time.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #ifdef CONFIG_PPC64
  67. #include <asm/firmware.h>
  68. #endif
  69. #ifdef CONFIG_PPC_ISERIES
  70. #include <asm/iseries/it_lp_queue.h>
  71. #include <asm/iseries/hv_call_xm.h>
  72. #endif
  73. #ifdef CONFIG_PPC_ISERIES
  74. static unsigned long __initdata iSeries_recal_titan;
  75. static signed long __initdata iSeries_recal_tb;
  76. #endif
  77. #define XSEC_PER_SEC (1024*1024)
  78. #ifdef CONFIG_PPC64
  79. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  80. #else
  81. /* compute ((xsec << 12) * max) >> 32 */
  82. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  83. #endif
  84. unsigned long tb_ticks_per_jiffy;
  85. unsigned long tb_ticks_per_usec = 100; /* sane default */
  86. EXPORT_SYMBOL(tb_ticks_per_usec);
  87. unsigned long tb_ticks_per_sec;
  88. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  89. u64 tb_to_xs;
  90. unsigned tb_to_us;
  91. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  92. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  93. u64 ticklen_to_xs; /* 0.64 fraction */
  94. /* If last_tick_len corresponds to about 1/HZ seconds, then
  95. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  96. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  97. DEFINE_SPINLOCK(rtc_lock);
  98. EXPORT_SYMBOL_GPL(rtc_lock);
  99. static u64 tb_to_ns_scale __read_mostly;
  100. static unsigned tb_to_ns_shift __read_mostly;
  101. static unsigned long boot_tb __read_mostly;
  102. struct gettimeofday_struct do_gtod;
  103. extern struct timezone sys_tz;
  104. static long timezone_offset;
  105. unsigned long ppc_proc_freq;
  106. EXPORT_SYMBOL(ppc_proc_freq);
  107. unsigned long ppc_tb_freq;
  108. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  109. static DEFINE_PER_CPU(u64, last_jiffy);
  110. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  111. /*
  112. * Factors for converting from cputime_t (timebase ticks) to
  113. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  114. * These are all stored as 0.64 fixed-point binary fractions.
  115. */
  116. u64 __cputime_jiffies_factor;
  117. EXPORT_SYMBOL(__cputime_jiffies_factor);
  118. u64 __cputime_msec_factor;
  119. EXPORT_SYMBOL(__cputime_msec_factor);
  120. u64 __cputime_sec_factor;
  121. EXPORT_SYMBOL(__cputime_sec_factor);
  122. u64 __cputime_clockt_factor;
  123. EXPORT_SYMBOL(__cputime_clockt_factor);
  124. static void calc_cputime_factors(void)
  125. {
  126. struct div_result res;
  127. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  128. __cputime_jiffies_factor = res.result_low;
  129. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  130. __cputime_msec_factor = res.result_low;
  131. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  132. __cputime_sec_factor = res.result_low;
  133. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  134. __cputime_clockt_factor = res.result_low;
  135. }
  136. /*
  137. * Read the PURR on systems that have it, otherwise the timebase.
  138. */
  139. static u64 read_purr(void)
  140. {
  141. if (cpu_has_feature(CPU_FTR_PURR))
  142. return mfspr(SPRN_PURR);
  143. return mftb();
  144. }
  145. /*
  146. * Account time for a transition between system, hard irq
  147. * or soft irq state.
  148. */
  149. void account_system_vtime(struct task_struct *tsk)
  150. {
  151. u64 now, delta;
  152. unsigned long flags;
  153. local_irq_save(flags);
  154. now = read_purr();
  155. delta = now - get_paca()->startpurr;
  156. get_paca()->startpurr = now;
  157. if (!in_interrupt()) {
  158. delta += get_paca()->system_time;
  159. get_paca()->system_time = 0;
  160. }
  161. account_system_time(tsk, 0, delta);
  162. local_irq_restore(flags);
  163. }
  164. /*
  165. * Transfer the user and system times accumulated in the paca
  166. * by the exception entry and exit code to the generic process
  167. * user and system time records.
