urb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include "hcd.h"
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static DEFINE_SPINLOCK(usb_reject_lock);
  12. static void urb_destroy(struct kref *kref)
  13. {
  14. struct urb *urb = to_urb(kref);
  15. if (urb->transfer_flags & URB_FREE_BUFFER)
  16. kfree(urb->transfer_buffer);
  17. kfree(urb);
  18. }
  19. /**
  20. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  21. * @urb: pointer to the urb to initialize
  22. *
  23. * Initializes a urb so that the USB subsystem can use it properly.
  24. *
  25. * If a urb is created with a call to usb_alloc_urb() it is not
  26. * necessary to call this function. Only use this if you allocate the
  27. * space for a struct urb on your own. If you call this function, be
  28. * careful when freeing the memory for your urb that it is no longer in
  29. * use by the USB core.
  30. *
  31. * Only use this function if you _really_ understand what you are doing.
  32. */
  33. void usb_init_urb(struct urb *urb)
  34. {
  35. if (urb) {
  36. memset(urb, 0, sizeof(*urb));
  37. kref_init(&urb->kref);
  38. INIT_LIST_HEAD(&urb->anchor_list);
  39. }
  40. }
  41. EXPORT_SYMBOL_GPL(usb_init_urb);
  42. /**
  43. * usb_alloc_urb - creates a new urb for a USB driver to use
  44. * @iso_packets: number of iso packets for this urb
  45. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  46. * valid options for this.
  47. *
  48. * Creates an urb for the USB driver to use, initializes a few internal
  49. * structures, incrementes the usage counter, and returns a pointer to it.
  50. *
  51. * If no memory is available, NULL is returned.
  52. *
  53. * If the driver want to use this urb for interrupt, control, or bulk
  54. * endpoints, pass '0' as the number of iso packets.
  55. *
  56. * The driver must call usb_free_urb() when it is finished with the urb.
  57. */
  58. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  59. {
  60. struct urb *urb;
  61. urb = kmalloc(sizeof(struct urb) +
  62. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  63. mem_flags);
  64. if (!urb) {
  65. printk(KERN_ERR "alloc_urb: kmalloc failed\n");
  66. return NULL;
  67. }
  68. usb_init_urb(urb);
  69. return urb;
  70. }
  71. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  72. /**
  73. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  74. * @urb: pointer to the urb to free, may be NULL
  75. *
  76. * Must be called when a user of a urb is finished with it. When the last user
  77. * of the urb calls this function, the memory of the urb is freed.
  78. *
  79. * Note: The transfer buffer associated with the urb is not freed, that must be
  80. * done elsewhere.
  81. */
  82. void usb_free_urb(struct urb *urb)
  83. {
  84. if (urb)
  85. kref_put(&urb->kref, urb_destroy);
  86. }
  87. EXPORT_SYMBOL_GPL(usb_free_urb);
  88. /**
  89. * usb_get_urb - increments the reference count of the urb
  90. * @urb: pointer to the urb to modify, may be NULL
  91. *
  92. * This must be called whenever a urb is transferred from a device driver to a
  93. * host controller driver. This allows proper reference counting to happen
  94. * for urbs.
  95. *
  96. * A pointer to the urb with the incremented reference counter is returned.
