intel_display.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/i2c.h>
  27. #include "drmP.h"
  28. #include "intel_drv.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "drm_crtc_helper.h"
  32. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  33. typedef struct {
  34. /* given values */
  35. int n;
  36. int m1, m2;
  37. int p1, p2;
  38. /* derived values */
  39. int dot;
  40. int vco;
  41. int m;
  42. int p;
  43. } intel_clock_t;
  44. typedef struct {
  45. int min, max;
  46. } intel_range_t;
  47. typedef struct {
  48. int dot_limit;
  49. int p2_slow, p2_fast;
  50. } intel_p2_t;
  51. #define INTEL_P2_NUM 2
  52. typedef struct {
  53. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  54. intel_p2_t p2;
  55. } intel_limit_t;
  56. #define I8XX_DOT_MIN 25000
  57. #define I8XX_DOT_MAX 350000
  58. #define I8XX_VCO_MIN 930000
  59. #define I8XX_VCO_MAX 1400000
  60. #define I8XX_N_MIN 3
  61. #define I8XX_N_MAX 16
  62. #define I8XX_M_MIN 96
  63. #define I8XX_M_MAX 140
  64. #define I8XX_M1_MIN 18
  65. #define I8XX_M1_MAX 26
  66. #define I8XX_M2_MIN 6
  67. #define I8XX_M2_MAX 16
  68. #define I8XX_P_MIN 4
  69. #define I8XX_P_MAX 128
  70. #define I8XX_P1_MIN 2
  71. #define I8XX_P1_MAX 33
  72. #define I8XX_P1_LVDS_MIN 1
  73. #define I8XX_P1_LVDS_MAX 6
  74. #define I8XX_P2_SLOW 4
  75. #define I8XX_P2_FAST 2
  76. #define I8XX_P2_LVDS_SLOW 14
  77. #define I8XX_P2_LVDS_FAST 14 /* No fast option */
  78. #define I8XX_P2_SLOW_LIMIT 165000
  79. #define I9XX_DOT_MIN 20000
  80. #define I9XX_DOT_MAX 400000
  81. #define I9XX_VCO_MIN 1400000
  82. #define I9XX_VCO_MAX 2800000
  83. #define I9XX_N_MIN 1
  84. #define I9XX_N_MAX 6
  85. #define I9XX_M_MIN 70
  86. #define I9XX_M_MAX 120
  87. #define I9XX_M1_MIN 10
  88. #define I9XX_M1_MAX 22
  89. #define I9XX_M2_MIN 5
  90. #define I9XX_M2_MAX 9
  91. #define I9XX_P_SDVO_DAC_MIN 5
  92. #define I9XX_P_SDVO_DAC_MAX 80
  93. #define I9XX_P_LVDS_MIN 7
  94. #define I9XX_P_LVDS_MAX 98
  95. #define I9XX_P1_MIN 1
  96. #define I9XX_P1_MAX 8
  97. #define I9XX_P2_SDVO_DAC_SLOW 10
  98. #define I9XX_P2_SDVO_DAC_FAST 5
  99. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  100. #define I9XX_P2_LVDS_SLOW 14
  101. #define I9XX_P2_LVDS_FAST 7
  102. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  103. #define INTEL_LIMIT_I8XX_DVO_DAC 0
  104. #define INTEL_LIMIT_I8XX_LVDS 1
  105. #define INTEL_LIMIT_I9XX_SDVO_DAC 2
  106. #define INTEL_LIMIT_I9XX_LVDS 3
  107. static const intel_limit_t intel_limits[] = {
  108. { /* INTEL_LIMIT_I8XX_DVO_DAC */
  109. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  110. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  111. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  112. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  113. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  114. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  115. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  116. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  117. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  118. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  119. },
  120. { /* INTEL_LIMIT_I8XX_LVDS */
  121. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  122. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  123. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  124. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  125. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  126. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  127. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  128. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  129. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  130. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  131. },
  132. { /* INTEL_LIMIT_I9XX_SDVO_DAC */
  133. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  134. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  135. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  136. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  137. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  138. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  139. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  140. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  141. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  142. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  143. },
  144. { /* INTEL_LIMIT_I9XX_LVDS */
  145. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  146. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  147. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  148. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  149. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  150. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  151. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  152. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  153. /* The single-channel range is 25-112Mhz, and dual-channel
  154. * is 80-224Mhz. Prefer single channel as much as possible.
  155. */
  156. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  157. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  158. },
  159. };
  160. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  161. {
  162. struct drm_device *dev = crtc->dev;
  163. const intel_limit_t *limit;
  164. if (IS_I9XX(dev)) {
  165. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  166. limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
  167. else
  168. limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
  169. } else {
  170. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  171. limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
  172. else
  173. limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
  174. }
  175. return limit;
  176. }
  177. static void intel_clock(int refclk, intel_clock_t *clock)
  178. {
  179. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  180. clock->p = clock->p1 * clock->p2;
  181. clock->vco = refclk * clock->m / (clock->n + 2);
  182. clock->dot = clock->vco / clock->p;
  183. }
  184. /**
  185. * Returns whether any output on the specified pipe is of the specified type
  186. */
  187. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  188. {
  189. struct drm_device *dev = crtc->dev;
  190. struct drm_mode_config *mode_config = &dev->mode_config;
  191. struct drm_connector *l_entry;
  192. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  193. if (l_entry->encoder &&
  194. l_entry->encoder->crtc == crtc) {
  195. struct intel_output *intel_output = to_intel_output(l_entry);
  196. if (intel_output->type == type)
  197. return true;
  198. }
  199. }
  200. return false;
  201. }
  202. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  203. /**
  204. * Returns whether the given set of divisors are valid for a given refclk with
  205. * the given connectors.