  168. * Must be called with interrupts disabled.
  169. */
  170. void account_process_vtime(struct task_struct *tsk)
  171. {
  172. cputime_t utime;
  173. utime = get_paca()->user_time;
  174. get_paca()->user_time = 0;
  175. account_user_time(tsk, utime);
  176. }
  177. static void account_process_time(struct pt_regs *regs)
  178. {
  179. int cpu = smp_processor_id();
  180. account_process_vtime(current);
  181. run_local_timers();
  182. if (rcu_pending(cpu))
  183. rcu_check_callbacks(cpu, user_mode(regs));
  184. scheduler_tick();
  185. run_posix_cpu_timers(current);
  186. }
  187. /*
  188. * Stuff for accounting stolen time.
  189. */
  190. struct cpu_purr_data {
  191. int initialized; /* thread is running */
  192. u64 tb; /* last TB value read */
  193. u64 purr; /* last PURR value read */
  194. };
  195. /*
  196. * Each entry in the cpu_purr_data array is manipulated only by its
  197. * "owner" cpu -- usually in the timer interrupt but also occasionally
  198. * in process context for cpu online. As long as cpus do not touch
  199. * each others' cpu_purr_data, disabling local interrupts is
  200. * sufficient to serialize accesses.
  201. */
  202. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  203. static void snapshot_tb_and_purr(void *data)
  204. {
  205. unsigned long flags;
  206. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  207. local_irq_save(flags);
  208. p->tb = get_tb_or_rtc();
  209. p->purr = mfspr(SPRN_PURR);
  210. wmb();
  211. p->initialized = 1;
  212. local_irq_restore(flags);
  213. }
  214. /*
  215. * Called during boot when all cpus have come up.
  216. */
  217. void snapshot_timebases(void)
  218. {
  219. if (!cpu_has_feature(CPU_FTR_PURR))
  220. return;
  221. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  222. }
  223. /*
  224. * Must be called with interrupts disabled.
  225. */
  226. void calculate_steal_time(void)
  227. {
  228. u64 tb, purr;
  229. s64 stolen;
  230. struct cpu_purr_data *pme;
  231. if (!cpu_has_feature(CPU_FTR_PURR))
  232. return;
  233. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  234. if (!pme->initialized)
  235. return; /* this can happen in early boot */
  236. tb = mftb();
  237. purr = mfspr(SPRN_PURR);
  238. stolen = (tb - pme->tb) - (purr - pme->purr);
  239. if (stolen > 0)
  240. account_steal_time(current, stolen);
  241. pme->tb = tb;
  242. pme->purr = purr;
  243. }
  244. #ifdef CONFIG_PPC_SPLPAR
  245. /*
  246. * Must be called before the cpu is added to the online map when
  247. * a cpu is being brought up at runtime.
  248. */
  249. static void snapshot_purr(void)
  250. {
  251. struct cpu_purr_data *pme;
  252. unsigned long flags;
  253. if (!cpu_has_feature(CPU_FTR_PURR))
  254. return;
  255. local_irq_save(flags);
  256. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  257. pme->tb = mftb();
  258. pme->purr = mfspr(SPRN_PURR);
  259. pme->initialized = 1;
  260. local_irq_restore(flags);
  261. }
  262. #endif /* CONFIG_PPC_SPLPAR */
  263. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  264. #define calc_cputime_factors()
  265. #define account_process_time(regs) update_process_times(user_mode(regs))
  266. #define calculate_steal_time() do { } while (0)
  267. #endif
  268. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  269. #define snapshot_purr() do { } while (0)
  270. #endif
  271. /*
  272. * Called when a cpu comes up after the system has finished booting,
  273. * i.e. as a result of a hotplug cpu action.