  97. */
  98. struct urb *usb_get_urb(struct urb *urb)
  99. {
  100. if (urb)
  101. kref_get(&urb->kref);
  102. return urb;
  103. }
  104. EXPORT_SYMBOL_GPL(usb_get_urb);
  105. /**
  106. * usb_anchor_urb - anchors an URB while it is processed
  107. * @urb: pointer to the urb to anchor
  108. * @anchor: pointer to the anchor
  109. *
  110. * This can be called to have access to URBs which are to be executed
  111. * without bothering to track them
  112. */
  113. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  114. {
  115. unsigned long flags;
  116. spin_lock_irqsave(&anchor->lock, flags);
  117. usb_get_urb(urb);
  118. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  119. urb->anchor = anchor;
  120. if (unlikely(anchor->poisoned)) {
  121. spin_lock(&usb_reject_lock);
  122. urb->reject++;
  123. spin_unlock(&usb_reject_lock);
  124. }
  125. spin_unlock_irqrestore(&anchor->lock, flags);
  126. }
  127. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  128. /**
  129. * usb_unanchor_urb - unanchors an URB
  130. * @urb: pointer to the urb to anchor
  131. *
  132. * Call this to stop the system keeping track of this URB
  133. */
  134. void usb_unanchor_urb(struct urb *urb)
  135. {
  136. unsigned long flags;
  137. struct usb_anchor *anchor;
  138. if (!urb)
  139. return;
  140. anchor = urb->anchor;
  141. if (!anchor)
  142. return;
  143. spin_lock_irqsave(&anchor->lock, flags);
  144. if (unlikely(anchor != urb->anchor)) {
  145. /* we've lost the race to another thread */
  146. spin_unlock_irqrestore(&anchor->lock, flags);
  147. return;
  148. }
  149. urb->anchor = NULL;
  150. list_del(&urb->anchor_list);
  151. spin_unlock_irqrestore(&anchor->lock, flags);
  152. usb_put_urb(urb);
  153. if (list_empty(&anchor->urb_list))
  154. wake_up(&anchor->wait);
  155. }
  156. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  157. /*-------------------------------------------------------------------*/
  158. /**
  159. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  160. * @urb: pointer to the urb describing the request
  161. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  162. * of valid options for this.
  163. *
  164. * This submits a transfer request, and transfers control of the URB
  165. * describing that request to the USB subsystem. Request completion will
  166. * be indicated later, asynchronously, by calling the completion handler.
  167. * The three types of completion are success, error, and unlink
  168. * (a software-induced fault, also called "request cancellation").
  169. *
  170. * URBs may be submitted in interrupt context.
  171. *
  172. * The caller must have correctly initialized the URB before submitting
  173. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  174. * available to ensure that most fields are correctly initialized, for
  175. * the particular kind of transfer, although they will not initialize
  176. * any transfer flags.
  177. *
  178. * Successful submissions return 0; otherwise this routine returns a
  179. * negative error number. If the submission is successful, the complete()
  180. * callback from the URB will be called exactly once, when the USB core and
  181. * Host Controller Driver (HCD) are finished with the URB. When the completion
  182. * function is called, control of the URB is returned to the device
  183. * driver which issued the request. The completion handler may then
  184. * immediately free or reuse that URB.
  185. *
  186. * With few exceptions, USB device drivers should never access URB fields
  187. * provided by usbcore or the HCD until its complete() is called.
  188. * The exceptions relate to periodic transfer scheduling. For both
  189. * interrupt and isochronous urbs, as part of successful URB submission
  190. * urb->interval is modified to reflect the actual transfer period used
  191. * (normally some power of two units). And for isochronous urbs,
  192. * urb->start_frame is modified to reflect when the URB's transfers were
  193. * scheduled to start. Not all isochronous transfer scheduling policies
  194. * will work, but most host controller drivers should easily handle ISO
  195. * queues going from now until 10-200 msec into the future.
  196. *
  197. * For control endpoints, the synchronous usb_control_msg() call is
  198. * often used (in non-interrupt context) instead of this call.
  199. * That is often used through convenience wrappers, for the requests
  200. * that are standardized in the USB 2.0 specification. For bulk
  201. * endpoints, a synchronous usb_bulk_msg() call is available.
  202. *
  203. * Request Queuing:
  204. *
  205. * URBs may be submitted to endpoints before previous ones complete, to
  206. * minimize the impact of interrupt latencies and system overhead on data
  207. * throughput. With that queuing policy, an endpoint's queue would never
  208. * be empty. This is required for continuous isochronous data streams,
  209. * and may also be required for some kinds of interrupt transfers. Such
  210. * queuing also maximizes bandwidth utilization by letting USB controllers
  211. * start work on later requests before driver software has finished the
  212. * completion processing for earlier (successful) requests.
  213. *
  214. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  215. * than one. This was previously a HCD-specific behavior, except for ISO
  216. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  217. * after faults (transfer errors or cancellation).
