extent-tree.c 203 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include "compat.h"
  28. #include "hash.h"
  29. #include "ctree.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "transaction.h"
  33. #include "volumes.h"
  34. #include "locking.h"
  35. #include "free-space-cache.h"
  36. /* control flags for do_chunk_alloc's force field
  37. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  38. * if we really need one.
  39. *
  40. * CHUNK_ALLOC_FORCE means it must try to allocate one
  41. *
  42. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  43. * if we have very few chunks already allocated. This is
  44. * used as part of the clustering code to help make sure
  45. * we have a good pool of storage to cluster in, without
  46. * filling the FS with empty chunks
  47. *
  48. */
  49. enum {
  50. CHUNK_ALLOC_NO_FORCE = 0,
  51. CHUNK_ALLOC_FORCE = 1,
  52. CHUNK_ALLOC_LIMITED = 2,
  53. };
  54. /*
  55. * Control how reservations are dealt with.
  56. *
  57. * RESERVE_FREE - freeing a reservation.
  58. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  59. * ENOSPC accounting
  60. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  61. * bytes_may_use as the ENOSPC accounting is done elsewhere
  62. */
  63. enum {
  64. RESERVE_FREE = 0,
  65. RESERVE_ALLOC = 1,
  66. RESERVE_ALLOC_NO_ACCOUNT = 2,
  67. };
  68. static int update_block_group(struct btrfs_trans_handle *trans,
  69. struct btrfs_root *root,
  70. u64 bytenr, u64 num_bytes, int alloc);
  71. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  72. struct btrfs_root *root,
  73. u64 bytenr, u64 num_bytes, u64 parent,
  74. u64 root_objectid, u64 owner_objectid,
  75. u64 owner_offset, int refs_to_drop,
  76. struct btrfs_delayed_extent_op *extra_op);
  77. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  78. struct extent_buffer *leaf,
  79. struct btrfs_extent_item *ei);
  80. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  81. struct btrfs_root *root,
  82. u64 parent, u64 root_objectid,
  83. u64 flags, u64 owner, u64 offset,
  84. struct btrfs_key *ins, int ref_mod);
  85. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  86. struct btrfs_root *root,
  87. u64 parent, u64 root_objectid,
  88. u64 flags, struct btrfs_disk_key *key,
  89. int level, struct btrfs_key *ins);
  90. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  91. struct btrfs_root *extent_root, u64 alloc_bytes,
  92. u64 flags, int force);
  93. static int find_next_key(struct btrfs_path *path, int level,
  94. struct btrfs_key *key);
  95. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  96. int dump_block_groups);
  97. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  98. u64 num_bytes, int reserve);
  99. static noinline int
  100. block_group_cache_done(struct btrfs_block_group_cache *cache)
  101. {
  102. smp_mb();
  103. return cache->cached == BTRFS_CACHE_FINISHED;
  104. }
  105. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  106. {
  107. return (cache->flags & bits) == bits;
  108. }
  109. static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  110. {
  111. atomic_inc(&cache->count);
  112. }
  113. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  114. {
  115. if (atomic_dec_and_test(&cache->count)) {
  116. WARN_ON(cache->pinned > 0);
  117. WARN_ON(cache->reserved > 0);
  118. kfree(cache->free_space_ctl);
  119. kfree(cache);
  120. }
  121. }
  122. /*
  123. * this adds the block group to the fs_info rb tree for the block group
  124. * cache
  125. */
  126. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  127. struct btrfs_block_group_cache *block_group)
  128. {
  129. struct rb_node **p;
  130. struct rb_node *parent = NULL;
  131. struct btrfs_block_group_cache *cache;
  132. spin_lock(&info->block_group_cache_lock);
  133. p = &info->block_group_cache_tree.rb_node;
  134. while (*p) {
  135. parent = *p;
  136. cache = rb_entry(parent, struct btrfs_block_group_cache,
  137. cache_node);
  138. if (block_group->key.objectid < cache->key.objectid) {
  139. p = &(*p)->rb_left;
  140. } else if (block_group->key.objectid > cache->key.objectid) {
  141. p = &(*p)->rb_right;
  142. } else {
  143. spin_unlock(&info->block_group_cache_lock);
  144. return -EEXIST;
  145. }
  146. }
  147. rb_link_node(&block_group->cache_node, parent, p);
  148. rb_insert_color(&block_group->cache_node,
  149. &info->block_group_cache_tree);
  150. spin_unlock(&info->block_group_cache_lock);
  151. return 0;
  152. }
  153. /*
  154. * This will return the block group at or after bytenr if contains is 0, else
  155. * it will return the block group that contains the bytenr
  156. */
  157. static struct btrfs_block_group_cache *
  158. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  159. int contains)
  160. {
  161. struct btrfs_block_group_cache *cache, *ret = NULL;
  162. struct rb_node *n;
  163. u64 end, start;
  164. spin_lock(&info->block_group_cache_lock);
  165. n = info->block_group_cache_tree.rb_node;
  166. while (n) {
  167. cache = rb_entry(n, struct btrfs_block_group_cache,
  168. cache_node);
  169. end = cache->key.objectid + cache->key.offset - 1;
  170. start = cache->key.objectid;
  171. if (bytenr < start) {
  172. if (!contains && (!ret || start < ret->key.objectid))
  173. ret = cache;
  174. n = n->rb_left;
  175. } else if (bytenr > start) {
  176. if (contains && bytenr <= end) {
  177. ret = cache;
  178. break;
  179. }
  180. n = n->rb_right;
  181. } else {
  182. ret = cache;
  183. break;
  184. }
  185. }
  186. if (ret)
  187. btrfs_get_block_group(ret);
  188. spin_unlock(&info->block_group_cache_lock);
  189. return ret;
  190. }
  191. static int add_excluded_extent(struct btrfs_root *root,
  192. u64 start, u64 num_bytes)
  193. {
  194. u64 end = start + num_bytes - 1;
  195. set_extent_bits(&root->fs_info->freed_extents[0],
  196. start, end, EXTENT_UPTODATE, GFP_NOFS);
  197. set_extent_bits(&root->fs_info->freed_extents[1],
  198. start, end, EXTENT_UPTODATE, GFP_NOFS);
  199. return 0;
  200. }
  201. static void free_excluded_extents(struct btrfs_root *root,
  202. struct btrfs_block_group_cache *cache)
  203. {
  204. u64 start, end;
  205. start = cache->key.objectid;
  206. end = start + cache->key.offset - 1;
  207. clear_extent_bits(&root->fs_info->freed_extents[0],
  208. start, end, EXTENT_UPTODATE, GFP_NOFS);
  209. clear_extent_bits(&root->fs_info->freed_extents[1],
  210. start, end, EXTENT_UPTODATE, GFP_NOFS);
  211. }
  212. static int exclude_super_stripes(struct btrfs_root *root,
  213. struct btrfs_block_group_cache *cache)
  214. {
  215. u64 bytenr;
  216. u64 *logical;
  217. int stripe_len;
  218. int i, nr, ret;
  219. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  220. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  221. cache->bytes_super += stripe_len;
  222. ret = add_excluded_extent(root, cache->key.objectid,
  223. stripe_len);
  224. BUG_ON(ret);
  225. }
  226. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  227. bytenr = btrfs_sb_offset(i);
  228. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  229. cache->key.objectid, bytenr,
  230. 0, &logical, &nr, &stripe_len);
  231. BUG_ON(ret);
  232. while (nr--) {
  233. cache->bytes_super += stripe_len;
  234. ret = add_excluded_extent(root, logical[nr],
  235. stripe_len);
  236. BUG_ON(ret);
  237. }
  238. kfree(logical);
  239. }
  240. return 0;
  241. }
  242. static struct btrfs_caching_control *
  243. get_caching_control(struct btrfs_block_group_cache *cache)
  244. {
  245. struct btrfs_caching_control *ctl;
  246. spin_lock(&cache->lock);
  247. if (cache->cached != BTRFS_CACHE_STARTED) {
  248. spin_unlock(&cache->lock);
  249. return NULL;
  250. }
  251. /* We're loading it the fast way, so we don't have a caching_ctl. */
  252. if (!cache->caching_ctl) {
  253. spin_unlock(&cache->lock);
  254. return NULL;
  255. }
  256. ctl = cache->caching_ctl;
  257. atomic_inc(&ctl->count);
  258. spin_unlock(&cache->lock);
  259. return ctl;
  260. }
  261. static void put_caching_control(struct btrfs_caching_control *ctl)
  262. {
  263. if (atomic_dec_and_test(&ctl->count))
  264. kfree(ctl);
  265. }
  266. /*
  267. * this is only called by cache_block_group, since we could have freed extents
  268. * we need to check the pinned_extents for any extents that can't be used yet
  269. * since their free space will be released as soon as the transaction commits.