  274. */
  275. void snapshot_timebase(void)
  276. {
  277. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  278. snapshot_purr();
  279. }
  280. void __delay(unsigned long loops)
  281. {
  282. unsigned long start;
  283. int diff;
  284. if (__USE_RTC()) {
  285. start = get_rtcl();
  286. do {
  287. /* the RTCL register wraps at 1000000000 */
  288. diff = get_rtcl() - start;
  289. if (diff < 0)
  290. diff += 1000000000;
  291. } while (diff < loops);
  292. } else {
  293. start = get_tbl();
  294. while (get_tbl() - start < loops)
  295. HMT_low();
  296. HMT_medium();
  297. }
  298. }
  299. EXPORT_SYMBOL(__delay);
  300. void udelay(unsigned long usecs)
  301. {
  302. __delay(tb_ticks_per_usec * usecs);
  303. }
  304. EXPORT_SYMBOL(udelay);
  305. /*
  306. * This version of gettimeofday has microsecond resolution.
  307. */
  308. static inline void __do_gettimeofday(struct timeval *tv)
  309. {
  310. unsigned long sec, usec;
  311. u64 tb_ticks, xsec;
  312. struct gettimeofday_vars *temp_varp;
  313. u64 temp_tb_to_xs, temp_stamp_xsec;
  314. /*
  315. * These calculations are faster (gets rid of divides)
  316. * if done in units of 1/2^20 rather than microseconds.
  317. * The conversion to microseconds at the end is done
  318. * without a divide (and in fact, without a multiply)
  319. */
  320. temp_varp = do_gtod.varp;
  321. /* Sampling the time base must be done after loading
  322. * do_gtod.varp in order to avoid racing with update_gtod.
  323. */
  324. data_barrier(temp_varp);
  325. tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
  326. temp_tb_to_xs = temp_varp->tb_to_xs;
  327. temp_stamp_xsec = temp_varp->stamp_xsec;
  328. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  329. sec = xsec / XSEC_PER_SEC;
  330. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  331. usec = SCALE_XSEC(usec, 1000000);
  332. tv->tv_sec = sec;
  333. tv->tv_usec = usec;
  334. }
  335. void do_gettimeofday(struct timeval *tv)
  336. {
  337. if (__USE_RTC()) {
  338. /* do this the old way */
  339. unsigned long flags, seq;
  340. unsigned int sec, nsec, usec;
  341. do {
  342. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  343. sec = xtime.tv_sec;
  344. nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
  345. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  346. usec = nsec / 1000;
  347. while (usec >= 1000000) {
  348. usec -= 1000000;
  349. ++sec;
  350. }
  351. tv->tv_sec = sec;
  352. tv->tv_usec = usec;
  353. return;
  354. }
  355. __do_gettimeofday(tv);
  356. }
  357. EXPORT_SYMBOL(do_gettimeofday);
  358. /*
  359. * There are two copies of tb_to_xs and stamp_xsec so that no
  360. * lock is needed to access and use these values in
  361. * do_gettimeofday. We alternate the copies and as long as a
  362. * reasonable time elapses between changes, there will never
  363. * be inconsistent values. ntpd has a minimum of one minute
  364. * between updates.
  365. */
  366. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  367. u64 new_tb_to_xs)
  368. {
  369. unsigned temp_idx;
  370. struct gettimeofday_vars *temp_varp;
  371. temp_idx = (do_gtod.var_idx == 0);
  372. temp_varp = &do_gtod.vars[temp_idx];
  373. temp_varp->tb_to_xs = new_tb_to_xs;
  374. temp_varp->tb_orig_stamp = new_tb_stamp;
  375. temp_varp->stamp_xsec = new_stamp_xsec;
  376. smp_mb();
  377. do_gtod.varp = temp_varp;
  378. do_gtod.var_idx = temp_idx;
  379. /*
  380. * tb_update_count is used to allow the userspace gettimeofday code
  381. * to assure itself that it sees a consistent view of the tb_to_xs and
  382. * stamp_xsec variables. It reads the tb_update_count, then reads
  383. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  384. * the two values of tb_update_count match and are even then the
  385. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  386. * loops back and reads them again until this criteria is met.
  387. * We expect the caller to have done the first increment of
  388. * vdso_data->tb_update_count already.