  218. *
  219. * Reserved Bandwidth Transfers:
  220. *
  221. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  222. * using the interval specified in the urb. Submitting the first urb to
  223. * the endpoint reserves the bandwidth necessary to make those transfers.
  224. * If the USB subsystem can't allocate sufficient bandwidth to perform
  225. * the periodic request, submitting such a periodic request should fail.
  226. *
  227. * Device drivers must explicitly request that repetition, by ensuring that
  228. * some URB is always on the endpoint's queue (except possibly for short
  229. * periods during completion callacks). When there is no longer an urb
  230. * queued, the endpoint's bandwidth reservation is canceled. This means
  231. * drivers can use their completion handlers to ensure they keep bandwidth
  232. * they need, by reinitializing and resubmitting the just-completed urb
  233. * until the driver longer needs that periodic bandwidth.
  234. *
  235. * Memory Flags:
  236. *
  237. * The general rules for how to decide which mem_flags to use
  238. * are the same as for kmalloc. There are four
  239. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  240. * GFP_ATOMIC.
  241. *
  242. * GFP_NOFS is not ever used, as it has not been implemented yet.
  243. *
  244. * GFP_ATOMIC is used when
  245. * (a) you are inside a completion handler, an interrupt, bottom half,
  246. * tasklet or timer, or
  247. * (b) you are holding a spinlock or rwlock (does not apply to
  248. * semaphores), or
  249. * (c) current->state != TASK_RUNNING, this is the case only after
  250. * you've changed it.
  251. *
  252. * GFP_NOIO is used in the block io path and error handling of storage
  253. * devices.
  254. *
  255. * All other situations use GFP_KERNEL.
  256. *
  257. * Some more specific rules for mem_flags can be inferred, such as
  258. * (1) start_xmit, timeout, and receive methods of network drivers must
  259. * use GFP_ATOMIC (they are called with a spinlock held);
  260. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  261. * called with a spinlock held);
  262. * (3) If you use a kernel thread with a network driver you must use
  263. * GFP_NOIO, unless (b) or (c) apply;
  264. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  265. * apply or your are in a storage driver's block io path;
  266. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  267. * (6) changing firmware on a running storage or net device uses
  268. * GFP_NOIO, unless b) or c) apply
  269. *
  270. */
  271. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  272. {
  273. int xfertype, max;
  274. struct usb_device *dev;
  275. struct usb_host_endpoint *ep;
  276. int is_out;
  277. if (!urb || urb->hcpriv || !urb->complete)
  278. return -EINVAL;
  279. dev = urb->dev;
  280. if ((!dev) || (dev->state < USB_STATE_DEFAULT))
  281. return -ENODEV;
  282. /* For now, get the endpoint from the pipe. Eventually drivers
  283. * will be required to set urb->ep directly and we will eliminate
  284. * urb->pipe.
  285. */
  286. ep = (usb_pipein(urb->pipe) ? dev->ep_in : dev->ep_out)
  287. [usb_pipeendpoint(urb->pipe)];
  288. if (!ep)
  289. return -ENOENT;
  290. urb->ep = ep;
  291. urb->status = -EINPROGRESS;
  292. urb->actual_length = 0;
  293. /* Lots of sanity checks, so HCDs can rely on clean data
  294. * and don't need to duplicate tests
  295. */
  296. xfertype = usb_endpoint_type(&ep->desc);
  297. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  298. struct usb_ctrlrequest *setup =
  299. (struct usb_ctrlrequest *) urb->setup_packet;
  300. if (!setup)
  301. return -ENOEXEC;
  302. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  303. !setup->wLength;
  304. } else {
  305. is_out = usb_endpoint_dir_out(&ep->desc);
  306. }
  307. /* Cache the direction for later use */
  308. urb->transfer_flags = (urb->transfer_flags & ~URB_DIR_MASK) |
  309. (is_out ? URB_DIR_OUT : URB_DIR_IN);
  310. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  311. dev->state < USB_STATE_CONFIGURED)
  312. return -ENODEV;
  313. max = le16_to_cpu(ep->desc.wMaxPacketSize);
  314. if (max <= 0) {
  315. dev_dbg(&dev->dev,
  316. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  317. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  318. __func__, max);
  319. return -EMSGSIZE;
  320. }
  321. /* periodic transfers limit size per frame/uframe,
  322. * but drivers only control those sizes for ISO.