  270. */
  271. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  272. struct btrfs_fs_info *info, u64 start, u64 end)
  273. {
  274. u64 extent_start, extent_end, size, total_added = 0;
  275. int ret;
  276. while (start < end) {
  277. ret = find_first_extent_bit(info->pinned_extents, start,
  278. &extent_start, &extent_end,
  279. EXTENT_DIRTY | EXTENT_UPTODATE);
  280. if (ret)
  281. break;
  282. if (extent_start <= start) {
  283. start = extent_end + 1;
  284. } else if (extent_start > start && extent_start < end) {
  285. size = extent_start - start;
  286. total_added += size;
  287. ret = btrfs_add_free_space(block_group, start,
  288. size);
  289. BUG_ON(ret);
  290. start = extent_end + 1;
  291. } else {
  292. break;
  293. }
  294. }
  295. if (start < end) {
  296. size = end - start;
  297. total_added += size;
  298. ret = btrfs_add_free_space(block_group, start, size);
  299. BUG_ON(ret);
  300. }
  301. return total_added;
  302. }
  303. static noinline void caching_thread(struct btrfs_work *work)
  304. {
  305. struct btrfs_block_group_cache *block_group;
  306. struct btrfs_fs_info *fs_info;
  307. struct btrfs_caching_control *caching_ctl;
  308. struct btrfs_root *extent_root;
  309. struct btrfs_path *path;
  310. struct extent_buffer *leaf;
  311. struct btrfs_key key;
  312. u64 total_found = 0;
  313. u64 last = 0;
  314. u32 nritems;
  315. int ret = 0;
  316. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  317. block_group = caching_ctl->block_group;
  318. fs_info = block_group->fs_info;
  319. extent_root = fs_info->extent_root;
  320. path = btrfs_alloc_path();
  321. if (!path)
  322. goto out;
  323. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  324. /*
  325. * We don't want to deadlock with somebody trying to allocate a new
  326. * extent for the extent root while also trying to search the extent
  327. * root to add free space. So we skip locking and search the commit
  328. * root, since its read-only
  329. */
  330. path->skip_locking = 1;
  331. path->search_commit_root = 1;
  332. path->reada = 1;
  333. key.objectid = last;
  334. key.offset = 0;
  335. key.type = BTRFS_EXTENT_ITEM_KEY;
  336. again:
  337. mutex_lock(&caching_ctl->mutex);
  338. /* need to make sure the commit_root doesn't disappear */
  339. down_read(&fs_info->extent_commit_sem);
  340. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  341. if (ret < 0)
  342. goto err;
  343. leaf = path->nodes[0];
  344. nritems = btrfs_header_nritems(leaf);
  345. while (1) {
  346. if (btrfs_fs_closing(fs_info) > 1) {
  347. last = (u64)-1;
  348. break;
  349. }
  350. if (path->slots[0] < nritems) {
  351. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  352. } else {
  353. ret = find_next_key(path, 0, &key);
  354. if (ret)
  355. break;
  356. if (need_resched() ||
  357. btrfs_next_leaf(extent_root, path)) {
  358. caching_ctl->progress = last;
  359. btrfs_release_path(path);
  360. up_read(&fs_info->extent_commit_sem);
  361. mutex_unlock(&caching_ctl->mutex);
  362. cond_resched();
  363. goto again;
  364. }
  365. leaf = path->nodes[0];
  366. nritems = btrfs_header_nritems(leaf);
  367. continue;
  368. }
  369. if (key.objectid < block_group->key.objectid) {
  370. path->slots[0]++;
  371. continue;
  372. }
  373. if (key.objectid >= block_group->key.objectid +
  374. block_group->key.offset)
  375. break;
  376. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  377. total_found += add_new_free_space(block_group,
  378. fs_info, last,
  379. key.objectid);
  380. last = key.objectid + key.offset;
  381. if (total_found > (1024 * 1024 * 2)) {
  382. total_found = 0;
  383. wake_up(&caching_ctl->wait);
  384. }
  385. }
  386. path->slots[0]++;
  387. }
  388. ret = 0;
  389. total_found += add_new_free_space(block_group, fs_info, last,
  390. block_group->key.objectid +
  391. block_group->key.offset);
  392. caching_ctl->progress = (u64)-1;
  393. spin_lock(&block_group->lock);
  394. block_group->caching_ctl = NULL;
  395. block_group->cached = BTRFS_CACHE_FINISHED;
  396. spin_unlock(&block_group->lock);
  397. err:
  398. btrfs_free_path(path);
  399. up_read(&fs_info->extent_commit_sem);
  400. free_excluded_extents(extent_root, block_group);
  401. mutex_unlock(&caching_ctl->mutex);
  402. out:
  403. wake_up(&caching_ctl->wait);
  404. put_caching_control(caching_ctl);
  405. btrfs_put_block_group(block_group);
  406. }
  407. static int cache_block_group(struct btrfs_block_group_cache *cache,
  408. struct btrfs_trans_handle *trans,
  409. struct btrfs_root *root,
  410. int load_cache_only)
  411. {
  412. DEFINE_WAIT(wait);
  413. struct btrfs_fs_info *fs_info = cache->fs_info;
  414. struct btrfs_caching_control *caching_ctl;
  415. int ret = 0;
  416. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  417. BUG_ON(!caching_ctl);
  418. INIT_LIST_HEAD(&caching_ctl->list);
  419. mutex_init(&caching_ctl->mutex);
  420. init_waitqueue_head(&caching_ctl->wait);
  421. caching_ctl->block_group = cache;
  422. caching_ctl->progress = cache->key.objectid;
  423. atomic_set(&caching_ctl->count, 1);
  424. caching_ctl->work.func = caching_thread;
  425. spin_lock(&cache->lock);
  426. /*
  427. * This should be a rare occasion, but this could happen I think in the
  428. * case where one thread starts to load the space cache info, and then
  429. * some other thread starts a transaction commit which tries to do an
  430. * allocation while the other thread is still loading the space cache
  431. * info. The previous loop should have kept us from choosing this block
  432. * group, but if we've moved to the state where we will wait on caching
  433. * block groups we need to first check if we're doing a fast load here,
  434. * so we can wait for it to finish, otherwise we could end up allocating
  435. * from a block group who's cache gets evicted for one reason or
  436. * another.