  389. */
  390. vdso_data->tb_orig_stamp = new_tb_stamp;
  391. vdso_data->stamp_xsec = new_stamp_xsec;
  392. vdso_data->tb_to_xs = new_tb_to_xs;
  393. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  394. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  395. smp_wmb();
  396. ++(vdso_data->tb_update_count);
  397. }
  398. /*
  399. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  400. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  401. * difference tb - tb_orig_stamp small enough to always fit inside a
  402. * 32 bits number. This is a requirement of our fast 32 bits userland
  403. * implementation in the vdso. If we "miss" a call to this function
  404. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  405. * with a too big difference, then the vdso will fallback to calling
  406. * the syscall
  407. */
  408. static __inline__ void timer_recalc_offset(u64 cur_tb)
  409. {
  410. unsigned long offset;
  411. u64 new_stamp_xsec;
  412. u64 tlen, t2x;
  413. u64 tb, xsec_old, xsec_new;
  414. struct gettimeofday_vars *varp;
  415. if (__USE_RTC())
  416. return;
  417. tlen = current_tick_length();
  418. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  419. if (tlen == last_tick_len && offset < 0x80000000u)
  420. return;
  421. if (tlen != last_tick_len) {
  422. t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
  423. last_tick_len = tlen;
  424. } else
  425. t2x = do_gtod.varp->tb_to_xs;
  426. new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  427. do_div(new_stamp_xsec, 1000000000);
  428. new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  429. ++vdso_data->tb_update_count;
  430. smp_mb();
  431. /*
  432. * Make sure time doesn't go backwards for userspace gettimeofday.
  433. */
  434. tb = get_tb();
  435. varp = do_gtod.varp;
  436. xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
  437. + varp->stamp_xsec;
  438. xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
  439. if (xsec_new < xsec_old)
  440. new_stamp_xsec += xsec_old - xsec_new;
  441. update_gtod(cur_tb, new_stamp_xsec, t2x);
  442. }
  443. #ifdef CONFIG_SMP
  444. unsigned long profile_pc(struct pt_regs *regs)
  445. {
  446. unsigned long pc = instruction_pointer(regs);
  447. if (in_lock_functions(pc))
  448. return regs->link;
  449. return pc;
  450. }
  451. EXPORT_SYMBOL(profile_pc);
  452. #endif
  453. #ifdef CONFIG_PPC_ISERIES
  454. /*
  455. * This function recalibrates the timebase based on the 49-bit time-of-day
  456. * value in the Titan chip. The Titan is much more accurate than the value
  457. * returned by the service processor for the timebase frequency.
  458. */
  459. static int __init iSeries_tb_recal(void)
  460. {
  461. struct div_result divres;
  462. unsigned long titan, tb;
  463. /* Make sure we only run on iSeries */
  464. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  465. return -ENODEV;
  466. tb = get_tb();
  467. titan = HvCallXm_loadTod();
  468. if ( iSeries_recal_titan ) {
  469. unsigned long tb_ticks = tb - iSeries_recal_tb;
  470. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  471. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  472. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  473. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  474. char sign = '+';
  475. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  476. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  477. if ( tick_diff < 0 ) {
  478. tick_diff = -tick_diff;
  479. sign = '-';
  480. }
  481. if ( tick_diff ) {
  482. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  483. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  484. new_tb_ticks_per_jiffy, sign, tick_diff );
  485. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  486. tb_ticks_per_sec = new_tb_ticks_per_sec;
  487. calc_cputime_factors();
  488. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  489. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  490. tb_to_xs = divres.result_low;
  491. do_gtod.varp->tb_to_xs = tb_to_xs;
  492. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  493. vdso_data->tb_to_xs = tb_to_xs;
  494. }
  495. else {
  496. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  497. " new tb_ticks_per_jiffy = %lu\n"
  498. " old tb_ticks_per_jiffy = %lu\n",
  499. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  500. }
  501. }
  502. }
  503. iSeries_recal_titan = titan;
  504. iSeries_recal_tb = tb;
  505. return 0;
  506. }
  507. late_initcall(iSeries_tb_recal);
  508. /* Called from platform early init */
  509. void __init iSeries_time_init_early(void)
  510. {
  511. iSeries_recal_tb = get_tb();
  512. iSeries_recal_titan = HvCallXm_loadTod();
  513. }
  514. #endif /* CONFIG_PPC_ISERIES */
  515. /*
  516. * For iSeries shared processors, we have to let the hypervisor
  517. * set the hardware decrementer. We set a virtual decrementer
  518. * in the lppaca and call the hypervisor if the virtual
  519. * decrementer is less than the current value in the hardware
  520. * decrementer. (almost always the new decrementer value will
  521. * be greater than the current hardware decementer so the hypervisor
  522. * call will not be needed)
  523. */
  524. /*
  525. * timer_interrupt - gets called when the decrementer overflows,
  526. * with interrupts disabled.