  323. * while we're checking, initialize return status.
  324. */
  325. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  326. int n, len;
  327. /* "high bandwidth" mode, 1-3 packets/uframe? */
  328. if (dev->speed == USB_SPEED_HIGH) {
  329. int mult = 1 + ((max >> 11) & 0x03);
  330. max &= 0x07ff;
  331. max *= mult;
  332. }
  333. if (urb->number_of_packets <= 0)
  334. return -EINVAL;
  335. for (n = 0; n < urb->number_of_packets; n++) {
  336. len = urb->iso_frame_desc[n].length;
  337. if (len < 0 || len > max)
  338. return -EMSGSIZE;
  339. urb->iso_frame_desc[n].status = -EXDEV;
  340. urb->iso_frame_desc[n].actual_length = 0;
  341. }
  342. }
  343. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  344. if (urb->transfer_buffer_length < 0)
  345. return -EMSGSIZE;
  346. #ifdef DEBUG
  347. /* stuff that drivers shouldn't do, but which shouldn't
  348. * cause problems in HCDs if they get it wrong.
  349. */
  350. {
  351. unsigned int orig_flags = urb->transfer_flags;
  352. unsigned int allowed;
  353. /* enforce simple/standard policy */
  354. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP |
  355. URB_NO_INTERRUPT | URB_DIR_MASK | URB_FREE_BUFFER);
  356. switch (xfertype) {
  357. case USB_ENDPOINT_XFER_BULK:
  358. if (is_out)
  359. allowed |= URB_ZERO_PACKET;
  360. /* FALLTHROUGH */
  361. case USB_ENDPOINT_XFER_CONTROL:
  362. allowed |= URB_NO_FSBR; /* only affects UHCI */
  363. /* FALLTHROUGH */
  364. default: /* all non-iso endpoints */
  365. if (!is_out)
  366. allowed |= URB_SHORT_NOT_OK;
  367. break;
  368. case USB_ENDPOINT_XFER_ISOC:
  369. allowed |= URB_ISO_ASAP;
  370. break;
  371. }
  372. urb->transfer_flags &= allowed;
  373. /* fail if submitter gave bogus flags */
  374. if (urb->transfer_flags != orig_flags) {
  375. dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  376. orig_flags, urb->transfer_flags);
  377. return -EINVAL;
  378. }
  379. }
  380. #endif
  381. /*
  382. * Force periodic transfer intervals to be legal values that are
  383. * a power of two (so HCDs don't need to).
  384. *
  385. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  386. * supports different values... this uses EHCI/UHCI defaults (and
  387. * EHCI can use smaller non-default values).
  388. */
  389. switch (xfertype) {
  390. case USB_ENDPOINT_XFER_ISOC:
  391. case USB_ENDPOINT_XFER_INT:
  392. /* too small? */
  393. if (urb->interval <= 0)
  394. return -EINVAL;
  395. /* too big? */
  396. switch (dev->speed) {
  397. case USB_SPEED_HIGH: /* units are microframes */
  398. /* NOTE usb handles 2^15 */
  399. if (urb->interval > (1024 * 8))
  400. urb->interval = 1024 * 8;
  401. max = 1024 * 8;
  402. break;
  403. case USB_SPEED_FULL: /* units are frames/msec */
  404. case USB_SPEED_LOW:
  405. if (xfertype == USB_ENDPOINT_XFER_INT) {
  406. if (urb->interval > 255)
  407. return -EINVAL;
  408. /* NOTE ohci only handles up to 32 */
  409. max = 128;
  410. } else {
  411. if (urb->interval > 1024)
  412. urb->interval = 1024;
  413. /* NOTE usb and ohci handle up to 2^15 */
  414. max = 1024;
  415. }
  416. break;
  417. default:
  418. return -EINVAL;
  419. }
  420. /* Round down to a power of 2, no more than max */
  421. urb->interval = min(max, 1 << ilog2(urb->interval));
  422. }
  423. return usb_hcd_submit_urb(urb, mem_flags);
  424. }
  425. EXPORT_SYMBOL_GPL(usb_submit_urb);
  426. /*-------------------------------------------------------------------*/
  427. /**
  428. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  429. * @urb: pointer to urb describing a previously submitted request,
  430. * may be NULL
  431. *
  432. * This routine cancels an in-progress request. URBs complete only once
  433. * per submission, and may be canceled only once per submission.
