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  2726. }
  2727. static void bnx2x_e1h_enable(struct bnx2x *bp)
  2728. {
  2729. int port = BP_PORT(bp);
  2730. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  2731. /* Tx queue should be only re-enabled */
  2732. netif_tx_wake_all_queues(bp->dev);
  2733. /*
  2734. * Should not call netif_carrier_on since it will be called if the link
  2735. * is up when checking for link state
  2736. */
  2737. }
  2738. #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
  2739. static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
  2740. {
  2741. struct eth_stats_info *ether_stat =
  2742. &bp->slowpath->drv_info_to_mcp.ether_stat;
  2743. struct bnx2x_vlan_mac_obj *mac_obj =
  2744. &bp->sp_objs->mac_obj;
  2745. int i;
  2746. strlcpy(ether_stat->version, DRV_MODULE_VERSION,
  2747. ETH_STAT_INFO_VERSION_LEN);
  2748. /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
  2749. * mac_local field in ether_stat struct. The base address is offset by 2
  2750. * bytes to account for the field being 8 bytes but a mac address is
  2751. * only 6 bytes. Likewise, the stride for the get_n_elements function is
  2752. * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
  2753. * allocated by the ether_stat struct, so the macs will land in their
  2754. * proper positions.
  2755. */
  2756. for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
  2757. memset(ether_stat->mac_local + i, 0,
  2758. sizeof(ether_stat->mac_local[0]));
  2759. mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
  2760. DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
  2761. ether_stat->mac_local + MAC_PAD, MAC_PAD,
  2762. ETH_ALEN);
  2763. ether_stat->mtu_size = bp->dev->mtu;
  2764. if (bp->dev->features & NETIF_F_RXCSUM)
  2765. ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
  2766. if (bp->dev->features & NETIF_F_TSO)
  2767. ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
  2768. ether_stat->feature_flags |= bp->common.boot_mode;
  2769. ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
  2770. ether_stat->txq_size = bp->tx_ring_size;
  2771. ether_stat->rxq_size = bp->rx_ring_size;
  2772. }
  2773. static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
  2774. {
  2775. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2776. struct fcoe_stats_info *fcoe_stat =
  2777. &bp->slowpath->drv_info_to_mcp.fcoe_stat;
  2778. if (!CNIC_LOADED(bp))
  2779. return;
  2780. memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
  2781. fcoe_stat->qos_priority =
  2782. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
  2783. /* insert FCoE stats from ramrod response */
  2784. if (!NO_FCOE(bp)) {
  2785. struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
  2786. &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
  2787. tstorm_queue_statistics;
  2788. struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
  2789. &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
  2790. xstorm_queue_statistics;
  2791. struct fcoe_statistics_params *fw_fcoe_stat =
  2792. &bp->fw_stats_data->fcoe;
  2793. ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
  2794. fcoe_stat->rx_bytes_lo,
  2795. fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
  2796. ADD_64_LE(fcoe_stat->rx_bytes_hi,
  2797. fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
  2798. fcoe_stat->rx_bytes_lo,
  2799. fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
  2800. ADD_64_LE(fcoe_stat->rx_bytes_hi,
  2801. fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
  2802. fcoe_stat->rx_bytes_lo,
  2803. fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
  2804. ADD_64_LE(fcoe_stat->rx_bytes_hi,
  2805. fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
  2806. fcoe_stat->rx_bytes_lo,
  2807. fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
  2808. ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
  2809. fcoe_stat->rx_frames_lo,
  2810. fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
  2811. ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
  2812. fcoe_stat->rx_frames_lo,
  2813. fcoe_q_tstorm_stats->rcv_ucast_pkts);
  2814. ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
  2815. fcoe_stat->rx_frames_lo,
  2816. fcoe_q_tstorm_stats->rcv_bcast_pkts);
  2817. ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
  2818. fcoe_stat->rx_frames_lo,
  2819. fcoe_q_tstorm_stats->rcv_mcast_pkts);
  2820. ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
  2821. fcoe_stat->tx_bytes_lo,
  2822. fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
  2823. ADD_64_LE(fcoe_stat->tx_bytes_hi,
  2824. fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
  2825. fcoe_stat->tx_bytes_lo,
  2826. fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
  2827. ADD_64_LE(fcoe_stat->tx_bytes_hi,
  2828. fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
  2829. fcoe_stat->tx_bytes_lo,
  2830. fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
  2831. ADD_64_LE(fcoe_stat->tx_bytes_hi,
  2832. fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
  2833. fcoe_stat->tx_bytes_lo,
  2834. fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
  2835. ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
  2836. fcoe_stat->tx_frames_lo,
  2837. fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
  2838. ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
  2839. fcoe_stat->tx_frames_lo,
  2840. fcoe_q_xstorm_stats->ucast_pkts_sent);
  2841. ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
  2842. fcoe_stat->tx_frames_lo,
  2843. fcoe_q_xstorm_stats->bcast_pkts_sent);
  2844. ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
  2845. fcoe_stat->tx_frames_lo,
  2846. fcoe_q_xstorm_stats->mcast_pkts_sent);
  2847. }
  2848. /* ask L5 driver to add data to the struct */
  2849. bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
  2850. }
  2851. static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
  2852. {
  2853. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2854. struct iscsi_stats_info *iscsi_stat =
  2855. &bp->slowpath->drv_info_to_mcp.iscsi_stat;
  2856. if (!CNIC_LOADED(bp))
  2857. return;
  2858. memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
  2859. ETH_ALEN);
  2860. iscsi_stat->qos_priority =
  2861. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
  2862. /* ask L5 driver to add data to the struct */
  2863. bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
  2864. }
  2865. /* called due to MCP event (on pmf):
  2866. * reread new bandwidth configuration
  2867. * configure FW
  2868. * notify others function about the change
  2869. */
  2870. static void bnx2x_config_mf_bw(struct bnx2x *bp)
  2871. {
  2872. if (bp->link_vars.link_up) {
  2873. bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
  2874. bnx2x_link_sync_notify(bp);
  2875. }
  2876. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2877. }
  2878. static void bnx2x_set_mf_bw(struct bnx2x *bp)
  2879. {
  2880. bnx2x_config_mf_bw(bp);
  2881. bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
  2882. }
  2883. static void bnx2x_handle_eee_event(struct bnx2x *bp)
  2884. {
  2885. DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
  2886. bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
  2887. }
  2888. static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
  2889. {
  2890. enum drv_info_opcode op_code;
  2891. u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
  2892. /* if drv_info version supported by MFW doesn't match - send NACK */
  2893. if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
  2894. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2895. return;
  2896. }
  2897. op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
  2898. DRV_INFO_CONTROL_OP_CODE_SHIFT;
  2899. memset(&bp->slowpath->drv_info_to_mcp, 0,
  2900. sizeof(union drv_info_to_mcp));
  2901. switch (op_code) {
  2902. case ETH_STATS_OPCODE:
  2903. bnx2x_drv_info_ether_stat(bp);
  2904. break;
  2905. case FCOE_STATS_OPCODE:
  2906. bnx2x_drv_info_fcoe_stat(bp);
  2907. break;
  2908. case ISCSI_STATS_OPCODE:
  2909. bnx2x_drv_info_iscsi_stat(bp);
  2910. break;
  2911. default:
  2912. /* if op code isn't supported - send NACK */
  2913. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2914. return;
  2915. }
  2916. /* if we got drv_info attn from MFW then these fields are defined in
  2917. * shmem2 for sure
  2918. */
  2919. SHMEM2_WR(bp, drv_info_host_addr_lo,
  2920. U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2921. SHMEM2_WR(bp, drv_info_host_addr_hi,
  2922. U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2923. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
  2924. }
  2925. static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
  2926. {
  2927. DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
  2928. if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
  2929. /*
  2930. * This is the only place besides the function initialization
  2931. * where the bp->flags can change so it is done without any
  2932. * locks
  2933. */
  2934. if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
  2935. DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
  2936. bp->flags |= MF_FUNC_DIS;
  2937. bnx2x_e1h_disable(bp);
  2938. } else {
  2939. DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
  2940. bp->flags &= ~MF_FUNC_DIS;
  2941. bnx2x_e1h_enable(bp);
  2942. }
  2943. dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
  2944. }
  2945. if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
  2946. bnx2x_config_mf_bw(bp);
  2947. dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
  2948. }
  2949. /* Report results to MCP */
  2950. if (dcc_event)
  2951. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
  2952. else
  2953. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
  2954. }
  2955. /* must be called under the spq lock */
  2956. static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
  2957. {
  2958. struct eth_spe *next_spe = bp->spq_prod_bd;
  2959. if (bp->spq_prod_bd == bp->spq_last_bd) {
  2960. bp->spq_prod_bd = bp->spq;
  2961. bp->spq_prod_idx = 0;
  2962. DP(BNX2X_MSG_SP, "end of spq\n");
  2963. } else {
  2964. bp->spq_prod_bd++;
  2965. bp->spq_prod_idx++;
  2966. }
  2967. return next_spe;
  2968. }
  2969. /* must be called under the spq lock */
  2970. static void bnx2x_sp_prod_update(struct bnx2x *bp)
  2971. {
  2972. int func = BP_FUNC(bp);
  2973. /*
  2974. * Make sure that BD data is updated before writing the producer:
  2975. * BD data is written to the memory, the producer is read from the
  2976. * memory, thus we need a full memory barrier to ensure the ordering.
  2977. */
  2978. mb();
  2979. REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
  2980. bp->spq_prod_idx);
  2981. mmiowb();
  2982. }
  2983. /**
  2984. * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
  2985. *
  2986. * @cmd: command to check
  2987. * @cmd_type: command type
  2988. */
  2989. static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
  2990. {
  2991. if ((cmd_type == NONE_CONNECTION_TYPE) ||
  2992. (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
  2993. (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
  2994. (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
  2995. (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
  2996. (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
  2997. (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
  2998. return true;
  2999. else
  3000. return false;
  3001. }
  3002. /**
  3003. * bnx2x_sp_post - place a single command on an SP ring
  3004. *
  3005. * @bp: driver handle
  3006. * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
  3007. * @cid: SW CID the command is related to
  3008. * @data_hi: command private data address (high 32 bits)
  3009. * @data_lo: command private data address (low 32 bits)
  3010. * @cmd_type: command type (e.g. NONE, ETH)
  3011. *
  3012. * SP data is handled as if it's always an address pair, thus data fields are
  3013. * not swapped to little endian in upper functions. Instead this function swaps
  3014. * data as if it's two u32 fields.
  3015. */
  3016. int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
  3017. u32 data_hi, u32 data_lo, int cmd_type)
  3018. {
  3019. struct eth_spe *spe;
  3020. u16 type;
  3021. bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
  3022. #ifdef BNX2X_STOP_ON_ERROR
  3023. if (unlikely(bp->panic)) {
  3024. BNX2X_ERR("Can't post SP when there is panic\n");
  3025. return -EIO;
  3026. }
  3027. #endif
  3028. spin_lock_bh(&bp->spq_lock);
  3029. if (common) {
  3030. if (!atomic_read(&bp->eq_spq_left)) {
  3031. BNX2X_ERR("BUG! EQ ring full!\n");
  3032. spin_unlock_bh(&bp->spq_lock);
  3033. bnx2x_panic();
  3034. return -EBUSY;
  3035. }
  3036. } else if (!atomic_read(&bp->cq_spq_left)) {
  3037. BNX2X_ERR("BUG! SPQ ring full!\n");
  3038. spin_unlock_bh(&bp->spq_lock);
  3039. bnx2x_panic();
  3040. return -EBUSY;
  3041. }
  3042. spe = bnx2x_sp_get_next(bp);
  3043. /* CID needs port number to be encoded int it */
  3044. spe->hdr.conn_and_cmd_data =
  3045. cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
  3046. HW_CID(bp, cid));
  3047. type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
  3048. type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
  3049. SPE_HDR_FUNCTION_ID);
  3050. spe->hdr.type = cpu_to_le16(type);
  3051. spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
  3052. spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
  3053. /*
  3054. * It's ok if the actual decrement is issued towards the memory
  3055. * somewhere between the spin_lock and spin_unlock. Thus no
  3056. * more explicit memory barrier is needed.
  3057. */
  3058. if (common)
  3059. atomic_dec(&bp->eq_spq_left);
  3060. else
  3061. atomic_dec(&bp->cq_spq_left);
  3062. DP(BNX2X_MSG_SP,
  3063. "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
  3064. bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
  3065. (u32)(U64_LO(bp->spq_mapping) +
  3066. (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
  3067. HW_CID(bp, cid), data_hi, data_lo, type,
  3068. atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
  3069. bnx2x_sp_prod_update(bp);
  3070. spin_unlock_bh(&bp->spq_lock);
  3071. return 0;
  3072. }
  3073. /* acquire split MCP access lock register */
  3074. static int bnx2x_acquire_alr(struct bnx2x *bp)
  3075. {
  3076. u32 j, val;
  3077. int rc = 0;
  3078. might_sleep();
  3079. for (j = 0; j < 1000; j++) {
  3080. REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
  3081. val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
  3082. if (val & MCPR_ACCESS_LOCK_LOCK)
  3083. break;
  3084. usleep_range(5000, 10000);
  3085. }
  3086. if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
  3087. BNX2X_ERR("Cannot acquire MCP access lock register\n");
  3088. rc = -EBUSY;
  3089. }
  3090. return rc;
  3091. }
  3092. /* release split MCP access lock register */
  3093. static void bnx2x_release_alr(struct bnx2x *bp)
  3094. {
  3095. REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
  3096. }
  3097. #define BNX2X_DEF_SB_ATT_IDX 0x0001
  3098. #define BNX2X_DEF_SB_IDX 0x0002
  3099. static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
  3100. {
  3101. struct host_sp_status_block *def_sb = bp->def_status_blk;
  3102. u16 rc = 0;
  3103. barrier(); /* status block is written to by the chip */
  3104. if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
  3105. bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
  3106. rc |= BNX2X_DEF_SB_ATT_IDX;
  3107. }
  3108. if (bp->def_idx != def_sb->sp_sb.running_index) {
  3109. bp->def_idx = def_sb->sp_sb.running_index;
  3110. rc |= BNX2X_DEF_SB_IDX;
  3111. }
  3112. /* Do not reorder: indices reading should complete before handling */
  3113. barrier();
  3114. return rc;
  3115. }
  3116. /*
  3117. * slow path service functions
  3118. */
  3119. static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
  3120. {
  3121. int port = BP_PORT(bp);
  3122. u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  3123. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  3124. u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
  3125. NIG_REG_MASK_INTERRUPT_PORT0;
  3126. u32 aeu_mask;
  3127. u32 nig_mask = 0;
  3128. u32 reg_addr;
  3129. if (bp->attn_state & asserted)
  3130. BNX2X_ERR("IGU ERROR\n");
  3131. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3132. aeu_mask = REG_RD(bp, aeu_addr);
  3133. DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
  3134. aeu_mask, asserted);
  3135. aeu_mask &= ~(asserted & 0x3ff);
  3136. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  3137. REG_WR(bp, aeu_addr, aeu_mask);
  3138. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3139. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  3140. bp->attn_state |= asserted;
  3141. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  3142. if (asserted & ATTN_HARD_WIRED_MASK) {
  3143. if (asserted & ATTN_NIG_FOR_FUNC) {
  3144. bnx2x_acquire_phy_lock(bp);
  3145. /* save nig interrupt mask */
  3146. nig_mask = REG_RD(bp, nig_int_mask_addr);
  3147. /* If nig_mask is not set, no need to call the update
  3148. * function.
  3149. */
  3150. if (nig_mask) {
  3151. REG_WR(bp, nig_int_mask_addr, 0);
  3152. bnx2x_link_attn(bp);
  3153. }
  3154. /* handle unicore attn? */
  3155. }
  3156. if (asserted & ATTN_SW_TIMER_4_FUNC)
  3157. DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
  3158. if (asserted & GPIO_2_FUNC)
  3159. DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
  3160. if (asserted & GPIO_3_FUNC)
  3161. DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
  3162. if (asserted & GPIO_4_FUNC)
  3163. DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
  3164. if (port == 0) {
  3165. if (asserted & ATTN_GENERAL_ATTN_1) {
  3166. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
  3167. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
  3168. }
  3169. if (asserted & ATTN_GENERAL_ATTN_2) {
  3170. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
  3171. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
  3172. }
  3173. if (asserted & ATTN_GENERAL_ATTN_3) {
  3174. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
  3175. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
  3176. }
  3177. } else {
  3178. if (asserted & ATTN_GENERAL_ATTN_4) {
  3179. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
  3180. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
  3181. }
  3182. if (asserted & ATTN_GENERAL_ATTN_5) {
  3183. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
  3184. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
  3185. }
  3186. if (asserted & ATTN_GENERAL_ATTN_6) {
  3187. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
  3188. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
  3189. }
  3190. }
  3191. } /* if hardwired */
  3192. if (bp->common.int_block == INT_BLOCK_HC)
  3193. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  3194. COMMAND_REG_ATTN_BITS_SET);
  3195. else
  3196. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
  3197. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
  3198. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  3199. REG_WR(bp, reg_addr, asserted);
  3200. /* now set back the mask */
  3201. if (asserted & ATTN_NIG_FOR_FUNC) {
  3202. /* Verify that IGU ack through BAR was written before restoring
  3203. * NIG mask. This loop should exit after 2-3 iterations max.
  3204. */
  3205. if (bp->common.int_block != INT_BLOCK_HC) {
  3206. u32 cnt = 0, igu_acked;
  3207. do {
  3208. igu_acked = REG_RD(bp,
  3209. IGU_REG_ATTENTION_ACK_BITS);
  3210. } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
  3211. (++cnt < MAX_IGU_ATTN_ACK_TO));
  3212. if (!igu_acked)
  3213. DP(NETIF_MSG_HW,
  3214. "Failed to verify IGU ack on time\n");
  3215. barrier();
  3216. }
  3217. REG_WR(bp, nig_int_mask_addr, nig_mask);
  3218. bnx2x_release_phy_lock(bp);
  3219. }
  3220. }
  3221. static void bnx2x_fan_failure(struct bnx2x *bp)
  3222. {
  3223. int port = BP_PORT(bp);
  3224. u32 ext_phy_config;
  3225. /* mark the failure */
  3226. ext_phy_config =
  3227. SHMEM_RD(bp,
  3228. dev_info.port_hw_config[port].external_phy_config);
  3229. ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
  3230. ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
  3231. SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
  3232. ext_phy_config);
  3233. /* log the failure */
  3234. netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
  3235. "Please contact OEM Support for assistance\n");
  3236. /* Schedule device reset (unload)
  3237. * This is due to some boards consuming sufficient power when driver is
  3238. * up to overheat if fan fails.
  3239. */
  3240. smp_mb__before_clear_bit();
  3241. set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
  3242. smp_mb__after_clear_bit();
  3243. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  3244. }
  3245. static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
  3246. {
  3247. int port = BP_PORT(bp);
  3248. int reg_offset;
  3249. u32 val;
  3250. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  3251. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  3252. if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
  3253. val = REG_RD(bp, reg_offset);
  3254. val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
  3255. REG_WR(bp, reg_offset, val);
  3256. BNX2X_ERR("SPIO5 hw attention\n");
  3257. /* Fan failure attention */
  3258. bnx2x_hw_reset_phy(&bp->link_params);
  3259. bnx2x_fan_failure(bp);
  3260. }
  3261. if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
  3262. bnx2x_acquire_phy_lock(bp);
  3263. bnx2x_handle_module_detect_int(&bp->link_params);
  3264. bnx2x_release_phy_lock(bp);
  3265. }
  3266. if (attn & HW_INTERRUT_ASSERT_SET_0) {
  3267. val = REG_RD(bp, reg_offset);
  3268. val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
  3269. REG_WR(bp, reg_offset, val);
  3270. BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
  3271. (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
  3272. bnx2x_panic();
  3273. }
  3274. }
  3275. static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
  3276. {
  3277. u32 val;
  3278. if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
  3279. val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
  3280. BNX2X_ERR("DB hw attention 0x%x\n", val);
  3281. /* DORQ discard attention */
  3282. if (val & 0x2)
  3283. BNX2X_ERR("FATAL error from DORQ\n");
  3284. }
  3285. if (attn & HW_INTERRUT_ASSERT_SET_1) {
  3286. int port = BP_PORT(bp);
  3287. int reg_offset;
  3288. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
  3289. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
  3290. val = REG_RD(bp, reg_offset);
  3291. val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
  3292. REG_WR(bp, reg_offset, val);
  3293. BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
  3294. (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
  3295. bnx2x_panic();
  3296. }
  3297. }
  3298. static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
  3299. {
  3300. u32 val;
  3301. if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
  3302. val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
  3303. BNX2X_ERR("CFC hw attention 0x%x\n", val);
  3304. /* CFC error attention */
  3305. if (val & 0x2)
  3306. BNX2X_ERR("FATAL error from CFC\n");
  3307. }
  3308. if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
  3309. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
  3310. BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
  3311. /* RQ_USDMDP_FIFO_OVERFLOW */
  3312. if (val & 0x18000)
  3313. BNX2X_ERR("FATAL error from PXP\n");
  3314. if (!CHIP_IS_E1x(bp)) {
  3315. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
  3316. BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
  3317. }
  3318. }
  3319. if (attn & HW_INTERRUT_ASSERT_SET_2) {
  3320. int port = BP_PORT(bp);
  3321. int reg_offset;
  3322. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
  3323. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
  3324. val = REG_RD(bp, reg_offset);
  3325. val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
  3326. REG_WR(bp, reg_offset, val);
  3327. BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
  3328. (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
  3329. bnx2x_panic();
  3330. }
  3331. }
  3332. static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
  3333. {
  3334. u32 val;
  3335. if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
  3336. if (attn & BNX2X_PMF_LINK_ASSERT) {
  3337. int func = BP_FUNC(bp);
  3338. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  3339. bnx2x_read_mf_cfg(bp);
  3340. bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
  3341. func_mf_config[BP_ABS_FUNC(bp)].config);
  3342. val = SHMEM_RD(bp,
  3343. func_mb[BP_FW_MB_IDX(bp)].drv_status);
  3344. if (val & DRV_STATUS_DCC_EVENT_MASK)
  3345. bnx2x_dcc_event(bp,
  3346. (val & DRV_STATUS_DCC_EVENT_MASK));
  3347. if (val & DRV_STATUS_SET_MF_BW)
  3348. bnx2x_set_mf_bw(bp);
  3349. if (val & DRV_STATUS_DRV_INFO_REQ)
  3350. bnx2x_handle_drv_info_req(bp);
  3351. if (val & DRV_STATUS_VF_DISABLED)
  3352. bnx2x_vf_handle_flr_event(bp);
  3353. if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
  3354. bnx2x_pmf_update(bp);
  3355. if (bp->port.pmf &&
  3356. (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
  3357. bp->dcbx_enabled > 0)
  3358. /* start dcbx state machine */
  3359. bnx2x_dcbx_set_params(bp,
  3360. BNX2X_DCBX_STATE_NEG_RECEIVED);
  3361. if (val & DRV_STATUS_AFEX_EVENT_MASK)
  3362. bnx2x_handle_afex_cmd(bp,
  3363. val & DRV_STATUS_AFEX_EVENT_MASK);
  3364. if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
  3365. bnx2x_handle_eee_event(bp);
  3366. if (bp->link_vars.periodic_flags &
  3367. PERIODIC_FLAGS_LINK_EVENT) {
  3368. /* sync with link */
  3369. bnx2x_acquire_phy_lock(bp);
  3370. bp->link_vars.periodic_flags &=
  3371. ~PERIODIC_FLAGS_LINK_EVENT;
  3372. bnx2x_release_phy_lock(bp);
  3373. if (IS_MF(bp))
  3374. bnx2x_link_sync_notify(bp);
  3375. bnx2x_link_report(bp);
  3376. }
  3377. /* Always call it here: bnx2x_link_report() will
  3378. * prevent the link indication duplication.
  3379. */
  3380. bnx2x__link_status_update(bp);
  3381. } else if (attn & BNX2X_MC_ASSERT_BITS) {
  3382. BNX2X_ERR("MC assert!\n");
  3383. bnx2x_mc_assert(bp);
  3384. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
  3385. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
  3386. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
  3387. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
  3388. bnx2x_panic();
  3389. } else if (attn & BNX2X_MCP_ASSERT) {
  3390. BNX2X_ERR("MCP assert!\n");
  3391. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
  3392. bnx2x_fw_dump(bp);
  3393. } else
  3394. BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
  3395. }
  3396. if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
  3397. BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
  3398. if (attn & BNX2X_GRC_TIMEOUT) {
  3399. val = CHIP_IS_E1(bp) ? 0 :
  3400. REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
  3401. BNX2X_ERR("GRC time-out 0x%08x\n", val);
  3402. }
  3403. if (attn & BNX2X_GRC_RSV) {
  3404. val = CHIP_IS_E1(bp) ? 0 :
  3405. REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
  3406. BNX2X_ERR("GRC reserved 0x%08x\n", val);
  3407. }
  3408. REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
  3409. }
  3410. }
  3411. /*
  3412. * Bits map:
  3413. * 0-7 - Engine0 load counter.
  3414. * 8-15 - Engine1 load counter.
  3415. * 16 - Engine0 RESET_IN_PROGRESS bit.
  3416. * 17 - Engine1 RESET_IN_PROGRESS bit.
  3417. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
  3418. * on the engine
  3419. * 19 - Engine1 ONE_IS_LOADED.
  3420. * 20 - Chip reset flow bit. When set none-leader must wait for both engines
  3421. * leader to complete (check for both RESET_IN_PROGRESS bits and not for
  3422. * just the one belonging to its engine).
  3423. *
  3424. */
  3425. #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
  3426. #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
  3427. #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
  3428. #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
  3429. #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
  3430. #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
  3431. #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
  3432. #define BNX2X_GLOBAL_RESET_BIT 0x00040000
  3433. /*
  3434. * Set the GLOBAL_RESET bit.
  3435. *
  3436. * Should be run under rtnl lock
  3437. */
  3438. void bnx2x_set_reset_global(struct bnx2x *bp)
  3439. {
  3440. u32 val;
  3441. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3442. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3443. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
  3444. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3445. }
  3446. /*
  3447. * Clear the GLOBAL_RESET bit.
  3448. *
  3449. * Should be run under rtnl lock
  3450. */
  3451. static void bnx2x_clear_reset_global(struct bnx2x *bp)
  3452. {
  3453. u32 val;
  3454. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3455. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3456. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
  3457. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3458. }
  3459. /*
  3460. * Checks the GLOBAL_RESET bit.
  3461. *
  3462. * should be run under rtnl lock
  3463. */
  3464. static bool bnx2x_reset_is_global(struct bnx2x *bp)
  3465. {
  3466. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3467. DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
  3468. return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
  3469. }
  3470. /*
  3471. * Clear RESET_IN_PROGRESS bit for the current engine.
  3472. *
  3473. * Should be run under rtnl lock
  3474. */
  3475. static void bnx2x_set_reset_done(struct bnx2x *bp)
  3476. {
  3477. u32 val;
  3478. u32 bit = BP_PATH(bp) ?
  3479. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3480. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3481. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3482. /* Clear the bit */
  3483. val &= ~bit;
  3484. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3485. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3486. }
  3487. /*
  3488. * Set RESET_IN_PROGRESS for the current engine.
  3489. *
  3490. * should be run under rtnl lock
  3491. */
  3492. void bnx2x_set_reset_in_progress(struct bnx2x *bp)
  3493. {
  3494. u32 val;
  3495. u32 bit = BP_PATH(bp) ?
  3496. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3497. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3498. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3499. /* Set the bit */
  3500. val |= bit;
  3501. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3502. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3503. }
  3504. /*
  3505. * Checks the RESET_IN_PROGRESS bit for the given engine.
  3506. * should be run under rtnl lock
  3507. */
  3508. bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
  3509. {
  3510. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3511. u32 bit = engine ?
  3512. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3513. /* return false if bit is set */
  3514. return (val & bit) ? false : true;
  3515. }
  3516. /*
  3517. * set pf load for the current pf.
  3518. *
  3519. * should be run under rtnl lock
  3520. */
  3521. void bnx2x_set_pf_load(struct bnx2x *bp)
  3522. {
  3523. u32 val1, val;
  3524. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3525. BNX2X_PATH0_LOAD_CNT_MASK;
  3526. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3527. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3528. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3529. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3530. DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
  3531. /* get the current counter value */
  3532. val1 = (val & mask) >> shift;
  3533. /* set bit of that PF */
  3534. val1 |= (1 << bp->pf_num);
  3535. /* clear the old value */
  3536. val &= ~mask;
  3537. /* set the new one */
  3538. val |= ((val1 << shift) & mask);
  3539. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3540. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3541. }
  3542. /**
  3543. * bnx2x_clear_pf_load - clear pf load mark
  3544. *
  3545. * @bp: driver handle
  3546. *
  3547. * Should be run under rtnl lock.
  3548. * Decrements the load counter for the current engine. Returns
  3549. * whether other functions are still loaded
  3550. */
  3551. bool bnx2x_clear_pf_load(struct bnx2x *bp)
  3552. {
  3553. u32 val1, val;
  3554. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3555. BNX2X_PATH0_LOAD_CNT_MASK;
  3556. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3557. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3558. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3559. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3560. DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
  3561. /* get the current counter value */
  3562. val1 = (val & mask) >> shift;
  3563. /* clear bit of that PF */
  3564. val1 &= ~(1 << bp->pf_num);
  3565. /* clear the old value */
  3566. val &= ~mask;
  3567. /* set the new one */
  3568. val |= ((val1 << shift) & mask);
  3569. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3570. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3571. return val1 != 0;
  3572. }
  3573. /*
  3574. * Read the load status for the current engine.
  3575. *
  3576. * should be run under rtnl lock
  3577. */
  3578. static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
  3579. {
  3580. u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
  3581. BNX2X_PATH0_LOAD_CNT_MASK);
  3582. u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3583. BNX2X_PATH0_LOAD_CNT_SHIFT);
  3584. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3585. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
  3586. val = (val & mask) >> shift;
  3587. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
  3588. engine, val);
  3589. return val != 0;
  3590. }
  3591. static void _print_parity(struct bnx2x *bp, u32 reg)
  3592. {
  3593. pr_cont(" [0x%08x] ", REG_RD(bp, reg));
  3594. }
  3595. static void _print_next_block(int idx, const char *blk)
  3596. {
  3597. pr_cont("%s%s", idx ? ", " : "", blk);
  3598. }
  3599. static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
  3600. int *par_num, bool print)
  3601. {
  3602. u32 cur_bit;
  3603. bool res;
  3604. int i;
  3605. res = false;
  3606. for (i = 0; sig; i++) {
  3607. cur_bit = (0x1UL << i);
  3608. if (sig & cur_bit) {
  3609. res |= true; /* Each bit is real error! */
  3610. if (print) {
  3611. switch (cur_bit) {
  3612. case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
  3613. _print_next_block((*par_num)++, "BRB");
  3614. _print_parity(bp,
  3615. BRB1_REG_BRB1_PRTY_STS);
  3616. break;
  3617. case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
  3618. _print_next_block((*par_num)++,
  3619. "PARSER");
  3620. _print_parity(bp, PRS_REG_PRS_PRTY_STS);
  3621. break;
  3622. case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
  3623. _print_next_block((*par_num)++, "TSDM");
  3624. _print_parity(bp,
  3625. TSDM_REG_TSDM_PRTY_STS);
  3626. break;
  3627. case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
  3628. _print_next_block((*par_num)++,
  3629. "SEARCHER");
  3630. _print_parity(bp, SRC_REG_SRC_PRTY_STS);
  3631. break;
  3632. case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
  3633. _print_next_block((*par_num)++, "TCM");
  3634. _print_parity(bp, TCM_REG_TCM_PRTY_STS);
  3635. break;
  3636. case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
  3637. _print_next_block((*par_num)++,
  3638. "TSEMI");
  3639. _print_parity(bp,
  3640. TSEM_REG_TSEM_PRTY_STS_0);
  3641. _print_parity(bp,
  3642. TSEM_REG_TSEM_PRTY_STS_1);
  3643. break;
  3644. case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
  3645. _print_next_block((*par_num)++, "XPB");
  3646. _print_parity(bp, GRCBASE_XPB +
  3647. PB_REG_PB_PRTY_STS);
  3648. break;
  3649. }
  3650. }
  3651. /* Clear the bit */
  3652. sig &= ~cur_bit;
  3653. }
  3654. }
  3655. return res;
  3656. }
  3657. static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
  3658. int *par_num, bool *global,
  3659. bool print)
  3660. {
  3661. u32 cur_bit;
  3662. bool res;
  3663. int i;
  3664. res = false;
  3665. for (i = 0; sig; i++) {
  3666. cur_bit = (0x1UL << i);
  3667. if (sig & cur_bit) {
  3668. res |= true; /* Each bit is real error! */
  3669. switch (cur_bit) {
  3670. case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
  3671. if (print) {
  3672. _print_next_block((*par_num)++, "PBF");
  3673. _print_parity(bp, PBF_REG_PBF_PRTY_STS);
  3674. }
  3675. break;
  3676. case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
  3677. if (print) {
  3678. _print_next_block((*par_num)++, "QM");
  3679. _print_parity(bp, QM_REG_QM_PRTY_STS);
  3680. }
  3681. break;
  3682. case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
  3683. if (print) {
  3684. _print_next_block((*par_num)++, "TM");
  3685. _print_parity(bp, TM_REG_TM_PRTY_STS);
  3686. }
  3687. break;
  3688. case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
  3689. if (print) {
  3690. _print_next_block((*par_num)++, "XSDM");
  3691. _print_parity(bp,
  3692. XSDM_REG_XSDM_PRTY_STS);
  3693. }
  3694. break;
  3695. case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
  3696. if (print) {
  3697. _print_next_block((*par_num)++, "XCM");
  3698. _print_parity(bp, XCM_REG_XCM_PRTY_STS);
  3699. }
  3700. break;
  3701. case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
  3702. if (print) {
  3703. _print_next_block((*par_num)++,
  3704. "XSEMI");
  3705. _print_parity(bp,
  3706. XSEM_REG_XSEM_PRTY_STS_0);
  3707. _print_parity(bp,
  3708. XSEM_REG_XSEM_PRTY_STS_1);
  3709. }
  3710. break;
  3711. case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
  3712. if (print) {
  3713. _print_next_block((*par_num)++,
  3714. "DOORBELLQ");
  3715. _print_parity(bp,
  3716. DORQ_REG_DORQ_PRTY_STS);
  3717. }
  3718. break;
  3719. case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
  3720. if (print) {
  3721. _print_next_block((*par_num)++, "NIG");
  3722. if (CHIP_IS_E1x(bp)) {
  3723. _print_parity(bp,
  3724. NIG_REG_NIG_PRTY_STS);
  3725. } else {
  3726. _print_parity(bp,
  3727. NIG_REG_NIG_PRTY_STS_0);
  3728. _print_parity(bp,
  3729. NIG_REG_NIG_PRTY_STS_1);
  3730. }
  3731. }
  3732. break;
  3733. case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
  3734. if (print)
  3735. _print_next_block((*par_num)++,
  3736. "VAUX PCI CORE");
  3737. *global = true;
  3738. break;
  3739. case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
  3740. if (print) {
  3741. _print_next_block((*par_num)++,
  3742. "DEBUG");
  3743. _print_parity(bp, DBG_REG_DBG_PRTY_STS);
  3744. }
  3745. break;
  3746. case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
  3747. if (print) {
  3748. _print_next_block((*par_num)++, "USDM");
  3749. _print_parity(bp,
  3750. USDM_REG_USDM_PRTY_STS);
  3751. }
  3752. break;
  3753. case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
  3754. if (print) {
  3755. _print_next_block((*par_num)++, "UCM");
  3756. _print_parity(bp, UCM_REG_UCM_PRTY_STS);
  3757. }
  3758. break;
  3759. case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
  3760. if (print) {
  3761. _print_next_block((*par_num)++,
  3762. "USEMI");
  3763. _print_parity(bp,
  3764. USEM_REG_USEM_PRTY_STS_0);
  3765. _print_parity(bp,
  3766. USEM_REG_USEM_PRTY_STS_1);
  3767. }
  3768. break;
  3769. case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
  3770. if (print) {
  3771. _print_next_block((*par_num)++, "UPB");
  3772. _print_parity(bp, GRCBASE_UPB +
  3773. PB_REG_PB_PRTY_STS);
  3774. }
  3775. break;
  3776. case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
  3777. if (print) {
  3778. _print_next_block((*par_num)++, "CSDM");
  3779. _print_parity(bp,
  3780. CSDM_REG_CSDM_PRTY_STS);
  3781. }
  3782. break;
  3783. case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
  3784. if (print) {
  3785. _print_next_block((*par_num)++, "CCM");
  3786. _print_parity(bp, CCM_REG_CCM_PRTY_STS);
  3787. }
  3788. break;
  3789. }
  3790. /* Clear the bit */
  3791. sig &= ~cur_bit;
  3792. }
  3793. }
  3794. return res;
  3795. }
  3796. static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
  3797. int *par_num, bool print)
  3798. {
  3799. u32 cur_bit;
  3800. bool res;
  3801. int i;
  3802. res = false;
  3803. for (i = 0; sig; i++) {
  3804. cur_bit = (0x1UL << i);
  3805. if (sig & cur_bit) {
  3806. res |= true; /* Each bit is real error! */
  3807. if (print) {
  3808. switch (cur_bit) {
  3809. case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
  3810. _print_next_block((*par_num)++,
  3811. "CSEMI");
  3812. _print_parity(bp,
  3813. CSEM_REG_CSEM_PRTY_STS_0);
  3814. _print_parity(bp,
  3815. CSEM_REG_CSEM_PRTY_STS_1);
  3816. break;
  3817. case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
  3818. _print_next_block((*par_num)++, "PXP");
  3819. _print_parity(bp, PXP_REG_PXP_PRTY_STS);
  3820. _print_parity(bp,
  3821. PXP2_REG_PXP2_PRTY_STS_0);
  3822. _print_parity(bp,
  3823. PXP2_REG_PXP2_PRTY_STS_1);
  3824. break;
  3825. case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
  3826. _print_next_block((*par_num)++,
  3827. "PXPPCICLOCKCLIENT");
  3828. break;
  3829. case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
  3830. _print_next_block((*par_num)++, "CFC");
  3831. _print_parity(bp,
  3832. CFC_REG_CFC_PRTY_STS);
  3833. break;
  3834. case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
  3835. _print_next_block((*par_num)++, "CDU");
  3836. _print_parity(bp, CDU_REG_CDU_PRTY_STS);
  3837. break;
  3838. case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
  3839. _print_next_block((*par_num)++, "DMAE");
  3840. _print_parity(bp,
  3841. DMAE_REG_DMAE_PRTY_STS);
  3842. break;
  3843. case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
  3844. _print_next_block((*par_num)++, "IGU");
  3845. if (CHIP_IS_E1x(bp))
  3846. _print_parity(bp,
  3847. HC_REG_HC_PRTY_STS);
  3848. else
  3849. _print_parity(bp,
  3850. IGU_REG_IGU_PRTY_STS);
  3851. break;
  3852. case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
  3853. _print_next_block((*par_num)++, "MISC");
  3854. _print_parity(bp,
  3855. MISC_REG_MISC_PRTY_STS);
  3856. break;
  3857. }
  3858. }
  3859. /* Clear the bit */
  3860. sig &= ~cur_bit;
  3861. }
  3862. }
  3863. return res;
  3864. }
  3865. static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
  3866. int *par_num, bool *global,
  3867. bool print)
  3868. {
  3869. bool res = false;
  3870. u32 cur_bit;
  3871. int i;
  3872. for (i = 0; sig; i++) {
  3873. cur_bit = (0x1UL << i);
  3874. if (sig & cur_bit) {
  3875. switch (cur_bit) {
  3876. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
  3877. if (print)
  3878. _print_next_block((*par_num)++,
  3879. "MCP ROM");
  3880. *global = true;
  3881. res |= true;
  3882. break;
  3883. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
  3884. if (print)
  3885. _print_next_block((*par_num)++,
  3886. "MCP UMP RX");
  3887. *global = true;
  3888. res |= true;
  3889. break;
  3890. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
  3891. if (print)
  3892. _print_next_block((*par_num)++,
  3893. "MCP UMP TX");
  3894. *global = true;
  3895. res |= true;
  3896. break;
  3897. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
  3898. if (print)
  3899. _print_next_block((*par_num)++,
  3900. "MCP SCPAD");
  3901. /* clear latched SCPAD PATIRY from MCP */
  3902. REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
  3903. 1UL << 10);
  3904. break;
  3905. }
  3906. /* Clear the bit */
  3907. sig &= ~cur_bit;
  3908. }
  3909. }
  3910. return res;
  3911. }
  3912. static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
  3913. int *par_num, bool print)
  3914. {
  3915. u32 cur_bit;
  3916. bool res;
  3917. int i;
  3918. res = false;
  3919. for (i = 0; sig; i++) {
  3920. cur_bit = (0x1UL << i);
  3921. if (sig & cur_bit) {
  3922. res |= true; /* Each bit is real error! */
  3923. if (print) {
  3924. switch (cur_bit) {
  3925. case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
  3926. _print_next_block((*par_num)++,
  3927. "PGLUE_B");
  3928. _print_parity(bp,
  3929. PGLUE_B_REG_PGLUE_B_PRTY_STS);
  3930. break;
  3931. case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
  3932. _print_next_block((*par_num)++, "ATC");
  3933. _print_parity(bp,
  3934. ATC_REG_ATC_PRTY_STS);
  3935. break;
  3936. }
  3937. }
  3938. /* Clear the bit */
  3939. sig &= ~cur_bit;
  3940. }
  3941. }
  3942. return res;
  3943. }
  3944. static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
  3945. u32 *sig)
  3946. {
  3947. bool res = false;
  3948. if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
  3949. (sig[1] & HW_PRTY_ASSERT_SET_1) ||
  3950. (sig[2] & HW_PRTY_ASSERT_SET_2) ||
  3951. (sig[3] & HW_PRTY_ASSERT_SET_3) ||
  3952. (sig[4] & HW_PRTY_ASSERT_SET_4)) {
  3953. int par_num = 0;
  3954. DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
  3955. "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
  3956. sig[0] & HW_PRTY_ASSERT_SET_0,
  3957. sig[1] & HW_PRTY_ASSERT_SET_1,
  3958. sig[2] & HW_PRTY_ASSERT_SET_2,
  3959. sig[3] & HW_PRTY_ASSERT_SET_3,
  3960. sig[4] & HW_PRTY_ASSERT_SET_4);
  3961. if (print)
  3962. netdev_err(bp->dev,
  3963. "Parity errors detected in blocks: ");
  3964. res |= bnx2x_check_blocks_with_parity0(bp,
  3965. sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
  3966. res |= bnx2x_check_blocks_with_parity1(bp,
  3967. sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
  3968. res |= bnx2x_check_blocks_with_parity2(bp,
  3969. sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
  3970. res |= bnx2x_check_blocks_with_parity3(bp,
  3971. sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
  3972. res |= bnx2x_check_blocks_with_parity4(bp,
  3973. sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
  3974. if (print)
  3975. pr_cont("\n");
  3976. }
  3977. return res;
  3978. }
  3979. /**
  3980. * bnx2x_chk_parity_attn - checks for parity attentions.