  527. */
  528. void timer_interrupt(struct pt_regs * regs)
  529. {
  530. struct pt_regs *old_regs;
  531. int next_dec;
  532. int cpu = smp_processor_id();
  533. unsigned long ticks;
  534. u64 tb_next_jiffy;
  535. #ifdef CONFIG_PPC32
  536. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  537. do_IRQ(regs);
  538. #endif
  539. old_regs = set_irq_regs(regs);
  540. irq_enter();
  541. profile_tick(CPU_PROFILING);
  542. calculate_steal_time();
  543. #ifdef CONFIG_PPC_ISERIES
  544. if (firmware_has_feature(FW_FEATURE_ISERIES))
  545. get_lppaca()->int_dword.fields.decr_int = 0;
  546. #endif
  547. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  548. >= tb_ticks_per_jiffy) {
  549. /* Update last_jiffy */
  550. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  551. /* Handle RTCL overflow on 601 */
  552. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  553. per_cpu(last_jiffy, cpu) -= 1000000000;
  554. /*
  555. * We cannot disable the decrementer, so in the period
  556. * between this cpu's being marked offline in cpu_online_map
  557. * and calling stop-self, it is taking timer interrupts.
  558. * Avoid calling into the scheduler rebalancing code if this
  559. * is the case.
  560. */
  561. if (!cpu_is_offline(cpu))
  562. account_process_time(regs);
  563. /*
  564. * No need to check whether cpu is offline here; boot_cpuid
  565. * should have been fixed up by now.
  566. */
  567. if (cpu != boot_cpuid)
  568. continue;
  569. write_seqlock(&xtime_lock);
  570. tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
  571. if (__USE_RTC() && tb_next_jiffy >= 1000000000)
  572. tb_next_jiffy -= 1000000000;
  573. if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
  574. tb_last_jiffy = tb_next_jiffy;
  575. do_timer(1);
  576. timer_recalc_offset(tb_last_jiffy);
  577. }
  578. write_sequnlock(&xtime_lock);
  579. }
  580. next_dec = tb_ticks_per_jiffy - ticks;
  581. set_dec(next_dec);
  582. #ifdef CONFIG_PPC_ISERIES
  583. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  584. process_hvlpevents();
  585. #endif
  586. #ifdef CONFIG_PPC64
  587. /* collect purr register values often, for accurate calculations */
  588. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  589. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  590. cu->current_tb = mfspr(SPRN_PURR);
  591. }
  592. #endif
  593. irq_exit();
  594. set_irq_regs(old_regs);
  595. }
  596. void wakeup_decrementer(void)
  597. {
  598. unsigned long ticks;
  599. /*
  600. * The timebase gets saved on sleep and restored on wakeup,
  601. * so all we need to do is to reset the decrementer.
  602. */
  603. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  604. if (ticks < tb_ticks_per_jiffy)
  605. ticks = tb_ticks_per_jiffy - ticks;
  606. else
  607. ticks = 1;
  608. set_dec(ticks);
  609. }
  610. #ifdef CONFIG_SMP
  611. void __init smp_space_timers(unsigned int max_cpus)
  612. {
  613. int i;
  614. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  615. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  616. previous_tb -= tb_ticks_per_jiffy;
  617. for_each_possible_cpu(i) {
  618. if (i == boot_cpuid)
  619. continue;
  620. per_cpu(last_jiffy, i) = previous_tb;
  621. }
  622. }
  623. #endif
  624. /*
  625. * Scheduler clock - returns current time in nanosec units.