  434. * Successful cancellation means termination of @urb will be expedited
  435. * and the completion handler will be called with a status code
  436. * indicating that the request has been canceled (rather than any other
  437. * code).
  438. *
  439. * This request is always asynchronous. Success is indicated by
  440. * returning -EINPROGRESS, at which time the URB will probably not yet
  441. * have been given back to the device driver. When it is eventually
  442. * called, the completion function will see @urb->status == -ECONNRESET.
  443. * Failure is indicated by usb_unlink_urb() returning any other value.
  444. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  445. * never submitted, or it was unlinked before, or the hardware is already
  446. * finished with it), even if the completion handler has not yet run.
  447. *
  448. * Unlinking and Endpoint Queues:
  449. *
  450. * [The behaviors and guarantees described below do not apply to virtual
  451. * root hubs but only to endpoint queues for physical USB devices.]
  452. *
  453. * Host Controller Drivers (HCDs) place all the URBs for a particular
  454. * endpoint in a queue. Normally the queue advances as the controller
  455. * hardware processes each request. But when an URB terminates with an
  456. * error its queue generally stops (see below), at least until that URB's
  457. * completion routine returns. It is guaranteed that a stopped queue
  458. * will not restart until all its unlinked URBs have been fully retired,
  459. * with their completion routines run, even if that's not until some time
  460. * after the original completion handler returns. The same behavior and
  461. * guarantee apply when an URB terminates because it was unlinked.
  462. *
  463. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  464. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  465. * and -EREMOTEIO. Control endpoint queues behave the same way except
  466. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  467. * for isochronous endpoints are treated differently, because they must
  468. * advance at fixed rates. Such queues do not stop when an URB
  469. * encounters an error or is unlinked. An unlinked isochronous URB may
  470. * leave a gap in the stream of packets; it is undefined whether such
  471. * gaps can be filled in.
  472. *
  473. * Note that early termination of an URB because a short packet was
  474. * received will generate a -EREMOTEIO error if and only if the
  475. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  476. * drivers can build deep queues for large or complex bulk transfers
  477. * and clean them up reliably after any sort of aborted transfer by
  478. * unlinking all pending URBs at the first fault.
  479. *
  480. * When a control URB terminates with an error other than -EREMOTEIO, it
  481. * is quite likely that the status stage of the transfer will not take
  482. * place.
  483. */
  484. int usb_unlink_urb(struct urb *urb)
  485. {
  486. if (!urb)
  487. return -EINVAL;
  488. if (!urb->dev)
  489. return -ENODEV;
  490. if (!urb->ep)
  491. return -EIDRM;
  492. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  493. }
  494. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  495. /**
  496. * usb_kill_urb - cancel a transfer request and wait for it to finish
  497. * @urb: pointer to URB describing a previously submitted request,
  498. * may be NULL
  499. *
  500. * This routine cancels an in-progress request. It is guaranteed that
  501. * upon return all completion handlers will have finished and the URB
  502. * will be totally idle and available for reuse. These features make
  503. * this an ideal way to stop I/O in a disconnect() callback or close()
  504. * function. If the request has not already finished or been unlinked
  505. * the completion handler will see urb->status == -ENOENT.
  506. *
  507. * While the routine is running, attempts to resubmit the URB will fail
  508. * with error -EPERM. Thus even if the URB's completion handler always
  509. * tries to resubmit, it will not succeed and the URB will become idle.