  3981. *
  3982. * @bp: driver handle
  3983. * @global: true if there was a global attention
  3984. * @print: show parity attention in syslog
  3985. */
  3986. bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
  3987. {
  3988. struct attn_route attn = { {0} };
  3989. int port = BP_PORT(bp);
  3990. attn.sig[0] = REG_RD(bp,
  3991. MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
  3992. port*4);
  3993. attn.sig[1] = REG_RD(bp,
  3994. MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
  3995. port*4);
  3996. attn.sig[2] = REG_RD(bp,
  3997. MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
  3998. port*4);
  3999. attn.sig[3] = REG_RD(bp,
  4000. MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
  4001. port*4);
  4002. /* Since MCP attentions can't be disabled inside the block, we need to
  4003. * read AEU registers to see whether they're currently disabled
  4004. */
  4005. attn.sig[3] &= ((REG_RD(bp,
  4006. !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
  4007. : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
  4008. MISC_AEU_ENABLE_MCP_PRTY_BITS) |
  4009. ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
  4010. if (!CHIP_IS_E1x(bp))
  4011. attn.sig[4] = REG_RD(bp,
  4012. MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
  4013. port*4);
  4014. return bnx2x_parity_attn(bp, global, print, attn.sig);
  4015. }
  4016. static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
  4017. {
  4018. u32 val;
  4019. if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
  4020. val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
  4021. BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
  4022. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
  4023. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
  4024. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
  4025. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
  4026. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
  4027. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
  4028. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
  4029. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
  4030. if (val &
  4031. PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
  4032. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
  4033. if (val &
  4034. PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
  4035. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
  4036. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
  4037. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
  4038. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
  4039. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
  4040. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
  4041. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
  4042. }
  4043. if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
  4044. val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
  4045. BNX2X_ERR("ATC hw attention 0x%x\n", val);
  4046. if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
  4047. BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
  4048. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
  4049. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
  4050. if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
  4051. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
  4052. if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
  4053. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
  4054. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
  4055. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
  4056. if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
  4057. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
  4058. }
  4059. if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  4060. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
  4061. BNX2X_ERR("FATAL parity attention set4 0x%x\n",
  4062. (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  4063. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
  4064. }
  4065. }
  4066. static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
  4067. {
  4068. struct attn_route attn, *group_mask;
  4069. int port = BP_PORT(bp);
  4070. int index;
  4071. u32 reg_addr;
  4072. u32 val;
  4073. u32 aeu_mask;
  4074. bool global = false;
  4075. /* need to take HW lock because MCP or other port might also
  4076. try to handle this event */
  4077. bnx2x_acquire_alr(bp);
  4078. if (bnx2x_chk_parity_attn(bp, &global, true)) {
  4079. #ifndef BNX2X_STOP_ON_ERROR
  4080. bp->recovery_state = BNX2X_RECOVERY_INIT;
  4081. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  4082. /* Disable HW interrupts */
  4083. bnx2x_int_disable(bp);
  4084. /* In case of parity errors don't handle attentions so that
  4085. * other function would "see" parity errors.
  4086. */
  4087. #else
  4088. bnx2x_panic();
  4089. #endif
  4090. bnx2x_release_alr(bp);
  4091. return;
  4092. }
  4093. attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
  4094. attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
  4095. attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
  4096. attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
  4097. if (!CHIP_IS_E1x(bp))
  4098. attn.sig[4] =
  4099. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
  4100. else
  4101. attn.sig[4] = 0;
  4102. DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
  4103. attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
  4104. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  4105. if (deasserted & (1 << index)) {
  4106. group_mask = &bp->attn_group[index];
  4107. DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
  4108. index,
  4109. group_mask->sig[0], group_mask->sig[1],
  4110. group_mask->sig[2], group_mask->sig[3],
  4111. group_mask->sig[4]);
  4112. bnx2x_attn_int_deasserted4(bp,
  4113. attn.sig[4] & group_mask->sig[4]);
  4114. bnx2x_attn_int_deasserted3(bp,
  4115. attn.sig[3] & group_mask->sig[3]);
  4116. bnx2x_attn_int_deasserted1(bp,
  4117. attn.sig[1] & group_mask->sig[1]);
  4118. bnx2x_attn_int_deasserted2(bp,
  4119. attn.sig[2] & group_mask->sig[2]);
  4120. bnx2x_attn_int_deasserted0(bp,
  4121. attn.sig[0] & group_mask->sig[0]);
  4122. }
  4123. }
  4124. bnx2x_release_alr(bp);
  4125. if (bp->common.int_block == INT_BLOCK_HC)
  4126. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  4127. COMMAND_REG_ATTN_BITS_CLR);
  4128. else
  4129. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
  4130. val = ~deasserted;
  4131. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
  4132. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  4133. REG_WR(bp, reg_addr, val);
  4134. if (~bp->attn_state & deasserted)
  4135. BNX2X_ERR("IGU ERROR\n");
  4136. reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  4137. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  4138. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  4139. aeu_mask = REG_RD(bp, reg_addr);
  4140. DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
  4141. aeu_mask, deasserted);
  4142. aeu_mask |= (deasserted & 0x3ff);
  4143. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  4144. REG_WR(bp, reg_addr, aeu_mask);
  4145. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  4146. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  4147. bp->attn_state &= ~deasserted;
  4148. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  4149. }
  4150. static void bnx2x_attn_int(struct bnx2x *bp)
  4151. {
  4152. /* read local copy of bits */
  4153. u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
  4154. attn_bits);
  4155. u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
  4156. attn_bits_ack);
  4157. u32 attn_state = bp->attn_state;
  4158. /* look for changed bits */
  4159. u32 asserted = attn_bits & ~attn_ack & ~attn_state;
  4160. u32 deasserted = ~attn_bits & attn_ack & attn_state;
  4161. DP(NETIF_MSG_HW,
  4162. "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
  4163. attn_bits, attn_ack, asserted, deasserted);
  4164. if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
  4165. BNX2X_ERR("BAD attention state\n");
  4166. /* handle bits that were raised */
  4167. if (asserted)
  4168. bnx2x_attn_int_asserted(bp, asserted);
  4169. if (deasserted)
  4170. bnx2x_attn_int_deasserted(bp, deasserted);
  4171. }
  4172. void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
  4173. u16 index, u8 op, u8 update)
  4174. {
  4175. u32 igu_addr = bp->igu_base_addr;
  4176. igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
  4177. bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
  4178. igu_addr);
  4179. }
  4180. static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
  4181. {
  4182. /* No memory barriers */
  4183. storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
  4184. mmiowb(); /* keep prod updates ordered */
  4185. }
  4186. static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
  4187. union event_ring_elem *elem)
  4188. {
  4189. u8 err = elem->message.error;
  4190. if (!bp->cnic_eth_dev.starting_cid ||
  4191. (cid < bp->cnic_eth_dev.starting_cid &&
  4192. cid != bp->cnic_eth_dev.iscsi_l2_cid))
  4193. return 1;
  4194. DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
  4195. if (unlikely(err)) {
  4196. BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
  4197. cid);
  4198. bnx2x_panic_dump(bp, false);
  4199. }
  4200. bnx2x_cnic_cfc_comp(bp, cid, err);
  4201. return 0;
  4202. }
  4203. static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
  4204. {
  4205. struct bnx2x_mcast_ramrod_params rparam;
  4206. int rc;
  4207. memset(&rparam, 0, sizeof(rparam));
  4208. rparam.mcast_obj = &bp->mcast_obj;
  4209. netif_addr_lock_bh(bp->dev);
  4210. /* Clear pending state for the last command */
  4211. bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
  4212. /* If there are pending mcast commands - send them */
  4213. if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
  4214. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
  4215. if (rc < 0)
  4216. BNX2X_ERR("Failed to send pending mcast commands: %d\n",
  4217. rc);
  4218. }
  4219. netif_addr_unlock_bh(bp->dev);
  4220. }
  4221. static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
  4222. union event_ring_elem *elem)
  4223. {
  4224. unsigned long ramrod_flags = 0;
  4225. int rc = 0;
  4226. u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
  4227. struct bnx2x_vlan_mac_obj *vlan_mac_obj;
  4228. /* Always push next commands out, don't wait here */
  4229. __set_bit(RAMROD_CONT, &ramrod_flags);
  4230. switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
  4231. >> BNX2X_SWCID_SHIFT) {
  4232. case BNX2X_FILTER_MAC_PENDING:
  4233. DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
  4234. if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
  4235. vlan_mac_obj = &bp->iscsi_l2_mac_obj;
  4236. else
  4237. vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
  4238. break;
  4239. case BNX2X_FILTER_MCAST_PENDING:
  4240. DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
  4241. /* This is only relevant for 57710 where multicast MACs are
  4242. * configured as unicast MACs using the same ramrod.
  4243. */
  4244. bnx2x_handle_mcast_eqe(bp);
  4245. return;
  4246. default:
  4247. BNX2X_ERR("Unsupported classification command: %d\n",
  4248. elem->message.data.eth_event.echo);
  4249. return;
  4250. }
  4251. rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
  4252. if (rc < 0)
  4253. BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
  4254. else if (rc > 0)
  4255. DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
  4256. }
  4257. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
  4258. static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
  4259. {
  4260. netif_addr_lock_bh(bp->dev);
  4261. clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  4262. /* Send rx_mode command again if was requested */
  4263. if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
  4264. bnx2x_set_storm_rx_mode(bp);
  4265. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
  4266. &bp->sp_state))
  4267. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  4268. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
  4269. &bp->sp_state))
  4270. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  4271. netif_addr_unlock_bh(bp->dev);
  4272. }
  4273. static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
  4274. union event_ring_elem *elem)
  4275. {
  4276. if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
  4277. DP(BNX2X_MSG_SP,
  4278. "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
  4279. elem->message.data.vif_list_event.func_bit_map);
  4280. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
  4281. elem->message.data.vif_list_event.func_bit_map);
  4282. } else if (elem->message.data.vif_list_event.echo ==
  4283. VIF_LIST_RULE_SET) {
  4284. DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
  4285. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
  4286. }
  4287. }
  4288. /* called with rtnl_lock */
  4289. static void bnx2x_after_function_update(struct bnx2x *bp)
  4290. {
  4291. int q, rc;
  4292. struct bnx2x_fastpath *fp;
  4293. struct bnx2x_queue_state_params queue_params = {NULL};
  4294. struct bnx2x_queue_update_params *q_update_params =
  4295. &queue_params.params.update;
  4296. /* Send Q update command with afex vlan removal values for all Qs */
  4297. queue_params.cmd = BNX2X_Q_CMD_UPDATE;
  4298. /* set silent vlan removal values according to vlan mode */
  4299. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
  4300. &q_update_params->update_flags);
  4301. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
  4302. &q_update_params->update_flags);
  4303. __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
  4304. /* in access mode mark mask and value are 0 to strip all vlans */
  4305. if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
  4306. q_update_params->silent_removal_value = 0;
  4307. q_update_params->silent_removal_mask = 0;
  4308. } else {
  4309. q_update_params->silent_removal_value =
  4310. (bp->afex_def_vlan_tag & VLAN_VID_MASK);
  4311. q_update_params->silent_removal_mask = VLAN_VID_MASK;
  4312. }
  4313. for_each_eth_queue(bp, q) {
  4314. /* Set the appropriate Queue object */
  4315. fp = &bp->fp[q];
  4316. queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  4317. /* send the ramrod */
  4318. rc = bnx2x_queue_state_change(bp, &queue_params);
  4319. if (rc < 0)
  4320. BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
  4321. q);
  4322. }
  4323. if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
  4324. fp = &bp->fp[FCOE_IDX(bp)];
  4325. queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  4326. /* clear pending completion bit */
  4327. __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
  4328. /* mark latest Q bit */
  4329. smp_mb__before_clear_bit();
  4330. set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
  4331. smp_mb__after_clear_bit();
  4332. /* send Q update ramrod for FCoE Q */
  4333. rc = bnx2x_queue_state_change(bp, &queue_params);
  4334. if (rc < 0)
  4335. BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
  4336. q);
  4337. } else {
  4338. /* If no FCoE ring - ACK MCP now */
  4339. bnx2x_link_report(bp);
  4340. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
  4341. }
  4342. }
  4343. static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
  4344. struct bnx2x *bp, u32 cid)
  4345. {
  4346. DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
  4347. if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
  4348. return &bnx2x_fcoe_sp_obj(bp, q_obj);
  4349. else
  4350. return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
  4351. }
  4352. static void bnx2x_eq_int(struct bnx2x *bp)
  4353. {
  4354. u16 hw_cons, sw_cons, sw_prod;
  4355. union event_ring_elem *elem;
  4356. u8 echo;
  4357. u32 cid;
  4358. u8 opcode;
  4359. int rc, spqe_cnt = 0;
  4360. struct bnx2x_queue_sp_obj *q_obj;
  4361. struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
  4362. struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
  4363. hw_cons = le16_to_cpu(*bp->eq_cons_sb);
  4364. /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
  4365. * when we get the next-page we need to adjust so the loop
  4366. * condition below will be met. The next element is the size of a
  4367. * regular element and hence incrementing by 1
  4368. */
  4369. if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
  4370. hw_cons++;
  4371. /* This function may never run in parallel with itself for a
  4372. * specific bp, thus there is no need in "paired" read memory
  4373. * barrier here.
  4374. */
  4375. sw_cons = bp->eq_cons;
  4376. sw_prod = bp->eq_prod;
  4377. DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
  4378. hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
  4379. for (; sw_cons != hw_cons;
  4380. sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
  4381. elem = &bp->eq_ring[EQ_DESC(sw_cons)];
  4382. rc = bnx2x_iov_eq_sp_event(bp, elem);
  4383. if (!rc) {
  4384. DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
  4385. rc);
  4386. goto next_spqe;
  4387. }
  4388. /* elem CID originates from FW; actually LE */
  4389. cid = SW_CID((__force __le32)
  4390. elem->message.data.cfc_del_event.cid);
  4391. opcode = elem->message.opcode;
  4392. /* handle eq element */
  4393. switch (opcode) {
  4394. case EVENT_RING_OPCODE_VF_PF_CHANNEL:
  4395. DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
  4396. bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
  4397. continue;
  4398. case EVENT_RING_OPCODE_STAT_QUERY:
  4399. DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
  4400. "got statistics comp event %d\n",
  4401. bp->stats_comp++);
  4402. /* nothing to do with stats comp */
  4403. goto next_spqe;
  4404. case EVENT_RING_OPCODE_CFC_DEL:
  4405. /* handle according to cid range */
  4406. /*
  4407. * we may want to verify here that the bp state is
  4408. * HALTING
  4409. */
  4410. DP(BNX2X_MSG_SP,
  4411. "got delete ramrod for MULTI[%d]\n", cid);
  4412. if (CNIC_LOADED(bp) &&
  4413. !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
  4414. goto next_spqe;
  4415. q_obj = bnx2x_cid_to_q_obj(bp, cid);
  4416. if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
  4417. break;
  4418. goto next_spqe;
  4419. case EVENT_RING_OPCODE_STOP_TRAFFIC:
  4420. DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
  4421. if (f_obj->complete_cmd(bp, f_obj,
  4422. BNX2X_F_CMD_TX_STOP))
  4423. break;
  4424. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
  4425. goto next_spqe;
  4426. case EVENT_RING_OPCODE_START_TRAFFIC:
  4427. DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
  4428. if (f_obj->complete_cmd(bp, f_obj,
  4429. BNX2X_F_CMD_TX_START))
  4430. break;
  4431. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
  4432. goto next_spqe;
  4433. case EVENT_RING_OPCODE_FUNCTION_UPDATE:
  4434. echo = elem->message.data.function_update_event.echo;
  4435. if (echo == SWITCH_UPDATE) {
  4436. DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
  4437. "got FUNC_SWITCH_UPDATE ramrod\n");
  4438. if (f_obj->complete_cmd(
  4439. bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
  4440. break;
  4441. } else {
  4442. DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
  4443. "AFEX: ramrod completed FUNCTION_UPDATE\n");
  4444. f_obj->complete_cmd(bp, f_obj,
  4445. BNX2X_F_CMD_AFEX_UPDATE);
  4446. /* We will perform the Queues update from
  4447. * sp_rtnl task as all Queue SP operations
  4448. * should run under rtnl_lock.
  4449. */
  4450. smp_mb__before_clear_bit();
  4451. set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
  4452. &bp->sp_rtnl_state);
  4453. smp_mb__after_clear_bit();
  4454. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  4455. }
  4456. goto next_spqe;
  4457. case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
  4458. f_obj->complete_cmd(bp, f_obj,
  4459. BNX2X_F_CMD_AFEX_VIFLISTS);
  4460. bnx2x_after_afex_vif_lists(bp, elem);
  4461. goto next_spqe;
  4462. case EVENT_RING_OPCODE_FUNCTION_START:
  4463. DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
  4464. "got FUNC_START ramrod\n");
  4465. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
  4466. break;
  4467. goto next_spqe;
  4468. case EVENT_RING_OPCODE_FUNCTION_STOP:
  4469. DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
  4470. "got FUNC_STOP ramrod\n");
  4471. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
  4472. break;
  4473. goto next_spqe;
  4474. }
  4475. switch (opcode | bp->state) {
  4476. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  4477. BNX2X_STATE_OPEN):
  4478. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  4479. BNX2X_STATE_OPENING_WAIT4_PORT):
  4480. cid = elem->message.data.eth_event.echo &
  4481. BNX2X_SWCID_MASK;
  4482. DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
  4483. cid);
  4484. rss_raw->clear_pending(rss_raw);
  4485. break;
  4486. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
  4487. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
  4488. case (EVENT_RING_OPCODE_SET_MAC |
  4489. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4490. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  4491. BNX2X_STATE_OPEN):
  4492. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  4493. BNX2X_STATE_DIAG):
  4494. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  4495. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4496. DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
  4497. bnx2x_handle_classification_eqe(bp, elem);
  4498. break;
  4499. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  4500. BNX2X_STATE_OPEN):
  4501. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  4502. BNX2X_STATE_DIAG):
  4503. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  4504. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4505. DP(BNX2X_MSG_SP, "got mcast ramrod\n");
  4506. bnx2x_handle_mcast_eqe(bp);
  4507. break;
  4508. case (EVENT_RING_OPCODE_FILTERS_RULES |
  4509. BNX2X_STATE_OPEN):
  4510. case (EVENT_RING_OPCODE_FILTERS_RULES |
  4511. BNX2X_STATE_DIAG):
  4512. case (EVENT_RING_OPCODE_FILTERS_RULES |
  4513. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4514. DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
  4515. bnx2x_handle_rx_mode_eqe(bp);
  4516. break;
  4517. default:
  4518. /* unknown event log error and continue */
  4519. BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
  4520. elem->message.opcode, bp->state);
  4521. }
  4522. next_spqe:
  4523. spqe_cnt++;
  4524. } /* for */
  4525. smp_mb__before_atomic_inc();
  4526. atomic_add(spqe_cnt, &bp->eq_spq_left);
  4527. bp->eq_cons = sw_cons;
  4528. bp->eq_prod = sw_prod;
  4529. /* Make sure that above mem writes were issued towards the memory */
  4530. smp_wmb();
  4531. /* update producer */
  4532. bnx2x_update_eq_prod(bp, bp->eq_prod);
  4533. }
  4534. static void bnx2x_sp_task(struct work_struct *work)
  4535. {
  4536. struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
  4537. DP(BNX2X_MSG_SP, "sp task invoked\n");
  4538. /* make sure the atomic interrupt_occurred has been written */
  4539. smp_rmb();
  4540. if (atomic_read(&bp->interrupt_occurred)) {
  4541. /* what work needs to be performed? */
  4542. u16 status = bnx2x_update_dsb_idx(bp);
  4543. DP(BNX2X_MSG_SP, "status %x\n", status);
  4544. DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
  4545. atomic_set(&bp->interrupt_occurred, 0);
  4546. /* HW attentions */
  4547. if (status & BNX2X_DEF_SB_ATT_IDX) {
  4548. bnx2x_attn_int(bp);
  4549. status &= ~BNX2X_DEF_SB_ATT_IDX;
  4550. }
  4551. /* SP events: STAT_QUERY and others */
  4552. if (status & BNX2X_DEF_SB_IDX) {
  4553. struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
  4554. if (FCOE_INIT(bp) &&
  4555. (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
  4556. /* Prevent local bottom-halves from running as
  4557. * we are going to change the local NAPI list.
  4558. */
  4559. local_bh_disable();
  4560. napi_schedule(&bnx2x_fcoe(bp, napi));
  4561. local_bh_enable();
  4562. }
  4563. /* Handle EQ completions */
  4564. bnx2x_eq_int(bp);
  4565. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
  4566. le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
  4567. status &= ~BNX2X_DEF_SB_IDX;
  4568. }
  4569. /* if status is non zero then perhaps something went wrong */
  4570. if (unlikely(status))
  4571. DP(BNX2X_MSG_SP,
  4572. "got an unknown interrupt! (status 0x%x)\n", status);
  4573. /* ack status block only if something was actually handled */
  4574. bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
  4575. le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
  4576. }
  4577. /* must be called after the EQ processing (since eq leads to sriov
  4578. * ramrod completion flows).
  4579. * This flow may have been scheduled by the arrival of a ramrod
  4580. * completion, or by the sriov code rescheduling itself.
  4581. */
  4582. bnx2x_iov_sp_task(bp);
  4583. /* afex - poll to check if VIFSET_ACK should be sent to MFW */
  4584. if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
  4585. &bp->sp_state)) {
  4586. bnx2x_link_report(bp);
  4587. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
  4588. }
  4589. }
  4590. irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
  4591. {
  4592. struct net_device *dev = dev_instance;
  4593. struct bnx2x *bp = netdev_priv(dev);
  4594. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
  4595. IGU_INT_DISABLE, 0);
  4596. #ifdef BNX2X_STOP_ON_ERROR
  4597. if (unlikely(bp->panic))
  4598. return IRQ_HANDLED;
  4599. #endif
  4600. if (CNIC_LOADED(bp)) {
  4601. struct cnic_ops *c_ops;
  4602. rcu_read_lock();
  4603. c_ops = rcu_dereference(bp->cnic_ops);
  4604. if (c_ops)
  4605. c_ops->cnic_handler(bp->cnic_data, NULL);
  4606. rcu_read_unlock();
  4607. }
  4608. /* schedule sp task to perform default status block work, ack
  4609. * attentions and enable interrupts.
  4610. */
  4611. bnx2x_schedule_sp_task(bp);
  4612. return IRQ_HANDLED;
  4613. }
  4614. /* end of slow path */
  4615. void bnx2x_drv_pulse(struct bnx2x *bp)
  4616. {
  4617. SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
  4618. bp->fw_drv_pulse_wr_seq);
  4619. }
  4620. static void bnx2x_timer(unsigned long data)
  4621. {
  4622. struct bnx2x *bp = (struct bnx2x *) data;
  4623. if (!netif_running(bp->dev))
  4624. return;
  4625. if (IS_PF(bp) &&
  4626. !BP_NOMCP(bp)) {
  4627. int mb_idx = BP_FW_MB_IDX(bp);
  4628. u16 drv_pulse;
  4629. u16 mcp_pulse;
  4630. ++bp->fw_drv_pulse_wr_seq;
  4631. bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
  4632. drv_pulse = bp->fw_drv_pulse_wr_seq;
  4633. bnx2x_drv_pulse(bp);
  4634. mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
  4635. MCP_PULSE_SEQ_MASK);
  4636. /* The delta between driver pulse and mcp response
  4637. * should not get too big. If the MFW is more than 5 pulses
  4638. * behind, we should worry about it enough to generate an error
  4639. * log.
  4640. */
  4641. if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
  4642. BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
  4643. drv_pulse, mcp_pulse);
  4644. }
  4645. if (bp->state == BNX2X_STATE_OPEN)
  4646. bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
  4647. /* sample pf vf bulletin board for new posts from pf */
  4648. if (IS_VF(bp))
  4649. bnx2x_timer_sriov(bp);
  4650. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4651. }
  4652. /* end of Statistics */
  4653. /* nic init */
  4654. /*
  4655. * nic init service functions
  4656. */
  4657. static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  4658. {
  4659. u32 i;
  4660. if (!(len%4) && !(addr%4))
  4661. for (i = 0; i < len; i += 4)
  4662. REG_WR(bp, addr + i, fill);
  4663. else
  4664. for (i = 0; i < len; i++)
  4665. REG_WR8(bp, addr + i, fill);
  4666. }
  4667. /* helper: writes FP SP data to FW - data_size in dwords */
  4668. static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
  4669. int fw_sb_id,
  4670. u32 *sb_data_p,
  4671. u32 data_size)
  4672. {
  4673. int index;
  4674. for (index = 0; index < data_size; index++)
  4675. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4676. CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
  4677. sizeof(u32)*index,
  4678. *(sb_data_p + index));
  4679. }
  4680. static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
  4681. {
  4682. u32 *sb_data_p;
  4683. u32 data_size = 0;
  4684. struct hc_status_block_data_e2 sb_data_e2;
  4685. struct hc_status_block_data_e1x sb_data_e1x;
  4686. /* disable the function first */
  4687. if (!CHIP_IS_E1x(bp)) {
  4688. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4689. sb_data_e2.common.state = SB_DISABLED;
  4690. sb_data_e2.common.p_func.vf_valid = false;
  4691. sb_data_p = (u32 *)&sb_data_e2;
  4692. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4693. } else {
  4694. memset(&sb_data_e1x, 0,
  4695. sizeof(struct hc_status_block_data_e1x));
  4696. sb_data_e1x.common.state = SB_DISABLED;
  4697. sb_data_e1x.common.p_func.vf_valid = false;
  4698. sb_data_p = (u32 *)&sb_data_e1x;
  4699. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4700. }
  4701. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4702. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4703. CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
  4704. CSTORM_STATUS_BLOCK_SIZE);
  4705. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4706. CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
  4707. CSTORM_SYNC_BLOCK_SIZE);
  4708. }
  4709. /* helper: writes SP SB data to FW */
  4710. static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
  4711. struct hc_sp_status_block_data *sp_sb_data)
  4712. {
  4713. int func = BP_FUNC(bp);
  4714. int i;
  4715. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  4716. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4717. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  4718. i*sizeof(u32),
  4719. *((u32 *)sp_sb_data + i));
  4720. }
  4721. static void bnx2x_zero_sp_sb(struct bnx2x *bp)
  4722. {
  4723. int func = BP_FUNC(bp);
  4724. struct hc_sp_status_block_data sp_sb_data;
  4725. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4726. sp_sb_data.state = SB_DISABLED;
  4727. sp_sb_data.p_func.vf_valid = false;
  4728. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4729. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4730. CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
  4731. CSTORM_SP_STATUS_BLOCK_SIZE);
  4732. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4733. CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
  4734. CSTORM_SP_SYNC_BLOCK_SIZE);
  4735. }
  4736. static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
  4737. int igu_sb_id, int igu_seg_id)
  4738. {
  4739. hc_sm->igu_sb_id = igu_sb_id;
  4740. hc_sm->igu_seg_id = igu_seg_id;
  4741. hc_sm->timer_value = 0xFF;
  4742. hc_sm->time_to_expire = 0xFFFFFFFF;
  4743. }
  4744. /* allocates state machine ids. */
  4745. static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
  4746. {
  4747. /* zero out state machine indices */
  4748. /* rx indices */
  4749. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4750. /* tx indices */
  4751. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4752. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
  4753. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
  4754. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
  4755. /* map indices */
  4756. /* rx indices */
  4757. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
  4758. SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4759. /* tx indices */
  4760. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
  4761. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4762. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
  4763. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4764. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
  4765. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4766. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
  4767. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4768. }
  4769. void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
  4770. u8 vf_valid, int fw_sb_id, int igu_sb_id)
  4771. {
  4772. int igu_seg_id;
  4773. struct hc_status_block_data_e2 sb_data_e2;
  4774. struct hc_status_block_data_e1x sb_data_e1x;
  4775. struct hc_status_block_sm *hc_sm_p;
  4776. int data_size;
  4777. u32 *sb_data_p;
  4778. if (CHIP_INT_MODE_IS_BC(bp))
  4779. igu_seg_id = HC_SEG_ACCESS_NORM;
  4780. else
  4781. igu_seg_id = IGU_SEG_ACCESS_NORM;
  4782. bnx2x_zero_fp_sb(bp, fw_sb_id);
  4783. if (!CHIP_IS_E1x(bp)) {
  4784. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4785. sb_data_e2.common.state = SB_ENABLED;
  4786. sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
  4787. sb_data_e2.common.p_func.vf_id = vfid;
  4788. sb_data_e2.common.p_func.vf_valid = vf_valid;
  4789. sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
  4790. sb_data_e2.common.same_igu_sb_1b = true;
  4791. sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
  4792. sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
  4793. hc_sm_p = sb_data_e2.common.state_machine;
  4794. sb_data_p = (u32 *)&sb_data_e2;
  4795. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4796. bnx2x_map_sb_state_machines(sb_data_e2.index_data);
  4797. } else {
  4798. memset(&sb_data_e1x, 0,
  4799. sizeof(struct hc_status_block_data_e1x));
  4800. sb_data_e1x.common.state = SB_ENABLED;
  4801. sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
  4802. sb_data_e1x.common.p_func.vf_id = 0xff;
  4803. sb_data_e1x.common.p_func.vf_valid = false;
  4804. sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
  4805. sb_data_e1x.common.same_igu_sb_1b = true;
  4806. sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
  4807. sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
  4808. hc_sm_p = sb_data_e1x.common.state_machine;
  4809. sb_data_p = (u32 *)&sb_data_e1x;
  4810. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4811. bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
  4812. }
  4813. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
  4814. igu_sb_id, igu_seg_id);
  4815. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
  4816. igu_sb_id, igu_seg_id);
  4817. DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
  4818. /* write indices to HW - PCI guarantees endianity of regpairs */
  4819. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4820. }
  4821. static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
  4822. u16 tx_usec, u16 rx_usec)
  4823. {
  4824. bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
  4825. false, rx_usec);
  4826. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4827. HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
  4828. tx_usec);
  4829. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4830. HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
  4831. tx_usec);
  4832. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4833. HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
  4834. tx_usec);
  4835. }
  4836. static void bnx2x_init_def_sb(struct bnx2x *bp)
  4837. {
  4838. struct host_sp_status_block *def_sb = bp->def_status_blk;
  4839. dma_addr_t mapping = bp->def_status_blk_mapping;
  4840. int igu_sp_sb_index;
  4841. int igu_seg_id;
  4842. int port = BP_PORT(bp);
  4843. int func = BP_FUNC(bp);
  4844. int reg_offset, reg_offset_en5;
  4845. u64 section;
  4846. int index;
  4847. struct hc_sp_status_block_data sp_sb_data;
  4848. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4849. if (CHIP_INT_MODE_IS_BC(bp)) {
  4850. igu_sp_sb_index = DEF_SB_IGU_ID;
  4851. igu_seg_id = HC_SEG_ACCESS_DEF;
  4852. } else {
  4853. igu_sp_sb_index = bp->igu_dsb_id;
  4854. igu_seg_id = IGU_SEG_ACCESS_DEF;
  4855. }
  4856. /* ATTN */
  4857. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4858. atten_status_block);
  4859. def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
  4860. bp->attn_state = 0;
  4861. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  4862. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  4863. reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
  4864. MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
  4865. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  4866. int sindex;
  4867. /* take care of sig[0]..sig[4] */
  4868. for (sindex = 0; sindex < 4; sindex++)
  4869. bp->attn_group[index].sig[sindex] =
  4870. REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
  4871. if (!CHIP_IS_E1x(bp))
  4872. /*
  4873. * enable5 is separate from the rest of the registers,
  4874. * and therefore the address skip is 4
  4875. * and not 16 between the different groups
  4876. */
  4877. bp->attn_group[index].sig[4] = REG_RD(bp,
  4878. reg_offset_en5 + 0x4*index);
  4879. else
  4880. bp->attn_group[index].sig[4] = 0;
  4881. }
  4882. if (bp->common.int_block == INT_BLOCK_HC) {
  4883. reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
  4884. HC_REG_ATTN_MSG0_ADDR_L);
  4885. REG_WR(bp, reg_offset, U64_LO(section));
  4886. REG_WR(bp, reg_offset + 4, U64_HI(section));
  4887. } else if (!CHIP_IS_E1x(bp)) {
  4888. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
  4889. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
  4890. }
  4891. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4892. sp_sb);
  4893. bnx2x_zero_sp_sb(bp);
  4894. /* PCI guarantees endianity of regpairs */
  4895. sp_sb_data.state = SB_ENABLED;
  4896. sp_sb_data.host_sb_addr.lo = U64_LO(section);
  4897. sp_sb_data.host_sb_addr.hi = U64_HI(section);
  4898. sp_sb_data.igu_sb_id = igu_sp_sb_index;
  4899. sp_sb_data.igu_seg_id = igu_seg_id;
  4900. sp_sb_data.p_func.pf_id = func;
  4901. sp_sb_data.p_func.vnic_id = BP_VN(bp);
  4902. sp_sb_data.p_func.vf_id = 0xff;
  4903. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4904. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
  4905. }
  4906. void bnx2x_update_coalesce(struct bnx2x *bp)
  4907. {
  4908. int i;
  4909. for_each_eth_queue(bp, i)
  4910. bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
  4911. bp->tx_ticks, bp->rx_ticks);
  4912. }
  4913. static void bnx2x_init_sp_ring(struct bnx2x *bp)
  4914. {
  4915. spin_lock_init(&bp->spq_lock);
  4916. atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
  4917. bp->spq_prod_idx = 0;
  4918. bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
  4919. bp->spq_prod_bd = bp->spq;
  4920. bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
  4921. }
  4922. static void bnx2x_init_eq_ring(struct bnx2x *bp)
  4923. {
  4924. int i;
  4925. for (i = 1; i <= NUM_EQ_PAGES; i++) {
  4926. union event_ring_elem *elem =
  4927. &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
  4928. elem->next_page.addr.hi =
  4929. cpu_to_le32(U64_HI(bp->eq_mapping +
  4930. BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
  4931. elem->next_page.addr.lo =
  4932. cpu_to_le32(U64_LO(bp->eq_mapping +
  4933. BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
  4934. }
  4935. bp->eq_cons = 0;
  4936. bp->eq_prod = NUM_EQ_DESC;
  4937. bp->eq_cons_sb = BNX2X_EQ_INDEX;
  4938. /* we want a warning message before it gets wrought... */
  4939. atomic_set(&bp->eq_spq_left,
  4940. min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
  4941. }
  4942. /* called with netif_addr_lock_bh() */
  4943. int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
  4944. unsigned long rx_mode_flags,
  4945. unsigned long rx_accept_flags,
  4946. unsigned long tx_accept_flags,
  4947. unsigned long ramrod_flags)
  4948. {
  4949. struct bnx2x_rx_mode_ramrod_params ramrod_param;
  4950. int rc;
  4951. memset(&ramrod_param, 0, sizeof(ramrod_param));
  4952. /* Prepare ramrod parameters */
  4953. ramrod_param.cid = 0;
  4954. ramrod_param.cl_id = cl_id;
  4955. ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
  4956. ramrod_param.func_id = BP_FUNC(bp);
  4957. ramrod_param.pstate = &bp->sp_state;
  4958. ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
  4959. ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
  4960. ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
  4961. set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  4962. ramrod_param.ramrod_flags = ramrod_flags;
  4963. ramrod_param.rx_mode_flags = rx_mode_flags;
  4964. ramrod_param.rx_accept_flags = rx_accept_flags;
  4965. ramrod_param.tx_accept_flags = tx_accept_flags;
  4966. rc = bnx2x_config_rx_mode(bp, &ramrod_param);
  4967. if (rc < 0) {
  4968. BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
  4969. return rc;
  4970. }
  4971. return 0;
  4972. }
  4973. static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
  4974. unsigned long *rx_accept_flags,
  4975. unsigned long *tx_accept_flags)
  4976. {
  4977. /* Clear the flags first */
  4978. *rx_accept_flags = 0;
  4979. *tx_accept_flags = 0;
  4980. switch (rx_mode) {
  4981. case BNX2X_RX_MODE_NONE:
  4982. /*
  4983. * 'drop all' supersedes any accept flags that may have been
  4984. * passed to the function.
  4985. */
  4986. break;
  4987. case BNX2X_RX_MODE_NORMAL:
  4988. __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
  4989. __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
  4990. __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
  4991. /* internal switching mode */
  4992. __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
  4993. __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
  4994. __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
  4995. break;
  4996. case BNX2X_RX_MODE_ALLMULTI:
  4997. __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
  4998. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
  4999. __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
  5000. /* internal switching mode */
  5001. __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
  5002. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
  5003. __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
  5004. break;
  5005. case BNX2X_RX_MODE_PROMISC:
  5006. /* According to definition of SI mode, iface in promisc mode
  5007. * should receive matched and unmatched (in resolution of port)
  5008. * unicast packets.