  206. */
  207. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  208. {
  209. const intel_limit_t *limit = intel_limit (crtc);
  210. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  211. INTELPllInvalid ("p1 out of range\n");
  212. if (clock->p < limit->p.min || limit->p.max < clock->p)
  213. INTELPllInvalid ("p out of range\n");
  214. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  215. INTELPllInvalid ("m2 out of range\n");
  216. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  217. INTELPllInvalid ("m1 out of range\n");
  218. if (clock->m1 <= clock->m2)
  219. INTELPllInvalid ("m1 <= m2\n");
  220. if (clock->m < limit->m.min || limit->m.max < clock->m)
  221. INTELPllInvalid ("m out of range\n");
  222. if (clock->n < limit->n.min || limit->n.max < clock->n)
  223. INTELPllInvalid ("n out of range\n");
  224. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  225. INTELPllInvalid ("vco out of range\n");
  226. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  227. * connector, etc., rather than just a single range.
  228. */
  229. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  230. INTELPllInvalid ("dot out of range\n");
  231. return true;
  232. }
  233. /**
  234. * Returns a set of divisors for the desired target clock with the given
  235. * refclk, or FALSE. The returned values represent the clock equation:
  236. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  237. */
  238. static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
  239. int refclk, intel_clock_t *best_clock)
  240. {
  241. struct drm_device *dev = crtc->dev;
  242. struct drm_i915_private *dev_priv = dev->dev_private;
  243. intel_clock_t clock;
  244. const intel_limit_t *limit = intel_limit(crtc);
  245. int err = target;
  246. if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  247. (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
  248. /*
  249. * For LVDS, if the panel is on, just rely on its current
  250. * settings for dual-channel. We haven't figured out how to
  251. * reliably set up different single/dual channel state, if we
  252. * even can.
  253. */
  254. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  255. LVDS_CLKB_POWER_UP)
  256. clock.p2 = limit->p2.p2_fast;
  257. else
  258. clock.p2 = limit->p2.p2_slow;
  259. } else {
  260. if (target < limit->p2.dot_limit)
  261. clock.p2 = limit->p2.p2_slow;
  262. else
  263. clock.p2 = limit->p2.p2_fast;
  264. }
  265. memset (best_clock, 0, sizeof (*best_clock));
  266. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  267. for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
  268. clock.m2 <= limit->m2.max; clock.m2++) {
  269. for (clock.n = limit->n.min; clock.n <= limit->n.max;
  270. clock.n++) {
  271. for (clock.p1 = limit->p1.min;
  272. clock.p1 <= limit->p1.max; clock.p1++) {
  273. int this_err;
  274. intel_clock(refclk, &clock);
  275. if (!intel_PLL_is_valid(crtc, &clock))
  276. continue;
  277. this_err = abs(clock.dot - target);
  278. if (this_err < err) {
  279. *best_clock = clock;
  280. err = this_err;
  281. }
  282. }
  283. }
  284. }
  285. }
  286. return (err != target);
  287. }
  288. void
  289. intel_wait_for_vblank(struct drm_device *dev)
  290. {
  291. /* Wait for 20ms, i.e. one cycle at 50hz. */
  292. udelay(20000);
  293. }
  294. static int
  295. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  296. struct drm_framebuffer *old_fb)
  297. {
  298. struct drm_device *dev = crtc->dev;
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. struct drm_i915_master_private *master_priv;
  301. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  302. struct intel_framebuffer *intel_fb;
  303. struct drm_i915_gem_object *obj_priv;
  304. struct drm_gem_object *obj;
  305. int pipe = intel_crtc->pipe;
  306. unsigned long Start, Offset;
  307. int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
  308. int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
  309. int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
  310. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  311. u32 dspcntr, alignment;
  312. int ret;
  313. /* no fb bound */
  314. if (!crtc->fb) {
  315. DRM_DEBUG("No FB bound\n");
  316. return 0;
  317. }
  318. switch (pipe) {
  319. case 0:
  320. case 1:
  321. break;
  322. default:
  323. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  324. return -EINVAL;
  325. }
  326. intel_fb = to_intel_framebuffer(crtc->fb);
  327. obj = intel_fb->obj;
  328. obj_priv = obj->driver_private;
  329. switch (obj_priv->tiling_mode) {
  330. case I915_TILING_NONE:
  331. alignment = 64 * 1024;
  332. break;
  333. case I915_TILING_X:
  334. /* pin() will align the object as required by fence */
  335. alignment = 0;
  336. break;
  337. case I915_TILING_Y:
  338. /* FIXME: Is this true? */
  339. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  340. return -EINVAL;
  341. default:
  342. BUG();
  343. }
  344. mutex_lock(&dev->struct_mutex);
  345. ret = i915_gem_object_pin(intel_fb->obj, alignment);
  346. if (ret != 0) {
  347. mutex_unlock(&dev->struct_mutex);
  348. return ret;
  349. }
  350. ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
  351. if (ret != 0) {
  352. i915_gem_object_unpin(intel_fb->obj);
  353. mutex_unlock(&dev->struct_mutex);
  354. return ret;
  355. }
  356. dspcntr = I915_READ(dspcntr_reg);
  357. /* Mask out pixel format bits in case we change it */
  358. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  359. switch (crtc->fb->bits_per_pixel) {
  360. case 8:
  361. dspcntr |= DISPPLANE_8BPP;
  362. break;
  363. case 16:
  364. if (crtc->fb->depth == 15)
  365. dspcntr |= DISPPLANE_15_16BPP;
  366. else
  367. dspcntr |= DISPPLANE_16BPP;
  368. break;
  369. case 24:
  370. case 32:
  371. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  372. break;
  373. default:
  374. DRM_ERROR("Unknown color depth\n");
  375. i915_gem_object_unpin(intel_fb->obj);
  376. mutex_unlock(&dev->struct_mutex);
  377. return -EINVAL;
  378. }
  379. I915_WRITE(dspcntr_reg, dspcntr);
  380. Start = obj_priv->gtt_offset;
  381. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  382. DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
  383. I915_WRITE(dspstride, crtc->fb->pitch);
  384. if (IS_I965G(dev)) {
  385. I915_WRITE(dspbase, Offset);
  386. I915_READ(dspbase);
  387. I915_WRITE(dspsurf, Start);
  388. I915_READ(dspsurf);
  389. } else {
  390. I915_WRITE(dspbase, Start + Offset);
  391. I915_READ(dspbase);
  392. }
  393. intel_wait_for_vblank(dev);
  394. if (old_fb) {
  395. intel_fb = to_intel_framebuffer(old_fb);
  396. i915_gem_object_unpin(intel_fb->obj);
  397. }
  398. mutex_unlock(&dev->struct_mutex);
  399. if (!dev->primary->master)
  400. return 0;
  401. master_priv = dev->primary->master->driver_priv;
  402. if (!master_priv->sarea_priv)
  403. return 0;
  404. if (pipe) {
  405. master_priv->sarea_priv->pipeB_x = x;
  406. master_priv->sarea_priv->pipeB_y = y;
  407. } else {
  408. master_priv->sarea_priv->pipeA_x = x;
  409. master_priv->sarea_priv->pipeA_y = y;
  410. }
  411. return 0;
  412. }
  413. /**
  414. * Sets the power management mode of the pipe and plane.