  510. *
  511. * This routine may not be used in an interrupt context (such as a bottom
  512. * half or a completion handler), or when holding a spinlock, or in other
  513. * situations where the caller can't schedule().
  514. */
  515. void usb_kill_urb(struct urb *urb)
  516. {
  517. might_sleep();
  518. if (!(urb && urb->dev && urb->ep))
  519. return;
  520. spin_lock_irq(&usb_reject_lock);
  521. ++urb->reject;
  522. spin_unlock_irq(&usb_reject_lock);
  523. usb_hcd_unlink_urb(urb, -ENOENT);
  524. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  525. spin_lock_irq(&usb_reject_lock);
  526. --urb->reject;
  527. spin_unlock_irq(&usb_reject_lock);
  528. }
  529. EXPORT_SYMBOL_GPL(usb_kill_urb);
  530. /**
  531. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  532. * @urb: pointer to URB describing a previously submitted request,
  533. * may be NULL
  534. *
  535. * This routine cancels an in-progress request. It is guaranteed that
  536. * upon return all completion handlers will have finished and the URB
  537. * will be totally idle and cannot be reused. These features make
  538. * this an ideal way to stop I/O in a disconnect() callback.
  539. * If the request has not already finished or been unlinked
  540. * the completion handler will see urb->status == -ENOENT.
  541. *
  542. * After and while the routine runs, attempts to resubmit the URB will fail
  543. * with error -EPERM. Thus even if the URB's completion handler always
  544. * tries to resubmit, it will not succeed and the URB will become idle.
  545. *
  546. * This routine may not be used in an interrupt context (such as a bottom
  547. * half or a completion handler), or when holding a spinlock, or in other
  548. * situations where the caller can't schedule().
  549. */
  550. void usb_poison_urb(struct urb *urb)
  551. {
  552. might_sleep();
  553. if (!(urb && urb->dev && urb->ep))
  554. return;
  555. spin_lock_irq(&usb_reject_lock);
  556. ++urb->reject;
  557. spin_unlock_irq(&usb_reject_lock);
  558. usb_hcd_unlink_urb(urb, -ENOENT);
  559. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  560. }
  561. EXPORT_SYMBOL_GPL(usb_poison_urb);
  562. void usb_unpoison_urb(struct urb *urb)
  563. {
  564. unsigned long flags;
  565. if (!urb)
  566. return;
  567. spin_lock_irqsave(&usb_reject_lock, flags);
  568. --urb->reject;
  569. spin_unlock_irqrestore(&usb_reject_lock, flags);
  570. }
  571. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  572. /**
  573. * usb_kill_anchored_urbs - cancel transfer requests en masse
  574. * @anchor: anchor the requests are bound to
  575. *
  576. * this allows all outstanding URBs to be killed starting
  577. * from the back of the queue
  578. */
  579. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  580. {
  581. struct urb *victim;
  582. spin_lock_irq(&anchor->lock);
  583. while (!list_empty(&anchor->urb_list)) {
  584. victim = list_entry(anchor->urb_list.prev, struct urb,
  585. anchor_list);
  586. /* we must make sure the URB isn't freed before we kill it*/
  587. usb_get_urb(victim);
  588. spin_unlock_irq(&anchor->lock);
  589. /* this will unanchor the URB */
  590. usb_kill_urb(victim);
  591. usb_put_urb(victim);
  592. spin_lock_irq(&anchor->lock);
  593. }
  594. spin_unlock_irq(&anchor->lock);
  595. }
  596. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  597. /**
  598. * usb_poison_anchored_urbs - cease all traffic from an anchor
  599. * @anchor: anchor the requests are bound to
  600. *
  601. * this allows all outstanding URBs to be poisoned starting
  602. * from the back of the queue. Newly added URBs will also be
  603. * poisoned
  604. */
  605. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  606. {
  607. struct urb *victim;
  608. spin_lock_irq(&anchor->lock);
  609. anchor->poisoned = 1;
  610. while (!list_empty(&anchor->urb_list)) {
  611. victim = list_entry(anchor->urb_list.prev, struct urb,
  612. anchor_list);
  613. /* we must make sure the URB isn't freed before we kill it*/
  614. usb_get_urb(victim);
  615. spin_unlock_irq(&anchor->lock);
  616. /* this will unanchor the URB */
  617. usb_poison_urb(victim);
  618. usb_put_urb(victim);
  619. spin_lock_irq(&anchor->lock);
  620. }
  621. spin_unlock_irq(&anchor->lock);
  622. }
  623. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  624. /**
  625. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  626. * @anchor: anchor the requests are bound to
  627. *
  628. * this allows all outstanding URBs to be unlinked starting
  629. * from the back of the queue. This function is asynchronous.