  5009. */
  5010. __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
  5011. __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
  5012. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
  5013. __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
  5014. /* internal switching mode */
  5015. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
  5016. __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
  5017. if (IS_MF_SI(bp))
  5018. __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
  5019. else
  5020. __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
  5021. break;
  5022. default:
  5023. BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
  5024. return -EINVAL;
  5025. }
  5026. /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
  5027. if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
  5028. __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
  5029. __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
  5030. }
  5031. return 0;
  5032. }
  5033. /* called with netif_addr_lock_bh() */
  5034. int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
  5035. {
  5036. unsigned long rx_mode_flags = 0, ramrod_flags = 0;
  5037. unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
  5038. int rc;
  5039. if (!NO_FCOE(bp))
  5040. /* Configure rx_mode of FCoE Queue */
  5041. __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
  5042. rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
  5043. &tx_accept_flags);
  5044. if (rc)
  5045. return rc;
  5046. __set_bit(RAMROD_RX, &ramrod_flags);
  5047. __set_bit(RAMROD_TX, &ramrod_flags);
  5048. return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
  5049. rx_accept_flags, tx_accept_flags,
  5050. ramrod_flags);
  5051. }
  5052. static void bnx2x_init_internal_common(struct bnx2x *bp)
  5053. {
  5054. int i;
  5055. if (IS_MF_SI(bp))
  5056. /*
  5057. * In switch independent mode, the TSTORM needs to accept
  5058. * packets that failed classification, since approximate match
  5059. * mac addresses aren't written to NIG LLH
  5060. */
  5061. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  5062. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
  5063. else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
  5064. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  5065. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
  5066. /* Zero this manually as its initialization is
  5067. currently missing in the initTool */
  5068. for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
  5069. REG_WR(bp, BAR_USTRORM_INTMEM +
  5070. USTORM_AGG_DATA_OFFSET + i * 4, 0);
  5071. if (!CHIP_IS_E1x(bp)) {
  5072. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
  5073. CHIP_INT_MODE_IS_BC(bp) ?
  5074. HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
  5075. }
  5076. }
  5077. static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
  5078. {
  5079. switch (load_code) {
  5080. case FW_MSG_CODE_DRV_LOAD_COMMON:
  5081. case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
  5082. bnx2x_init_internal_common(bp);
  5083. /* no break */
  5084. case FW_MSG_CODE_DRV_LOAD_PORT:
  5085. /* nothing to do */
  5086. /* no break */
  5087. case FW_MSG_CODE_DRV_LOAD_FUNCTION:
  5088. /* internal memory per function is
  5089. initialized inside bnx2x_pf_init */
  5090. break;
  5091. default:
  5092. BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
  5093. break;
  5094. }
  5095. }
  5096. static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
  5097. {
  5098. return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
  5099. }
  5100. static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
  5101. {
  5102. return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
  5103. }
  5104. static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
  5105. {
  5106. if (CHIP_IS_E1x(fp->bp))
  5107. return BP_L_ID(fp->bp) + fp->index;
  5108. else /* We want Client ID to be the same as IGU SB ID for 57712 */
  5109. return bnx2x_fp_igu_sb_id(fp);
  5110. }
  5111. static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
  5112. {
  5113. struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
  5114. u8 cos;
  5115. unsigned long q_type = 0;
  5116. u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
  5117. fp->rx_queue = fp_idx;
  5118. fp->cid = fp_idx;
  5119. fp->cl_id = bnx2x_fp_cl_id(fp);
  5120. fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
  5121. fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
  5122. /* qZone id equals to FW (per path) client id */
  5123. fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
  5124. /* init shortcut */
  5125. fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
  5126. /* Setup SB indices */
  5127. fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
  5128. /* Configure Queue State object */
  5129. __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
  5130. __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
  5131. BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
  5132. /* init tx data */
  5133. for_each_cos_in_tx_queue(fp, cos) {
  5134. bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
  5135. CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
  5136. FP_COS_TO_TXQ(fp, cos, bp),
  5137. BNX2X_TX_SB_INDEX_BASE + cos, fp);
  5138. cids[cos] = fp->txdata_ptr[cos]->cid;
  5139. }
  5140. /* nothing more for vf to do here */
  5141. if (IS_VF(bp))
  5142. return;
  5143. bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
  5144. fp->fw_sb_id, fp->igu_sb_id);
  5145. bnx2x_update_fpsb_idx(fp);
  5146. bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
  5147. fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
  5148. bnx2x_sp_mapping(bp, q_rdata), q_type);
  5149. /**
  5150. * Configure classification DBs: Always enable Tx switching
  5151. */
  5152. bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
  5153. DP(NETIF_MSG_IFUP,
  5154. "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
  5155. fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
  5156. fp->igu_sb_id);
  5157. }
  5158. static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
  5159. {
  5160. int i;
  5161. for (i = 1; i <= NUM_TX_RINGS; i++) {
  5162. struct eth_tx_next_bd *tx_next_bd =
  5163. &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
  5164. tx_next_bd->addr_hi =
  5165. cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
  5166. BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
  5167. tx_next_bd->addr_lo =
  5168. cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
  5169. BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
  5170. }
  5171. *txdata->tx_cons_sb = cpu_to_le16(0);
  5172. SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
  5173. txdata->tx_db.data.zero_fill1 = 0;
  5174. txdata->tx_db.data.prod = 0;
  5175. txdata->tx_pkt_prod = 0;
  5176. txdata->tx_pkt_cons = 0;
  5177. txdata->tx_bd_prod = 0;
  5178. txdata->tx_bd_cons = 0;
  5179. txdata->tx_pkt = 0;
  5180. }
  5181. static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
  5182. {
  5183. int i;
  5184. for_each_tx_queue_cnic(bp, i)
  5185. bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
  5186. }
  5187. static void bnx2x_init_tx_rings(struct bnx2x *bp)
  5188. {
  5189. int i;
  5190. u8 cos;
  5191. for_each_eth_queue(bp, i)
  5192. for_each_cos_in_tx_queue(&bp->fp[i], cos)
  5193. bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
  5194. }
  5195. void bnx2x_nic_init_cnic(struct bnx2x *bp)
  5196. {
  5197. if (!NO_FCOE(bp))
  5198. bnx2x_init_fcoe_fp(bp);
  5199. bnx2x_init_sb(bp, bp->cnic_sb_mapping,
  5200. BNX2X_VF_ID_INVALID, false,
  5201. bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
  5202. /* ensure status block indices were read */
  5203. rmb();
  5204. bnx2x_init_rx_rings_cnic(bp);
  5205. bnx2x_init_tx_rings_cnic(bp);
  5206. /* flush all */
  5207. mb();
  5208. mmiowb();
  5209. }
  5210. void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
  5211. {
  5212. int i;
  5213. /* Setup NIC internals and enable interrupts */
  5214. for_each_eth_queue(bp, i)
  5215. bnx2x_init_eth_fp(bp, i);
  5216. /* ensure status block indices were read */
  5217. rmb();
  5218. bnx2x_init_rx_rings(bp);
  5219. bnx2x_init_tx_rings(bp);
  5220. if (IS_PF(bp)) {
  5221. /* Initialize MOD_ABS interrupts */
  5222. bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
  5223. bp->common.shmem_base,
  5224. bp->common.shmem2_base, BP_PORT(bp));
  5225. /* initialize the default status block and sp ring */
  5226. bnx2x_init_def_sb(bp);
  5227. bnx2x_update_dsb_idx(bp);
  5228. bnx2x_init_sp_ring(bp);
  5229. } else {
  5230. bnx2x_memset_stats(bp);
  5231. }
  5232. }
  5233. void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
  5234. {
  5235. bnx2x_init_eq_ring(bp);
  5236. bnx2x_init_internal(bp, load_code);
  5237. bnx2x_pf_init(bp);
  5238. bnx2x_stats_init(bp);
  5239. /* flush all before enabling interrupts */
  5240. mb();
  5241. mmiowb();
  5242. bnx2x_int_enable(bp);
  5243. /* Check for SPIO5 */
  5244. bnx2x_attn_int_deasserted0(bp,
  5245. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
  5246. AEU_INPUTS_ATTN_BITS_SPIO5);
  5247. }
  5248. /* gzip service functions */
  5249. static int bnx2x_gunzip_init(struct bnx2x *bp)
  5250. {
  5251. bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
  5252. &bp->gunzip_mapping, GFP_KERNEL);
  5253. if (bp->gunzip_buf == NULL)
  5254. goto gunzip_nomem1;
  5255. bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
  5256. if (bp->strm == NULL)
  5257. goto gunzip_nomem2;
  5258. bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
  5259. if (bp->strm->workspace == NULL)
  5260. goto gunzip_nomem3;
  5261. return 0;
  5262. gunzip_nomem3:
  5263. kfree(bp->strm);
  5264. bp->strm = NULL;
  5265. gunzip_nomem2:
  5266. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  5267. bp->gunzip_mapping);
  5268. bp->gunzip_buf = NULL;
  5269. gunzip_nomem1:
  5270. BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
  5271. return -ENOMEM;
  5272. }
  5273. static void bnx2x_gunzip_end(struct bnx2x *bp)
  5274. {
  5275. if (bp->strm) {
  5276. vfree(bp->strm->workspace);
  5277. kfree(bp->strm);
  5278. bp->strm = NULL;
  5279. }
  5280. if (bp->gunzip_buf) {
  5281. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  5282. bp->gunzip_mapping);
  5283. bp->gunzip_buf = NULL;
  5284. }
  5285. }
  5286. static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
  5287. {
  5288. int n, rc;
  5289. /* check gzip header */
  5290. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
  5291. BNX2X_ERR("Bad gzip header\n");
  5292. return -EINVAL;
  5293. }
  5294. n = 10;
  5295. #define FNAME 0x8
  5296. if (zbuf[3] & FNAME)
  5297. while ((zbuf[n++] != 0) && (n < len));
  5298. bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
  5299. bp->strm->avail_in = len - n;
  5300. bp->strm->next_out = bp->gunzip_buf;
  5301. bp->strm->avail_out = FW_BUF_SIZE;
  5302. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  5303. if (rc != Z_OK)
  5304. return rc;
  5305. rc = zlib_inflate(bp->strm, Z_FINISH);
  5306. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  5307. netdev_err(bp->dev, "Firmware decompression error: %s\n",
  5308. bp->strm->msg);
  5309. bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
  5310. if (bp->gunzip_outlen & 0x3)
  5311. netdev_err(bp->dev,
  5312. "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
  5313. bp->gunzip_outlen);
  5314. bp->gunzip_outlen >>= 2;
  5315. zlib_inflateEnd(bp->strm);
  5316. if (rc == Z_STREAM_END)
  5317. return 0;
  5318. return rc;
  5319. }
  5320. /* nic load/unload */
  5321. /*
  5322. * General service functions
  5323. */
  5324. /* send a NIG loopback debug packet */
  5325. static void bnx2x_lb_pckt(struct bnx2x *bp)
  5326. {
  5327. u32 wb_write[3];
  5328. /* Ethernet source and destination addresses */
  5329. wb_write[0] = 0x55555555;
  5330. wb_write[1] = 0x55555555;
  5331. wb_write[2] = 0x20; /* SOP */
  5332. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  5333. /* NON-IP protocol */
  5334. wb_write[0] = 0x09000000;
  5335. wb_write[1] = 0x55555555;
  5336. wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
  5337. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  5338. }
  5339. /* some of the internal memories
  5340. * are not directly readable from the driver
  5341. * to test them we send debug packets
  5342. */
  5343. static int bnx2x_int_mem_test(struct bnx2x *bp)
  5344. {
  5345. int factor;
  5346. int count, i;
  5347. u32 val = 0;
  5348. if (CHIP_REV_IS_FPGA(bp))
  5349. factor = 120;
  5350. else if (CHIP_REV_IS_EMUL(bp))
  5351. factor = 200;
  5352. else
  5353. factor = 1;
  5354. /* Disable inputs of parser neighbor blocks */
  5355. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  5356. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  5357. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  5358. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  5359. /* Write 0 to parser credits for CFC search request */
  5360. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  5361. /* send Ethernet packet */
  5362. bnx2x_lb_pckt(bp);
  5363. /* TODO do i reset NIG statistic? */
  5364. /* Wait until NIG register shows 1 packet of size 0x10 */
  5365. count = 1000 * factor;
  5366. while (count) {
  5367. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5368. val = *bnx2x_sp(bp, wb_data[0]);
  5369. if (val == 0x10)
  5370. break;
  5371. usleep_range(10000, 20000);
  5372. count--;
  5373. }
  5374. if (val != 0x10) {
  5375. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  5376. return -1;
  5377. }
  5378. /* Wait until PRS register shows 1 packet */
  5379. count = 1000 * factor;
  5380. while (count) {
  5381. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  5382. if (val == 1)
  5383. break;
  5384. usleep_range(10000, 20000);
  5385. count--;
  5386. }
  5387. if (val != 0x1) {
  5388. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  5389. return -2;
  5390. }
  5391. /* Reset and init BRB, PRS */
  5392. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  5393. msleep(50);
  5394. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  5395. msleep(50);
  5396. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5397. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5398. DP(NETIF_MSG_HW, "part2\n");
  5399. /* Disable inputs of parser neighbor blocks */
  5400. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  5401. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  5402. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  5403. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  5404. /* Write 0 to parser credits for CFC search request */
  5405. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  5406. /* send 10 Ethernet packets */
  5407. for (i = 0; i < 10; i++)
  5408. bnx2x_lb_pckt(bp);
  5409. /* Wait until NIG register shows 10 + 1
  5410. packets of size 11*0x10 = 0xb0 */
  5411. count = 1000 * factor;
  5412. while (count) {
  5413. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5414. val = *bnx2x_sp(bp, wb_data[0]);
  5415. if (val == 0xb0)
  5416. break;
  5417. usleep_range(10000, 20000);
  5418. count--;
  5419. }
  5420. if (val != 0xb0) {
  5421. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  5422. return -3;
  5423. }
  5424. /* Wait until PRS register shows 2 packets */
  5425. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  5426. if (val != 2)
  5427. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  5428. /* Write 1 to parser credits for CFC search request */
  5429. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
  5430. /* Wait until PRS register shows 3 packets */
  5431. msleep(10 * factor);
  5432. /* Wait until NIG register shows 1 packet of size 0x10 */
  5433. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  5434. if (val != 3)
  5435. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  5436. /* clear NIG EOP FIFO */
  5437. for (i = 0; i < 11; i++)
  5438. REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
  5439. val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
  5440. if (val != 1) {
  5441. BNX2X_ERR("clear of NIG failed\n");
  5442. return -4;
  5443. }
  5444. /* Reset and init BRB, PRS, NIG */
  5445. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  5446. msleep(50);
  5447. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  5448. msleep(50);
  5449. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5450. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5451. if (!CNIC_SUPPORT(bp))
  5452. /* set NIC mode */
  5453. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  5454. /* Enable inputs of parser neighbor blocks */
  5455. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
  5456. REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
  5457. REG_WR(bp, CFC_REG_DEBUG0, 0x0);
  5458. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
  5459. DP(NETIF_MSG_HW, "done\n");
  5460. return 0; /* OK */
  5461. }
  5462. static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
  5463. {
  5464. u32 val;
  5465. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  5466. if (!CHIP_IS_E1x(bp))
  5467. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
  5468. else
  5469. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
  5470. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  5471. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  5472. /*
  5473. * mask read length error interrupts in brb for parser
  5474. * (parsing unit and 'checksum and crc' unit)
  5475. * these errors are legal (PU reads fixed length and CAC can cause
  5476. * read length error on truncated packets)
  5477. */
  5478. REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
  5479. REG_WR(bp, QM_REG_QM_INT_MASK, 0);
  5480. REG_WR(bp, TM_REG_TM_INT_MASK, 0);
  5481. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
  5482. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
  5483. REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
  5484. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
  5485. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
  5486. REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
  5487. REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
  5488. REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
  5489. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
  5490. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
  5491. REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
  5492. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
  5493. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
  5494. REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
  5495. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
  5496. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
  5497. val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
  5498. PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
  5499. PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
  5500. if (!CHIP_IS_E1x(bp))
  5501. val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
  5502. PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
  5503. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
  5504. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
  5505. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
  5506. REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
  5507. /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
  5508. if (!CHIP_IS_E1x(bp))
  5509. /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
  5510. REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
  5511. REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
  5512. REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
  5513. /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
  5514. REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
  5515. }
  5516. static void bnx2x_reset_common(struct bnx2x *bp)
  5517. {
  5518. u32 val = 0x1400;
  5519. /* reset_common */
  5520. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  5521. 0xd3ffff7f);
  5522. if (CHIP_IS_E3(bp)) {
  5523. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  5524. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  5525. }
  5526. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
  5527. }
  5528. static void bnx2x_setup_dmae(struct bnx2x *bp)
  5529. {
  5530. bp->dmae_ready = 0;
  5531. spin_lock_init(&bp->dmae_lock);
  5532. }
  5533. static void bnx2x_init_pxp(struct bnx2x *bp)
  5534. {
  5535. u16 devctl;
  5536. int r_order, w_order;
  5537. pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
  5538. DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
  5539. w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
  5540. if (bp->mrrs == -1)
  5541. r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
  5542. else {
  5543. DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
  5544. r_order = bp->mrrs;
  5545. }
  5546. bnx2x_init_pxp_arb(bp, r_order, w_order);
  5547. }
  5548. static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
  5549. {
  5550. int is_required;
  5551. u32 val;
  5552. int port;
  5553. if (BP_NOMCP(bp))
  5554. return;
  5555. is_required = 0;
  5556. val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
  5557. SHARED_HW_CFG_FAN_FAILURE_MASK;
  5558. if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
  5559. is_required = 1;
  5560. /*
  5561. * The fan failure mechanism is usually related to the PHY type since
  5562. * the power consumption of the board is affected by the PHY. Currently,
  5563. * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
  5564. */
  5565. else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
  5566. for (port = PORT_0; port < PORT_MAX; port++) {
  5567. is_required |=
  5568. bnx2x_fan_failure_det_req(
  5569. bp,
  5570. bp->common.shmem_base,
  5571. bp->common.shmem2_base,
  5572. port);
  5573. }
  5574. DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
  5575. if (is_required == 0)
  5576. return;
  5577. /* Fan failure is indicated by SPIO 5 */
  5578. bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
  5579. /* set to active low mode */
  5580. val = REG_RD(bp, MISC_REG_SPIO_INT);
  5581. val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
  5582. REG_WR(bp, MISC_REG_SPIO_INT, val);
  5583. /* enable interrupt to signal the IGU */
  5584. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  5585. val |= MISC_SPIO_SPIO5;
  5586. REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
  5587. }
  5588. void bnx2x_pf_disable(struct bnx2x *bp)
  5589. {
  5590. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  5591. val &= ~IGU_PF_CONF_FUNC_EN;
  5592. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  5593. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5594. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
  5595. }
  5596. static void bnx2x__common_init_phy(struct bnx2x *bp)
  5597. {
  5598. u32 shmem_base[2], shmem2_base[2];
  5599. /* Avoid common init in case MFW supports LFA */
  5600. if (SHMEM2_RD(bp, size) >
  5601. (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
  5602. return;
  5603. shmem_base[0] = bp->common.shmem_base;
  5604. shmem2_base[0] = bp->common.shmem2_base;
  5605. if (!CHIP_IS_E1x(bp)) {
  5606. shmem_base[1] =
  5607. SHMEM2_RD(bp, other_shmem_base_addr);
  5608. shmem2_base[1] =
  5609. SHMEM2_RD(bp, other_shmem2_base_addr);
  5610. }
  5611. bnx2x_acquire_phy_lock(bp);
  5612. bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
  5613. bp->common.chip_id);
  5614. bnx2x_release_phy_lock(bp);
  5615. }
  5616. /**
  5617. * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
  5618. *
  5619. * @bp: driver handle
  5620. */
  5621. static int bnx2x_init_hw_common(struct bnx2x *bp)
  5622. {
  5623. u32 val;
  5624. DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
  5625. /*
  5626. * take the RESET lock to protect undi_unload flow from accessing
  5627. * registers while we're resetting the chip
  5628. */
  5629. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5630. bnx2x_reset_common(bp);
  5631. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
  5632. val = 0xfffc;
  5633. if (CHIP_IS_E3(bp)) {
  5634. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  5635. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  5636. }
  5637. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
  5638. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5639. bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
  5640. if (!CHIP_IS_E1x(bp)) {
  5641. u8 abs_func_id;
  5642. /**
  5643. * 4-port mode or 2-port mode we need to turn of master-enable
  5644. * for everyone, after that, turn it back on for self.
  5645. * so, we disregard multi-function or not, and always disable
  5646. * for all functions on the given path, this means 0,2,4,6 for
  5647. * path 0 and 1,3,5,7 for path 1
  5648. */
  5649. for (abs_func_id = BP_PATH(bp);
  5650. abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
  5651. if (abs_func_id == BP_ABS_FUNC(bp)) {
  5652. REG_WR(bp,
  5653. PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
  5654. 1);
  5655. continue;
  5656. }
  5657. bnx2x_pretend_func(bp, abs_func_id);
  5658. /* clear pf enable */
  5659. bnx2x_pf_disable(bp);
  5660. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5661. }
  5662. }
  5663. bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
  5664. if (CHIP_IS_E1(bp)) {
  5665. /* enable HW interrupt from PXP on USDM overflow
  5666. bit 16 on INT_MASK_0 */
  5667. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  5668. }
  5669. bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
  5670. bnx2x_init_pxp(bp);
  5671. #ifdef __BIG_ENDIAN
  5672. REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
  5673. REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
  5674. REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
  5675. REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
  5676. REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
  5677. /* make sure this value is 0 */
  5678. REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
  5679. /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
  5680. REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
  5681. REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
  5682. REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
  5683. REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
  5684. #endif
  5685. bnx2x_ilt_init_page_size(bp, INITOP_SET);
  5686. if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
  5687. REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
  5688. /* let the HW do it's magic ... */
  5689. msleep(100);
  5690. /* finish PXP init */
  5691. val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
  5692. if (val != 1) {
  5693. BNX2X_ERR("PXP2 CFG failed\n");
  5694. return -EBUSY;
  5695. }
  5696. val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
  5697. if (val != 1) {
  5698. BNX2X_ERR("PXP2 RD_INIT failed\n");
  5699. return -EBUSY;
  5700. }
  5701. /* Timers bug workaround E2 only. We need to set the entire ILT to
  5702. * have entries with value "0" and valid bit on.
  5703. * This needs to be done by the first PF that is loaded in a path
  5704. * (i.e. common phase)
  5705. */
  5706. if (!CHIP_IS_E1x(bp)) {
  5707. /* In E2 there is a bug in the timers block that can cause function 6 / 7
  5708. * (i.e. vnic3) to start even if it is marked as "scan-off".
  5709. * This occurs when a different function (func2,3) is being marked
  5710. * as "scan-off". Real-life scenario for example: if a driver is being
  5711. * load-unloaded while func6,7 are down. This will cause the timer to access
  5712. * the ilt, translate to a logical address and send a request to read/write.
  5713. * Since the ilt for the function that is down is not valid, this will cause
  5714. * a translation error which is unrecoverable.
  5715. * The Workaround is intended to make sure that when this happens nothing fatal
  5716. * will occur. The workaround:
  5717. * 1. First PF driver which loads on a path will:
  5718. * a. After taking the chip out of reset, by using pretend,
  5719. * it will write "0" to the following registers of
  5720. * the other vnics.
  5721. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5722. * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
  5723. * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
  5724. * And for itself it will write '1' to
  5725. * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
  5726. * dmae-operations (writing to pram for example.)
  5727. * note: can be done for only function 6,7 but cleaner this
  5728. * way.
  5729. * b. Write zero+valid to the entire ILT.
  5730. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
  5731. * VNIC3 (of that port). The range allocated will be the
  5732. * entire ILT. This is needed to prevent ILT range error.
  5733. * 2. Any PF driver load flow:
  5734. * a. ILT update with the physical addresses of the allocated
  5735. * logical pages.
  5736. * b. Wait 20msec. - note that this timeout is needed to make
  5737. * sure there are no requests in one of the PXP internal
  5738. * queues with "old" ILT addresses.
  5739. * c. PF enable in the PGLC.
  5740. * d. Clear the was_error of the PF in the PGLC. (could have
  5741. * occurred while driver was down)
  5742. * e. PF enable in the CFC (WEAK + STRONG)
  5743. * f. Timers scan enable
  5744. * 3. PF driver unload flow:
  5745. * a. Clear the Timers scan_en.
  5746. * b. Polling for scan_on=0 for that PF.
  5747. * c. Clear the PF enable bit in the PXP.
  5748. * d. Clear the PF enable in the CFC (WEAK + STRONG)
  5749. * e. Write zero+valid to all ILT entries (The valid bit must
  5750. * stay set)
  5751. * f. If this is VNIC 3 of a port then also init
  5752. * first_timers_ilt_entry to zero and last_timers_ilt_entry
  5753. * to the last entry in the ILT.
  5754. *
  5755. * Notes:
  5756. * Currently the PF error in the PGLC is non recoverable.
  5757. * In the future the there will be a recovery routine for this error.
  5758. * Currently attention is masked.
  5759. * Having an MCP lock on the load/unload process does not guarantee that
  5760. * there is no Timer disable during Func6/7 enable. This is because the
  5761. * Timers scan is currently being cleared by the MCP on FLR.
  5762. * Step 2.d can be done only for PF6/7 and the driver can also check if
  5763. * there is error before clearing it. But the flow above is simpler and
  5764. * more general.
  5765. * All ILT entries are written by zero+valid and not just PF6/7
  5766. * ILT entries since in the future the ILT entries allocation for
  5767. * PF-s might be dynamic.
  5768. */
  5769. struct ilt_client_info ilt_cli;
  5770. struct bnx2x_ilt ilt;
  5771. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  5772. memset(&ilt, 0, sizeof(struct bnx2x_ilt));
  5773. /* initialize dummy TM client */
  5774. ilt_cli.start = 0;
  5775. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  5776. ilt_cli.client_num = ILT_CLIENT_TM;
  5777. /* Step 1: set zeroes to all ilt page entries with valid bit on
  5778. * Step 2: set the timers first/last ilt entry to point
  5779. * to the entire range to prevent ILT range error for 3rd/4th
  5780. * vnic (this code assumes existence of the vnic)
  5781. *
  5782. * both steps performed by call to bnx2x_ilt_client_init_op()
  5783. * with dummy TM client
  5784. *
  5785. * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
  5786. * and his brother are split registers
  5787. */
  5788. bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
  5789. bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
  5790. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5791. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
  5792. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
  5793. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
  5794. }
  5795. REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
  5796. REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
  5797. if (!CHIP_IS_E1x(bp)) {
  5798. int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
  5799. (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
  5800. bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
  5801. bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
  5802. /* let the HW do it's magic ... */
  5803. do {
  5804. msleep(200);
  5805. val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
  5806. } while (factor-- && (val != 1));
  5807. if (val != 1) {
  5808. BNX2X_ERR("ATC_INIT failed\n");
  5809. return -EBUSY;
  5810. }
  5811. }
  5812. bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
  5813. bnx2x_iov_init_dmae(bp);
  5814. /* clean the DMAE memory */
  5815. bp->dmae_ready = 1;
  5816. bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
  5817. bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
  5818. bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
  5819. bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
  5820. bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
  5821. bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
  5822. bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
  5823. bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
  5824. bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
  5825. bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
  5826. /* QM queues pointers table */
  5827. bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
  5828. /* soft reset pulse */
  5829. REG_WR(bp, QM_REG_SOFT_RESET, 1);
  5830. REG_WR(bp, QM_REG_SOFT_RESET, 0);
  5831. if (CNIC_SUPPORT(bp))
  5832. bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
  5833. bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
  5834. if (!CHIP_REV_IS_SLOW(bp))
  5835. /* enable hw interrupt from doorbell Q */
  5836. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  5837. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5838. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5839. REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
  5840. if (!CHIP_IS_E1(bp))
  5841. REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
  5842. if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
  5843. if (IS_MF_AFEX(bp)) {
  5844. /* configure that VNTag and VLAN headers must be
  5845. * received in afex mode
  5846. */
  5847. REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
  5848. REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
  5849. REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
  5850. REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
  5851. REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
  5852. } else {
  5853. /* Bit-map indicating which L2 hdrs may appear
  5854. * after the basic Ethernet header
  5855. */
  5856. REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
  5857. bp->path_has_ovlan ? 7 : 6);
  5858. }
  5859. }
  5860. bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
  5861. bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
  5862. bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
  5863. bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
  5864. if (!CHIP_IS_E1x(bp)) {
  5865. /* reset VFC memories */
  5866. REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5867. VFC_MEMORIES_RST_REG_CAM_RST |
  5868. VFC_MEMORIES_RST_REG_RAM_RST);
  5869. REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5870. VFC_MEMORIES_RST_REG_CAM_RST |
  5871. VFC_MEMORIES_RST_REG_RAM_RST);
  5872. msleep(20);
  5873. }
  5874. bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
  5875. bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
  5876. bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
  5877. bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
  5878. /* sync semi rtc */
  5879. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  5880. 0x80000000);
  5881. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
  5882. 0x80000000);
  5883. bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
  5884. bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
  5885. bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
  5886. if (!CHIP_IS_E1x(bp)) {
  5887. if (IS_MF_AFEX(bp)) {
  5888. /* configure that VNTag and VLAN headers must be
  5889. * sent in afex mode
  5890. */
  5891. REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
  5892. REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
  5893. REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
  5894. REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
  5895. REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
  5896. } else {
  5897. REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
  5898. bp->path_has_ovlan ? 7 : 6);
  5899. }
  5900. }
  5901. REG_WR(bp, SRC_REG_SOFT_RST, 1);
  5902. bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
  5903. if (CNIC_SUPPORT(bp)) {
  5904. REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
  5905. REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
  5906. REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
  5907. REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
  5908. REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
  5909. REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
  5910. REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
  5911. REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
  5912. REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
  5913. REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
  5914. }
  5915. REG_WR(bp, SRC_REG_SOFT_RST, 0);
  5916. if (sizeof(union cdu_context) != 1024)
  5917. /* we currently assume that a context is 1024 bytes */
  5918. dev_alert(&bp->pdev->dev,
  5919. "please adjust the size of cdu_context(%ld)\n",
  5920. (long)sizeof(union cdu_context));
  5921. bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
  5922. val = (4 << 24) + (0 << 12) + 1024;
  5923. REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
  5924. bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
  5925. REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
  5926. /* enable context validation interrupt from CFC */
  5927. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  5928. /* set the thresholds to prevent CFC/CDU race */
  5929. REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
  5930. bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
  5931. if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
  5932. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
  5933. bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
  5934. bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
  5935. /* Reset PCIE errors for debug */
  5936. REG_WR(bp, 0x2814, 0xffffffff);
  5937. REG_WR(bp, 0x3820, 0xffffffff);
  5938. if (!CHIP_IS_E1x(bp)) {
  5939. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
  5940. (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
  5941. PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
  5942. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
  5943. (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
  5944. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
  5945. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
  5946. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
  5947. (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
  5948. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
  5949. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
  5950. }
  5951. bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
  5952. if (!CHIP_IS_E1(bp)) {
  5953. /* in E3 this done in per-port section */
  5954. if (!CHIP_IS_E3(bp))
  5955. REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5956. }
  5957. if (CHIP_IS_E1H(bp))
  5958. /* not applicable for E2 (and above ...) */
  5959. REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
  5960. if (CHIP_REV_IS_SLOW(bp))
  5961. msleep(200);
  5962. /* finish CFC init */
  5963. val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
  5964. if (val != 1) {
  5965. BNX2X_ERR("CFC LL_INIT failed\n");
  5966. return -EBUSY;
  5967. }
  5968. val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
  5969. if (val != 1) {
  5970. BNX2X_ERR("CFC AC_INIT failed\n");
  5971. return -EBUSY;
  5972. }
  5973. val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
  5974. if (val != 1) {
  5975. BNX2X_ERR("CFC CAM_INIT failed\n");
  5976. return -EBUSY;
  5977. }
  5978. REG_WR(bp, CFC_REG_DEBUG0, 0);
  5979. if (CHIP_IS_E1(bp)) {
  5980. /* read NIG statistic
  5981. to see if this is our first up since powerup */
  5982. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5983. val = *bnx2x_sp(bp, wb_data[0]);
  5984. /* do internal memory self test */
  5985. if ((val == 0) && bnx2x_int_mem_test(bp)) {
  5986. BNX2X_ERR("internal mem self test failed\n");
  5987. return -EBUSY;
  5988. }
  5989. }
  5990. bnx2x_setup_fan_failure_detection(bp);
  5991. /* clear PXP2 attentions */
  5992. REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
  5993. bnx2x_enable_blocks_attention(bp);
  5994. bnx2x_enable_blocks_parity(bp);
  5995. if (!BP_NOMCP(bp)) {
  5996. if (CHIP_IS_E1x(bp))
  5997. bnx2x__common_init_phy(bp);
  5998. } else
  5999. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  6000. return 0;
  6001. }
  6002. /**
  6003. * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
  6004. *
  6005. * @bp: driver handle
  6006. */
  6007. static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
  6008. {
  6009. int rc = bnx2x_init_hw_common(bp);
  6010. if (rc)
  6011. return rc;
  6012. /* In E2 2-PORT mode, same ext phy is used for the two paths */
  6013. if (!BP_NOMCP(bp))
  6014. bnx2x__common_init_phy(bp);
  6015. return 0;
  6016. }
  6017. static int bnx2x_init_hw_port(struct bnx2x *bp)
  6018. {
  6019. int port = BP_PORT(bp);
  6020. int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
  6021. u32 low, high;
  6022. u32 val, reg;
  6023. DP(NETIF_MSG_HW, "starting port init port %d\n", port);
  6024. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  6025. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  6026. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  6027. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  6028. /* Timers bug workaround: disables the pf_master bit in pglue at
  6029. * common phase, we need to enable it here before any dmae access are
  6030. * attempted. Therefore we manually added the enable-master to the
  6031. * port phase (it also happens in the function phase)
  6032. */
  6033. if (!CHIP_IS_E1x(bp))
  6034. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  6035. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  6036. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  6037. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  6038. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  6039. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  6040. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  6041. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  6042. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  6043. /* QM cid (connection) count */
  6044. bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
  6045. if (CNIC_SUPPORT(bp)) {
  6046. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  6047. REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
  6048. REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
  6049. }
  6050. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  6051. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  6052. if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
  6053. if (IS_MF(bp))
  6054. low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
  6055. else if (bp->dev->mtu > 4096) {
  6056. if (bp->flags & ONE_PORT_FLAG)
  6057. low = 160;
  6058. else {
  6059. val = bp->dev->mtu;
  6060. /* (24*1024 + val*4)/256 */
  6061. low = 96 + (val/64) +
  6062. ((val % 64) ? 1 : 0);
  6063. }
  6064. } else
  6065. low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
  6066. high = low + 56; /* 14*1024/256 */
  6067. REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
  6068. REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
  6069. }
  6070. if (CHIP_MODE_IS_4_PORT(bp))
  6071. REG_WR(bp, (BP_PORT(bp) ?
  6072. BRB1_REG_MAC_GUARANTIED_1 :
  6073. BRB1_REG_MAC_GUARANTIED_0), 40);
  6074. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  6075. if (CHIP_IS_E3B0(bp)) {
  6076. if (IS_MF_AFEX(bp)) {
  6077. /* configure headers for AFEX mode */
  6078. REG_WR(bp, BP_PORT(bp) ?
  6079. PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
  6080. PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
  6081. REG_WR(bp, BP_PORT(bp) ?
  6082. PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
  6083. PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
  6084. REG_WR(bp, BP_PORT(bp) ?
  6085. PRS_REG_MUST_HAVE_HDRS_PORT_1 :
  6086. PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
  6087. } else {
  6088. /* Ovlan exists only if we are in multi-function +
  6089. * switch-dependent mode, in switch-independent there
  6090. * is no ovlan headers
  6091. */
  6092. REG_WR(bp, BP_PORT(bp) ?
  6093. PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
  6094. PRS_REG_HDRS_AFTER_BASIC_PORT_0,
  6095. (bp->path_has_ovlan ? 7 : 6));
  6096. }
  6097. }
  6098. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  6099. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  6100. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  6101. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  6102. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  6103. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  6104. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  6105. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  6106. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  6107. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  6108. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  6109. if (CHIP_IS_E1x(bp)) {
  6110. /* configure PBF to work without PAUSE mtu 9000 */
  6111. REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
  6112. /* update threshold */
  6113. REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
  6114. /* update init credit */
  6115. REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
  6116. /* probe changes */
  6117. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
  6118. udelay(50);
  6119. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
  6120. }
  6121. if (CNIC_SUPPORT(bp))
  6122. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  6123. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  6124. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  6125. if (CHIP_IS_E1(bp)) {
  6126. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  6127. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  6128. }
  6129. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  6130. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  6131. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  6132. /* init aeu_mask_attn_func_0/1:
  6133. * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
  6134. * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
  6135. * bits 4-7 are used for "per vn group attention" */
  6136. val = IS_MF(bp) ? 0xF7 : 0x7;
  6137. /* Enable DCBX attention for all but E1 */
  6138. val |= CHIP_IS_E1(bp) ? 0 : 0x10;
  6139. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
  6140. /* SCPAD_PARITY should NOT trigger close the gates */
  6141. reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
  6142. REG_WR(bp, reg,
  6143. REG_RD(bp, reg) &
  6144. ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
  6145. reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
  6146. REG_WR(bp, reg,
  6147. REG_RD(bp, reg) &
  6148. ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
  6149. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  6150. if (!CHIP_IS_E1x(bp)) {
  6151. /* Bit-map indicating which L2 hdrs may appear after the
  6152. * basic Ethernet header
  6153. */
  6154. if (IS_MF_AFEX(bp))
  6155. REG_WR(bp, BP_PORT(bp) ?
  6156. NIG_REG_P1_HDRS_AFTER_BASIC :
  6157. NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
  6158. else
  6159. REG_WR(bp, BP_PORT(bp) ?
  6160. NIG_REG_P1_HDRS_AFTER_BASIC :
  6161. NIG_REG_P0_HDRS_AFTER_BASIC,
  6162. IS_MF_SD(bp) ? 7 : 6);
  6163. if (CHIP_IS_E3(bp))
  6164. REG_WR(bp, BP_PORT(bp) ?
  6165. NIG_REG_LLH1_MF_MODE :
  6166. NIG_REG_LLH_MF_MODE, IS_MF(bp));
  6167. }
  6168. if (!CHIP_IS_E3(bp))
  6169. REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
  6170. if (!CHIP_IS_E1(bp)) {
  6171. /* 0x2 disable mf_ov, 0x1 enable */
  6172. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
  6173. (IS_MF_SD(bp) ? 0x1 : 0x2));
  6174. if (!CHIP_IS_E1x(bp)) {
  6175. val = 0;
  6176. switch (bp->mf_mode) {
  6177. case MULTI_FUNCTION_SD:
  6178. val = 1;
  6179. break;
  6180. case MULTI_FUNCTION_SI:
  6181. case MULTI_FUNCTION_AFEX:
  6182. val = 2;
  6183. break;
  6184. }
  6185. REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
  6186. NIG_REG_LLH0_CLS_TYPE), val);
  6187. }
  6188. {
  6189. REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
  6190. REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
  6191. REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
  6192. }
  6193. }
  6194. /* If SPIO5 is set to generate interrupts, enable it for this port */
  6195. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  6196. if (val & MISC_SPIO_SPIO5) {
  6197. u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  6198. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  6199. val = REG_RD(bp, reg_addr);
  6200. val |= AEU_INPUTS_ATTN_BITS_SPIO5;
  6201. REG_WR(bp, reg_addr, val);
  6202. }
  6203. return 0;
  6204. }
  6205. static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
  6206. {
  6207. int reg;
  6208. u32 wb_write[2];
  6209. if (CHIP_IS_E1(bp))
  6210. reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
  6211. else
  6212. reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
  6213. wb_write[0] = ONCHIP_ADDR1(addr);
  6214. wb_write[1] = ONCHIP_ADDR2(addr);
  6215. REG_WR_DMAE(bp, reg, wb_write, 2);
  6216. }
  6217. void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
  6218. {
  6219. u32 data, ctl, cnt = 100;
  6220. u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
  6221. u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
  6222. u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
  6223. u32 sb_bit = 1 << (idu_sb_id%32);
  6224. u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
  6225. u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
  6226. /* Not supported in BC mode */
  6227. if (CHIP_INT_MODE_IS_BC(bp))
  6228. return;
  6229. data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
  6230. << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
  6231. IGU_REGULAR_CLEANUP_SET |
  6232. IGU_REGULAR_BCLEANUP;
  6233. ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
  6234. func_encode << IGU_CTRL_REG_FID_SHIFT |
  6235. IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
  6236. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  6237. data, igu_addr_data);
  6238. REG_WR(bp, igu_addr_data, data);
  6239. mmiowb();
  6240. barrier();
  6241. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  6242. ctl, igu_addr_ctl);
  6243. REG_WR(bp, igu_addr_ctl, ctl);
  6244. mmiowb();
  6245. barrier();
  6246. /* wait for clean up to finish */
  6247. while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
  6248. msleep(20);
  6249. if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
  6250. DP(NETIF_MSG_HW,
  6251. "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
  6252. idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
  6253. }
  6254. }
  6255. static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
  6256. {
  6257. bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
  6258. }
  6259. static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
  6260. {
  6261. u32 i, base = FUNC_ILT_BASE(func);
  6262. for (i = base; i < base + ILT_PER_FUNC; i++)
  6263. bnx2x_ilt_wr(bp, i, 0);
  6264. }
  6265. static void bnx2x_init_searcher(struct bnx2x *bp)
  6266. {
  6267. int port = BP_PORT(bp);
  6268. bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
  6269. /* T1 hash bits value determines the T1 number of entries */
  6270. REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
  6271. }
  6272. static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
  6273. {
  6274. int rc;
  6275. struct bnx2x_func_state_params func_params = {NULL};
  6276. struct bnx2x_func_switch_update_params *switch_update_params =
  6277. &func_params.params.switch_update;
  6278. /* Prepare parameters for function state transitions */
  6279. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6280. __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
  6281. func_params.f_obj = &bp->func_obj;
  6282. func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
  6283. /* Function parameters */
  6284. switch_update_params->suspend = suspend;
  6285. rc = bnx2x_func_state_change(bp, &func_params);
  6286. return rc;
  6287. }
  6288. static int bnx2x_reset_nic_mode(struct bnx2x *bp)
  6289. {
  6290. int rc, i, port = BP_PORT(bp);
  6291. int vlan_en = 0, mac_en[NUM_MACS];
  6292. /* Close input from network */
  6293. if (bp->mf_mode == SINGLE_FUNCTION) {
  6294. bnx2x_set_rx_filter(&bp->link_params, 0);
  6295. } else {
  6296. vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
  6297. NIG_REG_LLH0_FUNC_EN);
  6298. REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
  6299. NIG_REG_LLH0_FUNC_EN, 0);
  6300. for (i = 0; i < NUM_MACS; i++) {
  6301. mac_en[i] = REG_RD(bp, port ?