  626. *
  627. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  628. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  629. * are 64-bit unsigned numbers.
  630. */
  631. unsigned long long sched_clock(void)
  632. {
  633. if (__USE_RTC())
  634. return get_rtc();
  635. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  636. }
  637. int do_settimeofday(struct timespec *tv)
  638. {
  639. time_t wtm_sec, new_sec = tv->tv_sec;
  640. long wtm_nsec, new_nsec = tv->tv_nsec;
  641. unsigned long flags;
  642. u64 new_xsec;
  643. unsigned long tb_delta;
  644. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  645. return -EINVAL;
  646. write_seqlock_irqsave(&xtime_lock, flags);
  647. /*
  648. * Updating the RTC is not the job of this code. If the time is
  649. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  650. * is cleared. Tools like clock/hwclock either copy the RTC
  651. * to the system time, in which case there is no point in writing
  652. * to the RTC again, or write to the RTC but then they don't call
  653. * settimeofday to perform this operation.
  654. */
  655. /* Make userspace gettimeofday spin until we're done. */
  656. ++vdso_data->tb_update_count;
  657. smp_mb();
  658. /*
  659. * Subtract off the number of nanoseconds since the
  660. * beginning of the last tick.
  661. */
  662. tb_delta = tb_ticks_since(tb_last_jiffy);
  663. tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
  664. new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
  665. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  666. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  667. set_normalized_timespec(&xtime, new_sec, new_nsec);
  668. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  669. ntp_clear();
  670. new_xsec = xtime.tv_nsec;
  671. if (new_xsec != 0) {
  672. new_xsec *= XSEC_PER_SEC;
  673. do_div(new_xsec, NSEC_PER_SEC);
  674. }
  675. new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
  676. update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
  677. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  678. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  679. write_sequnlock_irqrestore(&xtime_lock, flags);
  680. clock_was_set();
  681. return 0;
  682. }
  683. EXPORT_SYMBOL(do_settimeofday);
  684. static int __init get_freq(char *name, int cells, unsigned long *val)
  685. {
  686. struct device_node *cpu;
  687. const unsigned int *fp;
  688. int found = 0;
  689. /* The cpu node should have timebase and clock frequency properties */
  690. cpu = of_find_node_by_type(NULL, "cpu");
  691. if (cpu) {
  692. fp = of_get_property(cpu, name, NULL);
  693. if (fp) {
  694. found = 1;
  695. *val = of_read_ulong(fp, cells);
  696. }
  697. of_node_put(cpu);
  698. }
  699. return found;
  700. }
  701. void __init generic_calibrate_decr(void)
  702. {
  703. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  704. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  705. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  706. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  707. "(not found)\n");
  708. }
  709. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  710. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  711. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  712. printk(KERN_ERR "WARNING: Estimating processor frequency "
  713. "(not found)\n");
  714. }
  715. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  716. /* Set the time base to zero */
  717. mtspr(SPRN_TBWL, 0);
  718. mtspr(SPRN_TBWU, 0);
  719. /* Clear any pending timer interrupts */
  720. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  721. /* Enable decrementer interrupt */
  722. mtspr(SPRN_TCR, TCR_DIE);
  723. #endif
  724. }
  725. int update_persistent_clock(struct timespec now)
  726. {
  727. struct rtc_time tm;
  728. if (!ppc_md.set_rtc_time)
  729. return 0;
  730. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  731. tm.tm_year -= 1900;
  732. tm.tm_mon -= 1;
  733. return ppc_md.set_rtc_time(&tm);
  734. }
  735. unsigned long read_persistent_clock(void)
  736. {
  737. struct rtc_time tm;
  738. static int first = 1;
  739. /* XXX this is a litle fragile but will work okay in the short term */
  740. if (first) {
  741. first = 0;
  742. if (ppc_md.time_init)
  743. timezone_offset = ppc_md.time_init();
  744. /* get_boot_time() isn't guaranteed to be safe to call late */