  437. */
  438. while (cache->cached == BTRFS_CACHE_FAST) {
  439. struct btrfs_caching_control *ctl;
  440. ctl = cache->caching_ctl;
  441. atomic_inc(&ctl->count);
  442. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  443. spin_unlock(&cache->lock);
  444. schedule();
  445. finish_wait(&ctl->wait, &wait);
  446. put_caching_control(ctl);
  447. spin_lock(&cache->lock);
  448. }
  449. if (cache->cached != BTRFS_CACHE_NO) {
  450. spin_unlock(&cache->lock);
  451. kfree(caching_ctl);
  452. return 0;
  453. }
  454. WARN_ON(cache->caching_ctl);
  455. cache->caching_ctl = caching_ctl;
  456. cache->cached = BTRFS_CACHE_FAST;
  457. spin_unlock(&cache->lock);
  458. /*
  459. * We can't do the read from on-disk cache during a commit since we need
  460. * to have the normal tree locking. Also if we are currently trying to
  461. * allocate blocks for the tree root we can't do the fast caching since
  462. * we likely hold important locks.
  463. */
  464. if (trans && (!trans->transaction->in_commit) &&
  465. (root && root != root->fs_info->tree_root) &&
  466. btrfs_test_opt(root, SPACE_CACHE)) {
  467. ret = load_free_space_cache(fs_info, cache);
  468. spin_lock(&cache->lock);
  469. if (ret == 1) {
  470. cache->caching_ctl = NULL;
  471. cache->cached = BTRFS_CACHE_FINISHED;
  472. cache->last_byte_to_unpin = (u64)-1;
  473. } else {
  474. if (load_cache_only) {
  475. cache->caching_ctl = NULL;
  476. cache->cached = BTRFS_CACHE_NO;
  477. } else {
  478. cache->cached = BTRFS_CACHE_STARTED;
  479. }
  480. }
  481. spin_unlock(&cache->lock);
  482. wake_up(&caching_ctl->wait);
  483. if (ret == 1) {
  484. put_caching_control(caching_ctl);
  485. free_excluded_extents(fs_info->extent_root, cache);
  486. return 0;
  487. }
  488. } else {
  489. /*
  490. * We are not going to do the fast caching, set cached to the
  491. * appropriate value and wakeup any waiters.
  492. */
  493. spin_lock(&cache->lock);
  494. if (load_cache_only) {
  495. cache->caching_ctl = NULL;
  496. cache->cached = BTRFS_CACHE_NO;
  497. } else {
  498. cache->cached = BTRFS_CACHE_STARTED;
  499. }
  500. spin_unlock(&cache->lock);
  501. wake_up(&caching_ctl->wait);
  502. }
  503. if (load_cache_only) {
  504. put_caching_control(caching_ctl);
  505. return 0;
  506. }
  507. down_write(&fs_info->extent_commit_sem);
  508. atomic_inc(&caching_ctl->count);
  509. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  510. up_write(&fs_info->extent_commit_sem);
  511. btrfs_get_block_group(cache);
  512. btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
  513. return ret;
  514. }
  515. /*
  516. * return the block group that starts at or after bytenr
  517. */
  518. static struct btrfs_block_group_cache *
  519. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  520. {
  521. struct btrfs_block_group_cache *cache;
  522. cache = block_group_cache_tree_search(info, bytenr, 0);
  523. return cache;
  524. }
  525. /*
  526. * return the block group that contains the given bytenr
  527. */
  528. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  529. struct btrfs_fs_info *info,
  530. u64 bytenr)
  531. {
  532. struct btrfs_block_group_cache *cache;
  533. cache = block_group_cache_tree_search(info, bytenr, 1);
  534. return cache;
  535. }
  536. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  537. u64 flags)
  538. {
  539. struct list_head *head = &info->space_info;
  540. struct btrfs_space_info *found;
  541. flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
  542. BTRFS_BLOCK_GROUP_METADATA;
  543. rcu_read_lock();
  544. list_for_each_entry_rcu(found, head, list) {
  545. if (found->flags & flags) {
  546. rcu_read_unlock();
  547. return found;
  548. }
  549. }
  550. rcu_read_unlock();
  551. return NULL;
  552. }
  553. /*
  554. * after adding space to the filesystem, we need to clear the full flags
  555. * on all the space infos.
  556. */
  557. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  558. {
  559. struct list_head *head = &info->space_info;
  560. struct btrfs_space_info *found;
  561. rcu_read_lock();
  562. list_for_each_entry_rcu(found, head, list)
  563. found->full = 0;
  564. rcu_read_unlock();
  565. }
  566. static u64 div_factor(u64 num, int factor)
  567. {
  568. if (factor == 10)
  569. return num;
  570. num *= factor;
  571. do_div(num, 10);
  572. return num;
  573. }
  574. static u64 div_factor_fine(u64 num, int factor)
  575. {
  576. if (factor == 100)
  577. return num;
  578. num *= factor;
  579. do_div(num, 100);
  580. return num;
  581. }
  582. u64 btrfs_find_block_group(struct btrfs_root *root,
  583. u64 search_start, u64 search_hint, int owner)
  584. {
  585. struct btrfs_block_group_cache *cache;
  586. u64 used;
  587. u64 last = max(search_hint, search_start);
  588. u64 group_start = 0;
  589. int full_search = 0;
  590. int factor = 9;
  591. int wrapped = 0;
  592. again:
  593. while (1) {
  594. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  595. if (!cache)
  596. break;
  597. spin_lock(&cache->lock);
  598. last = cache->key.objectid + cache->key.offset;
  599. used = btrfs_block_group_used(&cache->item);
  600. if ((full_search || !cache->ro) &&
  601. block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
  602. if (used + cache->pinned + cache->reserved <
  603. div_factor(cache->key.offset, factor)) {
  604. group_start = cache->key.objectid;
  605. spin_unlock(&cache->lock);
  606. btrfs_put_block_group(cache);
  607. goto found;
  608. }
  609. }
  610. spin_unlock(&cache->lock);
  611. btrfs_put_block_group(cache);
  612. cond_resched();
  613. }
  614. if (!wrapped) {
  615. last = search_start;
  616. wrapped = 1;
  617. goto again;
  618. }
  619. if (!full_search && factor < 10) {
  620. last = search_start;
  621. full_search = 1;
  622. factor = 10;
  623. goto again;
  624. }
  625. found:
  626. return group_start;
  627. }
  628. /* simple helper to search for an existing extent at a given offset */
  629. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  630. {
  631. int ret;
  632. struct btrfs_key key;
  633. struct btrfs_path *path;
  634. path = btrfs_alloc_path();
  635. if (!path)
  636. return -ENOMEM;
  637. key.objectid = start;
  638. key.offset = len;
  639. btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
  640. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  641. 0, 0);
  642. btrfs_free_path(path);
  643. return ret;
  644. }
  645. /*
  646. * helper function to lookup reference count and flags of extent.
  647. *
  648. * the head node for delayed ref is used to store the sum of all the
  649. * reference count modifications queued up in the rbtree. the head
  650. * node may also store the extent flags to set. This way you can check
  651. * to see what the reference count and extent flags would be if all of
  652. * the delayed refs are not processed.