  415. *
  416. * This code should probably grow support for turning the cursor off and back
  417. * on appropriately at the same time as we're turning the pipe off/on.
  418. */
  419. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  420. {
  421. struct drm_device *dev = crtc->dev;
  422. struct drm_i915_master_private *master_priv;
  423. struct drm_i915_private *dev_priv = dev->dev_private;
  424. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  425. int pipe = intel_crtc->pipe;
  426. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  427. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  428. int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
  429. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  430. u32 temp;
  431. bool enabled;
  432. /* XXX: When our outputs are all unaware of DPMS modes other than off
  433. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  434. */
  435. switch (mode) {
  436. case DRM_MODE_DPMS_ON:
  437. case DRM_MODE_DPMS_STANDBY:
  438. case DRM_MODE_DPMS_SUSPEND:
  439. /* Enable the DPLL */
  440. temp = I915_READ(dpll_reg);
  441. if ((temp & DPLL_VCO_ENABLE) == 0) {
  442. I915_WRITE(dpll_reg, temp);
  443. I915_READ(dpll_reg);
  444. /* Wait for the clocks to stabilize. */
  445. udelay(150);
  446. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  447. I915_READ(dpll_reg);
  448. /* Wait for the clocks to stabilize. */
  449. udelay(150);
  450. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  451. I915_READ(dpll_reg);
  452. /* Wait for the clocks to stabilize. */
  453. udelay(150);
  454. }
  455. /* Enable the pipe */
  456. temp = I915_READ(pipeconf_reg);
  457. if ((temp & PIPEACONF_ENABLE) == 0)
  458. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  459. /* Enable the plane */
  460. temp = I915_READ(dspcntr_reg);
  461. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  462. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  463. /* Flush the plane changes */
  464. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  465. }
  466. intel_crtc_load_lut(crtc);
  467. /* Give the overlay scaler a chance to enable if it's on this pipe */
  468. //intel_crtc_dpms_video(crtc, true); TODO
  469. break;
  470. case DRM_MODE_DPMS_OFF:
  471. /* Give the overlay scaler a chance to disable if it's on this pipe */
  472. //intel_crtc_dpms_video(crtc, FALSE); TODO
  473. /* Disable the VGA plane that we never use */
  474. I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
  475. /* Disable display plane */
  476. temp = I915_READ(dspcntr_reg);
  477. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  478. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  479. /* Flush the plane changes */
  480. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  481. I915_READ(dspbase_reg);
  482. }
  483. if (!IS_I9XX(dev)) {
  484. /* Wait for vblank for the disable to take effect */
  485. intel_wait_for_vblank(dev);
  486. }
  487. /* Next, disable display pipes */
  488. temp = I915_READ(pipeconf_reg);
  489. if ((temp & PIPEACONF_ENABLE) != 0) {
  490. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  491. I915_READ(pipeconf_reg);
  492. }
  493. /* Wait for vblank for the disable to take effect. */
  494. intel_wait_for_vblank(dev);
  495. temp = I915_READ(dpll_reg);
  496. if ((temp & DPLL_VCO_ENABLE) != 0) {
  497. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  498. I915_READ(dpll_reg);
  499. }
  500. /* Wait for the clocks to turn off. */
  501. udelay(150);
  502. break;
  503. }
  504. if (!dev->primary->master)
  505. return;
  506. master_priv = dev->primary->master->driver_priv;
  507. if (!master_priv->sarea_priv)
  508. return;
  509. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  510. switch (pipe) {
  511. case 0:
  512. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  513. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  514. break;
  515. case 1:
  516. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  517. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  518. break;
  519. default:
  520. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  521. break;
  522. }
  523. intel_crtc->dpms_mode = mode;
  524. }
  525. static void intel_crtc_prepare (struct drm_crtc *crtc)
  526. {
  527. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  528. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  529. }
  530. static void intel_crtc_commit (struct drm_crtc *crtc)
  531. {
  532. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  533. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  534. }
  535. void intel_encoder_prepare (struct drm_encoder *encoder)
  536. {
  537. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  538. /* lvds has its own version of prepare see intel_lvds_prepare */
  539. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  540. }
  541. void intel_encoder_commit (struct drm_encoder *encoder)
  542. {
  543. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  544. /* lvds has its own version of commit see intel_lvds_commit */
  545. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  546. }
  547. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  548. struct drm_display_mode *mode,
  549. struct drm_display_mode *adjusted_mode)
  550. {
  551. return true;
  552. }
  553. /** Returns the core display clock speed for i830 - i945 */
  554. static int intel_get_core_clock_speed(struct drm_device *dev)
  555. {
  556. /* Core clock values taken from the published datasheets.
  557. * The 830 may go up to 166 Mhz, which we should check.
  558. */
  559. if (IS_I945G(dev))
  560. return 400000;
  561. else if (IS_I915G(dev))
  562. return 333000;
  563. else if (IS_I945GM(dev) || IS_845G(dev))
  564. return 200000;
  565. else if (IS_I915GM(dev)) {
  566. u16 gcfgc = 0;
  567. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  568. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  569. return 133000;
  570. else {
  571. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  572. case GC_DISPLAY_CLOCK_333_MHZ:
  573. return 333000;
  574. default:
  575. case GC_DISPLAY_CLOCK_190_200_MHZ:
  576. return 190000;
  577. }
  578. }
  579. } else if (IS_I865G(dev))
  580. return 266000;
  581. else if (IS_I855(dev)) {
  582. u16 hpllcc = 0;
  583. /* Assume that the hardware is in the high speed state. This
  584. * should be the default.