  6302. (NIG_REG_LLH1_FUNC_MEM_ENABLE +
  6303. 4 * i) :
  6304. (NIG_REG_LLH0_FUNC_MEM_ENABLE +
  6305. 4 * i));
  6306. REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
  6307. 4 * i) :
  6308. (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
  6309. }
  6310. }
  6311. /* Close BMC to host */
  6312. REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
  6313. NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
  6314. /* Suspend Tx switching to the PF. Completion of this ramrod
  6315. * further guarantees that all the packets of that PF / child
  6316. * VFs in BRB were processed by the Parser, so it is safe to
  6317. * change the NIC_MODE register.
  6318. */
  6319. rc = bnx2x_func_switch_update(bp, 1);
  6320. if (rc) {
  6321. BNX2X_ERR("Can't suspend tx-switching!\n");
  6322. return rc;
  6323. }
  6324. /* Change NIC_MODE register */
  6325. REG_WR(bp, PRS_REG_NIC_MODE, 0);
  6326. /* Open input from network */
  6327. if (bp->mf_mode == SINGLE_FUNCTION) {
  6328. bnx2x_set_rx_filter(&bp->link_params, 1);
  6329. } else {
  6330. REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
  6331. NIG_REG_LLH0_FUNC_EN, vlan_en);
  6332. for (i = 0; i < NUM_MACS; i++) {
  6333. REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
  6334. 4 * i) :
  6335. (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
  6336. mac_en[i]);
  6337. }
  6338. }
  6339. /* Enable BMC to host */
  6340. REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
  6341. NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
  6342. /* Resume Tx switching to the PF */
  6343. rc = bnx2x_func_switch_update(bp, 0);
  6344. if (rc) {
  6345. BNX2X_ERR("Can't resume tx-switching!\n");
  6346. return rc;
  6347. }
  6348. DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
  6349. return 0;
  6350. }
  6351. int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
  6352. {
  6353. int rc;
  6354. bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
  6355. if (CONFIGURE_NIC_MODE(bp)) {
  6356. /* Configure searcher as part of function hw init */
  6357. bnx2x_init_searcher(bp);
  6358. /* Reset NIC mode */
  6359. rc = bnx2x_reset_nic_mode(bp);
  6360. if (rc)
  6361. BNX2X_ERR("Can't change NIC mode!\n");
  6362. return rc;
  6363. }
  6364. return 0;
  6365. }
  6366. static int bnx2x_init_hw_func(struct bnx2x *bp)
  6367. {
  6368. int port = BP_PORT(bp);
  6369. int func = BP_FUNC(bp);
  6370. int init_phase = PHASE_PF0 + func;
  6371. struct bnx2x_ilt *ilt = BP_ILT(bp);
  6372. u16 cdu_ilt_start;
  6373. u32 addr, val;
  6374. u32 main_mem_base, main_mem_size, main_mem_prty_clr;
  6375. int i, main_mem_width, rc;
  6376. DP(NETIF_MSG_HW, "starting func init func %d\n", func);
  6377. /* FLR cleanup - hmmm */
  6378. if (!CHIP_IS_E1x(bp)) {
  6379. rc = bnx2x_pf_flr_clnup(bp);
  6380. if (rc) {
  6381. bnx2x_fw_dump(bp);
  6382. return rc;
  6383. }
  6384. }
  6385. /* set MSI reconfigure capability */
  6386. if (bp->common.int_block == INT_BLOCK_HC) {
  6387. addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
  6388. val = REG_RD(bp, addr);
  6389. val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
  6390. REG_WR(bp, addr, val);
  6391. }
  6392. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  6393. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  6394. ilt = BP_ILT(bp);
  6395. cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
  6396. if (IS_SRIOV(bp))
  6397. cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
  6398. cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
  6399. /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
  6400. * those of the VFs, so start line should be reset
  6401. */
  6402. cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
  6403. for (i = 0; i < L2_ILT_LINES(bp); i++) {
  6404. ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
  6405. ilt->lines[cdu_ilt_start + i].page_mapping =
  6406. bp->context[i].cxt_mapping;
  6407. ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
  6408. }
  6409. bnx2x_ilt_init_op(bp, INITOP_SET);
  6410. if (!CONFIGURE_NIC_MODE(bp)) {
  6411. bnx2x_init_searcher(bp);
  6412. REG_WR(bp, PRS_REG_NIC_MODE, 0);
  6413. DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
  6414. } else {
  6415. /* Set NIC mode */
  6416. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  6417. DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
  6418. }
  6419. if (!CHIP_IS_E1x(bp)) {
  6420. u32 pf_conf = IGU_PF_CONF_FUNC_EN;
  6421. /* Turn on a single ISR mode in IGU if driver is going to use
  6422. * INT#x or MSI
  6423. */
  6424. if (!(bp->flags & USING_MSIX_FLAG))
  6425. pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
  6426. /*
  6427. * Timers workaround bug: function init part.
  6428. * Need to wait 20msec after initializing ILT,
  6429. * needed to make sure there are no requests in
  6430. * one of the PXP internal queues with "old" ILT addresses
  6431. */
  6432. msleep(20);
  6433. /*
  6434. * Master enable - Due to WB DMAE writes performed before this
  6435. * register is re-initialized as part of the regular function
  6436. * init
  6437. */
  6438. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  6439. /* Enable the function in IGU */
  6440. REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
  6441. }
  6442. bp->dmae_ready = 1;
  6443. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  6444. if (!CHIP_IS_E1x(bp))
  6445. REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
  6446. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  6447. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  6448. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  6449. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  6450. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  6451. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  6452. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  6453. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  6454. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  6455. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  6456. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  6457. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  6458. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  6459. if (!CHIP_IS_E1x(bp))
  6460. REG_WR(bp, QM_REG_PF_EN, 1);
  6461. if (!CHIP_IS_E1x(bp)) {
  6462. REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6463. REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6464. REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6465. REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6466. }
  6467. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  6468. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  6469. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  6470. REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
  6471. bnx2x_iov_init_dq(bp);
  6472. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  6473. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  6474. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  6475. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  6476. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  6477. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  6478. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  6479. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  6480. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  6481. if (!CHIP_IS_E1x(bp))
  6482. REG_WR(bp, PBF_REG_DISABLE_PF, 0);
  6483. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  6484. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  6485. if (!CHIP_IS_E1x(bp))
  6486. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
  6487. if (IS_MF(bp)) {
  6488. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  6489. REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
  6490. }
  6491. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  6492. /* HC init per function */
  6493. if (bp->common.int_block == INT_BLOCK_HC) {
  6494. if (CHIP_IS_E1H(bp)) {
  6495. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  6496. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  6497. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  6498. }
  6499. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  6500. } else {
  6501. int num_segs, sb_idx, prod_offset;
  6502. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  6503. if (!CHIP_IS_E1x(bp)) {
  6504. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  6505. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  6506. }
  6507. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  6508. if (!CHIP_IS_E1x(bp)) {
  6509. int dsb_idx = 0;
  6510. /**
  6511. * Producer memory:
  6512. * E2 mode: address 0-135 match to the mapping memory;
  6513. * 136 - PF0 default prod; 137 - PF1 default prod;
  6514. * 138 - PF2 default prod; 139 - PF3 default prod;
  6515. * 140 - PF0 attn prod; 141 - PF1 attn prod;
  6516. * 142 - PF2 attn prod; 143 - PF3 attn prod;
  6517. * 144-147 reserved.
  6518. *
  6519. * E1.5 mode - In backward compatible mode;
  6520. * for non default SB; each even line in the memory
  6521. * holds the U producer and each odd line hold
  6522. * the C producer. The first 128 producers are for
  6523. * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
  6524. * producers are for the DSB for each PF.
  6525. * Each PF has five segments: (the order inside each
  6526. * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
  6527. * 132-135 C prods; 136-139 X prods; 140-143 T prods;
  6528. * 144-147 attn prods;
  6529. */
  6530. /* non-default-status-blocks */
  6531. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  6532. IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
  6533. for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
  6534. prod_offset = (bp->igu_base_sb + sb_idx) *
  6535. num_segs;
  6536. for (i = 0; i < num_segs; i++) {
  6537. addr = IGU_REG_PROD_CONS_MEMORY +
  6538. (prod_offset + i) * 4;
  6539. REG_WR(bp, addr, 0);
  6540. }
  6541. /* send consumer update with value 0 */
  6542. bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
  6543. USTORM_ID, 0, IGU_INT_NOP, 1);
  6544. bnx2x_igu_clear_sb(bp,
  6545. bp->igu_base_sb + sb_idx);
  6546. }
  6547. /* default-status-blocks */
  6548. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  6549. IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
  6550. if (CHIP_MODE_IS_4_PORT(bp))
  6551. dsb_idx = BP_FUNC(bp);
  6552. else
  6553. dsb_idx = BP_VN(bp);
  6554. prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
  6555. IGU_BC_BASE_DSB_PROD + dsb_idx :
  6556. IGU_NORM_BASE_DSB_PROD + dsb_idx);
  6557. /*
  6558. * igu prods come in chunks of E1HVN_MAX (4) -
  6559. * does not matters what is the current chip mode
  6560. */
  6561. for (i = 0; i < (num_segs * E1HVN_MAX);
  6562. i += E1HVN_MAX) {
  6563. addr = IGU_REG_PROD_CONS_MEMORY +
  6564. (prod_offset + i)*4;
  6565. REG_WR(bp, addr, 0);
  6566. }
  6567. /* send consumer update with 0 */
  6568. if (CHIP_INT_MODE_IS_BC(bp)) {
  6569. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6570. USTORM_ID, 0, IGU_INT_NOP, 1);
  6571. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6572. CSTORM_ID, 0, IGU_INT_NOP, 1);
  6573. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6574. XSTORM_ID, 0, IGU_INT_NOP, 1);
  6575. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6576. TSTORM_ID, 0, IGU_INT_NOP, 1);
  6577. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6578. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  6579. } else {
  6580. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6581. USTORM_ID, 0, IGU_INT_NOP, 1);
  6582. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6583. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  6584. }
  6585. bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
  6586. /* !!! These should become driver const once
  6587. rf-tool supports split-68 const */
  6588. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
  6589. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
  6590. REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
  6591. REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
  6592. REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
  6593. REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
  6594. }
  6595. }
  6596. /* Reset PCIE errors for debug */
  6597. REG_WR(bp, 0x2114, 0xffffffff);
  6598. REG_WR(bp, 0x2120, 0xffffffff);
  6599. if (CHIP_IS_E1x(bp)) {
  6600. main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
  6601. main_mem_base = HC_REG_MAIN_MEMORY +
  6602. BP_PORT(bp) * (main_mem_size * 4);
  6603. main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
  6604. main_mem_width = 8;
  6605. val = REG_RD(bp, main_mem_prty_clr);
  6606. if (val)
  6607. DP(NETIF_MSG_HW,
  6608. "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
  6609. val);
  6610. /* Clear "false" parity errors in MSI-X table */
  6611. for (i = main_mem_base;
  6612. i < main_mem_base + main_mem_size * 4;
  6613. i += main_mem_width) {
  6614. bnx2x_read_dmae(bp, i, main_mem_width / 4);
  6615. bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
  6616. i, main_mem_width / 4);
  6617. }
  6618. /* Clear HC parity attention */
  6619. REG_RD(bp, main_mem_prty_clr);
  6620. }
  6621. #ifdef BNX2X_STOP_ON_ERROR
  6622. /* Enable STORMs SP logging */
  6623. REG_WR8(bp, BAR_USTRORM_INTMEM +
  6624. USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6625. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  6626. TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6627. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6628. CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6629. REG_WR8(bp, BAR_XSTRORM_INTMEM +
  6630. XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6631. #endif
  6632. bnx2x_phy_probe(&bp->link_params);
  6633. return 0;
  6634. }
  6635. void bnx2x_free_mem_cnic(struct bnx2x *bp)
  6636. {
  6637. bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
  6638. if (!CHIP_IS_E1x(bp))
  6639. BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
  6640. sizeof(struct host_hc_status_block_e2));
  6641. else
  6642. BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
  6643. sizeof(struct host_hc_status_block_e1x));
  6644. BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
  6645. }
  6646. void bnx2x_free_mem(struct bnx2x *bp)
  6647. {
  6648. int i;
  6649. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  6650. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  6651. if (IS_VF(bp))
  6652. return;
  6653. BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
  6654. sizeof(struct host_sp_status_block));
  6655. BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
  6656. sizeof(struct bnx2x_slowpath));
  6657. for (i = 0; i < L2_ILT_LINES(bp); i++)
  6658. BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
  6659. bp->context[i].size);
  6660. bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
  6661. BNX2X_FREE(bp->ilt->lines);
  6662. BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
  6663. BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
  6664. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  6665. BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
  6666. bnx2x_iov_free_mem(bp);
  6667. }
  6668. int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
  6669. {
  6670. if (!CHIP_IS_E1x(bp))
  6671. /* size = the status block + ramrod buffers */
  6672. BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
  6673. sizeof(struct host_hc_status_block_e2));
  6674. else
  6675. BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
  6676. &bp->cnic_sb_mapping,
  6677. sizeof(struct
  6678. host_hc_status_block_e1x));
  6679. if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
  6680. /* allocate searcher T2 table, as it wasn't allocated before */
  6681. BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
  6682. /* write address to which L5 should insert its values */
  6683. bp->cnic_eth_dev.addr_drv_info_to_mcp =
  6684. &bp->slowpath->drv_info_to_mcp;
  6685. if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
  6686. goto alloc_mem_err;
  6687. return 0;
  6688. alloc_mem_err:
  6689. bnx2x_free_mem_cnic(bp);
  6690. BNX2X_ERR("Can't allocate memory\n");
  6691. return -ENOMEM;
  6692. }
  6693. int bnx2x_alloc_mem(struct bnx2x *bp)
  6694. {
  6695. int i, allocated, context_size;
  6696. if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
  6697. /* allocate searcher T2 table */
  6698. BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
  6699. BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
  6700. sizeof(struct host_sp_status_block));
  6701. BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
  6702. sizeof(struct bnx2x_slowpath));
  6703. /* Allocate memory for CDU context:
  6704. * This memory is allocated separately and not in the generic ILT
  6705. * functions because CDU differs in few aspects:
  6706. * 1. There are multiple entities allocating memory for context -
  6707. * 'regular' driver, CNIC and SRIOV driver. Each separately controls
  6708. * its own ILT lines.
  6709. * 2. Since CDU page-size is not a single 4KB page (which is the case
  6710. * for the other ILT clients), to be efficient we want to support
  6711. * allocation of sub-page-size in the last entry.
  6712. * 3. Context pointers are used by the driver to pass to FW / update
  6713. * the context (for the other ILT clients the pointers are used just to
  6714. * free the memory during unload).
  6715. */
  6716. context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
  6717. for (i = 0, allocated = 0; allocated < context_size; i++) {
  6718. bp->context[i].size = min(CDU_ILT_PAGE_SZ,
  6719. (context_size - allocated));
  6720. BNX2X_PCI_ALLOC(bp->context[i].vcxt,
  6721. &bp->context[i].cxt_mapping,
  6722. bp->context[i].size);
  6723. allocated += bp->context[i].size;
  6724. }
  6725. BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
  6726. if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
  6727. goto alloc_mem_err;
  6728. if (bnx2x_iov_alloc_mem(bp))
  6729. goto alloc_mem_err;
  6730. /* Slow path ring */
  6731. BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
  6732. /* EQ */
  6733. BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
  6734. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  6735. return 0;
  6736. alloc_mem_err:
  6737. bnx2x_free_mem(bp);
  6738. BNX2X_ERR("Can't allocate memory\n");
  6739. return -ENOMEM;
  6740. }
  6741. /*
  6742. * Init service functions
  6743. */
  6744. int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
  6745. struct bnx2x_vlan_mac_obj *obj, bool set,
  6746. int mac_type, unsigned long *ramrod_flags)
  6747. {
  6748. int rc;
  6749. struct bnx2x_vlan_mac_ramrod_params ramrod_param;
  6750. memset(&ramrod_param, 0, sizeof(ramrod_param));
  6751. /* Fill general parameters */
  6752. ramrod_param.vlan_mac_obj = obj;
  6753. ramrod_param.ramrod_flags = *ramrod_flags;
  6754. /* Fill a user request section if needed */
  6755. if (!test_bit(RAMROD_CONT, ramrod_flags)) {
  6756. memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
  6757. __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
  6758. /* Set the command: ADD or DEL */
  6759. if (set)
  6760. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
  6761. else
  6762. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
  6763. }
  6764. rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
  6765. if (rc == -EEXIST) {
  6766. DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
  6767. /* do not treat adding same MAC as error */
  6768. rc = 0;
  6769. } else if (rc < 0)
  6770. BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
  6771. return rc;
  6772. }
  6773. int bnx2x_del_all_macs(struct bnx2x *bp,
  6774. struct bnx2x_vlan_mac_obj *mac_obj,
  6775. int mac_type, bool wait_for_comp)
  6776. {
  6777. int rc;
  6778. unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
  6779. /* Wait for completion of requested */
  6780. if (wait_for_comp)
  6781. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6782. /* Set the mac type of addresses we want to clear */
  6783. __set_bit(mac_type, &vlan_mac_flags);
  6784. rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
  6785. if (rc < 0)
  6786. BNX2X_ERR("Failed to delete MACs: %d\n", rc);
  6787. return rc;
  6788. }
  6789. int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
  6790. {
  6791. if (is_zero_ether_addr(bp->dev->dev_addr) &&
  6792. (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
  6793. DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
  6794. "Ignoring Zero MAC for STORAGE SD mode\n");
  6795. return 0;
  6796. }
  6797. if (IS_PF(bp)) {
  6798. unsigned long ramrod_flags = 0;
  6799. DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
  6800. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6801. return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
  6802. &bp->sp_objs->mac_obj, set,
  6803. BNX2X_ETH_MAC, &ramrod_flags);
  6804. } else { /* vf */
  6805. return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
  6806. bp->fp->index, true);
  6807. }
  6808. }
  6809. int bnx2x_setup_leading(struct bnx2x *bp)
  6810. {
  6811. if (IS_PF(bp))
  6812. return bnx2x_setup_queue(bp, &bp->fp[0], true);
  6813. else /* VF */
  6814. return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
  6815. }
  6816. /**
  6817. * bnx2x_set_int_mode - configure interrupt mode
  6818. *
  6819. * @bp: driver handle
  6820. *
  6821. * In case of MSI-X it will also try to enable MSI-X.
  6822. */
  6823. int bnx2x_set_int_mode(struct bnx2x *bp)
  6824. {
  6825. int rc = 0;
  6826. if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
  6827. BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
  6828. return -EINVAL;
  6829. }
  6830. switch (int_mode) {
  6831. case BNX2X_INT_MODE_MSIX:
  6832. /* attempt to enable msix */
  6833. rc = bnx2x_enable_msix(bp);
  6834. /* msix attained */
  6835. if (!rc)
  6836. return 0;
  6837. /* vfs use only msix */
  6838. if (rc && IS_VF(bp))
  6839. return rc;
  6840. /* failed to enable multiple MSI-X */
  6841. BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
  6842. bp->num_queues,
  6843. 1 + bp->num_cnic_queues);
  6844. /* falling through... */
  6845. case BNX2X_INT_MODE_MSI:
  6846. bnx2x_enable_msi(bp);
  6847. /* falling through... */
  6848. case BNX2X_INT_MODE_INTX:
  6849. bp->num_ethernet_queues = 1;
  6850. bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
  6851. BNX2X_DEV_INFO("set number of queues to 1\n");
  6852. break;
  6853. default:
  6854. BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
  6855. return -EINVAL;
  6856. }
  6857. return 0;
  6858. }
  6859. /* must be called prior to any HW initializations */
  6860. static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
  6861. {
  6862. if (IS_SRIOV(bp))
  6863. return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
  6864. return L2_ILT_LINES(bp);
  6865. }
  6866. void bnx2x_ilt_set_info(struct bnx2x *bp)
  6867. {
  6868. struct ilt_client_info *ilt_client;
  6869. struct bnx2x_ilt *ilt = BP_ILT(bp);
  6870. u16 line = 0;
  6871. ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
  6872. DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
  6873. /* CDU */
  6874. ilt_client = &ilt->clients[ILT_CLIENT_CDU];
  6875. ilt_client->client_num = ILT_CLIENT_CDU;
  6876. ilt_client->page_size = CDU_ILT_PAGE_SZ;
  6877. ilt_client->flags = ILT_CLIENT_SKIP_MEM;
  6878. ilt_client->start = line;
  6879. line += bnx2x_cid_ilt_lines(bp);
  6880. if (CNIC_SUPPORT(bp))
  6881. line += CNIC_ILT_LINES;
  6882. ilt_client->end = line - 1;
  6883. DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6884. ilt_client->start,
  6885. ilt_client->end,
  6886. ilt_client->page_size,
  6887. ilt_client->flags,
  6888. ilog2(ilt_client->page_size >> 12));
  6889. /* QM */
  6890. if (QM_INIT(bp->qm_cid_count)) {
  6891. ilt_client = &ilt->clients[ILT_CLIENT_QM];
  6892. ilt_client->client_num = ILT_CLIENT_QM;
  6893. ilt_client->page_size = QM_ILT_PAGE_SZ;
  6894. ilt_client->flags = 0;
  6895. ilt_client->start = line;
  6896. /* 4 bytes for each cid */
  6897. line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
  6898. QM_ILT_PAGE_SZ);
  6899. ilt_client->end = line - 1;
  6900. DP(NETIF_MSG_IFUP,
  6901. "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6902. ilt_client->start,
  6903. ilt_client->end,
  6904. ilt_client->page_size,
  6905. ilt_client->flags,
  6906. ilog2(ilt_client->page_size >> 12));
  6907. }
  6908. if (CNIC_SUPPORT(bp)) {
  6909. /* SRC */
  6910. ilt_client = &ilt->clients[ILT_CLIENT_SRC];
  6911. ilt_client->client_num = ILT_CLIENT_SRC;
  6912. ilt_client->page_size = SRC_ILT_PAGE_SZ;
  6913. ilt_client->flags = 0;
  6914. ilt_client->start = line;
  6915. line += SRC_ILT_LINES;
  6916. ilt_client->end = line - 1;
  6917. DP(NETIF_MSG_IFUP,
  6918. "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6919. ilt_client->start,
  6920. ilt_client->end,
  6921. ilt_client->page_size,
  6922. ilt_client->flags,
  6923. ilog2(ilt_client->page_size >> 12));
  6924. /* TM */
  6925. ilt_client = &ilt->clients[ILT_CLIENT_TM];
  6926. ilt_client->client_num = ILT_CLIENT_TM;
  6927. ilt_client->page_size = TM_ILT_PAGE_SZ;
  6928. ilt_client->flags = 0;
  6929. ilt_client->start = line;
  6930. line += TM_ILT_LINES;
  6931. ilt_client->end = line - 1;
  6932. DP(NETIF_MSG_IFUP,
  6933. "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6934. ilt_client->start,
  6935. ilt_client->end,
  6936. ilt_client->page_size,
  6937. ilt_client->flags,
  6938. ilog2(ilt_client->page_size >> 12));
  6939. }
  6940. BUG_ON(line > ILT_MAX_LINES);
  6941. }
  6942. /**
  6943. * bnx2x_pf_q_prep_init - prepare INIT transition parameters
  6944. *
  6945. * @bp: driver handle
  6946. * @fp: pointer to fastpath
  6947. * @init_params: pointer to parameters structure
  6948. *
  6949. * parameters configured:
  6950. * - HC configuration
  6951. * - Queue's CDU context
  6952. */
  6953. static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
  6954. struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
  6955. {
  6956. u8 cos;
  6957. int cxt_index, cxt_offset;
  6958. /* FCoE Queue uses Default SB, thus has no HC capabilities */
  6959. if (!IS_FCOE_FP(fp)) {
  6960. __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
  6961. __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
  6962. /* If HC is supported, enable host coalescing in the transition
  6963. * to INIT state.
  6964. */
  6965. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
  6966. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
  6967. /* HC rate */
  6968. init_params->rx.hc_rate = bp->rx_ticks ?
  6969. (1000000 / bp->rx_ticks) : 0;
  6970. init_params->tx.hc_rate = bp->tx_ticks ?
  6971. (1000000 / bp->tx_ticks) : 0;
  6972. /* FW SB ID */
  6973. init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
  6974. fp->fw_sb_id;
  6975. /*
  6976. * CQ index among the SB indices: FCoE clients uses the default
  6977. * SB, therefore it's different.
  6978. */
  6979. init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  6980. init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
  6981. }
  6982. /* set maximum number of COSs supported by this queue */
  6983. init_params->max_cos = fp->max_cos;
  6984. DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
  6985. fp->index, init_params->max_cos);
  6986. /* set the context pointers queue object */
  6987. for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
  6988. cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
  6989. cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
  6990. ILT_PAGE_CIDS);
  6991. init_params->cxts[cos] =
  6992. &bp->context[cxt_index].vcxt[cxt_offset].eth;
  6993. }
  6994. }
  6995. static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6996. struct bnx2x_queue_state_params *q_params,
  6997. struct bnx2x_queue_setup_tx_only_params *tx_only_params,
  6998. int tx_index, bool leading)
  6999. {
  7000. memset(tx_only_params, 0, sizeof(*tx_only_params));
  7001. /* Set the command */
  7002. q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  7003. /* Set tx-only QUEUE flags: don't zero statistics */
  7004. tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
  7005. /* choose the index of the cid to send the slow path on */
  7006. tx_only_params->cid_index = tx_index;
  7007. /* Set general TX_ONLY_SETUP parameters */
  7008. bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
  7009. /* Set Tx TX_ONLY_SETUP parameters */
  7010. bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
  7011. DP(NETIF_MSG_IFUP,
  7012. "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
  7013. tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
  7014. q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
  7015. tx_only_params->gen_params.spcl_id, tx_only_params->flags);
  7016. /* send the ramrod */
  7017. return bnx2x_queue_state_change(bp, q_params);
  7018. }
  7019. /**
  7020. * bnx2x_setup_queue - setup queue
  7021. *
  7022. * @bp: driver handle
  7023. * @fp: pointer to fastpath
  7024. * @leading: is leading
  7025. *
  7026. * This function performs 2 steps in a Queue state machine
  7027. * actually: 1) RESET->INIT 2) INIT->SETUP
  7028. */
  7029. int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  7030. bool leading)
  7031. {
  7032. struct bnx2x_queue_state_params q_params = {NULL};
  7033. struct bnx2x_queue_setup_params *setup_params =
  7034. &q_params.params.setup;
  7035. struct bnx2x_queue_setup_tx_only_params *tx_only_params =
  7036. &q_params.params.tx_only;
  7037. int rc;
  7038. u8 tx_index;
  7039. DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
  7040. /* reset IGU state skip FCoE L2 queue */
  7041. if (!IS_FCOE_FP(fp))
  7042. bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
  7043. IGU_INT_ENABLE, 0);
  7044. q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  7045. /* We want to wait for completion in this context */
  7046. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  7047. /* Prepare the INIT parameters */
  7048. bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
  7049. /* Set the command */
  7050. q_params.cmd = BNX2X_Q_CMD_INIT;
  7051. /* Change the state to INIT */
  7052. rc = bnx2x_queue_state_change(bp, &q_params);
  7053. if (rc) {
  7054. BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
  7055. return rc;
  7056. }
  7057. DP(NETIF_MSG_IFUP, "init complete\n");
  7058. /* Now move the Queue to the SETUP state... */
  7059. memset(setup_params, 0, sizeof(*setup_params));
  7060. /* Set QUEUE flags */
  7061. setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
  7062. /* Set general SETUP parameters */
  7063. bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
  7064. FIRST_TX_COS_INDEX);
  7065. bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
  7066. &setup_params->rxq_params);
  7067. bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
  7068. FIRST_TX_COS_INDEX);
  7069. /* Set the command */
  7070. q_params.cmd = BNX2X_Q_CMD_SETUP;
  7071. if (IS_FCOE_FP(fp))
  7072. bp->fcoe_init = true;
  7073. /* Change the state to SETUP */
  7074. rc = bnx2x_queue_state_change(bp, &q_params);
  7075. if (rc) {
  7076. BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
  7077. return rc;
  7078. }
  7079. /* loop through the relevant tx-only indices */
  7080. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  7081. tx_index < fp->max_cos;
  7082. tx_index++) {
  7083. /* prepare and send tx-only ramrod*/
  7084. rc = bnx2x_setup_tx_only(bp, fp, &q_params,
  7085. tx_only_params, tx_index, leading);
  7086. if (rc) {
  7087. BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
  7088. fp->index, tx_index);
  7089. return rc;
  7090. }
  7091. }
  7092. return rc;
  7093. }
  7094. static int bnx2x_stop_queue(struct bnx2x *bp, int index)
  7095. {
  7096. struct bnx2x_fastpath *fp = &bp->fp[index];
  7097. struct bnx2x_fp_txdata *txdata;
  7098. struct bnx2x_queue_state_params q_params = {NULL};
  7099. int rc, tx_index;
  7100. DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
  7101. q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  7102. /* We want to wait for completion in this context */
  7103. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  7104. /* close tx-only connections */
  7105. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  7106. tx_index < fp->max_cos;
  7107. tx_index++){
  7108. /* ascertain this is a normal queue*/
  7109. txdata = fp->txdata_ptr[tx_index];
  7110. DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
  7111. txdata->txq_index);
  7112. /* send halt terminate on tx-only connection */
  7113. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  7114. memset(&q_params.params.terminate, 0,
  7115. sizeof(q_params.params.terminate));
  7116. q_params.params.terminate.cid_index = tx_index;
  7117. rc = bnx2x_queue_state_change(bp, &q_params);
  7118. if (rc)
  7119. return rc;
  7120. /* send halt terminate on tx-only connection */
  7121. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  7122. memset(&q_params.params.cfc_del, 0,
  7123. sizeof(q_params.params.cfc_del));
  7124. q_params.params.cfc_del.cid_index = tx_index;
  7125. rc = bnx2x_queue_state_change(bp, &q_params);
  7126. if (rc)
  7127. return rc;
  7128. }
  7129. /* Stop the primary connection: */
  7130. /* ...halt the connection */
  7131. q_params.cmd = BNX2X_Q_CMD_HALT;
  7132. rc = bnx2x_queue_state_change(bp, &q_params);
  7133. if (rc)
  7134. return rc;
  7135. /* ...terminate the connection */
  7136. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  7137. memset(&q_params.params.terminate, 0,
  7138. sizeof(q_params.params.terminate));
  7139. q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
  7140. rc = bnx2x_queue_state_change(bp, &q_params);
  7141. if (rc)
  7142. return rc;
  7143. /* ...delete cfc entry */
  7144. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  7145. memset(&q_params.params.cfc_del, 0,
  7146. sizeof(q_params.params.cfc_del));
  7147. q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
  7148. return bnx2x_queue_state_change(bp, &q_params);
  7149. }
  7150. static void bnx2x_reset_func(struct bnx2x *bp)
  7151. {
  7152. int port = BP_PORT(bp);
  7153. int func = BP_FUNC(bp);
  7154. int i;
  7155. /* Disable the function in the FW */
  7156. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
  7157. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
  7158. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
  7159. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
  7160. /* FP SBs */
  7161. for_each_eth_queue(bp, i) {
  7162. struct bnx2x_fastpath *fp = &bp->fp[i];
  7163. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  7164. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
  7165. SB_DISABLED);
  7166. }
  7167. if (CNIC_LOADED(bp))
  7168. /* CNIC SB */
  7169. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  7170. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
  7171. (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
  7172. /* SP SB */
  7173. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  7174. CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
  7175. SB_DISABLED);
  7176. for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
  7177. REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
  7178. 0);
  7179. /* Configure IGU */
  7180. if (bp->common.int_block == INT_BLOCK_HC) {
  7181. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  7182. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  7183. } else {
  7184. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  7185. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  7186. }
  7187. if (CNIC_LOADED(bp)) {
  7188. /* Disable Timer scan */
  7189. REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
  7190. /*
  7191. * Wait for at least 10ms and up to 2 second for the timers
  7192. * scan to complete
  7193. */
  7194. for (i = 0; i < 200; i++) {
  7195. usleep_range(10000, 20000);
  7196. if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
  7197. break;
  7198. }
  7199. }
  7200. /* Clear ILT */
  7201. bnx2x_clear_func_ilt(bp, func);
  7202. /* Timers workaround bug for E2: if this is vnic-3,
  7203. * we need to set the entire ilt range for this timers.
  7204. */
  7205. if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
  7206. struct ilt_client_info ilt_cli;
  7207. /* use dummy TM client */
  7208. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  7209. ilt_cli.start = 0;
  7210. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  7211. ilt_cli.client_num = ILT_CLIENT_TM;
  7212. bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
  7213. }
  7214. /* this assumes that reset_port() called before reset_func()*/
  7215. if (!CHIP_IS_E1x(bp))
  7216. bnx2x_pf_disable(bp);
  7217. bp->dmae_ready = 0;
  7218. }
  7219. static void bnx2x_reset_port(struct bnx2x *bp)
  7220. {
  7221. int port = BP_PORT(bp);
  7222. u32 val;
  7223. /* Reset physical Link */
  7224. bnx2x__link_reset(bp);
  7225. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  7226. /* Do not rcv packets to BRB */
  7227. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
  7228. /* Do not direct rcv packets that are not for MCP to the BRB */
  7229. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
  7230. NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
  7231. /* Configure AEU */
  7232. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
  7233. msleep(100);
  7234. /* Check for BRB port occupancy */
  7235. val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
  7236. if (val)
  7237. DP(NETIF_MSG_IFDOWN,
  7238. "BRB1 is not empty %d blocks are occupied\n", val);
  7239. /* TODO: Close Doorbell port? */
  7240. }
  7241. static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
  7242. {
  7243. struct bnx2x_func_state_params func_params = {NULL};
  7244. /* Prepare parameters for function state transitions */
  7245. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  7246. func_params.f_obj = &bp->func_obj;
  7247. func_params.cmd = BNX2X_F_CMD_HW_RESET;
  7248. func_params.params.hw_init.load_phase = load_code;
  7249. return bnx2x_func_state_change(bp, &func_params);
  7250. }
  7251. static int bnx2x_func_stop(struct bnx2x *bp)
  7252. {
  7253. struct bnx2x_func_state_params func_params = {NULL};
  7254. int rc;
  7255. /* Prepare parameters for function state transitions */
  7256. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  7257. func_params.f_obj = &bp->func_obj;
  7258. func_params.cmd = BNX2X_F_CMD_STOP;
  7259. /*
  7260. * Try to stop the function the 'good way'. If fails (in case
  7261. * of a parity error during bnx2x_chip_cleanup()) and we are
  7262. * not in a debug mode, perform a state transaction in order to
  7263. * enable further HW_RESET transaction.
  7264. */
  7265. rc = bnx2x_func_state_change(bp, &func_params);
  7266. if (rc) {
  7267. #ifdef BNX2X_STOP_ON_ERROR
  7268. return rc;
  7269. #else
  7270. BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
  7271. __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
  7272. return bnx2x_func_state_change(bp, &func_params);
  7273. #endif
  7274. }
  7275. return 0;
  7276. }
  7277. /**
  7278. * bnx2x_send_unload_req - request unload mode from the MCP.