  653. */
  654. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  655. struct btrfs_root *root, u64 bytenr,
  656. u64 num_bytes, u64 *refs, u64 *flags)
  657. {
  658. struct btrfs_delayed_ref_head *head;
  659. struct btrfs_delayed_ref_root *delayed_refs;
  660. struct btrfs_path *path;
  661. struct btrfs_extent_item *ei;
  662. struct extent_buffer *leaf;
  663. struct btrfs_key key;
  664. u32 item_size;
  665. u64 num_refs;
  666. u64 extent_flags;
  667. int ret;
  668. path = btrfs_alloc_path();
  669. if (!path)
  670. return -ENOMEM;
  671. key.objectid = bytenr;
  672. key.type = BTRFS_EXTENT_ITEM_KEY;
  673. key.offset = num_bytes;
  674. if (!trans) {
  675. path->skip_locking = 1;
  676. path->search_commit_root = 1;
  677. }
  678. again:
  679. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  680. &key, path, 0, 0);
  681. if (ret < 0)
  682. goto out_free;
  683. if (ret == 0) {
  684. leaf = path->nodes[0];
  685. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  686. if (item_size >= sizeof(*ei)) {
  687. ei = btrfs_item_ptr(leaf, path->slots[0],
  688. struct btrfs_extent_item);
  689. num_refs = btrfs_extent_refs(leaf, ei);
  690. extent_flags = btrfs_extent_flags(leaf, ei);
  691. } else {
  692. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  693. struct btrfs_extent_item_v0 *ei0;
  694. BUG_ON(item_size != sizeof(*ei0));
  695. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  696. struct btrfs_extent_item_v0);
  697. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  698. /* FIXME: this isn't correct for data */
  699. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  700. #else
  701. BUG();
  702. #endif
  703. }
  704. BUG_ON(num_refs == 0);
  705. } else {
  706. num_refs = 0;
  707. extent_flags = 0;
  708. ret = 0;
  709. }
  710. if (!trans)
  711. goto out;
  712. delayed_refs = &trans->transaction->delayed_refs;
  713. spin_lock(&delayed_refs->lock);
  714. head = btrfs_find_delayed_ref_head(trans, bytenr);
  715. if (head) {
  716. if (!mutex_trylock(&head->mutex)) {
  717. atomic_inc(&head->node.refs);
  718. spin_unlock(&delayed_refs->lock);
  719. btrfs_release_path(path);
  720. /*
  721. * Mutex was contended, block until it's released and try
  722. * again
  723. */
  724. mutex_lock(&head->mutex);
  725. mutex_unlock(&head->mutex);
  726. btrfs_put_delayed_ref(&head->node);
  727. goto again;
  728. }
  729. if (head->extent_op && head->extent_op->update_flags)
  730. extent_flags |= head->extent_op->flags_to_set;
  731. else
  732. BUG_ON(num_refs == 0);
  733. num_refs += head->node.ref_mod;
  734. mutex_unlock(&head->mutex);
  735. }
  736. spin_unlock(&delayed_refs->lock);
  737. out:
  738. WARN_ON(num_refs == 0);
  739. if (refs)
  740. *refs = num_refs;
  741. if (flags)
  742. *flags = extent_flags;
  743. out_free:
  744. btrfs_free_path(path);
  745. return ret;
  746. }
  747. /*
  748. * Back reference rules. Back refs have three main goals:
  749. *
  750. * 1) differentiate between all holders of references to an extent so that
  751. * when a reference is dropped we can make sure it was a valid reference
  752. * before freeing the extent.
  753. *
  754. * 2) Provide enough information to quickly find the holders of an extent
  755. * if we notice a given block is corrupted or bad.
  756. *
  757. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  758. * maintenance. This is actually the same as #2, but with a slightly
  759. * different use case.
  760. *
  761. * There are two kinds of back refs. The implicit back refs is optimized
  762. * for pointers in non-shared tree blocks. For a given pointer in a block,
  763. * back refs of this kind provide information about the block's owner tree
  764. * and the pointer's key. These information allow us to find the block by
  765. * b-tree searching. The full back refs is for pointers in tree blocks not
  766. * referenced by their owner trees. The location of tree block is recorded
  767. * in the back refs. Actually the full back refs is generic, and can be
  768. * used in all cases the implicit back refs is used. The major shortcoming
  769. * of the full back refs is its overhead. Every time a tree block gets
  770. * COWed, we have to update back refs entry for all pointers in it.
  771. *
  772. * For a newly allocated tree block, we use implicit back refs for
  773. * pointers in it. This means most tree related operations only involve
  774. * implicit back refs. For a tree block created in old transaction, the
  775. * only way to drop a reference to it is COW it. So we can detect the
  776. * event that tree block loses its owner tree's reference and do the
  777. * back refs conversion.
  778. *
  779. * When a tree block is COW'd through a tree, there are four cases:
  780. *
  781. * The reference count of the block is one and the tree is the block's
  782. * owner tree. Nothing to do in this case.
  783. *
  784. * The reference count of the block is one and the tree is not the
  785. * block's owner tree. In this case, full back refs is used for pointers
  786. * in the block. Remove these full back refs, add implicit back refs for
  787. * every pointers in the new block.
  788. *
  789. * The reference count of the block is greater than one and the tree is
  790. * the block's owner tree. In this case, implicit back refs is used for
  791. * pointers in the block. Add full back refs for every pointers in the
  792. * block, increase lower level extents' reference counts. The original
  793. * implicit back refs are entailed to the new block.
  794. *
  795. * The reference count of the block is greater than one and the tree is
  796. * not the block's owner tree. Add implicit back refs for every pointer in
  797. * the new block, increase lower level extents' reference count.
  798. *
  799. * Back Reference Key composing:
  800. *
  801. * The key objectid corresponds to the first byte in the extent,
  802. * The key type is used to differentiate between types of back refs.
  803. * There are different meanings of the key offset for different types
  804. * of back refs.
  805. *
  806. * File extents can be referenced by:
  807. *
  808. * - multiple snapshots, subvolumes, or different generations in one subvol
  809. * - different files inside a single subvolume
  810. * - different offsets inside a file (bookend extents in file.c)
  811. *
  812. * The extent ref structure for the implicit back refs has fields for:
  813. *
  814. * - Objectid of the subvolume root
  815. * - objectid of the file holding the reference
  816. * - original offset in the file
  817. * - how many bookend extents
  818. *
  819. * The key offset for the implicit back refs is hash of the first
  820. * three fields.
  821. *
  822. * The extent ref structure for the full back refs has field for:
  823. *
  824. * - number of pointers in the tree leaf
  825. *
  826. * The key offset for the implicit back refs is the first byte of
  827. * the tree leaf
  828. *
  829. * When a file extent is allocated, The implicit back refs is used.
  830. * the fields are filled in:
  831. *
  832. * (root_key.objectid, inode objectid, offset in file, 1)
  833. *
  834. * When a file extent is removed file truncation, we find the
  835. * corresponding implicit back refs and check the following fields:
  836. *
  837. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  838. *
  839. * Btree extents can be referenced by:
  840. *
  841. * - Different subvolumes
  842. *
  843. * Both the implicit back refs and the full back refs for tree blocks
  844. * only consist of key. The key offset for the implicit back refs is
  845. * objectid of block's owner tree. The key offset for the full back refs
  846. * is the first byte of parent block.
  847. *
  848. * When implicit back refs is used, information about the lowest key and
  849. * level of the tree block are required. These information are stored in
  850. * tree block info structure.