  585. */
  586. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  587. case GC_CLOCK_133_200:
  588. case GC_CLOCK_100_200:
  589. return 200000;
  590. case GC_CLOCK_166_250:
  591. return 250000;
  592. case GC_CLOCK_100_133:
  593. return 133000;
  594. }
  595. } else /* 852, 830 */
  596. return 133000;
  597. return 0; /* Silence gcc warning */
  598. }
  599. /**
  600. * Return the pipe currently connected to the panel fitter,
  601. * or -1 if the panel fitter is not present or not in use
  602. */
  603. static int intel_panel_fitter_pipe (struct drm_device *dev)
  604. {
  605. struct drm_i915_private *dev_priv = dev->dev_private;
  606. u32 pfit_control;
  607. /* i830 doesn't have a panel fitter */
  608. if (IS_I830(dev))
  609. return -1;
  610. pfit_control = I915_READ(PFIT_CONTROL);
  611. /* See if the panel fitter is in use */
  612. if ((pfit_control & PFIT_ENABLE) == 0)
  613. return -1;
  614. /* 965 can place panel fitter on either pipe */
  615. if (IS_I965G(dev))
  616. return (pfit_control >> 29) & 0x3;
  617. /* older chips can only use pipe 1 */
  618. return 1;
  619. }
  620. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  621. struct drm_display_mode *mode,
  622. struct drm_display_mode *adjusted_mode,
  623. int x, int y,
  624. struct drm_framebuffer *old_fb)
  625. {
  626. struct drm_device *dev = crtc->dev;
  627. struct drm_i915_private *dev_priv = dev->dev_private;
  628. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  629. int pipe = intel_crtc->pipe;
  630. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  631. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  632. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  633. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  634. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  635. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  636. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  637. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  638. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  639. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  640. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  641. int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
  642. int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
  643. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  644. int refclk, num_outputs = 0;
  645. intel_clock_t clock;
  646. u32 dpll = 0, fp = 0, dspcntr, pipeconf;
  647. bool ok, is_sdvo = false, is_dvo = false;
  648. bool is_crt = false, is_lvds = false, is_tv = false;
  649. struct drm_mode_config *mode_config = &dev->mode_config;
  650. struct drm_connector *connector;
  651. int ret;
  652. drm_vblank_pre_modeset(dev, pipe);
  653. list_for_each_entry(connector, &mode_config->connector_list, head) {
  654. struct intel_output *intel_output = to_intel_output(connector);
  655. if (!connector->encoder || connector->encoder->crtc != crtc)
  656. continue;
  657. switch (intel_output->type) {
  658. case INTEL_OUTPUT_LVDS:
  659. is_lvds = true;
  660. break;
  661. case INTEL_OUTPUT_SDVO:
  662. case INTEL_OUTPUT_HDMI:
  663. is_sdvo = true;
  664. if (intel_output->needs_tv_clock)
  665. is_tv = true;
  666. break;
  667. case INTEL_OUTPUT_DVO:
  668. is_dvo = true;
  669. break;
  670. case INTEL_OUTPUT_TVOUT:
  671. is_tv = true;
  672. break;
  673. case INTEL_OUTPUT_ANALOG:
  674. is_crt = true;
  675. break;
  676. }
  677. num_outputs++;
  678. }
  679. if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
  680. refclk = dev_priv->lvds_ssc_freq * 1000;
  681. DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
  682. } else if (IS_I9XX(dev)) {
  683. refclk = 96000;
  684. } else {
  685. refclk = 48000;
  686. }
  687. ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
  688. if (!ok) {
  689. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  690. return -EINVAL;
  691. }
  692. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  693. dpll = DPLL_VGA_MODE_DIS;
  694. if (IS_I9XX(dev)) {
  695. if (is_lvds)
  696. dpll |= DPLLB_MODE_LVDS;
  697. else
  698. dpll |= DPLLB_MODE_DAC_SERIAL;
  699. if (is_sdvo) {
  700. dpll |= DPLL_DVO_HIGH_SPEED;
  701. if (IS_I945G(dev) || IS_I945GM(dev)) {
  702. int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  703. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  704. }
  705. }
  706. /* compute bitmask from p1 value */
  707. dpll |= (1 << (clock.p1 - 1)) << 16;
  708. switch (clock.p2) {
  709. case 5:
  710. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  711. break;
  712. case 7:
  713. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  714. break;
  715. case 10:
  716. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  717. break;
  718. case 14:
  719. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  720. break;
  721. }
  722. if (IS_I965G(dev))
  723. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  724. } else {
  725. if (is_lvds) {
  726. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  727. } else {
  728. if (clock.p1 == 2)
  729. dpll |= PLL_P1_DIVIDE_BY_TWO;
  730. else
  731. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  732. if (clock.p2 == 4)
  733. dpll |= PLL_P2_DIVIDE_BY_4;
  734. }
  735. }
  736. if (is_sdvo && is_tv)
  737. dpll |= PLL_REF_INPUT_TVCLKINBC;
  738. else if (is_tv)
  739. /* XXX: just matching BIOS for now */
  740. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  741. dpll |= 3;
  742. else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
  743. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  744. else
  745. dpll |= PLL_REF_INPUT_DREFCLK;
  746. /* setup pipeconf */
  747. pipeconf = I915_READ(pipeconf_reg);
  748. /* Set up the display plane register */
  749. dspcntr = DISPPLANE_GAMMA_ENABLE;
  750. if (pipe == 0)
  751. dspcntr |= DISPPLANE_SEL_PIPE_A;
  752. else
  753. dspcntr |= DISPPLANE_SEL_PIPE_B;
  754. if (pipe == 0 && !IS_I965G(dev)) {
  755. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  756. * core speed.
  757. *
  758. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  759. * pipe == 0 check?