  630. * The unlinking is just tiggered. It may happen after this
  631. * function has returned.
  632. */
  633. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  634. {
  635. struct urb *victim;
  636. unsigned long flags;
  637. spin_lock_irqsave(&anchor->lock, flags);
  638. while (!list_empty(&anchor->urb_list)) {
  639. victim = list_entry(anchor->urb_list.prev, struct urb,
  640. anchor_list);
  641. usb_get_urb(victim);
  642. spin_unlock_irqrestore(&anchor->lock, flags);
  643. /* this will unanchor the URB */
  644. usb_unlink_urb(victim);
  645. usb_put_urb(victim);
  646. spin_lock_irqsave(&anchor->lock, flags);
  647. }
  648. spin_unlock_irqrestore(&anchor->lock, flags);
  649. }
  650. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  651. /**
  652. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  653. * @anchor: the anchor you want to become unused
  654. * @timeout: how long you are willing to wait in milliseconds
  655. *
  656. * Call this is you want to be sure all an anchor's
  657. * URBs have finished
  658. */
  659. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  660. unsigned int timeout)
  661. {
  662. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  663. msecs_to_jiffies(timeout));
  664. }
  665. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  666. /**
  667. * usb_get_from_anchor - get an anchor's oldest urb
  668. * @anchor: the anchor whose urb you want
  669. *
  670. * this will take the oldest urb from an anchor,
  671. * unanchor and return it
  672. */
  673. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  674. {
  675. struct urb *victim;
  676. unsigned long flags;
  677. spin_lock_irqsave(&anchor->lock, flags);
  678. if (!list_empty(&anchor->urb_list)) {
  679. victim = list_entry(anchor->urb_list.next, struct urb,
  680. anchor_list);
  681. usb_get_urb(victim);
  682. spin_unlock_irqrestore(&anchor->lock, flags);
  683. usb_unanchor_urb(victim);
  684. } else {
  685. spin_unlock_irqrestore(&anchor->lock, flags);
  686. victim = NULL;
  687. }
  688. return victim;
  689. }
  690. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  691. /**
  692. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  693. * @anchor: the anchor whose urbs you want to unanchor
  694. *
  695. * use this to get rid of all an anchor's urbs
  696. */
  697. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  698. {
  699. struct urb *victim;
  700. unsigned long flags;
  701. spin_lock_irqsave(&anchor->lock, flags);
  702. while (!list_empty(&anchor->urb_list)) {
  703. victim = list_entry(anchor->urb_list.prev, struct urb,
  704. anchor_list);
  705. usb_get_urb(victim);
  706. spin_unlock_irqrestore(&anchor->lock, flags);
  707. /* this may free the URB */
  708. usb_unanchor_urb(victim);
  709. usb_put_urb(victim);
  710. spin_lock_irqsave(&anchor->lock, flags);
  711. }
  712. spin_unlock_irqrestore(&anchor->lock, flags);
  713. }
  714. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  715. /**
  716. * usb_anchor_empty - is an anchor empty
  717. * @anchor: the anchor you want to query
  718. *
  719. * returns 1 if the anchor has no urbs associated with it
  720. */
  721. int usb_anchor_empty(struct usb_anchor *anchor)
  722. {
  723. return list_empty(&anchor->urb_list);
  724. }
  725. EXPORT_SYMBOL_GPL(usb_anchor_empty);