  851. */
  852. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  853. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  854. struct btrfs_root *root,
  855. struct btrfs_path *path,
  856. u64 owner, u32 extra_size)
  857. {
  858. struct btrfs_extent_item *item;
  859. struct btrfs_extent_item_v0 *ei0;
  860. struct btrfs_extent_ref_v0 *ref0;
  861. struct btrfs_tree_block_info *bi;
  862. struct extent_buffer *leaf;
  863. struct btrfs_key key;
  864. struct btrfs_key found_key;
  865. u32 new_size = sizeof(*item);
  866. u64 refs;
  867. int ret;
  868. leaf = path->nodes[0];
  869. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  870. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  871. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  872. struct btrfs_extent_item_v0);
  873. refs = btrfs_extent_refs_v0(leaf, ei0);
  874. if (owner == (u64)-1) {
  875. while (1) {
  876. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  877. ret = btrfs_next_leaf(root, path);
  878. if (ret < 0)
  879. return ret;
  880. BUG_ON(ret > 0);
  881. leaf = path->nodes[0];
  882. }
  883. btrfs_item_key_to_cpu(leaf, &found_key,
  884. path->slots[0]);
  885. BUG_ON(key.objectid != found_key.objectid);
  886. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  887. path->slots[0]++;
  888. continue;
  889. }
  890. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  891. struct btrfs_extent_ref_v0);
  892. owner = btrfs_ref_objectid_v0(leaf, ref0);
  893. break;
  894. }
  895. }
  896. btrfs_release_path(path);
  897. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  898. new_size += sizeof(*bi);
  899. new_size -= sizeof(*ei0);
  900. ret = btrfs_search_slot(trans, root, &key, path,
  901. new_size + extra_size, 1);
  902. if (ret < 0)
  903. return ret;
  904. BUG_ON(ret);
  905. ret = btrfs_extend_item(trans, root, path, new_size);
  906. leaf = path->nodes[0];
  907. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  908. btrfs_set_extent_refs(leaf, item, refs);
  909. /* FIXME: get real generation */
  910. btrfs_set_extent_generation(leaf, item, 0);
  911. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  912. btrfs_set_extent_flags(leaf, item,
  913. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  914. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  915. bi = (struct btrfs_tree_block_info *)(item + 1);
  916. /* FIXME: get first key of the block */
  917. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  918. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  919. } else {
  920. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  921. }
  922. btrfs_mark_buffer_dirty(leaf);
  923. return 0;
  924. }
  925. #endif
  926. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  927. {
  928. u32 high_crc = ~(u32)0;
  929. u32 low_crc = ~(u32)0;
  930. __le64 lenum;
  931. lenum = cpu_to_le64(root_objectid);
  932. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  933. lenum = cpu_to_le64(owner);
  934. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  935. lenum = cpu_to_le64(offset);
  936. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  937. return ((u64)high_crc << 31) ^ (u64)low_crc;
  938. }
  939. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  940. struct btrfs_extent_data_ref *ref)
  941. {
  942. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  943. btrfs_extent_data_ref_objectid(leaf, ref),
  944. btrfs_extent_data_ref_offset(leaf, ref));
  945. }
  946. static int match_extent_data_ref(struct extent_buffer *leaf,
  947. struct btrfs_extent_data_ref *ref,
  948. u64 root_objectid, u64 owner, u64 offset)
  949. {
  950. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  951. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  952. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  953. return 0;
  954. return 1;
  955. }
  956. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  957. struct btrfs_root *root,
  958. struct btrfs_path *path,
  959. u64 bytenr, u64 parent,
  960. u64 root_objectid,
  961. u64 owner, u64 offset)
  962. {
  963. struct btrfs_key key;
  964. struct btrfs_extent_data_ref *ref;
  965. struct extent_buffer *leaf;
  966. u32 nritems;
  967. int ret;
  968. int recow;
  969. int err = -ENOENT;
  970. key.objectid = bytenr;
  971. if (parent) {
  972. key.type = BTRFS_SHARED_DATA_REF_KEY;
  973. key.offset = parent;
  974. } else {
  975. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  976. key.offset = hash_extent_data_ref(root_objectid,
  977. owner, offset);
  978. }
  979. again:
  980. recow = 0;
  981. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  982. if (ret < 0) {
  983. err = ret;
  984. goto fail;
  985. }
  986. if (parent) {
  987. if (!ret)
  988. return 0;
  989. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  990. key.type = BTRFS_EXTENT_REF_V0_KEY;
  991. btrfs_release_path(path);
  992. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  993. if (ret < 0) {
  994. err = ret;
  995. goto fail;
  996. }
  997. if (!ret)
  998. return 0;
  999. #endif
  1000. goto fail;
  1001. }
  1002. leaf = path->nodes[0];
  1003. nritems = btrfs_header_nritems(leaf);
  1004. while (1) {
  1005. if (path->slots[0] >= nritems) {
  1006. ret = btrfs_next_leaf(root, path);
  1007. if (ret < 0)
  1008. err = ret;
  1009. if (ret)
  1010. goto fail;
  1011. leaf = path->nodes[0];
  1012. nritems = btrfs_header_nritems(leaf);
  1013. recow = 1;
  1014. }
  1015. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1016. if (key.objectid != bytenr ||
  1017. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1018. goto fail;
  1019. ref = btrfs_item_ptr(leaf, path->slots[0],
  1020. struct btrfs_extent_data_ref);
  1021. if (match_extent_data_ref(leaf, ref, root_objectid,
  1022. owner, offset)) {
  1023. if (recow) {
  1024. btrfs_release_path(path);
  1025. goto again;
  1026. }
  1027. err = 0;
  1028. break;
  1029. }
  1030. path->slots[0]++;
  1031. }
  1032. fail:
  1033. return err;
  1034. }
  1035. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1036. struct btrfs_root *root,
  1037. struct btrfs_path *path,
  1038. u64 bytenr, u64 parent,
  1039. u64 root_objectid, u64 owner,
  1040. u64 offset, int refs_to_add)
  1041. {
  1042. struct btrfs_key key;
  1043. struct extent_buffer *leaf;
  1044. u32 size;
  1045. u32 num_refs;
  1046. int ret;
  1047. key.objectid = bytenr;
  1048. if (parent) {
  1049. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1050. key.offset = parent;
  1051. size = sizeof(struct btrfs_shared_data_ref);
  1052. } else {
  1053. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1054. key.offset = hash_extent_data_ref(root_objectid,
  1055. owner, offset);
  1056. size = sizeof(struct btrfs_extent_data_ref);
  1057. }
  1058. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1059. if (ret && ret != -EEXIST)
  1060. goto fail;
  1061. leaf = path->nodes[0];
  1062. if (parent) {
  1063. struct btrfs_shared_data_ref *ref;
  1064. ref = btrfs_item_ptr(leaf, path->slots[0],
  1065. struct btrfs_shared_data_ref);
  1066. if (ret == 0) {
  1067. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1068. } else {
  1069. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1070. num_refs += refs_to_add;
  1071. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1072. }
  1073. } else {
  1074. struct btrfs_extent_data_ref *ref;
  1075. while (ret == -EEXIST) {
  1076. ref = btrfs_item_ptr(leaf, path->slots[0],
  1077. struct btrfs_extent_data_ref);
  1078. if (match_extent_data_ref(leaf, ref, root_objectid,
  1079. owner, offset))
  1080. break;
  1081. btrfs_release_path(path);
  1082. key.offset++;