  745. if (ppc_md.get_boot_time)
  746. return ppc_md.get_boot_time() -timezone_offset;
  747. }
  748. if (!ppc_md.get_rtc_time)
  749. return 0;
  750. ppc_md.get_rtc_time(&tm);
  751. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  752. tm.tm_hour, tm.tm_min, tm.tm_sec);
  753. }
  754. /* This function is only called on the boot processor */
  755. void __init time_init(void)
  756. {
  757. unsigned long flags;
  758. struct div_result res;
  759. u64 scale, x;
  760. unsigned shift;
  761. if (__USE_RTC()) {
  762. /* 601 processor: dec counts down by 128 every 128ns */
  763. ppc_tb_freq = 1000000000;
  764. tb_last_jiffy = get_rtcl();
  765. } else {
  766. /* Normal PowerPC with timebase register */
  767. ppc_md.calibrate_decr();
  768. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  769. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  770. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  771. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  772. tb_last_jiffy = get_tb();
  773. }
  774. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  775. tb_ticks_per_sec = ppc_tb_freq;
  776. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  777. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  778. calc_cputime_factors();
  779. /*
  780. * Calculate the length of each tick in ns. It will not be
  781. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  782. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  783. * rounded up.
  784. */
  785. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  786. do_div(x, ppc_tb_freq);
  787. tick_nsec = x;
  788. last_tick_len = x << TICKLEN_SCALE;
  789. /*
  790. * Compute ticklen_to_xs, which is a factor which gets multiplied
  791. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  792. * It is computed as:
  793. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  794. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  795. * which turns out to be N = 51 - SHIFT_HZ.
  796. * This gives the result as a 0.64 fixed-point fraction.
  797. * That value is reduced by an offset amounting to 1 xsec per
  798. * 2^31 timebase ticks to avoid problems with time going backwards
  799. * by 1 xsec when we do timer_recalc_offset due to losing the
  800. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  801. * since there are 2^20 xsec in a second.
  802. */
  803. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  804. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  805. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  806. ticklen_to_xs = res.result_low;
  807. /* Compute tb_to_xs from tick_nsec */
  808. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  809. /*
  810. * Compute scale factor for sched_clock.
  811. * The calibrate_decr() function has set tb_ticks_per_sec,
  812. * which is the timebase frequency.
  813. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  814. * the 128-bit result as a 64.64 fixed-point number.
  815. * We then shift that number right until it is less than 1.0,
  816. * giving us the scale factor and shift count to use in
  817. * sched_clock().
  818. */
  819. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  820. scale = res.result_low;
  821. for (shift = 0; res.result_high != 0; ++shift) {
  822. scale = (scale >> 1) | (res.result_high << 63);
  823. res.result_high >>= 1;
  824. }
  825. tb_to_ns_scale = scale;
  826. tb_to_ns_shift = shift;
  827. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  828. boot_tb = get_tb_or_rtc();
  829. write_seqlock_irqsave(&xtime_lock, flags);
  830. /* If platform provided a timezone (pmac), we correct the time */
  831. if (timezone_offset) {
  832. sys_tz.tz_minuteswest = -timezone_offset / 60;
  833. sys_tz.tz_dsttime = 0;
  834. }
  835. do_gtod.varp = &do_gtod.vars[0];
  836. do_gtod.var_idx = 0;
  837. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  838. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  839. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  840. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  841. do_gtod.varp->tb_to_xs = tb_to_xs;
  842. do_gtod.tb_to_us = tb_to_us;
  843. vdso_data->tb_orig_stamp = tb_last_jiffy;
  844. vdso_data->tb_update_count = 0;
  845. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  846. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  847. vdso_data->tb_to_xs = tb_to_xs;