  7279. *
  7280. * @bp: driver handle
  7281. * @unload_mode: requested function's unload mode
  7282. *
  7283. * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
  7284. */
  7285. u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
  7286. {
  7287. u32 reset_code = 0;
  7288. int port = BP_PORT(bp);
  7289. /* Select the UNLOAD request mode */
  7290. if (unload_mode == UNLOAD_NORMAL)
  7291. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  7292. else if (bp->flags & NO_WOL_FLAG)
  7293. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
  7294. else if (bp->wol) {
  7295. u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
  7296. u8 *mac_addr = bp->dev->dev_addr;
  7297. struct pci_dev *pdev = bp->pdev;
  7298. u32 val;
  7299. u16 pmc;
  7300. /* The mac address is written to entries 1-4 to
  7301. * preserve entry 0 which is used by the PMF
  7302. */
  7303. u8 entry = (BP_VN(bp) + 1)*8;
  7304. val = (mac_addr[0] << 8) | mac_addr[1];
  7305. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
  7306. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  7307. (mac_addr[4] << 8) | mac_addr[5];
  7308. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
  7309. /* Enable the PME and clear the status */
  7310. pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
  7311. pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
  7312. pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
  7313. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
  7314. } else
  7315. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  7316. /* Send the request to the MCP */
  7317. if (!BP_NOMCP(bp))
  7318. reset_code = bnx2x_fw_command(bp, reset_code, 0);
  7319. else {
  7320. int path = BP_PATH(bp);
  7321. DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
  7322. path, load_count[path][0], load_count[path][1],
  7323. load_count[path][2]);
  7324. load_count[path][0]--;
  7325. load_count[path][1 + port]--;
  7326. DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
  7327. path, load_count[path][0], load_count[path][1],
  7328. load_count[path][2]);
  7329. if (load_count[path][0] == 0)
  7330. reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
  7331. else if (load_count[path][1 + port] == 0)
  7332. reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
  7333. else
  7334. reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
  7335. }
  7336. return reset_code;
  7337. }
  7338. /**
  7339. * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
  7340. *
  7341. * @bp: driver handle
  7342. * @keep_link: true iff link should be kept up
  7343. */
  7344. void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
  7345. {
  7346. u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
  7347. /* Report UNLOAD_DONE to MCP */
  7348. if (!BP_NOMCP(bp))
  7349. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
  7350. }
  7351. static int bnx2x_func_wait_started(struct bnx2x *bp)
  7352. {
  7353. int tout = 50;
  7354. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  7355. if (!bp->port.pmf)
  7356. return 0;
  7357. /*
  7358. * (assumption: No Attention from MCP at this stage)
  7359. * PMF probably in the middle of TX disable/enable transaction
  7360. * 1. Sync IRS for default SB
  7361. * 2. Sync SP queue - this guarantees us that attention handling started
  7362. * 3. Wait, that TX disable/enable transaction completes
  7363. *
  7364. * 1+2 guarantee that if DCBx attention was scheduled it already changed
  7365. * pending bit of transaction from STARTED-->TX_STOPPED, if we already
  7366. * received completion for the transaction the state is TX_STOPPED.
  7367. * State will return to STARTED after completion of TX_STOPPED-->STARTED
  7368. * transaction.
  7369. */
  7370. /* make sure default SB ISR is done */
  7371. if (msix)
  7372. synchronize_irq(bp->msix_table[0].vector);
  7373. else
  7374. synchronize_irq(bp->pdev->irq);
  7375. flush_workqueue(bnx2x_wq);
  7376. while (bnx2x_func_get_state(bp, &bp->func_obj) !=
  7377. BNX2X_F_STATE_STARTED && tout--)
  7378. msleep(20);
  7379. if (bnx2x_func_get_state(bp, &bp->func_obj) !=
  7380. BNX2X_F_STATE_STARTED) {
  7381. #ifdef BNX2X_STOP_ON_ERROR
  7382. BNX2X_ERR("Wrong function state\n");
  7383. return -EBUSY;
  7384. #else
  7385. /*
  7386. * Failed to complete the transaction in a "good way"
  7387. * Force both transactions with CLR bit
  7388. */
  7389. struct bnx2x_func_state_params func_params = {NULL};
  7390. DP(NETIF_MSG_IFDOWN,
  7391. "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
  7392. func_params.f_obj = &bp->func_obj;
  7393. __set_bit(RAMROD_DRV_CLR_ONLY,
  7394. &func_params.ramrod_flags);
  7395. /* STARTED-->TX_ST0PPED */
  7396. func_params.cmd = BNX2X_F_CMD_TX_STOP;
  7397. bnx2x_func_state_change(bp, &func_params);
  7398. /* TX_ST0PPED-->STARTED */
  7399. func_params.cmd = BNX2X_F_CMD_TX_START;
  7400. return bnx2x_func_state_change(bp, &func_params);
  7401. #endif
  7402. }
  7403. return 0;
  7404. }
  7405. void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
  7406. {
  7407. int port = BP_PORT(bp);
  7408. int i, rc = 0;
  7409. u8 cos;
  7410. struct bnx2x_mcast_ramrod_params rparam = {NULL};
  7411. u32 reset_code;
  7412. /* Wait until tx fastpath tasks complete */
  7413. for_each_tx_queue(bp, i) {
  7414. struct bnx2x_fastpath *fp = &bp->fp[i];
  7415. for_each_cos_in_tx_queue(fp, cos)
  7416. rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
  7417. #ifdef BNX2X_STOP_ON_ERROR
  7418. if (rc)
  7419. return;
  7420. #endif
  7421. }
  7422. /* Give HW time to discard old tx messages */
  7423. usleep_range(1000, 2000);
  7424. /* Clean all ETH MACs */
  7425. rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
  7426. false);
  7427. if (rc < 0)
  7428. BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
  7429. /* Clean up UC list */
  7430. rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
  7431. true);
  7432. if (rc < 0)
  7433. BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
  7434. rc);
  7435. /* Disable LLH */
  7436. if (!CHIP_IS_E1(bp))
  7437. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  7438. /* Set "drop all" (stop Rx).
  7439. * We need to take a netif_addr_lock() here in order to prevent
  7440. * a race between the completion code and this code.
  7441. */
  7442. netif_addr_lock_bh(bp->dev);
  7443. /* Schedule the rx_mode command */
  7444. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  7445. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  7446. else
  7447. bnx2x_set_storm_rx_mode(bp);
  7448. /* Cleanup multicast configuration */
  7449. rparam.mcast_obj = &bp->mcast_obj;
  7450. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  7451. if (rc < 0)
  7452. BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
  7453. netif_addr_unlock_bh(bp->dev);
  7454. bnx2x_iov_chip_cleanup(bp);
  7455. /*
  7456. * Send the UNLOAD_REQUEST to the MCP. This will return if
  7457. * this function should perform FUNC, PORT or COMMON HW
  7458. * reset.
  7459. */
  7460. reset_code = bnx2x_send_unload_req(bp, unload_mode);
  7461. /*
  7462. * (assumption: No Attention from MCP at this stage)
  7463. * PMF probably in the middle of TX disable/enable transaction
  7464. */
  7465. rc = bnx2x_func_wait_started(bp);
  7466. if (rc) {
  7467. BNX2X_ERR("bnx2x_func_wait_started failed\n");
  7468. #ifdef BNX2X_STOP_ON_ERROR
  7469. return;
  7470. #endif
  7471. }
  7472. /* Close multi and leading connections
  7473. * Completions for ramrods are collected in a synchronous way
  7474. */
  7475. for_each_eth_queue(bp, i)
  7476. if (bnx2x_stop_queue(bp, i))
  7477. #ifdef BNX2X_STOP_ON_ERROR
  7478. return;
  7479. #else
  7480. goto unload_error;
  7481. #endif
  7482. if (CNIC_LOADED(bp)) {
  7483. for_each_cnic_queue(bp, i)
  7484. if (bnx2x_stop_queue(bp, i))
  7485. #ifdef BNX2X_STOP_ON_ERROR
  7486. return;
  7487. #else
  7488. goto unload_error;
  7489. #endif
  7490. }
  7491. /* If SP settings didn't get completed so far - something
  7492. * very wrong has happen.
  7493. */
  7494. if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
  7495. BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
  7496. #ifndef BNX2X_STOP_ON_ERROR
  7497. unload_error:
  7498. #endif
  7499. rc = bnx2x_func_stop(bp);
  7500. if (rc) {
  7501. BNX2X_ERR("Function stop failed!\n");
  7502. #ifdef BNX2X_STOP_ON_ERROR
  7503. return;
  7504. #endif
  7505. }
  7506. /* Disable HW interrupts, NAPI */
  7507. bnx2x_netif_stop(bp, 1);
  7508. /* Delete all NAPI objects */
  7509. bnx2x_del_all_napi(bp);
  7510. if (CNIC_LOADED(bp))
  7511. bnx2x_del_all_napi_cnic(bp);
  7512. /* Release IRQs */
  7513. bnx2x_free_irq(bp);
  7514. /* Reset the chip */
  7515. rc = bnx2x_reset_hw(bp, reset_code);
  7516. if (rc)
  7517. BNX2X_ERR("HW_RESET failed\n");
  7518. /* Report UNLOAD_DONE to MCP */
  7519. bnx2x_send_unload_done(bp, keep_link);
  7520. }
  7521. void bnx2x_disable_close_the_gate(struct bnx2x *bp)
  7522. {
  7523. u32 val;
  7524. DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
  7525. if (CHIP_IS_E1(bp)) {
  7526. int port = BP_PORT(bp);
  7527. u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  7528. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  7529. val = REG_RD(bp, addr);
  7530. val &= ~(0x300);
  7531. REG_WR(bp, addr, val);
  7532. } else {
  7533. val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
  7534. val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
  7535. MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
  7536. REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
  7537. }
  7538. }
  7539. /* Close gates #2, #3 and #4: */
  7540. static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
  7541. {
  7542. u32 val;
  7543. /* Gates #2 and #4a are closed/opened for "not E1" only */
  7544. if (!CHIP_IS_E1(bp)) {
  7545. /* #4 */
  7546. REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
  7547. /* #2 */
  7548. REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
  7549. }
  7550. /* #3 */
  7551. if (CHIP_IS_E1x(bp)) {
  7552. /* Prevent interrupts from HC on both ports */
  7553. val = REG_RD(bp, HC_REG_CONFIG_1);
  7554. REG_WR(bp, HC_REG_CONFIG_1,
  7555. (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
  7556. (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
  7557. val = REG_RD(bp, HC_REG_CONFIG_0);
  7558. REG_WR(bp, HC_REG_CONFIG_0,
  7559. (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
  7560. (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
  7561. } else {
  7562. /* Prevent incoming interrupts in IGU */
  7563. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  7564. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
  7565. (!close) ?
  7566. (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
  7567. (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
  7568. }
  7569. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
  7570. close ? "closing" : "opening");
  7571. mmiowb();
  7572. }
  7573. #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
  7574. static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
  7575. {
  7576. /* Do some magic... */
  7577. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  7578. *magic_val = val & SHARED_MF_CLP_MAGIC;
  7579. MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
  7580. }
  7581. /**
  7582. * bnx2x_clp_reset_done - restore the value of the `magic' bit.
  7583. *
  7584. * @bp: driver handle
  7585. * @magic_val: old value of the `magic' bit.
  7586. */
  7587. static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
  7588. {
  7589. /* Restore the `magic' bit value... */
  7590. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  7591. MF_CFG_WR(bp, shared_mf_config.clp_mb,
  7592. (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
  7593. }
  7594. /**
  7595. * bnx2x_reset_mcp_prep - prepare for MCP reset.
  7596. *
  7597. * @bp: driver handle
  7598. * @magic_val: old value of 'magic' bit.
  7599. *
  7600. * Takes care of CLP configurations.
  7601. */
  7602. static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
  7603. {
  7604. u32 shmem;
  7605. u32 validity_offset;
  7606. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
  7607. /* Set `magic' bit in order to save MF config */
  7608. if (!CHIP_IS_E1(bp))
  7609. bnx2x_clp_reset_prep(bp, magic_val);
  7610. /* Get shmem offset */
  7611. shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  7612. validity_offset =
  7613. offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
  7614. /* Clear validity map flags */
  7615. if (shmem > 0)
  7616. REG_WR(bp, shmem + validity_offset, 0);
  7617. }
  7618. #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
  7619. #define MCP_ONE_TIMEOUT 100 /* 100 ms */
  7620. /**
  7621. * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
  7622. *
  7623. * @bp: driver handle
  7624. */
  7625. static void bnx2x_mcp_wait_one(struct bnx2x *bp)
  7626. {
  7627. /* special handling for emulation and FPGA,
  7628. wait 10 times longer */
  7629. if (CHIP_REV_IS_SLOW(bp))
  7630. msleep(MCP_ONE_TIMEOUT*10);
  7631. else
  7632. msleep(MCP_ONE_TIMEOUT);
  7633. }
  7634. /*
  7635. * initializes bp->common.shmem_base and waits for validity signature to appear
  7636. */
  7637. static int bnx2x_init_shmem(struct bnx2x *bp)
  7638. {
  7639. int cnt = 0;
  7640. u32 val = 0;
  7641. do {
  7642. bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  7643. if (bp->common.shmem_base) {
  7644. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  7645. if (val & SHR_MEM_VALIDITY_MB)
  7646. return 0;
  7647. }
  7648. bnx2x_mcp_wait_one(bp);
  7649. } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
  7650. BNX2X_ERR("BAD MCP validity signature\n");
  7651. return -ENODEV;
  7652. }
  7653. static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
  7654. {
  7655. int rc = bnx2x_init_shmem(bp);
  7656. /* Restore the `magic' bit value */
  7657. if (!CHIP_IS_E1(bp))
  7658. bnx2x_clp_reset_done(bp, magic_val);
  7659. return rc;
  7660. }
  7661. static void bnx2x_pxp_prep(struct bnx2x *bp)
  7662. {
  7663. if (!CHIP_IS_E1(bp)) {
  7664. REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
  7665. REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
  7666. mmiowb();
  7667. }
  7668. }
  7669. /*
  7670. * Reset the whole chip except for:
  7671. * - PCIE core
  7672. * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
  7673. * one reset bit)
  7674. * - IGU
  7675. * - MISC (including AEU)
  7676. * - GRC
  7677. * - RBCN, RBCP
  7678. */
  7679. static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
  7680. {
  7681. u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
  7682. u32 global_bits2, stay_reset2;
  7683. /*
  7684. * Bits that have to be set in reset_mask2 if we want to reset 'global'
  7685. * (per chip) blocks.
  7686. */
  7687. global_bits2 =
  7688. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
  7689. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
  7690. /* Don't reset the following blocks.
  7691. * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
  7692. * reset, as in 4 port device they might still be owned
  7693. * by the MCP (there is only one leader per path).
  7694. */
  7695. not_reset_mask1 =
  7696. MISC_REGISTERS_RESET_REG_1_RST_HC |
  7697. MISC_REGISTERS_RESET_REG_1_RST_PXPV |
  7698. MISC_REGISTERS_RESET_REG_1_RST_PXP;
  7699. not_reset_mask2 =
  7700. MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
  7701. MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
  7702. MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
  7703. MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
  7704. MISC_REGISTERS_RESET_REG_2_RST_RBCN |
  7705. MISC_REGISTERS_RESET_REG_2_RST_GRC |
  7706. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
  7707. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
  7708. MISC_REGISTERS_RESET_REG_2_RST_ATC |
  7709. MISC_REGISTERS_RESET_REG_2_PGLC |
  7710. MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
  7711. MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
  7712. MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
  7713. MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
  7714. MISC_REGISTERS_RESET_REG_2_UMAC0 |
  7715. MISC_REGISTERS_RESET_REG_2_UMAC1;
  7716. /*
  7717. * Keep the following blocks in reset:
  7718. * - all xxMACs are handled by the bnx2x_link code.
  7719. */
  7720. stay_reset2 =
  7721. MISC_REGISTERS_RESET_REG_2_XMAC |
  7722. MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
  7723. /* Full reset masks according to the chip */
  7724. reset_mask1 = 0xffffffff;
  7725. if (CHIP_IS_E1(bp))
  7726. reset_mask2 = 0xffff;
  7727. else if (CHIP_IS_E1H(bp))
  7728. reset_mask2 = 0x1ffff;
  7729. else if (CHIP_IS_E2(bp))
  7730. reset_mask2 = 0xfffff;
  7731. else /* CHIP_IS_E3 */
  7732. reset_mask2 = 0x3ffffff;
  7733. /* Don't reset global blocks unless we need to */
  7734. if (!global)
  7735. reset_mask2 &= ~global_bits2;
  7736. /*
  7737. * In case of attention in the QM, we need to reset PXP
  7738. * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
  7739. * because otherwise QM reset would release 'close the gates' shortly
  7740. * before resetting the PXP, then the PSWRQ would send a write
  7741. * request to PGLUE. Then when PXP is reset, PGLUE would try to
  7742. * read the payload data from PSWWR, but PSWWR would not
  7743. * respond. The write queue in PGLUE would stuck, dmae commands
  7744. * would not return. Therefore it's important to reset the second
  7745. * reset register (containing the
  7746. * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
  7747. * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
  7748. * bit).
  7749. */
  7750. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
  7751. reset_mask2 & (~not_reset_mask2));
  7752. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  7753. reset_mask1 & (~not_reset_mask1));
  7754. barrier();
  7755. mmiowb();
  7756. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
  7757. reset_mask2 & (~stay_reset2));
  7758. barrier();
  7759. mmiowb();
  7760. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
  7761. mmiowb();
  7762. }
  7763. /**
  7764. * bnx2x_er_poll_igu_vq - poll for pending writes bit.
  7765. * It should get cleared in no more than 1s.
  7766. *
  7767. * @bp: driver handle
  7768. *
  7769. * It should get cleared in no more than 1s. Returns 0 if
  7770. * pending writes bit gets cleared.
  7771. */
  7772. static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
  7773. {
  7774. u32 cnt = 1000;
  7775. u32 pend_bits = 0;
  7776. do {
  7777. pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
  7778. if (pend_bits == 0)
  7779. break;
  7780. usleep_range(1000, 2000);
  7781. } while (cnt-- > 0);
  7782. if (cnt <= 0) {
  7783. BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
  7784. pend_bits);
  7785. return -EBUSY;
  7786. }
  7787. return 0;
  7788. }
  7789. static int bnx2x_process_kill(struct bnx2x *bp, bool global)
  7790. {
  7791. int cnt = 1000;
  7792. u32 val = 0;
  7793. u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
  7794. u32 tags_63_32 = 0;
  7795. /* Empty the Tetris buffer, wait for 1s */
  7796. do {
  7797. sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
  7798. blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
  7799. port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
  7800. port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
  7801. pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
  7802. if (CHIP_IS_E3(bp))
  7803. tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
  7804. if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
  7805. ((port_is_idle_0 & 0x1) == 0x1) &&
  7806. ((port_is_idle_1 & 0x1) == 0x1) &&
  7807. (pgl_exp_rom2 == 0xffffffff) &&
  7808. (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
  7809. break;
  7810. usleep_range(1000, 2000);
  7811. } while (cnt-- > 0);
  7812. if (cnt <= 0) {
  7813. BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
  7814. BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
  7815. sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
  7816. pgl_exp_rom2);
  7817. return -EAGAIN;
  7818. }
  7819. barrier();
  7820. /* Close gates #2, #3 and #4 */
  7821. bnx2x_set_234_gates(bp, true);
  7822. /* Poll for IGU VQs for 57712 and newer chips */
  7823. if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
  7824. return -EAGAIN;
  7825. /* TBD: Indicate that "process kill" is in progress to MCP */
  7826. /* Clear "unprepared" bit */
  7827. REG_WR(bp, MISC_REG_UNPREPARED, 0);
  7828. barrier();
  7829. /* Make sure all is written to the chip before the reset */
  7830. mmiowb();
  7831. /* Wait for 1ms to empty GLUE and PCI-E core queues,
  7832. * PSWHST, GRC and PSWRD Tetris buffer.
  7833. */
  7834. usleep_range(1000, 2000);
  7835. /* Prepare to chip reset: */
  7836. /* MCP */
  7837. if (global)
  7838. bnx2x_reset_mcp_prep(bp, &val);
  7839. /* PXP */
  7840. bnx2x_pxp_prep(bp);
  7841. barrier();
  7842. /* reset the chip */
  7843. bnx2x_process_kill_chip_reset(bp, global);
  7844. barrier();
  7845. /* Recover after reset: */
  7846. /* MCP */
  7847. if (global && bnx2x_reset_mcp_comp(bp, val))
  7848. return -EAGAIN;
  7849. /* TBD: Add resetting the NO_MCP mode DB here */
  7850. /* Open the gates #2, #3 and #4 */
  7851. bnx2x_set_234_gates(bp, false);
  7852. /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
  7853. * reset state, re-enable attentions. */
  7854. return 0;
  7855. }
  7856. static int bnx2x_leader_reset(struct bnx2x *bp)
  7857. {
  7858. int rc = 0;
  7859. bool global = bnx2x_reset_is_global(bp);
  7860. u32 load_code;
  7861. /* if not going to reset MCP - load "fake" driver to reset HW while
  7862. * driver is owner of the HW
  7863. */
  7864. if (!global && !BP_NOMCP(bp)) {
  7865. load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
  7866. DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
  7867. if (!load_code) {
  7868. BNX2X_ERR("MCP response failure, aborting\n");
  7869. rc = -EAGAIN;
  7870. goto exit_leader_reset;
  7871. }
  7872. if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
  7873. (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
  7874. BNX2X_ERR("MCP unexpected resp, aborting\n");
  7875. rc = -EAGAIN;
  7876. goto exit_leader_reset2;
  7877. }
  7878. load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
  7879. if (!load_code) {
  7880. BNX2X_ERR("MCP response failure, aborting\n");
  7881. rc = -EAGAIN;
  7882. goto exit_leader_reset2;
  7883. }
  7884. }
  7885. /* Try to recover after the failure */
  7886. if (bnx2x_process_kill(bp, global)) {
  7887. BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
  7888. BP_PATH(bp));
  7889. rc = -EAGAIN;
  7890. goto exit_leader_reset2;
  7891. }
  7892. /*
  7893. * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
  7894. * state.
  7895. */
  7896. bnx2x_set_reset_done(bp);
  7897. if (global)
  7898. bnx2x_clear_reset_global(bp);
  7899. exit_leader_reset2:
  7900. /* unload "fake driver" if it was loaded */
  7901. if (!global && !BP_NOMCP(bp)) {
  7902. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
  7903. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  7904. }
  7905. exit_leader_reset:
  7906. bp->is_leader = 0;
  7907. bnx2x_release_leader_lock(bp);
  7908. smp_mb();
  7909. return rc;
  7910. }
  7911. static void bnx2x_recovery_failed(struct bnx2x *bp)
  7912. {
  7913. netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
  7914. /* Disconnect this device */
  7915. netif_device_detach(bp->dev);
  7916. /*
  7917. * Block ifup for all function on this engine until "process kill"
  7918. * or power cycle.
  7919. */
  7920. bnx2x_set_reset_in_progress(bp);
  7921. /* Shut down the power */
  7922. bnx2x_set_power_state(bp, PCI_D3hot);
  7923. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  7924. smp_mb();
  7925. }
  7926. /*
  7927. * Assumption: runs under rtnl lock. This together with the fact
  7928. * that it's called only from bnx2x_sp_rtnl() ensure that it
  7929. * will never be called when netif_running(bp->dev) is false.
  7930. */
  7931. static void bnx2x_parity_recover(struct bnx2x *bp)
  7932. {
  7933. bool global = false;
  7934. u32 error_recovered, error_unrecovered;
  7935. bool is_parity;
  7936. DP(NETIF_MSG_HW, "Handling parity\n");
  7937. while (1) {
  7938. switch (bp->recovery_state) {
  7939. case BNX2X_RECOVERY_INIT:
  7940. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
  7941. is_parity = bnx2x_chk_parity_attn(bp, &global, false);
  7942. WARN_ON(!is_parity);
  7943. /* Try to get a LEADER_LOCK HW lock */
  7944. if (bnx2x_trylock_leader_lock(bp)) {
  7945. bnx2x_set_reset_in_progress(bp);
  7946. /*
  7947. * Check if there is a global attention and if
  7948. * there was a global attention, set the global
  7949. * reset bit.
  7950. */
  7951. if (global)
  7952. bnx2x_set_reset_global(bp);
  7953. bp->is_leader = 1;
  7954. }
  7955. /* Stop the driver */
  7956. /* If interface has been removed - break */
  7957. if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
  7958. return;
  7959. bp->recovery_state = BNX2X_RECOVERY_WAIT;
  7960. /* Ensure "is_leader", MCP command sequence and
  7961. * "recovery_state" update values are seen on other
  7962. * CPUs.
  7963. */
  7964. smp_mb();
  7965. break;
  7966. case BNX2X_RECOVERY_WAIT:
  7967. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
  7968. if (bp->is_leader) {
  7969. int other_engine = BP_PATH(bp) ? 0 : 1;
  7970. bool other_load_status =
  7971. bnx2x_get_load_status(bp, other_engine);
  7972. bool load_status =
  7973. bnx2x_get_load_status(bp, BP_PATH(bp));
  7974. global = bnx2x_reset_is_global(bp);
  7975. /*
  7976. * In case of a parity in a global block, let
  7977. * the first leader that performs a
  7978. * leader_reset() reset the global blocks in
  7979. * order to clear global attentions. Otherwise
  7980. * the gates will remain closed for that
  7981. * engine.
  7982. */
  7983. if (load_status ||
  7984. (global && other_load_status)) {
  7985. /* Wait until all other functions get
  7986. * down.
  7987. */
  7988. schedule_delayed_work(&bp->sp_rtnl_task,
  7989. HZ/10);
  7990. return;
  7991. } else {
  7992. /* If all other functions got down -
  7993. * try to bring the chip back to
  7994. * normal. In any case it's an exit
  7995. * point for a leader.
  7996. */
  7997. if (bnx2x_leader_reset(bp)) {
  7998. bnx2x_recovery_failed(bp);
  7999. return;
  8000. }
  8001. /* If we are here, means that the
  8002. * leader has succeeded and doesn't
  8003. * want to be a leader any more. Try
  8004. * to continue as a none-leader.
  8005. */
  8006. break;
  8007. }
  8008. } else { /* non-leader */
  8009. if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
  8010. /* Try to get a LEADER_LOCK HW lock as
  8011. * long as a former leader may have
  8012. * been unloaded by the user or
  8013. * released a leadership by another
  8014. * reason.
  8015. */
  8016. if (bnx2x_trylock_leader_lock(bp)) {
  8017. /* I'm a leader now! Restart a
  8018. * switch case.
  8019. */
  8020. bp->is_leader = 1;
  8021. break;
  8022. }
  8023. schedule_delayed_work(&bp->sp_rtnl_task,
  8024. HZ/10);
  8025. return;
  8026. } else {
  8027. /*
  8028. * If there was a global attention, wait
  8029. * for it to be cleared.
  8030. */
  8031. if (bnx2x_reset_is_global(bp)) {
  8032. schedule_delayed_work(
  8033. &bp->sp_rtnl_task,
  8034. HZ/10);
  8035. return;
  8036. }
  8037. error_recovered =
  8038. bp->eth_stats.recoverable_error;
  8039. error_unrecovered =
  8040. bp->eth_stats.unrecoverable_error;
  8041. bp->recovery_state =
  8042. BNX2X_RECOVERY_NIC_LOADING;
  8043. if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
  8044. error_unrecovered++;
  8045. netdev_err(bp->dev,
  8046. "Recovery failed. Power cycle needed\n");
  8047. /* Disconnect this device */
  8048. netif_device_detach(bp->dev);
  8049. /* Shut down the power */
  8050. bnx2x_set_power_state(
  8051. bp, PCI_D3hot);
  8052. smp_mb();
  8053. } else {
  8054. bp->recovery_state =
  8055. BNX2X_RECOVERY_DONE;
  8056. error_recovered++;
  8057. smp_mb();
  8058. }
  8059. bp->eth_stats.recoverable_error =
  8060. error_recovered;
  8061. bp->eth_stats.unrecoverable_error =
  8062. error_unrecovered;
  8063. return;
  8064. }
  8065. }
  8066. default:
  8067. return;
  8068. }
  8069. }
  8070. }
  8071. static int bnx2x_close(struct net_device *dev);
  8072. /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
  8073. * scheduled on a general queue in order to prevent a dead lock.
  8074. */
  8075. static void bnx2x_sp_rtnl_task(struct work_struct *work)
  8076. {
  8077. struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
  8078. rtnl_lock();
  8079. if (!netif_running(bp->dev)) {
  8080. rtnl_unlock();
  8081. return;
  8082. }
  8083. if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
  8084. #ifdef BNX2X_STOP_ON_ERROR
  8085. BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
  8086. "you will need to reboot when done\n");
  8087. goto sp_rtnl_not_reset;
  8088. #endif
  8089. /*
  8090. * Clear all pending SP commands as we are going to reset the
  8091. * function anyway.
  8092. */
  8093. bp->sp_rtnl_state = 0;
  8094. smp_mb();
  8095. bnx2x_parity_recover(bp);
  8096. rtnl_unlock();
  8097. return;
  8098. }
  8099. if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
  8100. #ifdef BNX2X_STOP_ON_ERROR
  8101. BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
  8102. "you will need to reboot when done\n");
  8103. goto sp_rtnl_not_reset;
  8104. #endif
  8105. /*
  8106. * Clear all pending SP commands as we are going to reset the
  8107. * function anyway.
  8108. */
  8109. bp->sp_rtnl_state = 0;
  8110. smp_mb();
  8111. bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
  8112. bnx2x_nic_load(bp, LOAD_NORMAL);
  8113. rtnl_unlock();
  8114. return;
  8115. }
  8116. #ifdef BNX2X_STOP_ON_ERROR
  8117. sp_rtnl_not_reset:
  8118. #endif
  8119. if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
  8120. bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
  8121. if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
  8122. bnx2x_after_function_update(bp);
  8123. /*
  8124. * in case of fan failure we need to reset id if the "stop on error"
  8125. * debug flag is set, since we trying to prevent permanent overheating
  8126. * damage
  8127. */
  8128. if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
  8129. DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
  8130. netif_device_detach(bp->dev);
  8131. bnx2x_close(bp->dev);
  8132. rtnl_unlock();
  8133. return;
  8134. }
  8135. if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
  8136. DP(BNX2X_MSG_SP,
  8137. "sending set mcast vf pf channel message from rtnl sp-task\n");
  8138. bnx2x_vfpf_set_mcast(bp->dev);
  8139. }
  8140. if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
  8141. &bp->sp_rtnl_state)){
  8142. if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
  8143. bnx2x_tx_disable(bp);
  8144. BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
  8145. }
  8146. }
  8147. if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
  8148. DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
  8149. bnx2x_set_rx_mode_inner(bp);
  8150. }
  8151. if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
  8152. &bp->sp_rtnl_state))
  8153. bnx2x_pf_set_vfs_vlan(bp);
  8154. if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
  8155. bnx2x_dcbx_stop_hw_tx(bp);
  8156. if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
  8157. bnx2x_dcbx_resume_hw_tx(bp);
  8158. /* work which needs rtnl lock not-taken (as it takes the lock itself and
  8159. * can be called from other contexts as well)
  8160. */
  8161. rtnl_unlock();
  8162. /* enable SR-IOV if applicable */
  8163. if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
  8164. &bp->sp_rtnl_state)) {
  8165. bnx2x_disable_sriov(bp);
  8166. bnx2x_enable_sriov(bp);
  8167. }
  8168. }
  8169. static void bnx2x_period_task(struct work_struct *work)
  8170. {
  8171. struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
  8172. if (!netif_running(bp->dev))
  8173. goto period_task_exit;
  8174. if (CHIP_REV_IS_SLOW(bp)) {
  8175. BNX2X_ERR("period task called on emulation, ignoring\n");
  8176. goto period_task_exit;
  8177. }
  8178. bnx2x_acquire_phy_lock(bp);
  8179. /*
  8180. * The barrier is needed to ensure the ordering between the writing to
  8181. * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
  8182. * the reading here.
  8183. */
  8184. smp_mb();
  8185. if (bp->port.pmf) {
  8186. bnx2x_period_func(&bp->link_params, &bp->link_vars);
  8187. /* Re-queue task in 1 sec */
  8188. queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
  8189. }
  8190. bnx2x_release_phy_lock(bp);
  8191. period_task_exit:
  8192. return;
  8193. }
  8194. /*
  8195. * Init service functions
  8196. */
  8197. u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
  8198. {
  8199. u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
  8200. u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
  8201. return base + (BP_ABS_FUNC(bp)) * stride;
  8202. }
  8203. static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
  8204. struct bnx2x_mac_vals *vals)
  8205. {
  8206. u32 val, base_addr, offset, mask, reset_reg;
  8207. bool mac_stopped = false;
  8208. u8 port = BP_PORT(bp);
  8209. /* reset addresses as they also mark which values were changed */
  8210. vals->bmac_addr = 0;
  8211. vals->umac_addr = 0;
  8212. vals->xmac_addr = 0;
  8213. vals->emac_addr = 0;
  8214. reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
  8215. if (!CHIP_IS_E3(bp)) {
  8216. val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
  8217. mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
  8218. if ((mask & reset_reg) && val) {
  8219. u32 wb_data[2];
  8220. BNX2X_DEV_INFO("Disable bmac Rx\n");
  8221. base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
  8222. : NIG_REG_INGRESS_BMAC0_MEM;
  8223. offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
  8224. : BIGMAC_REGISTER_BMAC_CONTROL;
  8225. /*
  8226. * use rd/wr since we cannot use dmae. This is safe
  8227. * since MCP won't access the bus due to the request
  8228. * to unload, and no function on the path can be
  8229. * loaded at this time.
  8230. */
  8231. wb_data[0] = REG_RD(bp, base_addr + offset);
  8232. wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
  8233. vals->bmac_addr = base_addr + offset;
  8234. vals->bmac_val[0] = wb_data[0];
  8235. vals->bmac_val[1] = wb_data[1];
  8236. wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
  8237. REG_WR(bp, vals->bmac_addr, wb_data[0]);
  8238. REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
  8239. }
  8240. BNX2X_DEV_INFO("Disable emac Rx\n");
  8241. vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
  8242. vals->emac_val = REG_RD(bp, vals->emac_addr);
  8243. REG_WR(bp, vals->emac_addr, 0);
  8244. mac_stopped = true;
  8245. } else {
  8246. if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
  8247. BNX2X_DEV_INFO("Disable xmac Rx\n");
  8248. base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
  8249. val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
  8250. REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
  8251. val & ~(1 << 1));
  8252. REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
  8253. val | (1 << 1));
  8254. vals->xmac_addr = base_addr + XMAC_REG_CTRL;
  8255. vals->xmac_val = REG_RD(bp, vals->xmac_addr);
  8256. REG_WR(bp, vals->xmac_addr, 0);
  8257. mac_stopped = true;
  8258. }
  8259. mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
  8260. if (mask & reset_reg) {
  8261. BNX2X_DEV_INFO("Disable umac Rx\n");
  8262. base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
  8263. vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
  8264. vals->umac_val = REG_RD(bp, vals->umac_addr);
  8265. REG_WR(bp, vals->umac_addr, 0);
  8266. mac_stopped = true;
  8267. }
  8268. }
  8269. if (mac_stopped)
  8270. msleep(20);
  8271. }
  8272. #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
  8273. #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
  8274. #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
  8275. #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
  8276. static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
  8277. {
  8278. u16 rcq, bd;
  8279. u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
  8280. rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
  8281. bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
  8282. tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
  8283. REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
  8284. BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
  8285. port, bd, rcq);
  8286. }
  8287. static int bnx2x_prev_mcp_done(struct bnx2x *bp)
  8288. {
  8289. u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
  8290. DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
  8291. if (!rc) {
  8292. BNX2X_ERR("MCP response failure, aborting\n");
  8293. return -EBUSY;
  8294. }
  8295. return 0;
  8296. }
  8297. static struct bnx2x_prev_path_list *
  8298. bnx2x_prev_path_get_entry(struct bnx2x *bp)
  8299. {
  8300. struct bnx2x_prev_path_list *tmp_list;
  8301. list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
  8302. if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
  8303. bp->pdev->bus->number == tmp_list->bus &&
  8304. BP_PATH(bp) == tmp_list->path)
  8305. return tmp_list;
  8306. return NULL;
  8307. }
  8308. static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
  8309. {
  8310. struct bnx2x_prev_path_list *tmp_list;
  8311. int rc;
  8312. rc = down_interruptible(&bnx2x_prev_sem);
  8313. if (rc) {
  8314. BNX2X_ERR("Received %d when tried to take lock\n", rc);
  8315. return rc;
  8316. }
  8317. tmp_list = bnx2x_prev_path_get_entry(bp);
  8318. if (tmp_list) {
  8319. tmp_list->aer = 1;
  8320. rc = 0;
  8321. } else {
  8322. BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
  8323. BP_PATH(bp));
  8324. }
  8325. up(&bnx2x_prev_sem);
  8326. return rc;
  8327. }
  8328. static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
  8329. {
  8330. struct bnx2x_prev_path_list *tmp_list;
  8331. bool rc = false;
  8332. if (down_trylock(&bnx2x_prev_sem))
  8333. return false;
  8334. tmp_list = bnx2x_prev_path_get_entry(bp);
  8335. if (tmp_list) {
  8336. if (tmp_list->aer) {
  8337. DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
  8338. BP_PATH(bp));
  8339. } else {
  8340. rc = true;
  8341. BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
  8342. BP_PATH(bp));
  8343. }
  8344. }
  8345. up(&bnx2x_prev_sem);
  8346. return rc;
  8347. }
  8348. bool bnx2x_port_after_undi(struct bnx2x *bp)
  8349. {
  8350. struct bnx2x_prev_path_list *entry;
  8351. bool val;
  8352. down(&bnx2x_prev_sem);
  8353. entry = bnx2x_prev_path_get_entry(bp);
  8354. val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
  8355. up(&bnx2x_prev_sem);
  8356. return val;
  8357. }
  8358. static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
  8359. {
  8360. struct bnx2x_prev_path_list *tmp_list;
  8361. int rc;
  8362. rc = down_interruptible(&bnx2x_prev_sem);
  8363. if (rc) {
  8364. BNX2X_ERR("Received %d when tried to take lock\n", rc);
  8365. return rc;
  8366. }
  8367. /* Check whether the entry for this path already exists */
  8368. tmp_list = bnx2x_prev_path_get_entry(bp);
  8369. if (tmp_list) {
  8370. if (!tmp_list->aer) {
  8371. BNX2X_ERR("Re-Marking the path.\n");
  8372. } else {
  8373. DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
  8374. BP_PATH(bp));
  8375. tmp_list->aer = 0;
  8376. }
  8377. up(&bnx2x_prev_sem);
  8378. return 0;
  8379. }
  8380. up(&bnx2x_prev_sem);
  8381. /* Create an entry for this path and add it */
  8382. tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
  8383. if (!tmp_list) {
  8384. BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
  8385. return -ENOMEM;
  8386. }
  8387. tmp_list->bus = bp->pdev->bus->number;
  8388. tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
  8389. tmp_list->path = BP_PATH(bp);
  8390. tmp_list->aer = 0;
  8391. tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
  8392. rc = down_interruptible(&bnx2x_prev_sem);
  8393. if (rc) {
  8394. BNX2X_ERR("Received %d when tried to take lock\n", rc);
  8395. kfree(tmp_list);
  8396. } else {
  8397. DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
  8398. BP_PATH(bp));
  8399. list_add(&tmp_list->list, &bnx2x_prev_list);
  8400. up(&bnx2x_prev_sem);
  8401. }
  8402. return rc;
  8403. }
  8404. static int bnx2x_do_flr(struct bnx2x *bp)
  8405. {
  8406. struct pci_dev *dev = bp->pdev;
  8407. if (CHIP_IS_E1x(bp)) {
  8408. BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
  8409. return -EINVAL;
  8410. }
  8411. /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
  8412. if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
  8413. BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
  8414. bp->common.bc_ver);
  8415. return -EINVAL;
  8416. }
  8417. if (!pci_wait_for_pending_transaction(dev))
  8418. dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
  8419. BNX2X_DEV_INFO("Initiating FLR\n");
  8420. bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
  8421. return 0;
  8422. }
  8423. static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
  8424. {
  8425. int rc;
  8426. BNX2X_DEV_INFO("Uncommon unload Flow\n");
  8427. /* Test if previous unload process was already finished for this path */
  8428. if (bnx2x_prev_is_path_marked(bp))
  8429. return bnx2x_prev_mcp_done(bp);
  8430. BNX2X_DEV_INFO("Path is unmarked\n");
  8431. /* If function has FLR capabilities, and existing FW version matches
  8432. * the one required, then FLR will be sufficient to clean any residue
  8433. * left by previous driver
  8434. */
  8435. rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
  8436. if (!rc) {
  8437. /* fw version is good */
  8438. BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
  8439. rc = bnx2x_do_flr(bp);
  8440. }
  8441. if (!rc) {
  8442. /* FLR was performed */
  8443. BNX2X_DEV_INFO("FLR successful\n");
  8444. return 0;
  8445. }
  8446. BNX2X_DEV_INFO("Could not FLR\n");
  8447. /* Close the MCP request, return failure*/
  8448. rc = bnx2x_prev_mcp_done(bp);
  8449. if (!rc)
  8450. rc = BNX2X_PREV_WAIT_NEEDED;
  8451. return rc;
  8452. }
  8453. static int bnx2x_prev_unload_common(struct bnx2x *bp)
  8454. {
  8455. u32 reset_reg, tmp_reg = 0, rc;
  8456. bool prev_undi = false;
  8457. struct bnx2x_mac_vals mac_vals;
  8458. /* It is possible a previous function received 'common' answer,
  8459. * but hasn't loaded yet, therefore creating a scenario of
  8460. * multiple functions receiving 'common' on the same path.