  1083. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1084. size);
  1085. if (ret && ret != -EEXIST)
  1086. goto fail;
  1087. leaf = path->nodes[0];
  1088. }
  1089. ref = btrfs_item_ptr(leaf, path->slots[0],
  1090. struct btrfs_extent_data_ref);
  1091. if (ret == 0) {
  1092. btrfs_set_extent_data_ref_root(leaf, ref,
  1093. root_objectid);
  1094. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1095. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1096. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1097. } else {
  1098. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1099. num_refs += refs_to_add;
  1100. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1101. }
  1102. }
  1103. btrfs_mark_buffer_dirty(leaf);
  1104. ret = 0;
  1105. fail:
  1106. btrfs_release_path(path);
  1107. return ret;
  1108. }
  1109. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1110. struct btrfs_root *root,
  1111. struct btrfs_path *path,
  1112. int refs_to_drop)
  1113. {
  1114. struct btrfs_key key;
  1115. struct btrfs_extent_data_ref *ref1 = NULL;
  1116. struct btrfs_shared_data_ref *ref2 = NULL;
  1117. struct extent_buffer *leaf;
  1118. u32 num_refs = 0;
  1119. int ret = 0;
  1120. leaf = path->nodes[0];
  1121. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1122. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1123. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1124. struct btrfs_extent_data_ref);
  1125. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1126. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1127. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1128. struct btrfs_shared_data_ref);
  1129. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1130. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1131. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1132. struct btrfs_extent_ref_v0 *ref0;
  1133. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1134. struct btrfs_extent_ref_v0);
  1135. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1136. #endif
  1137. } else {
  1138. BUG();
  1139. }
  1140. BUG_ON(num_refs < refs_to_drop);
  1141. num_refs -= refs_to_drop;
  1142. if (num_refs == 0) {
  1143. ret = btrfs_del_item(trans, root, path);
  1144. } else {
  1145. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1146. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1147. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1148. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1149. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1150. else {
  1151. struct btrfs_extent_ref_v0 *ref0;
  1152. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1153. struct btrfs_extent_ref_v0);
  1154. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1155. }
  1156. #endif
  1157. btrfs_mark_buffer_dirty(leaf);
  1158. }
  1159. return ret;
  1160. }
  1161. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1162. struct btrfs_path *path,
  1163. struct btrfs_extent_inline_ref *iref)
  1164. {
  1165. struct btrfs_key key;
  1166. struct extent_buffer *leaf;
  1167. struct btrfs_extent_data_ref *ref1;
  1168. struct btrfs_shared_data_ref *ref2;
  1169. u32 num_refs = 0;
  1170. leaf = path->nodes[0];
  1171. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1172. if (iref) {
  1173. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1174. BTRFS_EXTENT_DATA_REF_KEY) {
  1175. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1176. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1177. } else {
  1178. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1179. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1180. }
  1181. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1182. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1183. struct btrfs_extent_data_ref);
  1184. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1185. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1186. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1187. struct btrfs_shared_data_ref);
  1188. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1189. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1190. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1191. struct btrfs_extent_ref_v0 *ref0;
  1192. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1193. struct btrfs_extent_ref_v0);
  1194. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1195. #endif
  1196. } else {
  1197. WARN_ON(1);
  1198. }
  1199. return num_refs;
  1200. }
  1201. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1202. struct btrfs_root *root,
  1203. struct btrfs_path *path,
  1204. u64 bytenr, u64 parent,
  1205. u64 root_objectid)
  1206. {
  1207. struct btrfs_key key;
  1208. int ret;
  1209. key.objectid = bytenr;
  1210. if (parent) {
  1211. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1212. key.offset = parent;
  1213. } else {
  1214. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1215. key.offset = root_objectid;
  1216. }
  1217. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1218. if (ret > 0)
  1219. ret = -ENOENT;
  1220. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1221. if (ret == -ENOENT && parent) {
  1222. btrfs_release_path(path);
  1223. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1224. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1225. if (ret > 0)
  1226. ret = -ENOENT;
  1227. }
  1228. #endif
  1229. return ret;
  1230. }
  1231. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1232. struct btrfs_root *root,
  1233. struct btrfs_path *path,
  1234. u64 bytenr, u64 parent,
  1235. u64 root_objectid)
  1236. {
  1237. struct btrfs_key key;
  1238. int ret;
  1239. key.objectid = bytenr;
  1240. if (parent) {
  1241. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1242. key.offset = parent;
  1243. } else {
  1244. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1245. key.offset = root_objectid;
  1246. }
  1247. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1248. btrfs_release_path(path);
  1249. return ret;
  1250. }
  1251. static inline int extent_ref_type(u64 parent, u64 owner)
  1252. {
  1253. int type;
  1254. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1255. if (parent > 0)
  1256. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1257. else
  1258. type = BTRFS_TREE_BLOCK_REF_KEY;
  1259. } else {
  1260. if (parent > 0)
  1261. type = BTRFS_SHARED_DATA_REF_KEY;
  1262. else
  1263. type = BTRFS_EXTENT_DATA_REF_KEY;
  1264. }
  1265. return type;
  1266. }
  1267. static int find_next_key(struct btrfs_path *path, int level,
  1268. struct btrfs_key *key)
  1269. {
  1270. for (; level < BTRFS_MAX_LEVEL; level++) {
  1271. if (!path->nodes[level])
  1272. break;
  1273. if (path->slots[level] + 1 >=
  1274. btrfs_header_nritems(path->nodes[level]))
  1275. continue;
  1276. if (level == 0)
  1277. btrfs_item_key_to_cpu(path->nodes[level], key,
  1278. path->slots[level] + 1);
  1279. else
  1280. btrfs_node_key_to_cpu(path->nodes[level], key,
  1281. path->slots[level] + 1);
  1282. return 0;
  1283. }
  1284. return 1;
  1285. }
  1286. /*
  1287. * look for inline back ref. if back ref is found, *ref_ret is set
  1288. * to the address of inline back ref, and 0 is returned.
  1289. *
  1290. * if back ref isn't found, *ref_ret is set to the address where it
  1291. * should be inserted, and -ENOENT is returned.
  1292. *
  1293. * if insert is true and there are too many inline back refs, the path
  1294. * points to the extent item, and -EAGAIN is returned.
  1295. *
  1296. * NOTE: inline back refs are ordered in the same way that back ref
  1297. * items in the tree are ordered.