  760. */
  761. if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
  762. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  763. else
  764. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  765. }
  766. dspcntr |= DISPLAY_PLANE_ENABLE;
  767. pipeconf |= PIPEACONF_ENABLE;
  768. dpll |= DPLL_VCO_ENABLE;
  769. /* Disable the panel fitter if it was on our pipe */
  770. if (intel_panel_fitter_pipe(dev) == pipe)
  771. I915_WRITE(PFIT_CONTROL, 0);
  772. DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  773. drm_mode_debug_printmodeline(mode);
  774. if (dpll & DPLL_VCO_ENABLE) {
  775. I915_WRITE(fp_reg, fp);
  776. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  777. I915_READ(dpll_reg);
  778. udelay(150);
  779. }
  780. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  781. * This is an exception to the general rule that mode_set doesn't turn
  782. * things on.
  783. */
  784. if (is_lvds) {
  785. u32 lvds = I915_READ(LVDS);
  786. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
  787. /* Set the B0-B3 data pairs corresponding to whether we're going to
  788. * set the DPLLs for dual-channel mode or not.
  789. */
  790. if (clock.p2 == 7)
  791. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  792. else
  793. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  794. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  795. * appropriately here, but we need to look more thoroughly into how
  796. * panels behave in the two modes.
  797. */
  798. I915_WRITE(LVDS, lvds);
  799. I915_READ(LVDS);
  800. }
  801. I915_WRITE(fp_reg, fp);
  802. I915_WRITE(dpll_reg, dpll);
  803. I915_READ(dpll_reg);
  804. /* Wait for the clocks to stabilize. */
  805. udelay(150);
  806. if (IS_I965G(dev)) {
  807. int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  808. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  809. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  810. } else {
  811. /* write it again -- the BIOS does, after all */
  812. I915_WRITE(dpll_reg, dpll);
  813. }
  814. I915_READ(dpll_reg);
  815. /* Wait for the clocks to stabilize. */
  816. udelay(150);
  817. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  818. ((adjusted_mode->crtc_htotal - 1) << 16));
  819. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  820. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  821. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  822. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  823. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  824. ((adjusted_mode->crtc_vtotal - 1) << 16));
  825. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  826. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  827. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  828. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  829. /* pipesrc and dspsize control the size that is scaled from, which should
  830. * always be the user's requested size.
  831. */
  832. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
  833. I915_WRITE(dsppos_reg, 0);
  834. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  835. I915_WRITE(pipeconf_reg, pipeconf);
  836. I915_READ(pipeconf_reg);
  837. intel_wait_for_vblank(dev);
  838. I915_WRITE(dspcntr_reg, dspcntr);
  839. /* Flush the plane changes */
  840. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  841. if (ret != 0)
  842. return ret;
  843. drm_vblank_post_modeset(dev, pipe);
  844. return 0;
  845. }
  846. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  847. void intel_crtc_load_lut(struct drm_crtc *crtc)
  848. {
  849. struct drm_device *dev = crtc->dev;
  850. struct drm_i915_private *dev_priv = dev->dev_private;
  851. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  852. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  853. int i;
  854. /* The clocks have to be on to load the palette. */
  855. if (!crtc->enabled)
  856. return;
  857. for (i = 0; i < 256; i++) {
  858. I915_WRITE(palreg + 4 * i,
  859. (intel_crtc->lut_r[i] << 16) |
  860. (intel_crtc->lut_g[i] << 8) |
  861. intel_crtc->lut_b[i]);
  862. }
  863. }
  864. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  865. struct drm_file *file_priv,
  866. uint32_t handle,
  867. uint32_t width, uint32_t height)
  868. {
  869. struct drm_device *dev = crtc->dev;
  870. struct drm_i915_private *dev_priv = dev->dev_private;
  871. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  872. struct drm_gem_object *bo;
  873. struct drm_i915_gem_object *obj_priv;
  874. int pipe = intel_crtc->pipe;
  875. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  876. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  877. uint32_t temp;
  878. size_t addr;
  879. int ret;
  880. DRM_DEBUG("\n");
  881. /* if we want to turn off the cursor ignore width and height */
  882. if (!handle) {
  883. DRM_DEBUG("cursor off\n");
  884. temp = CURSOR_MODE_DISABLE;
  885. addr = 0;
  886. bo = NULL;
  887. mutex_lock(&dev->struct_mutex);
  888. goto finish;
  889. }
  890. /* Currently we only support 64x64 cursors */
  891. if (width != 64 || height != 64) {
  892. DRM_ERROR("we currently only support 64x64 cursors\n");
  893. return -EINVAL;
  894. }
  895. bo = drm_gem_object_lookup(dev, file_priv, handle);
  896. if (!bo)
  897. return -ENOENT;
  898. obj_priv = bo->driver_private;
  899. if (bo->size < width * height * 4) {
  900. DRM_ERROR("buffer is to small\n");
  901. ret = -ENOMEM;
  902. goto fail;
  903. }
  904. /* we only need to pin inside GTT if cursor is non-phy */
  905. mutex_lock(&dev->struct_mutex);
  906. if (!dev_priv->cursor_needs_physical) {
  907. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  908. if (ret) {
  909. DRM_ERROR("failed to pin cursor bo\n");
  910. goto fail_locked;
  911. }
  912. addr = obj_priv->gtt_offset;
  913. } else {
  914. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  915. if (ret) {
  916. DRM_ERROR("failed to attach phys object\n");
  917. goto fail_locked;
  918. }
  919. addr = obj_priv->phys_obj->handle->busaddr;
  920. }
  921. temp = 0;
  922. /* set the pipe for the cursor */
  923. temp |= (pipe << 28);
  924. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  925. finish:
  926. I915_WRITE(control, temp);
  927. I915_WRITE(base, addr);
  928. if (intel_crtc->cursor_bo) {
  929. if (dev_priv->cursor_needs_physical) {
  930. if (intel_crtc->cursor_bo != bo)
  931. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  932. } else
  933. i915_gem_object_unpin(intel_crtc->cursor_bo);
  934. drm_gem_object_unreference(intel_crtc->cursor_bo);
  935. }
  936. mutex_unlock(&dev->struct_mutex);
  937. intel_crtc->cursor_addr = addr;
  938. intel_crtc->cursor_bo = bo;
  939. return 0;
  940. fail:
  941. mutex_lock(&dev->struct_mutex);
  942. fail_locked:
  943. drm_gem_object_unreference(bo);
  944. mutex_unlock(&dev->struct_mutex);
  945. return ret;
  946. }
  947. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  948. {
  949. struct drm_device *dev = crtc->dev;
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  952. int pipe = intel_crtc->pipe;
  953. uint32_t temp = 0;
  954. uint32_t adder;
  955. if (x < 0) {
  956. temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
  957. x = -x;
  958. }
  959. if (y < 0) {
  960. temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
  961. y = -y;
  962. }
  963. temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
  964. temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  965. adder = intel_crtc->cursor_addr;
  966. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  967. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  968. return 0;
  969. }
  970. /** Sets the color ramps on behalf of RandR */
  971. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  972. u16 blue, int regno)
  973. {
  974. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  975. intel_crtc->lut_r[regno] = red >> 8;
  976. intel_crtc->lut_g[regno] = green >> 8;
  977. intel_crtc->lut_b[regno] = blue >> 8;
  978. }
  979. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  980. u16 *blue, uint32_t size)
  981. {
  982. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  983. int i;
  984. if (size != 256)
  985. return;
  986. for (i = 0; i < 256; i++) {
  987. intel_crtc->lut_r[i] = red[i] >> 8;
  988. intel_crtc->lut_g[i] = green[i] >> 8;
  989. intel_crtc->lut_b[i] = blue[i] >> 8;
  990. }
  991. intel_crtc_load_lut(crtc);
  992. }
  993. /**
  994. * Get a pipe with a simple mode set on it for doing load-based monitor
  995. * detection.