  8461. */
  8462. BNX2X_DEV_INFO("Common unload Flow\n");
  8463. memset(&mac_vals, 0, sizeof(mac_vals));
  8464. if (bnx2x_prev_is_path_marked(bp))
  8465. return bnx2x_prev_mcp_done(bp);
  8466. reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
  8467. /* Reset should be performed after BRB is emptied */
  8468. if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
  8469. u32 timer_count = 1000;
  8470. /* Close the MAC Rx to prevent BRB from filling up */
  8471. bnx2x_prev_unload_close_mac(bp, &mac_vals);
  8472. /* close LLH filters towards the BRB */
  8473. bnx2x_set_rx_filter(&bp->link_params, 0);
  8474. /* Check if the UNDI driver was previously loaded
  8475. * UNDI driver initializes CID offset for normal bell to 0x7
  8476. */
  8477. if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
  8478. tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
  8479. if (tmp_reg == 0x7) {
  8480. BNX2X_DEV_INFO("UNDI previously loaded\n");
  8481. prev_undi = true;
  8482. /* clear the UNDI indication */
  8483. REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
  8484. /* clear possible idle check errors */
  8485. REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
  8486. }
  8487. }
  8488. if (!CHIP_IS_E1x(bp))
  8489. /* block FW from writing to host */
  8490. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  8491. /* wait until BRB is empty */
  8492. tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
  8493. while (timer_count) {
  8494. u32 prev_brb = tmp_reg;
  8495. tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
  8496. if (!tmp_reg)
  8497. break;
  8498. BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
  8499. /* reset timer as long as BRB actually gets emptied */
  8500. if (prev_brb > tmp_reg)
  8501. timer_count = 1000;
  8502. else
  8503. timer_count--;
  8504. /* If UNDI resides in memory, manually increment it */
  8505. if (prev_undi)
  8506. bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
  8507. udelay(10);
  8508. }
  8509. if (!timer_count)
  8510. BNX2X_ERR("Failed to empty BRB, hope for the best\n");
  8511. }
  8512. /* No packets are in the pipeline, path is ready for reset */
  8513. bnx2x_reset_common(bp);
  8514. if (mac_vals.xmac_addr)
  8515. REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
  8516. if (mac_vals.umac_addr)
  8517. REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
  8518. if (mac_vals.emac_addr)
  8519. REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
  8520. if (mac_vals.bmac_addr) {
  8521. REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
  8522. REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
  8523. }
  8524. rc = bnx2x_prev_mark_path(bp, prev_undi);
  8525. if (rc) {
  8526. bnx2x_prev_mcp_done(bp);
  8527. return rc;
  8528. }
  8529. return bnx2x_prev_mcp_done(bp);
  8530. }
  8531. /* previous driver DMAE transaction may have occurred when pre-boot stage ended
  8532. * and boot began, or when kdump kernel was loaded. Either case would invalidate
  8533. * the addresses of the transaction, resulting in was-error bit set in the pci
  8534. * causing all hw-to-host pcie transactions to timeout. If this happened we want
  8535. * to clear the interrupt which detected this from the pglueb and the was done
  8536. * bit
  8537. */
  8538. static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
  8539. {
  8540. if (!CHIP_IS_E1x(bp)) {
  8541. u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
  8542. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
  8543. DP(BNX2X_MSG_SP,
  8544. "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
  8545. REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
  8546. 1 << BP_FUNC(bp));
  8547. }
  8548. }
  8549. }
  8550. static int bnx2x_prev_unload(struct bnx2x *bp)
  8551. {
  8552. int time_counter = 10;
  8553. u32 rc, fw, hw_lock_reg, hw_lock_val;
  8554. BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
  8555. /* clear hw from errors which may have resulted from an interrupted
  8556. * dmae transaction.
  8557. */
  8558. bnx2x_prev_interrupted_dmae(bp);
  8559. /* Release previously held locks */
  8560. hw_lock_reg = (BP_FUNC(bp) <= 5) ?
  8561. (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
  8562. (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
  8563. hw_lock_val = REG_RD(bp, hw_lock_reg);
  8564. if (hw_lock_val) {
  8565. if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
  8566. BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
  8567. REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
  8568. (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
  8569. }
  8570. BNX2X_DEV_INFO("Release Previously held hw lock\n");
  8571. REG_WR(bp, hw_lock_reg, 0xffffffff);
  8572. } else
  8573. BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
  8574. if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
  8575. BNX2X_DEV_INFO("Release previously held alr\n");
  8576. bnx2x_release_alr(bp);
  8577. }
  8578. do {
  8579. int aer = 0;
  8580. /* Lock MCP using an unload request */
  8581. fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
  8582. if (!fw) {
  8583. BNX2X_ERR("MCP response failure, aborting\n");
  8584. rc = -EBUSY;
  8585. break;
  8586. }
  8587. rc = down_interruptible(&bnx2x_prev_sem);
  8588. if (rc) {
  8589. BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
  8590. rc);
  8591. } else {
  8592. /* If Path is marked by EEH, ignore unload status */
  8593. aer = !!(bnx2x_prev_path_get_entry(bp) &&
  8594. bnx2x_prev_path_get_entry(bp)->aer);
  8595. up(&bnx2x_prev_sem);
  8596. }
  8597. if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
  8598. rc = bnx2x_prev_unload_common(bp);
  8599. break;
  8600. }
  8601. /* non-common reply from MCP might require looping */
  8602. rc = bnx2x_prev_unload_uncommon(bp);
  8603. if (rc != BNX2X_PREV_WAIT_NEEDED)
  8604. break;
  8605. msleep(20);
  8606. } while (--time_counter);
  8607. if (!time_counter || rc) {
  8608. BNX2X_ERR("Failed unloading previous driver, aborting\n");
  8609. rc = -EBUSY;
  8610. }
  8611. /* Mark function if its port was used to boot from SAN */
  8612. if (bnx2x_port_after_undi(bp))
  8613. bp->link_params.feature_config_flags |=
  8614. FEATURE_CONFIG_BOOT_FROM_SAN;
  8615. BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
  8616. return rc;
  8617. }
  8618. static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
  8619. {
  8620. u32 val, val2, val3, val4, id, boot_mode;
  8621. u16 pmc;
  8622. /* Get the chip revision id and number. */
  8623. /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
  8624. val = REG_RD(bp, MISC_REG_CHIP_NUM);
  8625. id = ((val & 0xffff) << 16);
  8626. val = REG_RD(bp, MISC_REG_CHIP_REV);
  8627. id |= ((val & 0xf) << 12);
  8628. /* Metal is read from PCI regs, but we can't access >=0x400 from
  8629. * the configuration space (so we need to reg_rd)
  8630. */
  8631. val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
  8632. id |= (((val >> 24) & 0xf) << 4);
  8633. val = REG_RD(bp, MISC_REG_BOND_ID);
  8634. id |= (val & 0xf);
  8635. bp->common.chip_id = id;
  8636. /* force 57811 according to MISC register */
  8637. if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
  8638. if (CHIP_IS_57810(bp))
  8639. bp->common.chip_id = (CHIP_NUM_57811 << 16) |
  8640. (bp->common.chip_id & 0x0000FFFF);
  8641. else if (CHIP_IS_57810_MF(bp))
  8642. bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
  8643. (bp->common.chip_id & 0x0000FFFF);
  8644. bp->common.chip_id |= 0x1;
  8645. }
  8646. /* Set doorbell size */
  8647. bp->db_size = (1 << BNX2X_DB_SHIFT);
  8648. if (!CHIP_IS_E1x(bp)) {
  8649. val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
  8650. if ((val & 1) == 0)
  8651. val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
  8652. else
  8653. val = (val >> 1) & 1;
  8654. BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
  8655. "2_PORT_MODE");
  8656. bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
  8657. CHIP_2_PORT_MODE;
  8658. if (CHIP_MODE_IS_4_PORT(bp))
  8659. bp->pfid = (bp->pf_num >> 1); /* 0..3 */
  8660. else
  8661. bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
  8662. } else {
  8663. bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
  8664. bp->pfid = bp->pf_num; /* 0..7 */
  8665. }
  8666. BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
  8667. bp->link_params.chip_id = bp->common.chip_id;
  8668. BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
  8669. val = (REG_RD(bp, 0x2874) & 0x55);
  8670. if ((bp->common.chip_id & 0x1) ||
  8671. (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
  8672. bp->flags |= ONE_PORT_FLAG;
  8673. BNX2X_DEV_INFO("single port device\n");
  8674. }
  8675. val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
  8676. bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
  8677. (val & MCPR_NVM_CFG4_FLASH_SIZE));
  8678. BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
  8679. bp->common.flash_size, bp->common.flash_size);
  8680. bnx2x_init_shmem(bp);
  8681. bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
  8682. MISC_REG_GENERIC_CR_1 :
  8683. MISC_REG_GENERIC_CR_0));
  8684. bp->link_params.shmem_base = bp->common.shmem_base;
  8685. bp->link_params.shmem2_base = bp->common.shmem2_base;
  8686. if (SHMEM2_RD(bp, size) >
  8687. (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
  8688. bp->link_params.lfa_base =
  8689. REG_RD(bp, bp->common.shmem2_base +
  8690. (u32)offsetof(struct shmem2_region,
  8691. lfa_host_addr[BP_PORT(bp)]));
  8692. else
  8693. bp->link_params.lfa_base = 0;
  8694. BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
  8695. bp->common.shmem_base, bp->common.shmem2_base);
  8696. if (!bp->common.shmem_base) {
  8697. BNX2X_DEV_INFO("MCP not active\n");
  8698. bp->flags |= NO_MCP_FLAG;
  8699. return;
  8700. }
  8701. bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
  8702. BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
  8703. bp->link_params.hw_led_mode = ((bp->common.hw_config &
  8704. SHARED_HW_CFG_LED_MODE_MASK) >>
  8705. SHARED_HW_CFG_LED_MODE_SHIFT);
  8706. bp->link_params.feature_config_flags = 0;
  8707. val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
  8708. if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
  8709. bp->link_params.feature_config_flags |=
  8710. FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  8711. else
  8712. bp->link_params.feature_config_flags &=
  8713. ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  8714. val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
  8715. bp->common.bc_ver = val;
  8716. BNX2X_DEV_INFO("bc_ver %X\n", val);
  8717. if (val < BNX2X_BC_VER) {
  8718. /* for now only warn
  8719. * later we might need to enforce this */
  8720. BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
  8721. BNX2X_BC_VER, val);
  8722. }
  8723. bp->link_params.feature_config_flags |=
  8724. (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
  8725. FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
  8726. bp->link_params.feature_config_flags |=
  8727. (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
  8728. FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
  8729. bp->link_params.feature_config_flags |=
  8730. (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
  8731. FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
  8732. bp->link_params.feature_config_flags |=
  8733. (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
  8734. FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
  8735. bp->link_params.feature_config_flags |=
  8736. (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
  8737. FEATURE_CONFIG_MT_SUPPORT : 0;
  8738. bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
  8739. BC_SUPPORTS_PFC_STATS : 0;
  8740. bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
  8741. BC_SUPPORTS_FCOE_FEATURES : 0;
  8742. bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
  8743. BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
  8744. bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
  8745. BC_SUPPORTS_RMMOD_CMD : 0;
  8746. boot_mode = SHMEM_RD(bp,
  8747. dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
  8748. PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
  8749. switch (boot_mode) {
  8750. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
  8751. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
  8752. break;
  8753. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
  8754. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
  8755. break;
  8756. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
  8757. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
  8758. break;
  8759. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
  8760. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
  8761. break;
  8762. }
  8763. pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
  8764. bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
  8765. BNX2X_DEV_INFO("%sWoL capable\n",
  8766. (bp->flags & NO_WOL_FLAG) ? "not " : "");
  8767. val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
  8768. val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
  8769. val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
  8770. val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
  8771. dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
  8772. val, val2, val3, val4);
  8773. }
  8774. #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
  8775. #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
  8776. static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
  8777. {
  8778. int pfid = BP_FUNC(bp);
  8779. int igu_sb_id;
  8780. u32 val;
  8781. u8 fid, igu_sb_cnt = 0;
  8782. bp->igu_base_sb = 0xff;
  8783. if (CHIP_INT_MODE_IS_BC(bp)) {
  8784. int vn = BP_VN(bp);
  8785. igu_sb_cnt = bp->igu_sb_cnt;
  8786. bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
  8787. FP_SB_MAX_E1x;
  8788. bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
  8789. (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
  8790. return 0;
  8791. }
  8792. /* IGU in normal mode - read CAM */
  8793. for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
  8794. igu_sb_id++) {
  8795. val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
  8796. if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
  8797. continue;
  8798. fid = IGU_FID(val);
  8799. if ((fid & IGU_FID_ENCODE_IS_PF)) {
  8800. if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
  8801. continue;
  8802. if (IGU_VEC(val) == 0)
  8803. /* default status block */
  8804. bp->igu_dsb_id = igu_sb_id;
  8805. else {
  8806. if (bp->igu_base_sb == 0xff)
  8807. bp->igu_base_sb = igu_sb_id;
  8808. igu_sb_cnt++;
  8809. }
  8810. }
  8811. }
  8812. #ifdef CONFIG_PCI_MSI
  8813. /* Due to new PF resource allocation by MFW T7.4 and above, it's
  8814. * optional that number of CAM entries will not be equal to the value
  8815. * advertised in PCI.
  8816. * Driver should use the minimal value of both as the actual status
  8817. * block count
  8818. */
  8819. bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
  8820. #endif
  8821. if (igu_sb_cnt == 0) {
  8822. BNX2X_ERR("CAM configuration error\n");
  8823. return -EINVAL;
  8824. }
  8825. return 0;
  8826. }
  8827. static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
  8828. {
  8829. int cfg_size = 0, idx, port = BP_PORT(bp);
  8830. /* Aggregation of supported attributes of all external phys */
  8831. bp->port.supported[0] = 0;
  8832. bp->port.supported[1] = 0;
  8833. switch (bp->link_params.num_phys) {
  8834. case 1:
  8835. bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
  8836. cfg_size = 1;
  8837. break;
  8838. case 2:
  8839. bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
  8840. cfg_size = 1;
  8841. break;
  8842. case 3:
  8843. if (bp->link_params.multi_phy_config &
  8844. PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
  8845. bp->port.supported[1] =
  8846. bp->link_params.phy[EXT_PHY1].supported;
  8847. bp->port.supported[0] =
  8848. bp->link_params.phy[EXT_PHY2].supported;
  8849. } else {
  8850. bp->port.supported[0] =
  8851. bp->link_params.phy[EXT_PHY1].supported;
  8852. bp->port.supported[1] =
  8853. bp->link_params.phy[EXT_PHY2].supported;
  8854. }
  8855. cfg_size = 2;
  8856. break;
  8857. }
  8858. if (!(bp->port.supported[0] || bp->port.supported[1])) {
  8859. BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
  8860. SHMEM_RD(bp,
  8861. dev_info.port_hw_config[port].external_phy_config),
  8862. SHMEM_RD(bp,
  8863. dev_info.port_hw_config[port].external_phy_config2));
  8864. return;
  8865. }
  8866. if (CHIP_IS_E3(bp))
  8867. bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
  8868. else {
  8869. switch (switch_cfg) {
  8870. case SWITCH_CFG_1G:
  8871. bp->port.phy_addr = REG_RD(
  8872. bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
  8873. break;
  8874. case SWITCH_CFG_10G:
  8875. bp->port.phy_addr = REG_RD(
  8876. bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
  8877. break;
  8878. default:
  8879. BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
  8880. bp->port.link_config[0]);
  8881. return;
  8882. }
  8883. }
  8884. BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
  8885. /* mask what we support according to speed_cap_mask per configuration */
  8886. for (idx = 0; idx < cfg_size; idx++) {
  8887. if (!(bp->link_params.speed_cap_mask[idx] &
  8888. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
  8889. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
  8890. if (!(bp->link_params.speed_cap_mask[idx] &
  8891. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
  8892. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
  8893. if (!(bp->link_params.speed_cap_mask[idx] &
  8894. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
  8895. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
  8896. if (!(bp->link_params.speed_cap_mask[idx] &
  8897. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
  8898. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
  8899. if (!(bp->link_params.speed_cap_mask[idx] &
  8900. PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
  8901. bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
  8902. SUPPORTED_1000baseT_Full);
  8903. if (!(bp->link_params.speed_cap_mask[idx] &
  8904. PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
  8905. bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
  8906. if (!(bp->link_params.speed_cap_mask[idx] &
  8907. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
  8908. bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
  8909. if (!(bp->link_params.speed_cap_mask[idx] &
  8910. PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
  8911. bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
  8912. }
  8913. BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
  8914. bp->port.supported[1]);
  8915. }
  8916. static void bnx2x_link_settings_requested(struct bnx2x *bp)
  8917. {
  8918. u32 link_config, idx, cfg_size = 0;
  8919. bp->port.advertising[0] = 0;
  8920. bp->port.advertising[1] = 0;
  8921. switch (bp->link_params.num_phys) {
  8922. case 1:
  8923. case 2:
  8924. cfg_size = 1;
  8925. break;
  8926. case 3:
  8927. cfg_size = 2;
  8928. break;
  8929. }
  8930. for (idx = 0; idx < cfg_size; idx++) {
  8931. bp->link_params.req_duplex[idx] = DUPLEX_FULL;
  8932. link_config = bp->port.link_config[idx];
  8933. switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
  8934. case PORT_FEATURE_LINK_SPEED_AUTO:
  8935. if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
  8936. bp->link_params.req_line_speed[idx] =
  8937. SPEED_AUTO_NEG;
  8938. bp->port.advertising[idx] |=
  8939. bp->port.supported[idx];
  8940. if (bp->link_params.phy[EXT_PHY1].type ==
  8941. PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
  8942. bp->port.advertising[idx] |=
  8943. (SUPPORTED_100baseT_Half |
  8944. SUPPORTED_100baseT_Full);
  8945. } else {
  8946. /* force 10G, no AN */
  8947. bp->link_params.req_line_speed[idx] =
  8948. SPEED_10000;
  8949. bp->port.advertising[idx] |=
  8950. (ADVERTISED_10000baseT_Full |
  8951. ADVERTISED_FIBRE);
  8952. continue;
  8953. }
  8954. break;
  8955. case PORT_FEATURE_LINK_SPEED_10M_FULL:
  8956. if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
  8957. bp->link_params.req_line_speed[idx] =
  8958. SPEED_10;
  8959. bp->port.advertising[idx] |=
  8960. (ADVERTISED_10baseT_Full |
  8961. ADVERTISED_TP);
  8962. } else {
  8963. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8964. link_config,
  8965. bp->link_params.speed_cap_mask[idx]);
  8966. return;
  8967. }
  8968. break;
  8969. case PORT_FEATURE_LINK_SPEED_10M_HALF:
  8970. if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
  8971. bp->link_params.req_line_speed[idx] =
  8972. SPEED_10;
  8973. bp->link_params.req_duplex[idx] =
  8974. DUPLEX_HALF;
  8975. bp->port.advertising[idx] |=
  8976. (ADVERTISED_10baseT_Half |
  8977. ADVERTISED_TP);
  8978. } else {
  8979. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8980. link_config,
  8981. bp->link_params.speed_cap_mask[idx]);
  8982. return;
  8983. }
  8984. break;
  8985. case PORT_FEATURE_LINK_SPEED_100M_FULL:
  8986. if (bp->port.supported[idx] &
  8987. SUPPORTED_100baseT_Full) {
  8988. bp->link_params.req_line_speed[idx] =
  8989. SPEED_100;
  8990. bp->port.advertising[idx] |=
  8991. (ADVERTISED_100baseT_Full |
  8992. ADVERTISED_TP);
  8993. } else {
  8994. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8995. link_config,
  8996. bp->link_params.speed_cap_mask[idx]);
  8997. return;
  8998. }
  8999. break;
  9000. case PORT_FEATURE_LINK_SPEED_100M_HALF:
  9001. if (bp->port.supported[idx] &
  9002. SUPPORTED_100baseT_Half) {
  9003. bp->link_params.req_line_speed[idx] =
  9004. SPEED_100;
  9005. bp->link_params.req_duplex[idx] =
  9006. DUPLEX_HALF;
  9007. bp->port.advertising[idx] |=
  9008. (ADVERTISED_100baseT_Half |
  9009. ADVERTISED_TP);
  9010. } else {
  9011. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  9012. link_config,
  9013. bp->link_params.speed_cap_mask[idx]);
  9014. return;
  9015. }
  9016. break;
  9017. case PORT_FEATURE_LINK_SPEED_1G:
  9018. if (bp->port.supported[idx] &
  9019. SUPPORTED_1000baseT_Full) {
  9020. bp->link_params.req_line_speed[idx] =
  9021. SPEED_1000;
  9022. bp->port.advertising[idx] |=
  9023. (ADVERTISED_1000baseT_Full |
  9024. ADVERTISED_TP);
  9025. } else {
  9026. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  9027. link_config,
  9028. bp->link_params.speed_cap_mask[idx]);
  9029. return;
  9030. }
  9031. break;
  9032. case PORT_FEATURE_LINK_SPEED_2_5G:
  9033. if (bp->port.supported[idx] &
  9034. SUPPORTED_2500baseX_Full) {
  9035. bp->link_params.req_line_speed[idx] =
  9036. SPEED_2500;
  9037. bp->port.advertising[idx] |=
  9038. (ADVERTISED_2500baseX_Full |
  9039. ADVERTISED_TP);
  9040. } else {
  9041. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  9042. link_config,
  9043. bp->link_params.speed_cap_mask[idx]);
  9044. return;
  9045. }
  9046. break;
  9047. case PORT_FEATURE_LINK_SPEED_10G_CX4:
  9048. if (bp->port.supported[idx] &
  9049. SUPPORTED_10000baseT_Full) {
  9050. bp->link_params.req_line_speed[idx] =
  9051. SPEED_10000;
  9052. bp->port.advertising[idx] |=
  9053. (ADVERTISED_10000baseT_Full |
  9054. ADVERTISED_FIBRE);
  9055. } else {
  9056. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  9057. link_config,
  9058. bp->link_params.speed_cap_mask[idx]);
  9059. return;
  9060. }
  9061. break;
  9062. case PORT_FEATURE_LINK_SPEED_20G:
  9063. bp->link_params.req_line_speed[idx] = SPEED_20000;
  9064. break;
  9065. default:
  9066. BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
  9067. link_config);
  9068. bp->link_params.req_line_speed[idx] =
  9069. SPEED_AUTO_NEG;
  9070. bp->port.advertising[idx] =
  9071. bp->port.supported[idx];
  9072. break;
  9073. }
  9074. bp->link_params.req_flow_ctrl[idx] = (link_config &
  9075. PORT_FEATURE_FLOW_CONTROL_MASK);
  9076. if (bp->link_params.req_flow_ctrl[idx] ==
  9077. BNX2X_FLOW_CTRL_AUTO) {
  9078. if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
  9079. bp->link_params.req_flow_ctrl[idx] =
  9080. BNX2X_FLOW_CTRL_NONE;
  9081. else
  9082. bnx2x_set_requested_fc(bp);
  9083. }
  9084. BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
  9085. bp->link_params.req_line_speed[idx],
  9086. bp->link_params.req_duplex[idx],
  9087. bp->link_params.req_flow_ctrl[idx],
  9088. bp->port.advertising[idx]);
  9089. }
  9090. }
  9091. static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
  9092. {
  9093. __be16 mac_hi_be = cpu_to_be16(mac_hi);
  9094. __be32 mac_lo_be = cpu_to_be32(mac_lo);
  9095. memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
  9096. memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
  9097. }
  9098. static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
  9099. {
  9100. int port = BP_PORT(bp);
  9101. u32 config;
  9102. u32 ext_phy_type, ext_phy_config, eee_mode;
  9103. bp->link_params.bp = bp;
  9104. bp->link_params.port = port;
  9105. bp->link_params.lane_config =
  9106. SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
  9107. bp->link_params.speed_cap_mask[0] =
  9108. SHMEM_RD(bp,
  9109. dev_info.port_hw_config[port].speed_capability_mask) &
  9110. PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
  9111. bp->link_params.speed_cap_mask[1] =
  9112. SHMEM_RD(bp,
  9113. dev_info.port_hw_config[port].speed_capability_mask2) &
  9114. PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
  9115. bp->port.link_config[0] =
  9116. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
  9117. bp->port.link_config[1] =
  9118. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
  9119. bp->link_params.multi_phy_config =
  9120. SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
  9121. /* If the device is capable of WoL, set the default state according
  9122. * to the HW
  9123. */
  9124. config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
  9125. bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
  9126. (config & PORT_FEATURE_WOL_ENABLED));
  9127. if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
  9128. PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
  9129. bp->flags |= NO_ISCSI_FLAG;
  9130. if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
  9131. PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
  9132. bp->flags |= NO_FCOE_FLAG;
  9133. BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
  9134. bp->link_params.lane_config,
  9135. bp->link_params.speed_cap_mask[0],
  9136. bp->port.link_config[0]);
  9137. bp->link_params.switch_cfg = (bp->port.link_config[0] &
  9138. PORT_FEATURE_CONNECTED_SWITCH_MASK);
  9139. bnx2x_phy_probe(&bp->link_params);
  9140. bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
  9141. bnx2x_link_settings_requested(bp);
  9142. /*
  9143. * If connected directly, work with the internal PHY, otherwise, work
  9144. * with the external PHY
  9145. */
  9146. ext_phy_config =
  9147. SHMEM_RD(bp,
  9148. dev_info.port_hw_config[port].external_phy_config);
  9149. ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
  9150. if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
  9151. bp->mdio.prtad = bp->port.phy_addr;
  9152. else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
  9153. (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
  9154. bp->mdio.prtad =
  9155. XGXS_EXT_PHY_ADDR(ext_phy_config);
  9156. /* Configure link feature according to nvram value */
  9157. eee_mode = (((SHMEM_RD(bp, dev_info.
  9158. port_feature_config[port].eee_power_mode)) &
  9159. PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
  9160. PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
  9161. if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
  9162. bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
  9163. EEE_MODE_ENABLE_LPI |
  9164. EEE_MODE_OUTPUT_TIME;
  9165. } else {
  9166. bp->link_params.eee_mode = 0;
  9167. }
  9168. }
  9169. void bnx2x_get_iscsi_info(struct bnx2x *bp)
  9170. {
  9171. u32 no_flags = NO_ISCSI_FLAG;
  9172. int port = BP_PORT(bp);
  9173. u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  9174. drv_lic_key[port].max_iscsi_conn);
  9175. if (!CNIC_SUPPORT(bp)) {
  9176. bp->flags |= no_flags;
  9177. return;
  9178. }
  9179. /* Get the number of maximum allowed iSCSI connections */
  9180. bp->cnic_eth_dev.max_iscsi_conn =
  9181. (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
  9182. BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
  9183. BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
  9184. bp->cnic_eth_dev.max_iscsi_conn);
  9185. /*
  9186. * If maximum allowed number of connections is zero -
  9187. * disable the feature.
  9188. */
  9189. if (!bp->cnic_eth_dev.max_iscsi_conn)
  9190. bp->flags |= no_flags;
  9191. }
  9192. static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
  9193. {
  9194. /* Port info */
  9195. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  9196. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
  9197. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  9198. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
  9199. /* Node info */
  9200. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  9201. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
  9202. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  9203. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
  9204. }
  9205. static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
  9206. {
  9207. u8 count = 0;
  9208. if (IS_MF(bp)) {
  9209. u8 fid;
  9210. /* iterate over absolute function ids for this path: */
  9211. for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
  9212. if (IS_MF_SD(bp)) {
  9213. u32 cfg = MF_CFG_RD(bp,
  9214. func_mf_config[fid].config);
  9215. if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
  9216. ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
  9217. FUNC_MF_CFG_PROTOCOL_FCOE))
  9218. count++;
  9219. } else {
  9220. u32 cfg = MF_CFG_RD(bp,
  9221. func_ext_config[fid].
  9222. func_cfg);
  9223. if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
  9224. (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
  9225. count++;
  9226. }
  9227. }
  9228. } else { /* SF */
  9229. int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
  9230. for (port = 0; port < port_cnt; port++) {
  9231. u32 lic = SHMEM_RD(bp,
  9232. drv_lic_key[port].max_fcoe_conn) ^
  9233. FW_ENCODE_32BIT_PATTERN;
  9234. if (lic)
  9235. count++;
  9236. }
  9237. }
  9238. return count;
  9239. }
  9240. static void bnx2x_get_fcoe_info(struct bnx2x *bp)
  9241. {
  9242. int port = BP_PORT(bp);
  9243. int func = BP_ABS_FUNC(bp);
  9244. u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  9245. drv_lic_key[port].max_fcoe_conn);
  9246. u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
  9247. if (!CNIC_SUPPORT(bp)) {
  9248. bp->flags |= NO_FCOE_FLAG;
  9249. return;
  9250. }
  9251. /* Get the number of maximum allowed FCoE connections */
  9252. bp->cnic_eth_dev.max_fcoe_conn =
  9253. (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
  9254. BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
  9255. /* Calculate the number of maximum allowed FCoE tasks */
  9256. bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
  9257. /* check if FCoE resources must be shared between different functions */
  9258. if (num_fcoe_func)
  9259. bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
  9260. /* Read the WWN: */
  9261. if (!IS_MF(bp)) {
  9262. /* Port info */
  9263. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  9264. SHMEM_RD(bp,
  9265. dev_info.port_hw_config[port].
  9266. fcoe_wwn_port_name_upper);
  9267. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  9268. SHMEM_RD(bp,
  9269. dev_info.port_hw_config[port].
  9270. fcoe_wwn_port_name_lower);
  9271. /* Node info */
  9272. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  9273. SHMEM_RD(bp,
  9274. dev_info.port_hw_config[port].
  9275. fcoe_wwn_node_name_upper);
  9276. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  9277. SHMEM_RD(bp,
  9278. dev_info.port_hw_config[port].
  9279. fcoe_wwn_node_name_lower);
  9280. } else if (!IS_MF_SD(bp)) {
  9281. /*
  9282. * Read the WWN info only if the FCoE feature is enabled for
  9283. * this function.
  9284. */
  9285. if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
  9286. bnx2x_get_ext_wwn_info(bp, func);
  9287. } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
  9288. bnx2x_get_ext_wwn_info(bp, func);
  9289. }
  9290. BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
  9291. /*
  9292. * If maximum allowed number of connections is zero -
  9293. * disable the feature.
  9294. */
  9295. if (!bp->cnic_eth_dev.max_fcoe_conn)
  9296. bp->flags |= NO_FCOE_FLAG;
  9297. }
  9298. static void bnx2x_get_cnic_info(struct bnx2x *bp)
  9299. {
  9300. /*
  9301. * iSCSI may be dynamically disabled but reading
  9302. * info here we will decrease memory usage by driver
  9303. * if the feature is disabled for good
  9304. */
  9305. bnx2x_get_iscsi_info(bp);
  9306. bnx2x_get_fcoe_info(bp);
  9307. }
  9308. static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
  9309. {
  9310. u32 val, val2;
  9311. int func = BP_ABS_FUNC(bp);
  9312. int port = BP_PORT(bp);
  9313. u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
  9314. u8 *fip_mac = bp->fip_mac;
  9315. if (IS_MF(bp)) {
  9316. /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
  9317. * FCoE MAC then the appropriate feature should be disabled.
  9318. * In non SD mode features configuration comes from struct
  9319. * func_ext_config.
  9320. */
  9321. if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
  9322. u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
  9323. if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
  9324. val2 = MF_CFG_RD(bp, func_ext_config[func].
  9325. iscsi_mac_addr_upper);
  9326. val = MF_CFG_RD(bp, func_ext_config[func].
  9327. iscsi_mac_addr_lower);
  9328. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  9329. BNX2X_DEV_INFO
  9330. ("Read iSCSI MAC: %pM\n", iscsi_mac);
  9331. } else {
  9332. bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
  9333. }
  9334. if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
  9335. val2 = MF_CFG_RD(bp, func_ext_config[func].
  9336. fcoe_mac_addr_upper);
  9337. val = MF_CFG_RD(bp, func_ext_config[func].
  9338. fcoe_mac_addr_lower);
  9339. bnx2x_set_mac_buf(fip_mac, val, val2);
  9340. BNX2X_DEV_INFO
  9341. ("Read FCoE L2 MAC: %pM\n", fip_mac);
  9342. } else {
  9343. bp->flags |= NO_FCOE_FLAG;
  9344. }
  9345. bp->mf_ext_config = cfg;
  9346. } else { /* SD MODE */
  9347. if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
  9348. /* use primary mac as iscsi mac */
  9349. memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
  9350. BNX2X_DEV_INFO("SD ISCSI MODE\n");
  9351. BNX2X_DEV_INFO
  9352. ("Read iSCSI MAC: %pM\n", iscsi_mac);
  9353. } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
  9354. /* use primary mac as fip mac */
  9355. memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
  9356. BNX2X_DEV_INFO("SD FCoE MODE\n");
  9357. BNX2X_DEV_INFO
  9358. ("Read FIP MAC: %pM\n", fip_mac);
  9359. }
  9360. }
  9361. /* If this is a storage-only interface, use SAN mac as
  9362. * primary MAC. Notice that for SD this is already the case,
  9363. * as the SAN mac was copied from the primary MAC.
  9364. */
  9365. if (IS_MF_FCOE_AFEX(bp))
  9366. memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
  9367. } else {
  9368. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  9369. iscsi_mac_upper);
  9370. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  9371. iscsi_mac_lower);
  9372. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  9373. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  9374. fcoe_fip_mac_upper);
  9375. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  9376. fcoe_fip_mac_lower);
  9377. bnx2x_set_mac_buf(fip_mac, val, val2);
  9378. }
  9379. /* Disable iSCSI OOO if MAC configuration is invalid. */
  9380. if (!is_valid_ether_addr(iscsi_mac)) {
  9381. bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
  9382. memset(iscsi_mac, 0, ETH_ALEN);
  9383. }
  9384. /* Disable FCoE if MAC configuration is invalid. */
  9385. if (!is_valid_ether_addr(fip_mac)) {
  9386. bp->flags |= NO_FCOE_FLAG;
  9387. memset(bp->fip_mac, 0, ETH_ALEN);
  9388. }
  9389. }
  9390. static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
  9391. {
  9392. u32 val, val2;
  9393. int func = BP_ABS_FUNC(bp);
  9394. int port = BP_PORT(bp);
  9395. /* Zero primary MAC configuration */
  9396. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  9397. if (BP_NOMCP(bp)) {
  9398. BNX2X_ERROR("warning: random MAC workaround active\n");
  9399. eth_hw_addr_random(bp->dev);
  9400. } else if (IS_MF(bp)) {
  9401. val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
  9402. val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
  9403. if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
  9404. (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
  9405. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  9406. if (CNIC_SUPPORT(bp))
  9407. bnx2x_get_cnic_mac_hwinfo(bp);
  9408. } else {
  9409. /* in SF read MACs from port configuration */
  9410. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
  9411. val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
  9412. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  9413. if (CNIC_SUPPORT(bp))
  9414. bnx2x_get_cnic_mac_hwinfo(bp);
  9415. }
  9416. if (!BP_NOMCP(bp)) {
  9417. /* Read physical port identifier from shmem */
  9418. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
  9419. val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
  9420. bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
  9421. bp->flags |= HAS_PHYS_PORT_ID;
  9422. }
  9423. memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
  9424. if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
  9425. dev_err(&bp->pdev->dev,
  9426. "bad Ethernet MAC address configuration: %pM\n"
  9427. "change it manually before bringing up the appropriate network interface\n",
  9428. bp->dev->dev_addr);
  9429. }
  9430. static bool bnx2x_get_dropless_info(struct bnx2x *bp)
  9431. {
  9432. int tmp;
  9433. u32 cfg;
  9434. if (IS_VF(bp))
  9435. return 0;
  9436. if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
  9437. /* Take function: tmp = func */
  9438. tmp = BP_ABS_FUNC(bp);
  9439. cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
  9440. cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
  9441. } else {
  9442. /* Take port: tmp = port */
  9443. tmp = BP_PORT(bp);
  9444. cfg = SHMEM_RD(bp,
  9445. dev_info.port_hw_config[tmp].generic_features);
  9446. cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
  9447. }
  9448. return cfg;
  9449. }
  9450. static int bnx2x_get_hwinfo(struct bnx2x *bp)
  9451. {
  9452. int /*abs*/func = BP_ABS_FUNC(bp);
  9453. int vn;
  9454. u32 val = 0;
  9455. int rc = 0;
  9456. bnx2x_get_common_hwinfo(bp);
  9457. /*
  9458. * initialize IGU parameters
  9459. */
  9460. if (CHIP_IS_E1x(bp)) {
  9461. bp->common.int_block = INT_BLOCK_HC;
  9462. bp->igu_dsb_id = DEF_SB_IGU_ID;
  9463. bp->igu_base_sb = 0;
  9464. } else {
  9465. bp->common.int_block = INT_BLOCK_IGU;
  9466. /* do not allow device reset during IGU info processing */
  9467. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  9468. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  9469. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  9470. int tout = 5000;
  9471. BNX2X_DEV_INFO("FORCING Normal Mode\n");
  9472. val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
  9473. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
  9474. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
  9475. while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  9476. tout--;
  9477. usleep_range(1000, 2000);
  9478. }
  9479. if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  9480. dev_err(&bp->pdev->dev,
  9481. "FORCING Normal Mode failed!!!\n");
  9482. bnx2x_release_hw_lock(bp,
  9483. HW_LOCK_RESOURCE_RESET);
  9484. return -EPERM;
  9485. }
  9486. }
  9487. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  9488. BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
  9489. bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
  9490. } else
  9491. BNX2X_DEV_INFO("IGU Normal Mode\n");
  9492. rc = bnx2x_get_igu_cam_info(bp);
  9493. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  9494. if (rc)
  9495. return rc;
  9496. }
  9497. /*
  9498. * set base FW non-default (fast path) status block id, this value is
  9499. * used to initialize the fw_sb_id saved on the fp/queue structure to
  9500. * determine the id used by the FW.
  9501. */
  9502. if (CHIP_IS_E1x(bp))
  9503. bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
  9504. else /*
  9505. * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
  9506. * the same queue are indicated on the same IGU SB). So we prefer
  9507. * FW and IGU SBs to be the same value.
  9508. */
  9509. bp->base_fw_ndsb = bp->igu_base_sb;
  9510. BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
  9511. "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
  9512. bp->igu_sb_cnt, bp->base_fw_ndsb);
  9513. /*
  9514. * Initialize MF configuration
  9515. */
  9516. bp->mf_ov = 0;
  9517. bp->mf_mode = 0;
  9518. vn = BP_VN(bp);
  9519. if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
  9520. BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
  9521. bp->common.shmem2_base, SHMEM2_RD(bp, size),
  9522. (u32)offsetof(struct shmem2_region, mf_cfg_addr));
  9523. if (SHMEM2_HAS(bp, mf_cfg_addr))
  9524. bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
  9525. else
  9526. bp->common.mf_cfg_base = bp->common.shmem_base +
  9527. offsetof(struct shmem_region, func_mb) +
  9528. E1H_FUNC_MAX * sizeof(struct drv_func_mb);
  9529. /*
  9530. * get mf configuration:
  9531. * 1. Existence of MF configuration
  9532. * 2. MAC address must be legal (check only upper bytes)
  9533. * for Switch-Independent mode;
  9534. * OVLAN must be legal for Switch-Dependent mode
  9535. * 3. SF_MODE configures specific MF mode
  9536. */
  9537. if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  9538. /* get mf configuration */
  9539. val = SHMEM_RD(bp,
  9540. dev_info.shared_feature_config.config);
  9541. val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
  9542. switch (val) {
  9543. case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
  9544. val = MF_CFG_RD(bp, func_mf_config[func].