  1298. */
  1299. static noinline_for_stack
  1300. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1301. struct btrfs_root *root,
  1302. struct btrfs_path *path,
  1303. struct btrfs_extent_inline_ref **ref_ret,
  1304. u64 bytenr, u64 num_bytes,
  1305. u64 parent, u64 root_objectid,
  1306. u64 owner, u64 offset, int insert)
  1307. {
  1308. struct btrfs_key key;
  1309. struct extent_buffer *leaf;
  1310. struct btrfs_extent_item *ei;
  1311. struct btrfs_extent_inline_ref *iref;
  1312. u64 flags;
  1313. u64 item_size;
  1314. unsigned long ptr;
  1315. unsigned long end;
  1316. int extra_size;
  1317. int type;
  1318. int want;
  1319. int ret;
  1320. int err = 0;
  1321. key.objectid = bytenr;
  1322. key.type = BTRFS_EXTENT_ITEM_KEY;
  1323. key.offset = num_bytes;
  1324. want = extent_ref_type(parent, owner);
  1325. if (insert) {
  1326. extra_size = btrfs_extent_inline_ref_size(want);
  1327. path->keep_locks = 1;
  1328. } else
  1329. extra_size = -1;
  1330. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1331. if (ret < 0) {
  1332. err = ret;
  1333. goto out;
  1334. }
  1335. BUG_ON(ret);
  1336. leaf = path->nodes[0];
  1337. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1338. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1339. if (item_size < sizeof(*ei)) {
  1340. if (!insert) {
  1341. err = -ENOENT;
  1342. goto out;
  1343. }
  1344. ret = convert_extent_item_v0(trans, root, path, owner,
  1345. extra_size);
  1346. if (ret < 0) {
  1347. err = ret;
  1348. goto out;
  1349. }
  1350. leaf = path->nodes[0];
  1351. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1352. }
  1353. #endif
  1354. BUG_ON(item_size < sizeof(*ei));
  1355. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1356. flags = btrfs_extent_flags(leaf, ei);
  1357. ptr = (unsigned long)(ei + 1);
  1358. end = (unsigned long)ei + item_size;
  1359. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1360. ptr += sizeof(struct btrfs_tree_block_info);
  1361. BUG_ON(ptr > end);
  1362. } else {
  1363. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  1364. }
  1365. err = -ENOENT;
  1366. while (1) {
  1367. if (ptr >= end) {
  1368. WARN_ON(ptr > end);
  1369. break;
  1370. }
  1371. iref = (struct btrfs_extent_inline_ref *)ptr;
  1372. type = btrfs_extent_inline_ref_type(leaf, iref);
  1373. if (want < type)
  1374. break;
  1375. if (want > type) {
  1376. ptr += btrfs_extent_inline_ref_size(type);
  1377. continue;
  1378. }
  1379. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1380. struct btrfs_extent_data_ref *dref;
  1381. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1382. if (match_extent_data_ref(leaf, dref, root_objectid,
  1383. owner, offset)) {
  1384. err = 0;
  1385. break;
  1386. }
  1387. if (hash_extent_data_ref_item(leaf, dref) <
  1388. hash_extent_data_ref(root_objectid, owner, offset))
  1389. break;
  1390. } else {
  1391. u64 ref_offset;
  1392. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1393. if (parent > 0) {
  1394. if (parent == ref_offset) {
  1395. err = 0;
  1396. break;
  1397. }
  1398. if (ref_offset < parent)
  1399. break;
  1400. } else {
  1401. if (root_objectid == ref_offset) {
  1402. err = 0;
  1403. break;
  1404. }
  1405. if (ref_offset < root_objectid)
  1406. break;
  1407. }
  1408. }
  1409. ptr += btrfs_extent_inline_ref_size(type);
  1410. }
  1411. if (err == -ENOENT && insert) {
  1412. if (item_size + extra_size >=
  1413. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1414. err = -EAGAIN;
  1415. goto out;
  1416. }
  1417. /*
  1418. * To add new inline back ref, we have to make sure
  1419. * there is no corresponding back ref item.
  1420. * For simplicity, we just do not add new inline back
  1421. * ref if there is any kind of item for this block
  1422. */
  1423. if (find_next_key(path, 0, &key) == 0 &&
  1424. key.objectid == bytenr &&
  1425. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1426. err = -EAGAIN;
  1427. goto out;
  1428. }
  1429. }
  1430. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1431. out:
  1432. if (insert) {
  1433. path->keep_locks = 0;
  1434. btrfs_unlock_up_safe(path, 1);
  1435. }
  1436. return err;
  1437. }
  1438. /*
  1439. * helper to add new inline back ref
  1440. */
  1441. static noinline_for_stack
  1442. int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1443. struct btrfs_root *root,
  1444. struct btrfs_path *path,
  1445. struct btrfs_extent_inline_ref *iref,
  1446. u64 parent, u64 root_objectid,
  1447. u64 owner, u64 offset, int refs_to_add,
  1448. struct btrfs_delayed_extent_op *extent_op)
  1449. {
  1450. struct extent_buffer *leaf;
  1451. struct btrfs_extent_item *ei;
  1452. unsigned long ptr;
  1453. unsigned long end;
  1454. unsigned long item_offset;
  1455. u64 refs;
  1456. int size;
  1457. int type;
  1458. int ret;
  1459. leaf = path->nodes[0];
  1460. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1461. item_offset = (unsigned long)iref - (unsigned long)ei;
  1462. type = extent_ref_type(parent, owner);
  1463. size = btrfs_extent_inline_ref_size(type);
  1464. ret = btrfs_extend_item(trans, root, path, size);
  1465. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1466. refs = btrfs_extent_refs(leaf, ei);
  1467. refs += refs_to_add;
  1468. btrfs_set_extent_refs(leaf, ei, refs);
  1469. if (extent_op)
  1470. __run_delayed_extent_op(extent_op, leaf, ei);
  1471. ptr = (unsigned long)ei + item_offset;
  1472. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1473. if (ptr < end - size)
  1474. memmove_extent_buffer(leaf, ptr + size, ptr,
  1475. end - size - ptr);
  1476. iref = (struct btrfs_extent_inline_ref *)ptr;
  1477. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1478. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1479. struct btrfs_extent_data_ref *dref;
  1480. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1481. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1482. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1483. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1484. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1485. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1486. struct btrfs_shared_data_ref *sref;
  1487. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1488. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1489. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1490. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1491. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1492. } else {
  1493. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1494. }
  1495. btrfs_mark_buffer_dirty(leaf);
  1496. return 0;
  1497. }
  1498. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1499. struct btrfs_root *root,
  1500. struct btrfs_path *path,
  1501. struct btrfs_extent_inline_ref **ref_ret,
  1502. u64 bytenr, u64 num_bytes, u64 parent,
  1503. u64 root_objectid, u64 owner, u64 offset)
  1504. {
  1505. int ret;
  1506. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1507. bytenr, num_bytes, parent,
  1508. root_objectid, owner, offset, 0);
  1509. if (ret != -ENOENT)
  1510. return ret;
  1511. btrfs_release_path(path);
  1512. *ref_ret = NULL;
  1513. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1514. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1515. root_objectid);
  1516. } else {
  1517. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1518. root_objectid, owner, offset);
  1519. }
  1520. return ret;
  1521. }
  1522. /*
  1523. * helper to update/remove inline back ref
  1524. */
  1525. static noinline_for_stack
  1526. int update_inline_extent_backref(struct btrfs_trans_handle *trans,
  1527. struct btrfs_root *root,
  1528. struct btrfs_path *path,
  1529. struct btrfs_extent_inline_ref *iref,
  1530. int refs_to_mod,
  1531. struct btrfs_delayed_extent_op *extent_op)
  1532. {
  1533. struct extent_buffer *leaf;
  1534. struct btrfs_extent_item *ei;
  1535. struct btrfs_extent_data_ref *dref = NULL;
  1536. struct btrfs_shared_data_ref *sref = NULL;
  1537. unsigned long ptr;
  1538. unsigned long end;
  1539. u32 item_size;
  1540. int size;
  1541. int type;
  1542. int ret;
  1543. u64 refs;
  1544. leaf = path->nodes[0];