  996. *
  997. * It will be up to the load-detect code to adjust the pipe as appropriate for
  998. * its requirements. The pipe will be connected to no other outputs.
  999. *
  1000. * Currently this code will only succeed if there is a pipe with no outputs
  1001. * configured for it. In the future, it could choose to temporarily disable
  1002. * some outputs to free up a pipe for its use.
  1003. *
  1004. * \return crtc, or NULL if no pipes are available.
  1005. */
  1006. /* VESA 640x480x72Hz mode to set on the pipe */
  1007. static struct drm_display_mode load_detect_mode = {
  1008. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  1009. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  1010. };
  1011. struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
  1012. struct drm_display_mode *mode,
  1013. int *dpms_mode)
  1014. {
  1015. struct intel_crtc *intel_crtc;
  1016. struct drm_crtc *possible_crtc;
  1017. struct drm_crtc *supported_crtc =NULL;
  1018. struct drm_encoder *encoder = &intel_output->enc;
  1019. struct drm_crtc *crtc = NULL;
  1020. struct drm_device *dev = encoder->dev;
  1021. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1022. struct drm_crtc_helper_funcs *crtc_funcs;
  1023. int i = -1;
  1024. /*
  1025. * Algorithm gets a little messy:
  1026. * - if the connector already has an assigned crtc, use it (but make
  1027. * sure it's on first)
  1028. * - try to find the first unused crtc that can drive this connector,
  1029. * and use that if we find one
  1030. * - if there are no unused crtcs available, try to use the first
  1031. * one we found that supports the connector
  1032. */
  1033. /* See if we already have a CRTC for this connector */
  1034. if (encoder->crtc) {
  1035. crtc = encoder->crtc;
  1036. /* Make sure the crtc and connector are running */
  1037. intel_crtc = to_intel_crtc(crtc);
  1038. *dpms_mode = intel_crtc->dpms_mode;
  1039. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  1040. crtc_funcs = crtc->helper_private;
  1041. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1042. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  1043. }
  1044. return crtc;
  1045. }
  1046. /* Find an unused one (if possible) */
  1047. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  1048. i++;
  1049. if (!(encoder->possible_crtcs & (1 << i)))
  1050. continue;
  1051. if (!possible_crtc->enabled) {
  1052. crtc = possible_crtc;
  1053. break;
  1054. }
  1055. if (!supported_crtc)
  1056. supported_crtc = possible_crtc;
  1057. }
  1058. /*
  1059. * If we didn't find an unused CRTC, don't use any.
  1060. */
  1061. if (!crtc) {
  1062. return NULL;
  1063. }
  1064. encoder->crtc = crtc;
  1065. intel_output->load_detect_temp = true;
  1066. intel_crtc = to_intel_crtc(crtc);
  1067. *dpms_mode = intel_crtc->dpms_mode;
  1068. if (!crtc->enabled) {
  1069. if (!mode)
  1070. mode = &load_detect_mode;
  1071. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  1072. } else {
  1073. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  1074. crtc_funcs = crtc->helper_private;
  1075. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1076. }
  1077. /* Add this connector to the crtc */
  1078. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  1079. encoder_funcs->commit(encoder);
  1080. }
  1081. /* let the connector get through one full cycle before testing */
  1082. intel_wait_for_vblank(dev);
  1083. return crtc;
  1084. }
  1085. void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
  1086. {
  1087. struct drm_encoder *encoder = &intel_output->enc;
  1088. struct drm_device *dev = encoder->dev;
  1089. struct drm_crtc *crtc = encoder->crtc;
  1090. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1091. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1092. if (intel_output->load_detect_temp) {
  1093. encoder->crtc = NULL;
  1094. intel_output->load_detect_temp = false;
  1095. crtc->enabled = drm_helper_crtc_in_use(crtc);
  1096. drm_helper_disable_unused_functions(dev);
  1097. }
  1098. /* Switch crtc and output back off if necessary */
  1099. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  1100. if (encoder->crtc == crtc)
  1101. encoder_funcs->dpms(encoder, dpms_mode);
  1102. crtc_funcs->dpms(crtc, dpms_mode);
  1103. }
  1104. }
  1105. /* Returns the clock of the currently programmed mode of the given pipe. */
  1106. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  1107. {
  1108. struct drm_i915_private *dev_priv = dev->dev_private;
  1109. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1110. int pipe = intel_crtc->pipe;
  1111. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  1112. u32 fp;
  1113. intel_clock_t clock;
  1114. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  1115. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  1116. else
  1117. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  1118. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  1119. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  1120. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  1121. if (IS_I9XX(dev)) {
  1122. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  1123. DPLL_FPA01_P1_POST_DIV_SHIFT);
  1124. switch (dpll & DPLL_MODE_MASK) {
  1125. case DPLLB_MODE_DAC_SERIAL:
  1126. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  1127. 5 : 10;
  1128. break;
  1129. case DPLLB_MODE_LVDS:
  1130. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  1131. 7 : 14;
  1132. break;
  1133. default:
  1134. DRM_DEBUG("Unknown DPLL mode %08x in programmed "
  1135. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  1136. return 0;
  1137. }
  1138. /* XXX: Handle the 100Mhz refclk */
  1139. intel_clock(96000, &clock);
  1140. } else {
  1141. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  1142. if (is_lvds) {
  1143. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  1144. DPLL_FPA01_P1_POST_DIV_SHIFT);
  1145. clock.p2 = 14;
  1146. if ((dpll & PLL_REF_INPUT_MASK) ==
  1147. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  1148. /* XXX: might not be 66MHz */
  1149. intel_clock(66000, &clock);
  1150. } else
  1151. intel_clock(48000, &clock);
  1152. } else {
  1153. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  1154. clock.p1 = 2;
  1155. else {
  1156. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  1157. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  1158. }
  1159. if (dpll & PLL_P2_DIVIDE_BY_4)
  1160. clock.p2 = 4;
  1161. else
  1162. clock.p2 = 2;
  1163. intel_clock(48000, &clock);
  1164. }
  1165. }
  1166. /* XXX: It would be nice to validate the clocks, but we can't reuse
  1167. * i830PllIsValid() because it relies on the xf86_config connector
  1168. * configuration being accurate, which it isn't necessarily.