  9545. mac_upper);
  9546. /* check for legal mac (upper bytes)*/
  9547. if (val != 0xffff) {
  9548. bp->mf_mode = MULTI_FUNCTION_SI;
  9549. bp->mf_config[vn] = MF_CFG_RD(bp,
  9550. func_mf_config[func].config);
  9551. } else
  9552. BNX2X_DEV_INFO("illegal MAC address for SI\n");
  9553. break;
  9554. case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
  9555. if ((!CHIP_IS_E1x(bp)) &&
  9556. (MF_CFG_RD(bp, func_mf_config[func].
  9557. mac_upper) != 0xffff) &&
  9558. (SHMEM2_HAS(bp,
  9559. afex_driver_support))) {
  9560. bp->mf_mode = MULTI_FUNCTION_AFEX;
  9561. bp->mf_config[vn] = MF_CFG_RD(bp,
  9562. func_mf_config[func].config);
  9563. } else {
  9564. BNX2X_DEV_INFO("can not configure afex mode\n");
  9565. }
  9566. break;
  9567. case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
  9568. /* get OV configuration */
  9569. val = MF_CFG_RD(bp,
  9570. func_mf_config[FUNC_0].e1hov_tag);
  9571. val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
  9572. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  9573. bp->mf_mode = MULTI_FUNCTION_SD;
  9574. bp->mf_config[vn] = MF_CFG_RD(bp,
  9575. func_mf_config[func].config);
  9576. } else
  9577. BNX2X_DEV_INFO("illegal OV for SD\n");
  9578. break;
  9579. case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
  9580. bp->mf_config[vn] = 0;
  9581. break;
  9582. default:
  9583. /* Unknown configuration: reset mf_config */
  9584. bp->mf_config[vn] = 0;
  9585. BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
  9586. }
  9587. }
  9588. BNX2X_DEV_INFO("%s function mode\n",
  9589. IS_MF(bp) ? "multi" : "single");
  9590. switch (bp->mf_mode) {
  9591. case MULTI_FUNCTION_SD:
  9592. val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  9593. FUNC_MF_CFG_E1HOV_TAG_MASK;
  9594. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  9595. bp->mf_ov = val;
  9596. bp->path_has_ovlan = true;
  9597. BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
  9598. func, bp->mf_ov, bp->mf_ov);
  9599. } else {
  9600. dev_err(&bp->pdev->dev,
  9601. "No valid MF OV for func %d, aborting\n",
  9602. func);
  9603. return -EPERM;
  9604. }
  9605. break;
  9606. case MULTI_FUNCTION_AFEX:
  9607. BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
  9608. break;
  9609. case MULTI_FUNCTION_SI:
  9610. BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
  9611. func);
  9612. break;
  9613. default:
  9614. if (vn) {
  9615. dev_err(&bp->pdev->dev,
  9616. "VN %d is in a single function mode, aborting\n",
  9617. vn);
  9618. return -EPERM;
  9619. }
  9620. break;
  9621. }
  9622. /* check if other port on the path needs ovlan:
  9623. * Since MF configuration is shared between ports
  9624. * Possible mixed modes are only
  9625. * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
  9626. */
  9627. if (CHIP_MODE_IS_4_PORT(bp) &&
  9628. !bp->path_has_ovlan &&
  9629. !IS_MF(bp) &&
  9630. bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  9631. u8 other_port = !BP_PORT(bp);
  9632. u8 other_func = BP_PATH(bp) + 2*other_port;
  9633. val = MF_CFG_RD(bp,
  9634. func_mf_config[other_func].e1hov_tag);
  9635. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
  9636. bp->path_has_ovlan = true;
  9637. }
  9638. }
  9639. /* adjust igu_sb_cnt to MF for E1x */
  9640. if (CHIP_IS_E1x(bp) && IS_MF(bp))
  9641. bp->igu_sb_cnt /= E1HVN_MAX;
  9642. /* port info */
  9643. bnx2x_get_port_hwinfo(bp);
  9644. /* Get MAC addresses */
  9645. bnx2x_get_mac_hwinfo(bp);
  9646. bnx2x_get_cnic_info(bp);
  9647. return rc;
  9648. }
  9649. static void bnx2x_read_fwinfo(struct bnx2x *bp)
  9650. {
  9651. int cnt, i, block_end, rodi;
  9652. char vpd_start[BNX2X_VPD_LEN+1];
  9653. char str_id_reg[VENDOR_ID_LEN+1];
  9654. char str_id_cap[VENDOR_ID_LEN+1];
  9655. char *vpd_data;
  9656. char *vpd_extended_data = NULL;
  9657. u8 len;
  9658. cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
  9659. memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
  9660. if (cnt < BNX2X_VPD_LEN)
  9661. goto out_not_found;
  9662. /* VPD RO tag should be first tag after identifier string, hence
  9663. * we should be able to find it in first BNX2X_VPD_LEN chars
  9664. */
  9665. i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
  9666. PCI_VPD_LRDT_RO_DATA);
  9667. if (i < 0)
  9668. goto out_not_found;
  9669. block_end = i + PCI_VPD_LRDT_TAG_SIZE +
  9670. pci_vpd_lrdt_size(&vpd_start[i]);
  9671. i += PCI_VPD_LRDT_TAG_SIZE;
  9672. if (block_end > BNX2X_VPD_LEN) {
  9673. vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
  9674. if (vpd_extended_data == NULL)
  9675. goto out_not_found;
  9676. /* read rest of vpd image into vpd_extended_data */
  9677. memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
  9678. cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
  9679. block_end - BNX2X_VPD_LEN,
  9680. vpd_extended_data + BNX2X_VPD_LEN);
  9681. if (cnt < (block_end - BNX2X_VPD_LEN))
  9682. goto out_not_found;
  9683. vpd_data = vpd_extended_data;
  9684. } else
  9685. vpd_data = vpd_start;
  9686. /* now vpd_data holds full vpd content in both cases */
  9687. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  9688. PCI_VPD_RO_KEYWORD_MFR_ID);
  9689. if (rodi < 0)
  9690. goto out_not_found;
  9691. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  9692. if (len != VENDOR_ID_LEN)
  9693. goto out_not_found;
  9694. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  9695. /* vendor specific info */
  9696. snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
  9697. snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
  9698. if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
  9699. !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
  9700. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  9701. PCI_VPD_RO_KEYWORD_VENDOR0);
  9702. if (rodi >= 0) {
  9703. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  9704. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  9705. if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
  9706. memcpy(bp->fw_ver, &vpd_data[rodi], len);
  9707. bp->fw_ver[len] = ' ';
  9708. }
  9709. }
  9710. kfree(vpd_extended_data);
  9711. return;
  9712. }
  9713. out_not_found:
  9714. kfree(vpd_extended_data);
  9715. return;
  9716. }
  9717. static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
  9718. {
  9719. u32 flags = 0;
  9720. if (CHIP_REV_IS_FPGA(bp))
  9721. SET_FLAGS(flags, MODE_FPGA);
  9722. else if (CHIP_REV_IS_EMUL(bp))
  9723. SET_FLAGS(flags, MODE_EMUL);
  9724. else
  9725. SET_FLAGS(flags, MODE_ASIC);
  9726. if (CHIP_MODE_IS_4_PORT(bp))
  9727. SET_FLAGS(flags, MODE_PORT4);
  9728. else
  9729. SET_FLAGS(flags, MODE_PORT2);
  9730. if (CHIP_IS_E2(bp))
  9731. SET_FLAGS(flags, MODE_E2);
  9732. else if (CHIP_IS_E3(bp)) {
  9733. SET_FLAGS(flags, MODE_E3);
  9734. if (CHIP_REV(bp) == CHIP_REV_Ax)
  9735. SET_FLAGS(flags, MODE_E3_A0);
  9736. else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
  9737. SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
  9738. }
  9739. if (IS_MF(bp)) {
  9740. SET_FLAGS(flags, MODE_MF);
  9741. switch (bp->mf_mode) {
  9742. case MULTI_FUNCTION_SD:
  9743. SET_FLAGS(flags, MODE_MF_SD);
  9744. break;
  9745. case MULTI_FUNCTION_SI:
  9746. SET_FLAGS(flags, MODE_MF_SI);
  9747. break;
  9748. case MULTI_FUNCTION_AFEX:
  9749. SET_FLAGS(flags, MODE_MF_AFEX);
  9750. break;
  9751. }
  9752. } else
  9753. SET_FLAGS(flags, MODE_SF);
  9754. #if defined(__LITTLE_ENDIAN)
  9755. SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
  9756. #else /*(__BIG_ENDIAN)*/
  9757. SET_FLAGS(flags, MODE_BIG_ENDIAN);
  9758. #endif
  9759. INIT_MODE_FLAGS(bp) = flags;
  9760. }
  9761. static int bnx2x_init_bp(struct bnx2x *bp)
  9762. {
  9763. int func;
  9764. int rc;
  9765. mutex_init(&bp->port.phy_mutex);
  9766. mutex_init(&bp->fw_mb_mutex);
  9767. spin_lock_init(&bp->stats_lock);
  9768. sema_init(&bp->stats_sema, 1);
  9769. INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
  9770. INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
  9771. INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
  9772. if (IS_PF(bp)) {
  9773. rc = bnx2x_get_hwinfo(bp);
  9774. if (rc)
  9775. return rc;
  9776. } else {
  9777. eth_zero_addr(bp->dev->dev_addr);
  9778. }
  9779. bnx2x_set_modes_bitmap(bp);
  9780. rc = bnx2x_alloc_mem_bp(bp);
  9781. if (rc)
  9782. return rc;
  9783. bnx2x_read_fwinfo(bp);
  9784. func = BP_FUNC(bp);
  9785. /* need to reset chip if undi was active */
  9786. if (IS_PF(bp) && !BP_NOMCP(bp)) {
  9787. /* init fw_seq */
  9788. bp->fw_seq =
  9789. SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
  9790. DRV_MSG_SEQ_NUMBER_MASK;
  9791. BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
  9792. bnx2x_prev_unload(bp);
  9793. }
  9794. if (CHIP_REV_IS_FPGA(bp))
  9795. dev_err(&bp->pdev->dev, "FPGA detected\n");
  9796. if (BP_NOMCP(bp) && (func == 0))
  9797. dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
  9798. bp->disable_tpa = disable_tpa;
  9799. bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
  9800. /* Set TPA flags */
  9801. if (bp->disable_tpa) {
  9802. bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
  9803. bp->dev->features &= ~NETIF_F_LRO;
  9804. } else {
  9805. bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
  9806. bp->dev->features |= NETIF_F_LRO;
  9807. }
  9808. if (CHIP_IS_E1(bp))
  9809. bp->dropless_fc = 0;
  9810. else
  9811. bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
  9812. bp->mrrs = mrrs;
  9813. bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
  9814. if (IS_VF(bp))
  9815. bp->rx_ring_size = MAX_RX_AVAIL;
  9816. /* make sure that the numbers are in the right granularity */
  9817. bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
  9818. bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
  9819. bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
  9820. init_timer(&bp->timer);
  9821. bp->timer.expires = jiffies + bp->current_interval;
  9822. bp->timer.data = (unsigned long) bp;
  9823. bp->timer.function = bnx2x_timer;
  9824. if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
  9825. SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
  9826. SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
  9827. SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
  9828. bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
  9829. bnx2x_dcbx_init_params(bp);
  9830. } else {
  9831. bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
  9832. }
  9833. if (CHIP_IS_E1x(bp))
  9834. bp->cnic_base_cl_id = FP_SB_MAX_E1x;
  9835. else
  9836. bp->cnic_base_cl_id = FP_SB_MAX_E2;
  9837. /* multiple tx priority */
  9838. if (IS_VF(bp))
  9839. bp->max_cos = 1;
  9840. else if (CHIP_IS_E1x(bp))
  9841. bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
  9842. else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
  9843. bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
  9844. else if (CHIP_IS_E3B0(bp))
  9845. bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
  9846. else
  9847. BNX2X_ERR("unknown chip %x revision %x\n",
  9848. CHIP_NUM(bp), CHIP_REV(bp));
  9849. BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
  9850. /* We need at least one default status block for slow-path events,
  9851. * second status block for the L2 queue, and a third status block for
  9852. * CNIC if supported.
  9853. */
  9854. if (IS_VF(bp))
  9855. bp->min_msix_vec_cnt = 1;
  9856. else if (CNIC_SUPPORT(bp))
  9857. bp->min_msix_vec_cnt = 3;
  9858. else /* PF w/o cnic */
  9859. bp->min_msix_vec_cnt = 2;
  9860. BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
  9861. bp->dump_preset_idx = 1;
  9862. return rc;
  9863. }
  9864. /****************************************************************************
  9865. * General service functions
  9866. ****************************************************************************/
  9867. /*
  9868. * net_device service functions
  9869. */
  9870. /* called with rtnl_lock */
  9871. static int bnx2x_open(struct net_device *dev)
  9872. {
  9873. struct bnx2x *bp = netdev_priv(dev);
  9874. int rc;
  9875. bp->stats_init = true;
  9876. netif_carrier_off(dev);
  9877. bnx2x_set_power_state(bp, PCI_D0);
  9878. /* If parity had happen during the unload, then attentions
  9879. * and/or RECOVERY_IN_PROGRES may still be set. In this case we
  9880. * want the first function loaded on the current engine to
  9881. * complete the recovery.
  9882. * Parity recovery is only relevant for PF driver.
  9883. */
  9884. if (IS_PF(bp)) {
  9885. int other_engine = BP_PATH(bp) ? 0 : 1;
  9886. bool other_load_status, load_status;
  9887. bool global = false;
  9888. other_load_status = bnx2x_get_load_status(bp, other_engine);
  9889. load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
  9890. if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
  9891. bnx2x_chk_parity_attn(bp, &global, true)) {
  9892. do {
  9893. /* If there are attentions and they are in a
  9894. * global blocks, set the GLOBAL_RESET bit
  9895. * regardless whether it will be this function
  9896. * that will complete the recovery or not.
  9897. */
  9898. if (global)
  9899. bnx2x_set_reset_global(bp);
  9900. /* Only the first function on the current
  9901. * engine should try to recover in open. In case
  9902. * of attentions in global blocks only the first
  9903. * in the chip should try to recover.
  9904. */
  9905. if ((!load_status &&
  9906. (!global || !other_load_status)) &&
  9907. bnx2x_trylock_leader_lock(bp) &&
  9908. !bnx2x_leader_reset(bp)) {
  9909. netdev_info(bp->dev,
  9910. "Recovered in open\n");
  9911. break;
  9912. }
  9913. /* recovery has failed... */
  9914. bnx2x_set_power_state(bp, PCI_D3hot);
  9915. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  9916. BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
  9917. "If you still see this message after a few retries then power cycle is required.\n");
  9918. return -EAGAIN;
  9919. } while (0);
  9920. }
  9921. }
  9922. bp->recovery_state = BNX2X_RECOVERY_DONE;
  9923. rc = bnx2x_nic_load(bp, LOAD_OPEN);
  9924. if (rc)
  9925. return rc;
  9926. return 0;
  9927. }
  9928. /* called with rtnl_lock */
  9929. static int bnx2x_close(struct net_device *dev)
  9930. {
  9931. struct bnx2x *bp = netdev_priv(dev);
  9932. /* Unload the driver, release IRQs */
  9933. bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
  9934. return 0;
  9935. }
  9936. static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
  9937. struct bnx2x_mcast_ramrod_params *p)
  9938. {
  9939. int mc_count = netdev_mc_count(bp->dev);
  9940. struct bnx2x_mcast_list_elem *mc_mac =
  9941. kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
  9942. struct netdev_hw_addr *ha;
  9943. if (!mc_mac)
  9944. return -ENOMEM;
  9945. INIT_LIST_HEAD(&p->mcast_list);
  9946. netdev_for_each_mc_addr(ha, bp->dev) {
  9947. mc_mac->mac = bnx2x_mc_addr(ha);
  9948. list_add_tail(&mc_mac->link, &p->mcast_list);
  9949. mc_mac++;
  9950. }
  9951. p->mcast_list_len = mc_count;
  9952. return 0;
  9953. }
  9954. static void bnx2x_free_mcast_macs_list(
  9955. struct bnx2x_mcast_ramrod_params *p)
  9956. {
  9957. struct bnx2x_mcast_list_elem *mc_mac =
  9958. list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
  9959. link);
  9960. WARN_ON(!mc_mac);
  9961. kfree(mc_mac);
  9962. }
  9963. /**
  9964. * bnx2x_set_uc_list - configure a new unicast MACs list.
  9965. *
  9966. * @bp: driver handle
  9967. *
  9968. * We will use zero (0) as a MAC type for these MACs.
  9969. */
  9970. static int bnx2x_set_uc_list(struct bnx2x *bp)
  9971. {
  9972. int rc;
  9973. struct net_device *dev = bp->dev;
  9974. struct netdev_hw_addr *ha;
  9975. struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
  9976. unsigned long ramrod_flags = 0;
  9977. /* First schedule a cleanup up of old configuration */
  9978. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
  9979. if (rc < 0) {
  9980. BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
  9981. return rc;
  9982. }
  9983. netdev_for_each_uc_addr(ha, dev) {
  9984. rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
  9985. BNX2X_UC_LIST_MAC, &ramrod_flags);
  9986. if (rc == -EEXIST) {
  9987. DP(BNX2X_MSG_SP,
  9988. "Failed to schedule ADD operations: %d\n", rc);
  9989. /* do not treat adding same MAC as error */
  9990. rc = 0;
  9991. } else if (rc < 0) {
  9992. BNX2X_ERR("Failed to schedule ADD operations: %d\n",
  9993. rc);
  9994. return rc;
  9995. }
  9996. }
  9997. /* Execute the pending commands */
  9998. __set_bit(RAMROD_CONT, &ramrod_flags);
  9999. return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
  10000. BNX2X_UC_LIST_MAC, &ramrod_flags);
  10001. }
  10002. static int bnx2x_set_mc_list(struct bnx2x *bp)
  10003. {
  10004. struct net_device *dev = bp->dev;
  10005. struct bnx2x_mcast_ramrod_params rparam = {NULL};
  10006. int rc = 0;
  10007. rparam.mcast_obj = &bp->mcast_obj;
  10008. /* first, clear all configured multicast MACs */
  10009. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  10010. if (rc < 0) {
  10011. BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
  10012. return rc;
  10013. }
  10014. /* then, configure a new MACs list */
  10015. if (netdev_mc_count(dev)) {
  10016. rc = bnx2x_init_mcast_macs_list(bp, &rparam);
  10017. if (rc) {
  10018. BNX2X_ERR("Failed to create multicast MACs list: %d\n",
  10019. rc);
  10020. return rc;
  10021. }
  10022. /* Now add the new MACs */
  10023. rc = bnx2x_config_mcast(bp, &rparam,
  10024. BNX2X_MCAST_CMD_ADD);
  10025. if (rc < 0)
  10026. BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
  10027. rc);
  10028. bnx2x_free_mcast_macs_list(&rparam);
  10029. }
  10030. return rc;
  10031. }
  10032. /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
  10033. void bnx2x_set_rx_mode(struct net_device *dev)
  10034. {
  10035. struct bnx2x *bp = netdev_priv(dev);
  10036. if (bp->state != BNX2X_STATE_OPEN) {
  10037. DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
  10038. return;
  10039. } else {
  10040. /* Schedule an SP task to handle rest of change */
  10041. DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
  10042. smp_mb__before_clear_bit();
  10043. set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
  10044. smp_mb__after_clear_bit();
  10045. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  10046. }
  10047. }
  10048. void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
  10049. {
  10050. u32 rx_mode = BNX2X_RX_MODE_NORMAL;
  10051. DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
  10052. netif_addr_lock_bh(bp->dev);
  10053. if (bp->dev->flags & IFF_PROMISC) {
  10054. rx_mode = BNX2X_RX_MODE_PROMISC;
  10055. } else if ((bp->dev->flags & IFF_ALLMULTI) ||
  10056. ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
  10057. CHIP_IS_E1(bp))) {
  10058. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  10059. } else {
  10060. if (IS_PF(bp)) {
  10061. /* some multicasts */
  10062. if (bnx2x_set_mc_list(bp) < 0)
  10063. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  10064. /* release bh lock, as bnx2x_set_uc_list might sleep */
  10065. netif_addr_unlock_bh(bp->dev);
  10066. if (bnx2x_set_uc_list(bp) < 0)
  10067. rx_mode = BNX2X_RX_MODE_PROMISC;
  10068. netif_addr_lock_bh(bp->dev);
  10069. } else {
  10070. /* configuring mcast to a vf involves sleeping (when we
  10071. * wait for the pf's response).
  10072. */
  10073. smp_mb__before_clear_bit();
  10074. set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
  10075. &bp->sp_rtnl_state);
  10076. smp_mb__after_clear_bit();
  10077. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  10078. }
  10079. }
  10080. bp->rx_mode = rx_mode;
  10081. /* handle ISCSI SD mode */
  10082. if (IS_MF_ISCSI_SD(bp))
  10083. bp->rx_mode = BNX2X_RX_MODE_NONE;
  10084. /* Schedule the rx_mode command */
  10085. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
  10086. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  10087. netif_addr_unlock_bh(bp->dev);
  10088. return;
  10089. }
  10090. if (IS_PF(bp)) {
  10091. bnx2x_set_storm_rx_mode(bp);
  10092. netif_addr_unlock_bh(bp->dev);
  10093. } else {
  10094. /* VF will need to request the PF to make this change, and so
  10095. * the VF needs to release the bottom-half lock prior to the
  10096. * request (as it will likely require sleep on the VF side)
  10097. */
  10098. netif_addr_unlock_bh(bp->dev);
  10099. bnx2x_vfpf_storm_rx_mode(bp);
  10100. }
  10101. }
  10102. /* called with rtnl_lock */
  10103. static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
  10104. int devad, u16 addr)
  10105. {
  10106. struct bnx2x *bp = netdev_priv(netdev);
  10107. u16 value;
  10108. int rc;
  10109. DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
  10110. prtad, devad, addr);
  10111. /* The HW expects different devad if CL22 is used */
  10112. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  10113. bnx2x_acquire_phy_lock(bp);
  10114. rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
  10115. bnx2x_release_phy_lock(bp);
  10116. DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
  10117. if (!rc)
  10118. rc = value;
  10119. return rc;
  10120. }
  10121. /* called with rtnl_lock */
  10122. static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
  10123. u16 addr, u16 value)
  10124. {
  10125. struct bnx2x *bp = netdev_priv(netdev);
  10126. int rc;
  10127. DP(NETIF_MSG_LINK,
  10128. "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
  10129. prtad, devad, addr, value);
  10130. /* The HW expects different devad if CL22 is used */
  10131. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  10132. bnx2x_acquire_phy_lock(bp);
  10133. rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
  10134. bnx2x_release_phy_lock(bp);
  10135. return rc;
  10136. }
  10137. /* called with rtnl_lock */
  10138. static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  10139. {
  10140. struct bnx2x *bp = netdev_priv(dev);
  10141. struct mii_ioctl_data *mdio = if_mii(ifr);
  10142. DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
  10143. mdio->phy_id, mdio->reg_num, mdio->val_in);
  10144. if (!netif_running(dev))
  10145. return -EAGAIN;
  10146. return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
  10147. }
  10148. #ifdef CONFIG_NET_POLL_CONTROLLER
  10149. static void poll_bnx2x(struct net_device *dev)
  10150. {
  10151. struct bnx2x *bp = netdev_priv(dev);
  10152. int i;
  10153. for_each_eth_queue(bp, i) {
  10154. struct bnx2x_fastpath *fp = &bp->fp[i];
  10155. napi_schedule(&bnx2x_fp(bp, fp->index, napi));
  10156. }
  10157. }
  10158. #endif
  10159. static int bnx2x_validate_addr(struct net_device *dev)
  10160. {
  10161. struct bnx2x *bp = netdev_priv(dev);
  10162. /* query the bulletin board for mac address configured by the PF */
  10163. if (IS_VF(bp))
  10164. bnx2x_sample_bulletin(bp);
  10165. if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
  10166. BNX2X_ERR("Non-valid Ethernet address\n");
  10167. return -EADDRNOTAVAIL;
  10168. }
  10169. return 0;
  10170. }
  10171. static int bnx2x_get_phys_port_id(struct net_device *netdev,
  10172. struct netdev_phys_port_id *ppid)
  10173. {
  10174. struct bnx2x *bp = netdev_priv(netdev);
  10175. if (!(bp->flags & HAS_PHYS_PORT_ID))
  10176. return -EOPNOTSUPP;
  10177. ppid->id_len = sizeof(bp->phys_port_id);
  10178. memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
  10179. return 0;
  10180. }
  10181. static const struct net_device_ops bnx2x_netdev_ops = {
  10182. .ndo_open = bnx2x_open,
  10183. .ndo_stop = bnx2x_close,
  10184. .ndo_start_xmit = bnx2x_start_xmit,
  10185. .ndo_select_queue = bnx2x_select_queue,
  10186. .ndo_set_rx_mode = bnx2x_set_rx_mode,
  10187. .ndo_set_mac_address = bnx2x_change_mac_addr,
  10188. .ndo_validate_addr = bnx2x_validate_addr,
  10189. .ndo_do_ioctl = bnx2x_ioctl,
  10190. .ndo_change_mtu = bnx2x_change_mtu,
  10191. .ndo_fix_features = bnx2x_fix_features,
  10192. .ndo_set_features = bnx2x_set_features,
  10193. .ndo_tx_timeout = bnx2x_tx_timeout,
  10194. #ifdef CONFIG_NET_POLL_CONTROLLER
  10195. .ndo_poll_controller = poll_bnx2x,
  10196. #endif
  10197. .ndo_setup_tc = bnx2x_setup_tc,
  10198. #ifdef CONFIG_BNX2X_SRIOV
  10199. .ndo_set_vf_mac = bnx2x_set_vf_mac,
  10200. .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
  10201. .ndo_get_vf_config = bnx2x_get_vf_config,
  10202. #endif
  10203. #ifdef NETDEV_FCOE_WWNN
  10204. .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
  10205. #endif
  10206. #ifdef CONFIG_NET_RX_BUSY_POLL
  10207. .ndo_busy_poll = bnx2x_low_latency_recv,
  10208. #endif
  10209. .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
  10210. };
  10211. static int bnx2x_set_coherency_mask(struct bnx2x *bp)
  10212. {
  10213. struct device *dev = &bp->pdev->dev;
  10214. if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
  10215. if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
  10216. dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
  10217. return -EIO;
  10218. }
  10219. } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
  10220. dev_err(dev, "System does not support DMA, aborting\n");
  10221. return -EIO;
  10222. }
  10223. return 0;
  10224. }
  10225. static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
  10226. struct net_device *dev, unsigned long board_type)
  10227. {
  10228. int rc;
  10229. u32 pci_cfg_dword;
  10230. bool chip_is_e1x = (board_type == BCM57710 ||
  10231. board_type == BCM57711 ||
  10232. board_type == BCM57711E);
  10233. SET_NETDEV_DEV(dev, &pdev->dev);
  10234. bp->dev = dev;
  10235. bp->pdev = pdev;
  10236. rc = pci_enable_device(pdev);
  10237. if (rc) {
  10238. dev_err(&bp->pdev->dev,
  10239. "Cannot enable PCI device, aborting\n");
  10240. goto err_out;
  10241. }
  10242. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  10243. dev_err(&bp->pdev->dev,
  10244. "Cannot find PCI device base address, aborting\n");
  10245. rc = -ENODEV;
  10246. goto err_out_disable;
  10247. }
  10248. if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  10249. dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
  10250. rc = -ENODEV;
  10251. goto err_out_disable;
  10252. }
  10253. pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
  10254. if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
  10255. PCICFG_REVESION_ID_ERROR_VAL) {
  10256. pr_err("PCI device error, probably due to fan failure, aborting\n");
  10257. rc = -ENODEV;
  10258. goto err_out_disable;
  10259. }
  10260. if (atomic_read(&pdev->enable_cnt) == 1) {
  10261. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  10262. if (rc) {
  10263. dev_err(&bp->pdev->dev,
  10264. "Cannot obtain PCI resources, aborting\n");
  10265. goto err_out_disable;
  10266. }
  10267. pci_set_master(pdev);
  10268. pci_save_state(pdev);
  10269. }
  10270. if (IS_PF(bp)) {
  10271. if (!pdev->pm_cap) {
  10272. dev_err(&bp->pdev->dev,
  10273. "Cannot find power management capability, aborting\n");
  10274. rc = -EIO;
  10275. goto err_out_release;
  10276. }
  10277. }
  10278. if (!pci_is_pcie(pdev)) {
  10279. dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
  10280. rc = -EIO;
  10281. goto err_out_release;
  10282. }
  10283. rc = bnx2x_set_coherency_mask(bp);
  10284. if (rc)
  10285. goto err_out_release;
  10286. dev->mem_start = pci_resource_start(pdev, 0);
  10287. dev->base_addr = dev->mem_start;
  10288. dev->mem_end = pci_resource_end(pdev, 0);
  10289. dev->irq = pdev->irq;
  10290. bp->regview = pci_ioremap_bar(pdev, 0);
  10291. if (!bp->regview) {
  10292. dev_err(&bp->pdev->dev,
  10293. "Cannot map register space, aborting\n");
  10294. rc = -ENOMEM;
  10295. goto err_out_release;
  10296. }
  10297. /* In E1/E1H use pci device function given by kernel.
  10298. * In E2/E3 read physical function from ME register since these chips
  10299. * support Physical Device Assignment where kernel BDF maybe arbitrary
  10300. * (depending on hypervisor).
  10301. */
  10302. if (chip_is_e1x) {
  10303. bp->pf_num = PCI_FUNC(pdev->devfn);
  10304. } else {
  10305. /* chip is E2/3*/
  10306. pci_read_config_dword(bp->pdev,
  10307. PCICFG_ME_REGISTER, &pci_cfg_dword);
  10308. bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
  10309. ME_REG_ABS_PF_NUM_SHIFT);
  10310. }
  10311. BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
  10312. /* clean indirect addresses */
  10313. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  10314. PCICFG_VENDOR_ID_OFFSET);
  10315. /*
  10316. * Clean the following indirect addresses for all functions since it
  10317. * is not used by the driver.
  10318. */
  10319. if (IS_PF(bp)) {
  10320. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
  10321. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
  10322. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
  10323. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
  10324. if (chip_is_e1x) {
  10325. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
  10326. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
  10327. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
  10328. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
  10329. }
  10330. /* Enable internal target-read (in case we are probed after PF
  10331. * FLR). Must be done prior to any BAR read access. Only for
  10332. * 57712 and up
  10333. */
  10334. if (!chip_is_e1x)
  10335. REG_WR(bp,
  10336. PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  10337. }
  10338. dev->watchdog_timeo = TX_TIMEOUT;
  10339. dev->netdev_ops = &bnx2x_netdev_ops;
  10340. bnx2x_set_ethtool_ops(bp, dev);
  10341. dev->priv_flags |= IFF_UNICAST_FLT;
  10342. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  10343. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
  10344. NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
  10345. NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
  10346. if (!CHIP_IS_E1x(bp)) {
  10347. dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
  10348. NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
  10349. dev->hw_enc_features =
  10350. NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
  10351. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
  10352. NETIF_F_GSO_IPIP |
  10353. NETIF_F_GSO_SIT |
  10354. NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
  10355. }
  10356. dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  10357. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
  10358. dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
  10359. dev->features |= NETIF_F_HIGHDMA;
  10360. /* Add Loopback capability to the device */
  10361. dev->hw_features |= NETIF_F_LOOPBACK;
  10362. #ifdef BCM_DCBNL
  10363. dev->dcbnl_ops = &bnx2x_dcbnl_ops;
  10364. #endif
  10365. /* get_port_hwinfo() will set prtad and mmds properly */
  10366. bp->mdio.prtad = MDIO_PRTAD_NONE;
  10367. bp->mdio.mmds = 0;
  10368. bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  10369. bp->mdio.dev = dev;
  10370. bp->mdio.mdio_read = bnx2x_mdio_read;
  10371. bp->mdio.mdio_write = bnx2x_mdio_write;
  10372. return 0;
  10373. err_out_release:
  10374. if (atomic_read(&pdev->enable_cnt) == 1)
  10375. pci_release_regions(pdev);
  10376. err_out_disable:
  10377. pci_disable_device(pdev);
  10378. err_out:
  10379. return rc;
  10380. }
  10381. static int bnx2x_check_firmware(struct bnx2x *bp)
  10382. {
  10383. const struct firmware *firmware = bp->firmware;
  10384. struct bnx2x_fw_file_hdr *fw_hdr;
  10385. struct bnx2x_fw_file_section *sections;
  10386. u32 offset, len, num_ops;
  10387. __be16 *ops_offsets;
  10388. int i;
  10389. const u8 *fw_ver;
  10390. if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
  10391. BNX2X_ERR("Wrong FW size\n");
  10392. return -EINVAL;
  10393. }
  10394. fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
  10395. sections = (struct bnx2x_fw_file_section *)fw_hdr;
  10396. /* Make sure none of the offsets and sizes make us read beyond
  10397. * the end of the firmware data */
  10398. for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
  10399. offset = be32_to_cpu(sections[i].offset);
  10400. len = be32_to_cpu(sections[i].len);
  10401. if (offset + len > firmware->size) {
  10402. BNX2X_ERR("Section %d length is out of bounds\n", i);
  10403. return -EINVAL;
  10404. }
  10405. }
  10406. /* Likewise for the init_ops offsets */
  10407. offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
  10408. ops_offsets = (__force __be16 *)(firmware->data + offset);
  10409. num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
  10410. for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
  10411. if (be16_to_cpu(ops_offsets[i]) > num_ops) {
  10412. BNX2X_ERR("Section offset %d is out of bounds\n", i);
  10413. return -EINVAL;
  10414. }
  10415. }
  10416. /* Check FW version */
  10417. offset = be32_to_cpu(fw_hdr->fw_version.offset);
  10418. fw_ver = firmware->data + offset;
  10419. if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
  10420. (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
  10421. (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
  10422. (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
  10423. BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
  10424. fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
  10425. BCM_5710_FW_MAJOR_VERSION,
  10426. BCM_5710_FW_MINOR_VERSION,
  10427. BCM_5710_FW_REVISION_VERSION,
  10428. BCM_5710_FW_ENGINEERING_VERSION);
  10429. return -EINVAL;
  10430. }
  10431. return 0;
  10432. }
  10433. static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  10434. {
  10435. const __be32 *source = (const __be32 *)_source;
  10436. u32 *target = (u32 *)_target;
  10437. u32 i;
  10438. for (i = 0; i < n/4; i++)
  10439. target[i] = be32_to_cpu(source[i]);
  10440. }
  10441. /*
  10442. Ops array is stored in the following format:
  10443. {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
  10444. */
  10445. static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
  10446. {
  10447. const __be32 *source = (const __be32 *)_source;
  10448. struct raw_op *target = (struct raw_op *)_target;
  10449. u32 i, j, tmp;
  10450. for (i = 0, j = 0; i < n/8; i++, j += 2) {
  10451. tmp = be32_to_cpu(source[j]);
  10452. target[i].op = (tmp >> 24) & 0xff;
  10453. target[i].offset = tmp & 0xffffff;
  10454. target[i].raw_data = be32_to_cpu(source[j + 1]);
  10455. }
  10456. }
  10457. /* IRO array is stored in the following format:
  10458. * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
  10459. */
  10460. static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
  10461. {
  10462. const __be32 *source = (const __be32 *)_source;
  10463. struct iro *target = (struct iro *)_target;
  10464. u32 i, j, tmp;
  10465. for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
  10466. target[i].base = be32_to_cpu(source[j]);
  10467. j++;
  10468. tmp = be32_to_cpu(source[j]);
  10469. target[i].m1 = (tmp >> 16) & 0xffff;
  10470. target[i].m2 = tmp & 0xffff;
  10471. j++;
  10472. tmp = be32_to_cpu(source[j]);
  10473. target[i].m3 = (tmp >> 16) & 0xffff;
  10474. target[i].size = tmp & 0xffff;
  10475. j++;
  10476. }
  10477. }
  10478. static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  10479. {
  10480. const __be16 *source = (const __be16 *)_source;
  10481. u16 *target = (u16 *)_target;
  10482. u32 i;
  10483. for (i = 0; i < n/2; i++)
  10484. target[i] = be16_to_cpu(source[i]);
  10485. }
  10486. #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
  10487. do { \
  10488. u32 len = be32_to_cpu(fw_hdr->arr.len); \
  10489. bp->arr = kmalloc(len, GFP_KERNEL); \
  10490. if (!bp->arr) \
  10491. goto lbl; \
  10492. func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
  10493. (u8 *)bp->arr, len); \
  10494. } while (0)
  10495. static int bnx2x_init_firmware(struct bnx2x *bp)
  10496. {
  10497. const char *fw_file_name;
  10498. struct bnx2x_fw_file_hdr *fw_hdr;
  10499. int rc;
  10500. if (bp->firmware)
  10501. return 0;
  10502. if (CHIP_IS_E1(bp))
  10503. fw_file_name = FW_FILE_NAME_E1;
  10504. else if (CHIP_IS_E1H(bp))
  10505. fw_file_name = FW_FILE_NAME_E1H;
  10506. else if (!CHIP_IS_E1x(bp))
  10507. fw_file_name = FW_FILE_NAME_E2;
  10508. else {
  10509. BNX2X_ERR("Unsupported chip revision\n");
  10510. return -EINVAL;
  10511. }
  10512. BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
  10513. rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
  10514. if (rc) {
  10515. BNX2X_ERR("Can't load firmware file %s\n",
  10516. fw_file_name);
  10517. goto request_firmware_exit;
  10518. }
  10519. rc = bnx2x_check_firmware(bp);
  10520. if (rc) {
  10521. BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
  10522. goto request_firmware_exit;
  10523. }
  10524. fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
  10525. /* Initialize the pointers to the init arrays */
  10526. /* Blob */
  10527. BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
  10528. /* Opcodes */
  10529. BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
  10530. /* Offsets */
  10531. BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
  10532. be16_to_cpu_n);
  10533. /* STORMs firmware */
  10534. INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10535. be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
  10536. INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
  10537. be32_to_cpu(fw_hdr->tsem_pram_data.offset);
  10538. INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10539. be32_to_cpu(fw_hdr->usem_int_table_data.offset);
  10540. INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
  10541. be32_to_cpu(fw_hdr->usem_pram_data.offset);
  10542. INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10543. be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
  10544. INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
  10545. be32_to_cpu(fw_hdr->xsem_pram_data.offset);
  10546. INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10547. be32_to_cpu(fw_hdr->csem_int_table_data.offset);
  10548. INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
  10549. be32_to_cpu(fw_hdr->csem_pram_data.offset);
  10550. /* IRO */
  10551. BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
  10552. return 0;
  10553. iro_alloc_err:
  10554. kfree(bp->init_ops_offsets);
  10555. init_offsets_alloc_err:
  10556. kfree(bp->init_ops);
  10557. init_ops_alloc_err:
  10558. kfree(bp->init_data);
  10559. request_firmware_exit:
  10560. release_firmware(bp->firmware);
  10561. bp->firmware = NULL;
  10562. return rc;
  10563. }
  10564. static void bnx2x_release_firmware(struct bnx2x *bp)
  10565. {
  10566. kfree(bp->init_ops_offsets);
  10567. kfree(bp->init_ops);
  10568. kfree(bp->init_data);
  10569. release_firmware(bp->firmware);
  10570. bp->firmware = NULL;
  10571. }
  10572. static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
  10573. .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
  10574. .init_hw_cmn = bnx2x_init_hw_common,
  10575. .init_hw_port = bnx2x_init_hw_port,
  10576. .init_hw_func = bnx2x_init_hw_func,
  10577. .reset_hw_cmn = bnx2x_reset_common,
  10578. .reset_hw_port = bnx2x_reset_port,
  10579. .reset_hw_func = bnx2x_reset_func,
  10580. .gunzip_init = bnx2x_gunzip_init,
  10581. .gunzip_end = bnx2x_gunzip_end,
  10582. .init_fw = bnx2x_init_firmware,
  10583. .release_fw = bnx2x_release_firmware,
  10584. };
  10585. void bnx2x__init_func_obj(struct bnx2x *bp)
  10586. {
  10587. /* Prepare DMAE related driver resources */
  10588. bnx2x_setup_dmae(bp);
  10589. bnx2x_init_func_obj(bp, &bp->func_obj,
  10590. bnx2x_sp(bp, func_rdata),
  10591. bnx2x_sp_mapping(bp, func_rdata),
  10592. bnx2x_sp(bp, func_afex_rdata),
  10593. bnx2x_sp_mapping(bp, func_afex_rdata),
  10594. &bnx2x_func_sp_drv);
  10595. }
  10596. /* must be called after sriov-enable */
  10597. static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
  10598. {
  10599. int cid_count = BNX2X_L2_MAX_CID(bp);
  10600. if (IS_SRIOV(bp))
  10601. cid_count += BNX2X_VF_CIDS;
  10602. if (CNIC_SUPPORT(bp))
  10603. cid_count += CNIC_CID_MAX;
  10604. return roundup(cid_count, QM_CID_ROUND);
  10605. }
  10606. /**
  10607. * bnx2x_get_num_none_def_sbs - return the number of none default SBs
  10608. *
  10609. * @dev: pci device
  10610. *
  10611. */
  10612. static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
  10613. {
  10614. int index;
  10615. u16 control = 0;
  10616. /*
  10617. * If MSI-X is not supported - return number of SBs needed to support
  10618. * one fast path queue: one FP queue + SB for CNIC
  10619. */
  10620. if (!pdev->msix_cap) {
  10621. dev_info(&pdev->dev, "no msix capability found\n");
  10622. return 1 + cnic_cnt;
  10623. }
  10624. dev_info(&pdev->dev, "msix capability found\n");
  10625. /*
  10626. * The value in the PCI configuration space is the index of the last
  10627. * entry, namely one less than the actual size of the table, which is
  10628. * exactly what we want to return from this function: number of all SBs
  10629. * without the default SB.