  848. time_freq = 0;
  849. write_sequnlock_irqrestore(&xtime_lock, flags);
  850. /* Not exact, but the timer interrupt takes care of this */
  851. set_dec(tb_ticks_per_jiffy);
  852. }
  853. #define FEBRUARY 2
  854. #define STARTOFTIME 1970
  855. #define SECDAY 86400L
  856. #define SECYR (SECDAY * 365)
  857. #define leapyear(year) ((year) % 4 == 0 && \
  858. ((year) % 100 != 0 || (year) % 400 == 0))
  859. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  860. #define days_in_month(a) (month_days[(a) - 1])
  861. static int month_days[12] = {
  862. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  863. };
  864. /*
  865. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  866. */
  867. void GregorianDay(struct rtc_time * tm)
  868. {
  869. int leapsToDate;
  870. int lastYear;
  871. int day;
  872. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  873. lastYear = tm->tm_year - 1;
  874. /*
  875. * Number of leap corrections to apply up to end of last year
  876. */
  877. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  878. /*
  879. * This year is a leap year if it is divisible by 4 except when it is
  880. * divisible by 100 unless it is divisible by 400
  881. *
  882. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  883. */
  884. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  885. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  886. tm->tm_mday;
  887. tm->tm_wday = day % 7;
  888. }
  889. void to_tm(int tim, struct rtc_time * tm)
  890. {
  891. register int i;
  892. register long hms, day;
  893. day = tim / SECDAY;
  894. hms = tim % SECDAY;
  895. /* Hours, minutes, seconds are easy */
  896. tm->tm_hour = hms / 3600;
  897. tm->tm_min = (hms % 3600) / 60;
  898. tm->tm_sec = (hms % 3600) % 60;
  899. /* Number of years in days */
  900. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  901. day -= days_in_year(i);
  902. tm->tm_year = i;
  903. /* Number of months in days left */
  904. if (leapyear(tm->tm_year))
  905. days_in_month(FEBRUARY) = 29;
  906. for (i = 1; day >= days_in_month(i); i++)
  907. day -= days_in_month(i);
  908. days_in_month(FEBRUARY) = 28;
  909. tm->tm_mon = i;
  910. /* Days are what is left over (+1) from all that. */
  911. tm->tm_mday = day + 1;
  912. /*
  913. * Determine the day of week
  914. */
  915. GregorianDay(tm);
  916. }
  917. /* Auxiliary function to compute scaling factors */
  918. /* Actually the choice of a timebase running at 1/4 the of the bus
  919. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  920. * It makes this computation very precise (27-28 bits typically) which
  921. * is optimistic considering the stability of most processor clock
  922. * oscillators and the precision with which the timebase frequency
  923. * is measured but does not harm.
  924. */
  925. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  926. {
  927. unsigned mlt=0, tmp, err;
  928. /* No concern for performance, it's done once: use a stupid
  929. * but safe and compact method to find the multiplier.
  930. */
  931. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  932. if (mulhwu(inscale, mlt|tmp) < outscale)
  933. mlt |= tmp;
  934. }
  935. /* We might still be off by 1 for the best approximation.
  936. * A side effect of this is that if outscale is too large
  937. * the returned value will be zero.
  938. * Many corner cases have been checked and seem to work,
  939. * some might have been forgotten in the test however.
  940. */
  941. err = inscale * (mlt+1);
  942. if (err <= inscale/2)
  943. mlt++;
  944. return mlt;
  945. }
  946. /*
  947. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  948. * result.
  949. */
  950. void div128_by_32(u64 dividend_high, u64 dividend_low,
  951. unsigned divisor, struct div_result *dr)
  952. {
  953. unsigned long a, b, c, d;
  954. unsigned long w, x, y, z;
  955. u64 ra, rb, rc;
  956. a = dividend_high >> 32;
  957. b = dividend_high & 0xffffffff;
  958. c = dividend_low >> 32;
  959. d = dividend_low & 0xffffffff;
  960. w = a / divisor;
  961. ra = ((u64)(a - (w * divisor)) << 32) + b;
  962. rb = ((u64) do_div(ra, divisor) << 32) + c;
  963. x = ra;
  964. rc = ((u64) do_div(rb, divisor) << 32) + d;
  965. y = rb;
  966. do_div(rc, divisor);
  967. z = rc;
  968. dr->result_high = ((u64)w << 32) + x;
  969. dr->result_low = ((u64)y << 32) + z;
  970. }