  1169. */
  1170. return clock.dot;
  1171. }
  1172. /** Returns the currently programmed mode of the given pipe. */
  1173. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  1174. struct drm_crtc *crtc)
  1175. {
  1176. struct drm_i915_private *dev_priv = dev->dev_private;
  1177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1178. int pipe = intel_crtc->pipe;
  1179. struct drm_display_mode *mode;
  1180. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  1181. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  1182. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  1183. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  1184. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  1185. if (!mode)
  1186. return NULL;
  1187. mode->clock = intel_crtc_clock_get(dev, crtc);
  1188. mode->hdisplay = (htot & 0xffff) + 1;
  1189. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  1190. mode->hsync_start = (hsync & 0xffff) + 1;
  1191. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  1192. mode->vdisplay = (vtot & 0xffff) + 1;
  1193. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  1194. mode->vsync_start = (vsync & 0xffff) + 1;
  1195. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  1196. drm_mode_set_name(mode);
  1197. drm_mode_set_crtcinfo(mode, 0);
  1198. return mode;
  1199. }
  1200. static void intel_crtc_destroy(struct drm_crtc *crtc)
  1201. {
  1202. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1203. drm_crtc_cleanup(crtc);
  1204. kfree(intel_crtc);
  1205. }
  1206. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  1207. .dpms = intel_crtc_dpms,
  1208. .mode_fixup = intel_crtc_mode_fixup,
  1209. .mode_set = intel_crtc_mode_set,
  1210. .mode_set_base = intel_pipe_set_base,
  1211. .prepare = intel_crtc_prepare,
  1212. .commit = intel_crtc_commit,
  1213. };
  1214. static const struct drm_crtc_funcs intel_crtc_funcs = {
  1215. .cursor_set = intel_crtc_cursor_set,
  1216. .cursor_move = intel_crtc_cursor_move,
  1217. .gamma_set = intel_crtc_gamma_set,
  1218. .set_config = drm_crtc_helper_set_config,
  1219. .destroy = intel_crtc_destroy,
  1220. };
  1221. static void intel_crtc_init(struct drm_device *dev, int pipe)
  1222. {
  1223. struct intel_crtc *intel_crtc;
  1224. int i;
  1225. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  1226. if (intel_crtc == NULL)
  1227. return;
  1228. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  1229. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  1230. intel_crtc->pipe = pipe;
  1231. for (i = 0; i < 256; i++) {
  1232. intel_crtc->lut_r[i] = i;
  1233. intel_crtc->lut_g[i] = i;
  1234. intel_crtc->lut_b[i] = i;
  1235. }
  1236. intel_crtc->cursor_addr = 0;
  1237. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  1238. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  1239. intel_crtc->mode_set.crtc = &intel_crtc->base;
  1240. intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
  1241. intel_crtc->mode_set.num_connectors = 0;
  1242. if (i915_fbpercrtc) {
  1243. }
  1244. }
  1245. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  1246. {
  1247. struct drm_crtc *crtc = NULL;
  1248. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1249. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1250. if (intel_crtc->pipe == pipe)
  1251. break;
  1252. }
  1253. return crtc;
  1254. }
  1255. static int intel_connector_clones(struct drm_device *dev, int type_mask)
  1256. {
  1257. int index_mask = 0;
  1258. struct drm_connector *connector;
  1259. int entry = 0;
  1260. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1261. struct intel_output *intel_output = to_intel_output(connector);
  1262. if (type_mask & (1 << intel_output->type))
  1263. index_mask |= (1 << entry);
  1264. entry++;
  1265. }
  1266. return index_mask;
  1267. }
  1268. static void intel_setup_outputs(struct drm_device *dev)
  1269. {
  1270. struct drm_i915_private *dev_priv = dev->dev_private;
  1271. struct drm_connector *connector;
  1272. intel_crt_init(dev);
  1273. /* Set up integrated LVDS */
  1274. if (IS_MOBILE(dev) && !IS_I830(dev))
  1275. intel_lvds_init(dev);
  1276. if (IS_I9XX(dev)) {
  1277. int found;
  1278. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  1279. found = intel_sdvo_init(dev, SDVOB);
  1280. if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
  1281. intel_hdmi_init(dev, SDVOB);
  1282. }
  1283. if (!IS_G4X(dev) || (I915_READ(SDVOB) & SDVO_DETECTED)) {
  1284. found = intel_sdvo_init(dev, SDVOC);
  1285. if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
  1286. intel_hdmi_init(dev, SDVOC);
  1287. }
  1288. } else
  1289. intel_dvo_init(dev);
  1290. if (IS_I9XX(dev) && IS_MOBILE(dev))
  1291. intel_tv_init(dev);
  1292. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1293. struct intel_output *intel_output = to_intel_output(connector);
  1294. struct drm_encoder *encoder = &intel_output->enc;
  1295. int crtc_mask = 0, clone_mask = 0;