  10630. * For VFs there is no default SB, then we return (index+1).
  10631. */
  10632. pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
  10633. index = control & PCI_MSIX_FLAGS_QSIZE;
  10634. return index;
  10635. }
  10636. static int set_max_cos_est(int chip_id)
  10637. {
  10638. switch (chip_id) {
  10639. case BCM57710:
  10640. case BCM57711:
  10641. case BCM57711E:
  10642. return BNX2X_MULTI_TX_COS_E1X;
  10643. case BCM57712:
  10644. case BCM57712_MF:
  10645. return BNX2X_MULTI_TX_COS_E2_E3A0;
  10646. case BCM57800:
  10647. case BCM57800_MF:
  10648. case BCM57810:
  10649. case BCM57810_MF:
  10650. case BCM57840_4_10:
  10651. case BCM57840_2_20:
  10652. case BCM57840_O:
  10653. case BCM57840_MFO:
  10654. case BCM57840_MF:
  10655. case BCM57811:
  10656. case BCM57811_MF:
  10657. return BNX2X_MULTI_TX_COS_E3B0;
  10658. case BCM57712_VF:
  10659. case BCM57800_VF:
  10660. case BCM57810_VF:
  10661. case BCM57840_VF:
  10662. case BCM57811_VF:
  10663. return 1;
  10664. default:
  10665. pr_err("Unknown board_type (%d), aborting\n", chip_id);
  10666. return -ENODEV;
  10667. }
  10668. }
  10669. static int set_is_vf(int chip_id)
  10670. {
  10671. switch (chip_id) {
  10672. case BCM57712_VF:
  10673. case BCM57800_VF:
  10674. case BCM57810_VF:
  10675. case BCM57840_VF:
  10676. case BCM57811_VF:
  10677. return true;
  10678. default:
  10679. return false;
  10680. }
  10681. }
  10682. struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
  10683. static int bnx2x_init_one(struct pci_dev *pdev,
  10684. const struct pci_device_id *ent)
  10685. {
  10686. struct net_device *dev = NULL;
  10687. struct bnx2x *bp;
  10688. enum pcie_link_width pcie_width;
  10689. enum pci_bus_speed pcie_speed;
  10690. int rc, max_non_def_sbs;
  10691. int rx_count, tx_count, rss_count, doorbell_size;
  10692. int max_cos_est;
  10693. bool is_vf;
  10694. int cnic_cnt;
  10695. /* An estimated maximum supported CoS number according to the chip
  10696. * version.
  10697. * We will try to roughly estimate the maximum number of CoSes this chip
  10698. * may support in order to minimize the memory allocated for Tx
  10699. * netdev_queue's. This number will be accurately calculated during the
  10700. * initialization of bp->max_cos based on the chip versions AND chip
  10701. * revision in the bnx2x_init_bp().
  10702. */
  10703. max_cos_est = set_max_cos_est(ent->driver_data);
  10704. if (max_cos_est < 0)
  10705. return max_cos_est;
  10706. is_vf = set_is_vf(ent->driver_data);
  10707. cnic_cnt = is_vf ? 0 : 1;
  10708. max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
  10709. /* add another SB for VF as it has no default SB */
  10710. max_non_def_sbs += is_vf ? 1 : 0;
  10711. /* Maximum number of RSS queues: one IGU SB goes to CNIC */
  10712. rss_count = max_non_def_sbs - cnic_cnt;
  10713. if (rss_count < 1)
  10714. return -EINVAL;
  10715. /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
  10716. rx_count = rss_count + cnic_cnt;
  10717. /* Maximum number of netdev Tx queues:
  10718. * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
  10719. */
  10720. tx_count = rss_count * max_cos_est + cnic_cnt;
  10721. /* dev zeroed in init_etherdev */
  10722. dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
  10723. if (!dev)
  10724. return -ENOMEM;
  10725. bp = netdev_priv(dev);
  10726. bp->flags = 0;
  10727. if (is_vf)
  10728. bp->flags |= IS_VF_FLAG;
  10729. bp->igu_sb_cnt = max_non_def_sbs;
  10730. bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
  10731. bp->msg_enable = debug;
  10732. bp->cnic_support = cnic_cnt;
  10733. bp->cnic_probe = bnx2x_cnic_probe;
  10734. pci_set_drvdata(pdev, dev);
  10735. rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
  10736. if (rc < 0) {
  10737. free_netdev(dev);
  10738. return rc;
  10739. }
  10740. BNX2X_DEV_INFO("This is a %s function\n",
  10741. IS_PF(bp) ? "physical" : "virtual");
  10742. BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
  10743. BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
  10744. BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
  10745. tx_count, rx_count);
  10746. rc = bnx2x_init_bp(bp);
  10747. if (rc)
  10748. goto init_one_exit;
  10749. /* Map doorbells here as we need the real value of bp->max_cos which
  10750. * is initialized in bnx2x_init_bp() to determine the number of
  10751. * l2 connections.
  10752. */
  10753. if (IS_VF(bp)) {
  10754. bp->doorbells = bnx2x_vf_doorbells(bp);
  10755. rc = bnx2x_vf_pci_alloc(bp);
  10756. if (rc)
  10757. goto init_one_exit;
  10758. } else {
  10759. doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
  10760. if (doorbell_size > pci_resource_len(pdev, 2)) {
  10761. dev_err(&bp->pdev->dev,
  10762. "Cannot map doorbells, bar size too small, aborting\n");
  10763. rc = -ENOMEM;
  10764. goto init_one_exit;
  10765. }
  10766. bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
  10767. doorbell_size);
  10768. }
  10769. if (!bp->doorbells) {
  10770. dev_err(&bp->pdev->dev,
  10771. "Cannot map doorbell space, aborting\n");
  10772. rc = -ENOMEM;
  10773. goto init_one_exit;
  10774. }
  10775. if (IS_VF(bp)) {
  10776. rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
  10777. if (rc)
  10778. goto init_one_exit;
  10779. }
  10780. /* Enable SRIOV if capability found in configuration space */
  10781. rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
  10782. if (rc)
  10783. goto init_one_exit;
  10784. /* calc qm_cid_count */
  10785. bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
  10786. BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
  10787. /* disable FCOE L2 queue for E1x*/
  10788. if (CHIP_IS_E1x(bp))
  10789. bp->flags |= NO_FCOE_FLAG;
  10790. /* Set bp->num_queues for MSI-X mode*/
  10791. bnx2x_set_num_queues(bp);
  10792. /* Configure interrupt mode: try to enable MSI-X/MSI if
  10793. * needed.
  10794. */
  10795. rc = bnx2x_set_int_mode(bp);
  10796. if (rc) {
  10797. dev_err(&pdev->dev, "Cannot set interrupts\n");
  10798. goto init_one_exit;
  10799. }
  10800. BNX2X_DEV_INFO("set interrupts successfully\n");
  10801. /* register the net device */
  10802. rc = register_netdev(dev);
  10803. if (rc) {
  10804. dev_err(&pdev->dev, "Cannot register net device\n");
  10805. goto init_one_exit;
  10806. }
  10807. BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
  10808. if (!NO_FCOE(bp)) {
  10809. /* Add storage MAC address */
  10810. rtnl_lock();
  10811. dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  10812. rtnl_unlock();
  10813. }
  10814. if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
  10815. pcie_speed == PCI_SPEED_UNKNOWN ||
  10816. pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
  10817. BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
  10818. else
  10819. BNX2X_DEV_INFO(
  10820. "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
  10821. board_info[ent->driver_data].name,
  10822. (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
  10823. pcie_width,
  10824. pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
  10825. pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
  10826. pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
  10827. "Unknown",
  10828. dev->base_addr, bp->pdev->irq, dev->dev_addr);
  10829. return 0;
  10830. init_one_exit:
  10831. if (bp->regview)
  10832. iounmap(bp->regview);
  10833. if (IS_PF(bp) && bp->doorbells)
  10834. iounmap(bp->doorbells);
  10835. free_netdev(dev);
  10836. if (atomic_read(&pdev->enable_cnt) == 1)
  10837. pci_release_regions(pdev);
  10838. pci_disable_device(pdev);
  10839. return rc;
  10840. }
  10841. static void __bnx2x_remove(struct pci_dev *pdev,
  10842. struct net_device *dev,
  10843. struct bnx2x *bp,
  10844. bool remove_netdev)
  10845. {
  10846. /* Delete storage MAC address */
  10847. if (!NO_FCOE(bp)) {
  10848. rtnl_lock();
  10849. dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  10850. rtnl_unlock();
  10851. }
  10852. #ifdef BCM_DCBNL
  10853. /* Delete app tlvs from dcbnl */
  10854. bnx2x_dcbnl_update_applist(bp, true);
  10855. #endif
  10856. if (IS_PF(bp) &&
  10857. !BP_NOMCP(bp) &&
  10858. (bp->flags & BC_SUPPORTS_RMMOD_CMD))
  10859. bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
  10860. /* Close the interface - either directly or implicitly */
  10861. if (remove_netdev) {
  10862. unregister_netdev(dev);
  10863. } else {
  10864. rtnl_lock();
  10865. dev_close(dev);
  10866. rtnl_unlock();
  10867. }
  10868. bnx2x_iov_remove_one(bp);
  10869. /* Power on: we can't let PCI layer write to us while we are in D3 */
  10870. if (IS_PF(bp))
  10871. bnx2x_set_power_state(bp, PCI_D0);
  10872. /* Disable MSI/MSI-X */
  10873. bnx2x_disable_msi(bp);
  10874. /* Power off */
  10875. if (IS_PF(bp))
  10876. bnx2x_set_power_state(bp, PCI_D3hot);
  10877. /* Make sure RESET task is not scheduled before continuing */
  10878. cancel_delayed_work_sync(&bp->sp_rtnl_task);
  10879. /* send message via vfpf channel to release the resources of this vf */
  10880. if (IS_VF(bp))
  10881. bnx2x_vfpf_release(bp);
  10882. /* Assumes no further PCIe PM changes will occur */
  10883. if (system_state == SYSTEM_POWER_OFF) {
  10884. pci_wake_from_d3(pdev, bp->wol);
  10885. pci_set_power_state(pdev, PCI_D3hot);
  10886. }
  10887. if (bp->regview)
  10888. iounmap(bp->regview);
  10889. /* for vf doorbells are part of the regview and were unmapped along with
  10890. * it. FW is only loaded by PF.
  10891. */
  10892. if (IS_PF(bp)) {
  10893. if (bp->doorbells)
  10894. iounmap(bp->doorbells);
  10895. bnx2x_release_firmware(bp);
  10896. }
  10897. bnx2x_free_mem_bp(bp);
  10898. if (remove_netdev)
  10899. free_netdev(dev);
  10900. if (atomic_read(&pdev->enable_cnt) == 1)
  10901. pci_release_regions(pdev);
  10902. pci_disable_device(pdev);
  10903. }
  10904. static void bnx2x_remove_one(struct pci_dev *pdev)
  10905. {
  10906. struct net_device *dev = pci_get_drvdata(pdev);
  10907. struct bnx2x *bp;
  10908. if (!dev) {
  10909. dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
  10910. return;
  10911. }
  10912. bp = netdev_priv(dev);
  10913. __bnx2x_remove(pdev, dev, bp, true);
  10914. }
  10915. static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
  10916. {
  10917. bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
  10918. bp->rx_mode = BNX2X_RX_MODE_NONE;
  10919. if (CNIC_LOADED(bp))
  10920. bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
  10921. /* Stop Tx */
  10922. bnx2x_tx_disable(bp);
  10923. /* Delete all NAPI objects */
  10924. bnx2x_del_all_napi(bp);
  10925. if (CNIC_LOADED(bp))
  10926. bnx2x_del_all_napi_cnic(bp);
  10927. netdev_reset_tc(bp->dev);
  10928. del_timer_sync(&bp->timer);
  10929. cancel_delayed_work(&bp->sp_task);
  10930. cancel_delayed_work(&bp->period_task);
  10931. spin_lock_bh(&bp->stats_lock);
  10932. bp->stats_state = STATS_STATE_DISABLED;
  10933. spin_unlock_bh(&bp->stats_lock);
  10934. bnx2x_save_statistics(bp);
  10935. netif_carrier_off(bp->dev);
  10936. return 0;
  10937. }
  10938. /**
  10939. * bnx2x_io_error_detected - called when PCI error is detected
  10940. * @pdev: Pointer to PCI device
  10941. * @state: The current pci connection state
  10942. *
  10943. * This function is called after a PCI bus error affecting
  10944. * this device has been detected.
  10945. */
  10946. static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
  10947. pci_channel_state_t state)
  10948. {
  10949. struct net_device *dev = pci_get_drvdata(pdev);
  10950. struct bnx2x *bp = netdev_priv(dev);
  10951. rtnl_lock();
  10952. BNX2X_ERR("IO error detected\n");
  10953. netif_device_detach(dev);
  10954. if (state == pci_channel_io_perm_failure) {
  10955. rtnl_unlock();
  10956. return PCI_ERS_RESULT_DISCONNECT;
  10957. }
  10958. if (netif_running(dev))
  10959. bnx2x_eeh_nic_unload(bp);
  10960. bnx2x_prev_path_mark_eeh(bp);
  10961. pci_disable_device(pdev);
  10962. rtnl_unlock();
  10963. /* Request a slot reset */
  10964. return PCI_ERS_RESULT_NEED_RESET;
  10965. }
  10966. /**
  10967. * bnx2x_io_slot_reset - called after the PCI bus has been reset
  10968. * @pdev: Pointer to PCI device
  10969. *
  10970. * Restart the card from scratch, as if from a cold-boot.
  10971. */
  10972. static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
  10973. {
  10974. struct net_device *dev = pci_get_drvdata(pdev);
  10975. struct bnx2x *bp = netdev_priv(dev);
  10976. int i;
  10977. rtnl_lock();
  10978. BNX2X_ERR("IO slot reset initializing...\n");
  10979. if (pci_enable_device(pdev)) {
  10980. dev_err(&pdev->dev,
  10981. "Cannot re-enable PCI device after reset\n");
  10982. rtnl_unlock();
  10983. return PCI_ERS_RESULT_DISCONNECT;
  10984. }
  10985. pci_set_master(pdev);
  10986. pci_restore_state(pdev);
  10987. pci_save_state(pdev);
  10988. if (netif_running(dev))
  10989. bnx2x_set_power_state(bp, PCI_D0);
  10990. if (netif_running(dev)) {
  10991. BNX2X_ERR("IO slot reset --> driver unload\n");
  10992. /* MCP should have been reset; Need to wait for validity */
  10993. bnx2x_init_shmem(bp);
  10994. if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
  10995. u32 v;
  10996. v = SHMEM2_RD(bp,
  10997. drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
  10998. SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
  10999. v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
  11000. }
  11001. bnx2x_drain_tx_queues(bp);
  11002. bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
  11003. bnx2x_netif_stop(bp, 1);
  11004. bnx2x_free_irq(bp);
  11005. /* Report UNLOAD_DONE to MCP */
  11006. bnx2x_send_unload_done(bp, true);
  11007. bp->sp_state = 0;
  11008. bp->port.pmf = 0;
  11009. bnx2x_prev_unload(bp);
  11010. /* We should have reseted the engine, so It's fair to
  11011. * assume the FW will no longer write to the bnx2x driver.
  11012. */
  11013. bnx2x_squeeze_objects(bp);
  11014. bnx2x_free_skbs(bp);
  11015. for_each_rx_queue(bp, i)
  11016. bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
  11017. bnx2x_free_fp_mem(bp);
  11018. bnx2x_free_mem(bp);
  11019. bp->state = BNX2X_STATE_CLOSED;
  11020. }
  11021. rtnl_unlock();
  11022. return PCI_ERS_RESULT_RECOVERED;
  11023. }
  11024. /**
  11025. * bnx2x_io_resume - called when traffic can start flowing again
  11026. * @pdev: Pointer to PCI device
  11027. *
  11028. * This callback is called when the error recovery driver tells us that
  11029. * its OK to resume normal operation.
  11030. */
  11031. static void bnx2x_io_resume(struct pci_dev *pdev)
  11032. {
  11033. struct net_device *dev = pci_get_drvdata(pdev);
  11034. struct bnx2x *bp = netdev_priv(dev);
  11035. if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
  11036. netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
  11037. return;
  11038. }
  11039. rtnl_lock();
  11040. bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
  11041. DRV_MSG_SEQ_NUMBER_MASK;
  11042. if (netif_running(dev))
  11043. bnx2x_nic_load(bp, LOAD_NORMAL);
  11044. netif_device_attach(dev);
  11045. rtnl_unlock();
  11046. }
  11047. static const struct pci_error_handlers bnx2x_err_handler = {
  11048. .error_detected = bnx2x_io_error_detected,
  11049. .slot_reset = bnx2x_io_slot_reset,
  11050. .resume = bnx2x_io_resume,
  11051. };
  11052. static void bnx2x_shutdown(struct pci_dev *pdev)
  11053. {
  11054. struct net_device *dev = pci_get_drvdata(pdev);
  11055. struct bnx2x *bp;
  11056. if (!dev)
  11057. return;
  11058. bp = netdev_priv(dev);
  11059. if (!bp)
  11060. return;
  11061. rtnl_lock();
  11062. netif_device_detach(dev);
  11063. rtnl_unlock();
  11064. /* Don't remove the netdevice, as there are scenarios which will cause
  11065. * the kernel to hang, e.g., when trying to remove bnx2i while the
  11066. * rootfs is mounted from SAN.
  11067. */
  11068. __bnx2x_remove(pdev, dev, bp, false);
  11069. }
  11070. static struct pci_driver bnx2x_pci_driver = {
  11071. .name = DRV_MODULE_NAME,
  11072. .id_table = bnx2x_pci_tbl,
  11073. .probe = bnx2x_init_one,
  11074. .remove = bnx2x_remove_one,
  11075. .suspend = bnx2x_suspend,
  11076. .resume = bnx2x_resume,
  11077. .err_handler = &bnx2x_err_handler,
  11078. #ifdef CONFIG_BNX2X_SRIOV
  11079. .sriov_configure = bnx2x_sriov_configure,
  11080. #endif
  11081. .shutdown = bnx2x_shutdown,
  11082. };
  11083. static int __init bnx2x_init(void)
  11084. {
  11085. int ret;
  11086. pr_info("%s", version);
  11087. bnx2x_wq = create_singlethread_workqueue("bnx2x");
  11088. if (bnx2x_wq == NULL) {
  11089. pr_err("Cannot create workqueue\n");
  11090. return -ENOMEM;
  11091. }
  11092. ret = pci_register_driver(&bnx2x_pci_driver);
  11093. if (ret) {
  11094. pr_err("Cannot register driver\n");
  11095. destroy_workqueue(bnx2x_wq);
  11096. }
  11097. return ret;
  11098. }
  11099. static void __exit bnx2x_cleanup(void)
  11100. {
  11101. struct list_head *pos, *q;
  11102. pci_unregister_driver(&bnx2x_pci_driver);
  11103. destroy_workqueue(bnx2x_wq);
  11104. /* Free globally allocated resources */
  11105. list_for_each_safe(pos, q, &bnx2x_prev_list) {
  11106. struct bnx2x_prev_path_list *tmp =
  11107. list_entry(pos, struct bnx2x_prev_path_list, list);
  11108. list_del(pos);
  11109. kfree(tmp);
  11110. }
  11111. }
  11112. void bnx2x_notify_link_changed(struct bnx2x *bp)
  11113. {
  11114. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
  11115. }
  11116. module_init(bnx2x_init);
  11117. module_exit(bnx2x_cleanup);
  11118. /**
  11119. * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
  11120. *
  11121. * @bp: driver handle
  11122. * @set: set or clear the CAM entry
  11123. *
  11124. * This function will wait until the ramrod completion returns.
  11125. * Return 0 if success, -ENODEV if ramrod doesn't return.
  11126. */
  11127. static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
  11128. {
  11129. unsigned long ramrod_flags = 0;
  11130. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  11131. return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
  11132. &bp->iscsi_l2_mac_obj, true,
  11133. BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
  11134. }
  11135. /* count denotes the number of new completions we have seen */
  11136. static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
  11137. {
  11138. struct eth_spe *spe;
  11139. int cxt_index, cxt_offset;
  11140. #ifdef BNX2X_STOP_ON_ERROR
  11141. if (unlikely(bp->panic))
  11142. return;
  11143. #endif
  11144. spin_lock_bh(&bp->spq_lock);
  11145. BUG_ON(bp->cnic_spq_pending < count);
  11146. bp->cnic_spq_pending -= count;
  11147. for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
  11148. u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
  11149. & SPE_HDR_CONN_TYPE) >>
  11150. SPE_HDR_CONN_TYPE_SHIFT;
  11151. u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
  11152. >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
  11153. /* Set validation for iSCSI L2 client before sending SETUP
  11154. * ramrod
  11155. */
  11156. if (type == ETH_CONNECTION_TYPE) {
  11157. if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
  11158. cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
  11159. ILT_PAGE_CIDS;
  11160. cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
  11161. (cxt_index * ILT_PAGE_CIDS);
  11162. bnx2x_set_ctx_validation(bp,
  11163. &bp->context[cxt_index].
  11164. vcxt[cxt_offset].eth,
  11165. BNX2X_ISCSI_ETH_CID(bp));
  11166. }
  11167. }
  11168. /*
  11169. * There may be not more than 8 L2, not more than 8 L5 SPEs
  11170. * and in the air. We also check that number of outstanding
  11171. * COMMON ramrods is not more than the EQ and SPQ can
  11172. * accommodate.
  11173. */
  11174. if (type == ETH_CONNECTION_TYPE) {
  11175. if (!atomic_read(&bp->cq_spq_left))
  11176. break;
  11177. else
  11178. atomic_dec(&bp->cq_spq_left);
  11179. } else if (type == NONE_CONNECTION_TYPE) {
  11180. if (!atomic_read(&bp->eq_spq_left))
  11181. break;
  11182. else
  11183. atomic_dec(&bp->eq_spq_left);
  11184. } else if ((type == ISCSI_CONNECTION_TYPE) ||
  11185. (type == FCOE_CONNECTION_TYPE)) {
  11186. if (bp->cnic_spq_pending >=
  11187. bp->cnic_eth_dev.max_kwqe_pending)
  11188. break;
  11189. else
  11190. bp->cnic_spq_pending++;
  11191. } else {
  11192. BNX2X_ERR("Unknown SPE type: %d\n", type);
  11193. bnx2x_panic();
  11194. break;
  11195. }
  11196. spe = bnx2x_sp_get_next(bp);
  11197. *spe = *bp->cnic_kwq_cons;
  11198. DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
  11199. bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
  11200. if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
  11201. bp->cnic_kwq_cons = bp->cnic_kwq;
  11202. else
  11203. bp->cnic_kwq_cons++;
  11204. }
  11205. bnx2x_sp_prod_update(bp);
  11206. spin_unlock_bh(&bp->spq_lock);
  11207. }
  11208. static int bnx2x_cnic_sp_queue(struct net_device *dev,
  11209. struct kwqe_16 *kwqes[], u32 count)
  11210. {
  11211. struct bnx2x *bp = netdev_priv(dev);
  11212. int i;
  11213. #ifdef BNX2X_STOP_ON_ERROR
  11214. if (unlikely(bp->panic)) {
  11215. BNX2X_ERR("Can't post to SP queue while panic\n");
  11216. return -EIO;
  11217. }
  11218. #endif
  11219. if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
  11220. (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
  11221. BNX2X_ERR("Handling parity error recovery. Try again later\n");
  11222. return -EAGAIN;
  11223. }
  11224. spin_lock_bh(&bp->spq_lock);
  11225. for (i = 0; i < count; i++) {
  11226. struct eth_spe *spe = (struct eth_spe *)kwqes[i];
  11227. if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
  11228. break;
  11229. *bp->cnic_kwq_prod = *spe;
  11230. bp->cnic_kwq_pending++;
  11231. DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
  11232. spe->hdr.conn_and_cmd_data, spe->hdr.type,
  11233. spe->data.update_data_addr.hi,
  11234. spe->data.update_data_addr.lo,
  11235. bp->cnic_kwq_pending);
  11236. if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
  11237. bp->cnic_kwq_prod = bp->cnic_kwq;
  11238. else
  11239. bp->cnic_kwq_prod++;
  11240. }
  11241. spin_unlock_bh(&bp->spq_lock);
  11242. if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
  11243. bnx2x_cnic_sp_post(bp, 0);
  11244. return i;
  11245. }
  11246. static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  11247. {
  11248. struct cnic_ops *c_ops;
  11249. int rc = 0;
  11250. mutex_lock(&bp->cnic_mutex);
  11251. c_ops = rcu_dereference_protected(bp->cnic_ops,
  11252. lockdep_is_held(&bp->cnic_mutex));
  11253. if (c_ops)
  11254. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  11255. mutex_unlock(&bp->cnic_mutex);
  11256. return rc;
  11257. }
  11258. static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  11259. {
  11260. struct cnic_ops *c_ops;
  11261. int rc = 0;
  11262. rcu_read_lock();
  11263. c_ops = rcu_dereference(bp->cnic_ops);
  11264. if (c_ops)
  11265. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  11266. rcu_read_unlock();
  11267. return rc;
  11268. }
  11269. /*
  11270. * for commands that have no data
  11271. */
  11272. int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
  11273. {
  11274. struct cnic_ctl_info ctl = {0};
  11275. ctl.cmd = cmd;
  11276. return bnx2x_cnic_ctl_send(bp, &ctl);
  11277. }
  11278. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
  11279. {
  11280. struct cnic_ctl_info ctl = {0};
  11281. /* first we tell CNIC and only then we count this as a completion */
  11282. ctl.cmd = CNIC_CTL_COMPLETION_CMD;
  11283. ctl.data.comp.cid = cid;
  11284. ctl.data.comp.error = err;
  11285. bnx2x_cnic_ctl_send_bh(bp, &ctl);
  11286. bnx2x_cnic_sp_post(bp, 0);
  11287. }
  11288. /* Called with netif_addr_lock_bh() taken.
  11289. * Sets an rx_mode config for an iSCSI ETH client.
  11290. * Doesn't block.
  11291. * Completion should be checked outside.
  11292. */
  11293. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
  11294. {
  11295. unsigned long accept_flags = 0, ramrod_flags = 0;
  11296. u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  11297. int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
  11298. if (start) {
  11299. /* Start accepting on iSCSI L2 ring. Accept all multicasts
  11300. * because it's the only way for UIO Queue to accept
  11301. * multicasts (in non-promiscuous mode only one Queue per
  11302. * function will receive multicast packets (leading in our
  11303. * case).
  11304. */
  11305. __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
  11306. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
  11307. __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
  11308. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
  11309. /* Clear STOP_PENDING bit if START is requested */
  11310. clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
  11311. sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
  11312. } else
  11313. /* Clear START_PENDING bit if STOP is requested */
  11314. clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
  11315. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  11316. set_bit(sched_state, &bp->sp_state);
  11317. else {
  11318. __set_bit(RAMROD_RX, &ramrod_flags);
  11319. bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
  11320. ramrod_flags);
  11321. }
  11322. }
  11323. static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
  11324. {
  11325. struct bnx2x *bp = netdev_priv(dev);
  11326. int rc = 0;
  11327. switch (ctl->cmd) {
  11328. case DRV_CTL_CTXTBL_WR_CMD: {
  11329. u32 index = ctl->data.io.offset;
  11330. dma_addr_t addr = ctl->data.io.dma_addr;
  11331. bnx2x_ilt_wr(bp, index, addr);
  11332. break;
  11333. }
  11334. case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
  11335. int count = ctl->data.credit.credit_count;
  11336. bnx2x_cnic_sp_post(bp, count);
  11337. break;
  11338. }
  11339. /* rtnl_lock is held. */
  11340. case DRV_CTL_START_L2_CMD: {
  11341. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  11342. unsigned long sp_bits = 0;
  11343. /* Configure the iSCSI classification object */
  11344. bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
  11345. cp->iscsi_l2_client_id,
  11346. cp->iscsi_l2_cid, BP_FUNC(bp),
  11347. bnx2x_sp(bp, mac_rdata),
  11348. bnx2x_sp_mapping(bp, mac_rdata),
  11349. BNX2X_FILTER_MAC_PENDING,
  11350. &bp->sp_state, BNX2X_OBJ_TYPE_RX,
  11351. &bp->macs_pool);
  11352. /* Set iSCSI MAC address */
  11353. rc = bnx2x_set_iscsi_eth_mac_addr(bp);
  11354. if (rc)
  11355. break;
  11356. mmiowb();
  11357. barrier();
  11358. /* Start accepting on iSCSI L2 ring */
  11359. netif_addr_lock_bh(dev);
  11360. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  11361. netif_addr_unlock_bh(dev);
  11362. /* bits to wait on */
  11363. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  11364. __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
  11365. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  11366. BNX2X_ERR("rx_mode completion timed out!\n");
  11367. break;
  11368. }
  11369. /* rtnl_lock is held. */
  11370. case DRV_CTL_STOP_L2_CMD: {
  11371. unsigned long sp_bits = 0;
  11372. /* Stop accepting on iSCSI L2 ring */
  11373. netif_addr_lock_bh(dev);
  11374. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  11375. netif_addr_unlock_bh(dev);
  11376. /* bits to wait on */
  11377. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  11378. __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
  11379. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  11380. BNX2X_ERR("rx_mode completion timed out!\n");
  11381. mmiowb();
  11382. barrier();
  11383. /* Unset iSCSI L2 MAC */
  11384. rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
  11385. BNX2X_ISCSI_ETH_MAC, true);
  11386. break;
  11387. }
  11388. case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
  11389. int count = ctl->data.credit.credit_count;
  11390. smp_mb__before_atomic_inc();
  11391. atomic_add(count, &bp->cq_spq_left);
  11392. smp_mb__after_atomic_inc();
  11393. break;
  11394. }
  11395. case DRV_CTL_ULP_REGISTER_CMD: {
  11396. int ulp_type = ctl->data.register_data.ulp_type;
  11397. if (CHIP_IS_E3(bp)) {
  11398. int idx = BP_FW_MB_IDX(bp);
  11399. u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  11400. int path = BP_PATH(bp);
  11401. int port = BP_PORT(bp);
  11402. int i;
  11403. u32 scratch_offset;
  11404. u32 *host_addr;
  11405. /* first write capability to shmem2 */
  11406. if (ulp_type == CNIC_ULP_ISCSI)
  11407. cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  11408. else if (ulp_type == CNIC_ULP_FCOE)
  11409. cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  11410. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  11411. if ((ulp_type != CNIC_ULP_FCOE) ||
  11412. (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
  11413. (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
  11414. break;
  11415. /* if reached here - should write fcoe capabilities */
  11416. scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
  11417. if (!scratch_offset)
  11418. break;
  11419. scratch_offset += offsetof(struct glob_ncsi_oem_data,
  11420. fcoe_features[path][port]);
  11421. host_addr = (u32 *) &(ctl->data.register_data.
  11422. fcoe_features);
  11423. for (i = 0; i < sizeof(struct fcoe_capabilities);
  11424. i += 4)
  11425. REG_WR(bp, scratch_offset + i,
  11426. *(host_addr + i/4));
  11427. }
  11428. break;
  11429. }
  11430. case DRV_CTL_ULP_UNREGISTER_CMD: {
  11431. int ulp_type = ctl->data.ulp_type;
  11432. if (CHIP_IS_E3(bp)) {
  11433. int idx = BP_FW_MB_IDX(bp);
  11434. u32 cap;
  11435. cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  11436. if (ulp_type == CNIC_ULP_ISCSI)
  11437. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  11438. else if (ulp_type == CNIC_ULP_FCOE)
  11439. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  11440. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  11441. }
  11442. break;
  11443. }
  11444. default:
  11445. BNX2X_ERR("unknown command %x\n", ctl->cmd);
  11446. rc = -EINVAL;
  11447. }
  11448. return rc;
  11449. }
  11450. void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
  11451. {
  11452. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  11453. if (bp->flags & USING_MSIX_FLAG) {
  11454. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  11455. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  11456. cp->irq_arr[0].vector = bp->msix_table[1].vector;
  11457. } else {
  11458. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  11459. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  11460. }
  11461. if (!CHIP_IS_E1x(bp))
  11462. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
  11463. else
  11464. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
  11465. cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
  11466. cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
  11467. cp->irq_arr[1].status_blk = bp->def_status_blk;
  11468. cp->irq_arr[1].status_blk_num = DEF_SB_ID;
  11469. cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
  11470. cp->num_irq = 2;
  11471. }
  11472. void bnx2x_setup_cnic_info(struct bnx2x *bp)
  11473. {
  11474. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  11475. cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
  11476. bnx2x_cid_ilt_lines(bp);
  11477. cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
  11478. cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
  11479. cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
  11480. DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
  11481. BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
  11482. cp->iscsi_l2_cid);
  11483. if (NO_ISCSI_OOO(bp))
  11484. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
  11485. }
  11486. static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  11487. void *data)
  11488. {
  11489. struct bnx2x *bp = netdev_priv(dev);
  11490. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  11491. int rc;
  11492. DP(NETIF_MSG_IFUP, "Register_cnic called\n");
  11493. if (ops == NULL) {
  11494. BNX2X_ERR("NULL ops received\n");
  11495. return -EINVAL;
  11496. }
  11497. if (!CNIC_SUPPORT(bp)) {
  11498. BNX2X_ERR("Can't register CNIC when not supported\n");
  11499. return -EOPNOTSUPP;
  11500. }
  11501. if (!CNIC_LOADED(bp)) {
  11502. rc = bnx2x_load_cnic(bp);
  11503. if (rc) {
  11504. BNX2X_ERR("CNIC-related load failed\n");
  11505. return rc;
  11506. }
  11507. }
  11508. bp->cnic_enabled = true;
  11509. bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
  11510. if (!bp->cnic_kwq)
  11511. return -ENOMEM;
  11512. bp->cnic_kwq_cons = bp->cnic_kwq;
  11513. bp->cnic_kwq_prod = bp->cnic_kwq;
  11514. bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
  11515. bp->cnic_spq_pending = 0;
  11516. bp->cnic_kwq_pending = 0;
  11517. bp->cnic_data = data;
  11518. cp->num_irq = 0;
  11519. cp->drv_state |= CNIC_DRV_STATE_REGD;
  11520. cp->iro_arr = bp->iro_arr;
  11521. bnx2x_setup_cnic_irq_info(bp);
  11522. rcu_assign_pointer(bp->cnic_ops, ops);
  11523. return 0;
  11524. }
  11525. static int bnx2x_unregister_cnic(struct net_device *dev)
  11526. {
  11527. struct bnx2x *bp = netdev_priv(dev);
  11528. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  11529. mutex_lock(&bp->cnic_mutex);
  11530. cp->drv_state = 0;
  11531. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  11532. mutex_unlock(&bp->cnic_mutex);
  11533. synchronize_rcu();
  11534. bp->cnic_enabled = false;
  11535. kfree(bp->cnic_kwq);
  11536. bp->cnic_kwq = NULL;
  11537. return 0;
  11538. }
  11539. struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
  11540. {
  11541. struct bnx2x *bp = netdev_priv(dev);
  11542. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  11543. /* If both iSCSI and FCoE are disabled - return NULL in
  11544. * order to indicate CNIC that it should not try to work
  11545. * with this device.
  11546. */
  11547. if (NO_ISCSI(bp) && NO_FCOE(bp))
  11548. return NULL;
  11549. cp->drv_owner = THIS_MODULE;
  11550. cp->chip_id = CHIP_ID(bp);
  11551. cp->pdev = bp->pdev;
  11552. cp->io_base = bp->regview;
  11553. cp->io_base2 = bp->doorbells;
  11554. cp->max_kwqe_pending = 8;
  11555. cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
  11556. cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
  11557. bnx2x_cid_ilt_lines(bp);
  11558. cp->ctx_tbl_len = CNIC_ILT_LINES;
  11559. cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
  11560. cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
  11561. cp->drv_ctl = bnx2x_drv_ctl;
  11562. cp->drv_register_cnic = bnx2x_register_cnic;
  11563. cp->drv_unregister_cnic = bnx2x_unregister_cnic;
  11564. cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
  11565. cp->iscsi_l2_client_id =
  11566. bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  11567. cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
  11568. if (NO_ISCSI_OOO(bp))
  11569. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
  11570. if (NO_ISCSI(bp))
  11571. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
  11572. if (NO_FCOE(bp))
  11573. cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
  11574. BNX2X_DEV_INFO(
  11575. "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
  11576. cp->ctx_blk_size,
  11577. cp->ctx_tbl_offset,
  11578. cp->ctx_tbl_len,
  11579. cp->starting_cid);
  11580. return cp;
  11581. }
  11582. u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
  11583. {
  11584. struct bnx2x *bp = fp->bp;
  11585. u32 offset = BAR_USTRORM_INTMEM;
  11586. if (IS_VF(bp))
  11587. return bnx2x_vf_ustorm_prods_offset(bp, fp);
  11588. else if (!CHIP_IS_E1x(bp))
  11589. offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
  11590. else
  11591. offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
  11592. return offset;
  11593. }
  11594. /* called only on E1H or E2.
  11595. * When pretending to be PF, the pretend value is the function number 0...7
  11596. * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
  11597. * combination
  11598. */
  11599. int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
  11600. {
  11601. u32 pretend_reg;
  11602. if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
  11603. return -1;
  11604. /* get my own pretend register */
  11605. pretend_reg = bnx2x_get_pretend_reg(bp);
  11606. REG_WR(bp, pretend_reg, pretend_func_val);
  11607. REG_RD(bp, pretend_reg);
  11608. return 0;
  11609. }