  1296. /* valid crtcs */
  1297. switch(intel_output->type) {
  1298. case INTEL_OUTPUT_HDMI:
  1299. crtc_mask = ((1 << 0)|
  1300. (1 << 1));
  1301. clone_mask = ((1 << INTEL_OUTPUT_HDMI));
  1302. break;
  1303. case INTEL_OUTPUT_DVO:
  1304. case INTEL_OUTPUT_SDVO:
  1305. crtc_mask = ((1 << 0)|
  1306. (1 << 1));
  1307. clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
  1308. (1 << INTEL_OUTPUT_DVO) |
  1309. (1 << INTEL_OUTPUT_SDVO));
  1310. break;
  1311. case INTEL_OUTPUT_ANALOG:
  1312. crtc_mask = ((1 << 0)|
  1313. (1 << 1));
  1314. clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
  1315. (1 << INTEL_OUTPUT_DVO) |
  1316. (1 << INTEL_OUTPUT_SDVO));
  1317. break;
  1318. case INTEL_OUTPUT_LVDS:
  1319. crtc_mask = (1 << 1);
  1320. clone_mask = (1 << INTEL_OUTPUT_LVDS);
  1321. break;
  1322. case INTEL_OUTPUT_TVOUT:
  1323. crtc_mask = ((1 << 0) |
  1324. (1 << 1));
  1325. clone_mask = (1 << INTEL_OUTPUT_TVOUT);
  1326. break;
  1327. }
  1328. encoder->possible_crtcs = crtc_mask;
  1329. encoder->possible_clones = intel_connector_clones(dev, clone_mask);
  1330. }
  1331. }
  1332. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  1333. {
  1334. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1335. struct drm_device *dev = fb->dev;
  1336. if (fb->fbdev)
  1337. intelfb_remove(dev, fb);
  1338. drm_framebuffer_cleanup(fb);
  1339. mutex_lock(&dev->struct_mutex);
  1340. drm_gem_object_unreference(intel_fb->obj);
  1341. mutex_unlock(&dev->struct_mutex);
  1342. kfree(intel_fb);
  1343. }
  1344. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  1345. struct drm_file *file_priv,
  1346. unsigned int *handle)
  1347. {
  1348. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1349. struct drm_gem_object *object = intel_fb->obj;
  1350. return drm_gem_handle_create(file_priv, object, handle);
  1351. }
  1352. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  1353. .destroy = intel_user_framebuffer_destroy,
  1354. .create_handle = intel_user_framebuffer_create_handle,
  1355. };
  1356. int intel_framebuffer_create(struct drm_device *dev,
  1357. struct drm_mode_fb_cmd *mode_cmd,
  1358. struct drm_framebuffer **fb,
  1359. struct drm_gem_object *obj)
  1360. {
  1361. struct intel_framebuffer *intel_fb;
  1362. int ret;
  1363. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  1364. if (!intel_fb)
  1365. return -ENOMEM;
  1366. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  1367. if (ret) {
  1368. DRM_ERROR("framebuffer init failed %d\n", ret);
  1369. return ret;
  1370. }
  1371. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  1372. intel_fb->obj = obj;
  1373. *fb = &intel_fb->base;
  1374. return 0;
  1375. }
  1376. static struct drm_framebuffer *
  1377. intel_user_framebuffer_create(struct drm_device *dev,
  1378. struct drm_file *filp,
  1379. struct drm_mode_fb_cmd *mode_cmd)
  1380. {
  1381. struct drm_gem_object *obj;
  1382. struct drm_framebuffer *fb;
  1383. int ret;
  1384. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  1385. if (!obj)
  1386. return NULL;
  1387. ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
  1388. if (ret) {
  1389. mutex_lock(&dev->struct_mutex);
  1390. drm_gem_object_unreference(obj);
  1391. mutex_unlock(&dev->struct_mutex);
  1392. return NULL;
  1393. }
  1394. return fb;
  1395. }
  1396. static const struct drm_mode_config_funcs intel_mode_funcs = {
  1397. .fb_create = intel_user_framebuffer_create,
  1398. .fb_changed = intelfb_probe,
  1399. };
  1400. void intel_modeset_init(struct drm_device *dev)
  1401. {
  1402. int num_pipe;
  1403. int i;
  1404. drm_mode_config_init(dev);
  1405. dev->mode_config.min_width = 0;
  1406. dev->mode_config.min_height = 0;
  1407. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  1408. if (IS_I965G(dev)) {
  1409. dev->mode_config.max_width = 8192;
  1410. dev->mode_config.max_height = 8192;
  1411. } else {
  1412. dev->mode_config.max_width = 2048;
  1413. dev->mode_config.max_height = 2048;
  1414. }
  1415. /* set memory base */
  1416. if (IS_I9XX(dev))
  1417. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  1418. else
  1419. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  1420. if (IS_MOBILE(dev) || IS_I9XX(dev))
  1421. num_pipe = 2;
  1422. else
  1423. num_pipe = 1;
  1424. DRM_DEBUG("%d display pipe%s available.\n",
  1425. num_pipe, num_pipe > 1 ? "s" : "");
  1426. for (i = 0; i < num_pipe; i++) {
  1427. intel_crtc_init(dev, i);
  1428. }
  1429. intel_setup_outputs(dev);
  1430. }
  1431. void intel_modeset_cleanup(struct drm_device *dev)
  1432. {
  1433. drm_mode_config_cleanup(dev);
  1434. }
  1435. /* current intel driver doesn't take advantage of encoders
  1436. always give back the encoder for the connector
  1437. */
  1438. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  1439. {
  1440. struct intel_output *intel_output = to_intel_output(connector);
  1441. return &intel_output->enc;
  1442. }