  1545. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1546. refs = btrfs_extent_refs(leaf, ei);
  1547. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1548. refs += refs_to_mod;
  1549. btrfs_set_extent_refs(leaf, ei, refs);
  1550. if (extent_op)
  1551. __run_delayed_extent_op(extent_op, leaf, ei);
  1552. type = btrfs_extent_inline_ref_type(leaf, iref);
  1553. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1554. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1555. refs = btrfs_extent_data_ref_count(leaf, dref);
  1556. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1557. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1558. refs = btrfs_shared_data_ref_count(leaf, sref);
  1559. } else {
  1560. refs = 1;
  1561. BUG_ON(refs_to_mod != -1);
  1562. }
  1563. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1564. refs += refs_to_mod;
  1565. if (refs > 0) {
  1566. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1567. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1568. else
  1569. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1570. } else {
  1571. size = btrfs_extent_inline_ref_size(type);
  1572. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1573. ptr = (unsigned long)iref;
  1574. end = (unsigned long)ei + item_size;
  1575. if (ptr + size < end)
  1576. memmove_extent_buffer(leaf, ptr, ptr + size,
  1577. end - ptr - size);
  1578. item_size -= size;
  1579. ret = btrfs_truncate_item(trans, root, path, item_size, 1);
  1580. }
  1581. btrfs_mark_buffer_dirty(leaf);
  1582. return 0;
  1583. }
  1584. static noinline_for_stack
  1585. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1586. struct btrfs_root *root,
  1587. struct btrfs_path *path,
  1588. u64 bytenr, u64 num_bytes, u64 parent,
  1589. u64 root_objectid, u64 owner,
  1590. u64 offset, int refs_to_add,
  1591. struct btrfs_delayed_extent_op *extent_op)
  1592. {
  1593. struct btrfs_extent_inline_ref *iref;
  1594. int ret;
  1595. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1596. bytenr, num_bytes, parent,
  1597. root_objectid, owner, offset, 1);
  1598. if (ret == 0) {
  1599. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1600. ret = update_inline_extent_backref(trans, root, path, iref,
  1601. refs_to_add, extent_op);
  1602. } else if (ret == -ENOENT) {
  1603. ret = setup_inline_extent_backref(trans, root, path, iref,
  1604. parent, root_objectid,
  1605. owner, offset, refs_to_add,
  1606. extent_op);
  1607. }
  1608. return ret;
  1609. }
  1610. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1611. struct btrfs_root *root,
  1612. struct btrfs_path *path,
  1613. u64 bytenr, u64 parent, u64 root_objectid,
  1614. u64 owner, u64 offset, int refs_to_add)
  1615. {
  1616. int ret;
  1617. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1618. BUG_ON(refs_to_add != 1);
  1619. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1620. parent, root_objectid);
  1621. } else {
  1622. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1623. parent, root_objectid,
  1624. owner, offset, refs_to_add);
  1625. }
  1626. return ret;
  1627. }
  1628. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1629. struct btrfs_root *root,
  1630. struct btrfs_path *path,
  1631. struct btrfs_extent_inline_ref *iref,
  1632. int refs_to_drop, int is_data)
  1633. {
  1634. int ret;
  1635. BUG_ON(!is_data && refs_to_drop != 1);
  1636. if (iref) {
  1637. ret = update_inline_extent_backref(trans, root, path, iref,
  1638. -refs_to_drop, NULL);
  1639. } else if (is_data) {
  1640. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1641. } else {
  1642. ret = btrfs_del_item(trans, root, path);
  1643. }
  1644. return ret;
  1645. }
  1646. static int btrfs_issue_discard(struct block_device *bdev,
  1647. u64 start, u64 len)
  1648. {
  1649. return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
  1650. }
  1651. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1652. u64 num_bytes, u64 *actual_bytes)
  1653. {
  1654. int ret;
  1655. u64 discarded_bytes = 0;
  1656. struct btrfs_bio *bbio = NULL;
  1657. /* Tell the block device(s) that the sectors can be discarded */
  1658. ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
  1659. bytenr, &num_bytes, &bbio, 0);
  1660. if (!ret) {
  1661. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1662. int i;
  1663. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1664. if (!stripe->dev->can_discard)
  1665. continue;
  1666. ret = btrfs_issue_discard(stripe->dev->bdev,
  1667. stripe->physical,
  1668. stripe->length);
  1669. if (!ret)
  1670. discarded_bytes += stripe->length;
  1671. else if (ret != -EOPNOTSUPP)
  1672. break;
  1673. /*
  1674. * Just in case we get back EOPNOTSUPP for some reason,
  1675. * just ignore the return value so we don't screw up
  1676. * people calling discard_extent.
  1677. */
  1678. ret = 0;
  1679. }
  1680. kfree(bbio);
  1681. }
  1682. if (actual_bytes)
  1683. *actual_bytes = discarded_bytes;
  1684. return ret;
  1685. }
  1686. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1687. struct btrfs_root *root,
  1688. u64 bytenr, u64 num_bytes, u64 parent,
  1689. u64 root_objectid, u64 owner, u64 offset)
  1690. {
  1691. int ret;
  1692. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1693. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1694. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1695. ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
  1696. parent, root_objectid, (int)owner,
  1697. BTRFS_ADD_DELAYED_REF, NULL);
  1698. } else {
  1699. ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
  1700. parent, root_objectid, owner, offset,
  1701. BTRFS_ADD_DELAYED_REF, NULL);
  1702. }
  1703. return ret;
  1704. }
  1705. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1706. struct btrfs_root *root,
  1707. u64 bytenr, u64 num_bytes,
  1708. u64 parent, u64 root_objectid,
  1709. u64 owner, u64 offset, int refs_to_add,
  1710. struct btrfs_delayed_extent_op *extent_op)
  1711. {
  1712. struct btrfs_path *path;
  1713. struct extent_buffer *leaf;
  1714. struct btrfs_extent_item *item;
  1715. u64 refs;
  1716. int ret;
  1717. int err = 0;
  1718. path = btrfs_alloc_path();
  1719. if (!path)
  1720. return -ENOMEM;
  1721. path->reada = 1;
  1722. path->leave_spinning = 1;
  1723. /* this will setup the path even if it fails to insert the back ref */
  1724. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1725. path, bytenr, num_bytes, parent,
  1726. root_objectid, owner, offset,
  1727. refs_to_add, extent_op);
  1728. if (ret == 0)
  1729. goto out;
  1730. if (ret != -EAGAIN) {
  1731. err = ret;
  1732. goto out;
  1733. }
  1734. leaf = path->nodes[0];
  1735. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1736. refs = btrfs_extent_refs(leaf, item);
  1737. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1738. if (extent_op)
  1739. __run_delayed_extent_op(extent_op, leaf, item);
  1740. btrfs_mark_buffer_dirty(leaf);
  1741. btrfs_release_path(path);
  1742. path->reada = 1;
  1743. path->leave_spinning = 1;
  1744. /* now insert the actual backref */
  1745. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1746. path, bytenr, parent, root_objectid,
  1747. owner, offset, refs_to_add);
  1748. BUG_ON(ret);
  1749. out:
  1750. btrfs_free_path(path);
  1751. return err;
  1752. }
  1753. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1754. struct btrfs_root *root,
  1755. struct btrfs_delayed_ref_node *node,
  1756. struct btrfs_delayed_extent_op *extent_op,
  1757. int insert_reserved)
  1758. {
  1759. int ret = 0;
  1760. struct btrfs_delayed_data_ref *ref;
  1761. struct btrfs_key ins;
  1762. u64 parent = 0;
  1763. u64 ref_root = 0;
  1764. u64 flags = 0;
  1765. ins.objectid = node->bytenr;
  1766. ins.offset = node->num_bytes;
  1767. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1768. ref = btrfs_delayed_node_to_data_ref(node);
  1769. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1770. parent = ref->parent;
  1771. else
  1772. ref_root = ref->root;
  1773. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1774. if (extent_op) {
  1775. BUG_ON(extent_op->update_key);
  1776. flags |= extent_op->flags_to_set;
  1777. }
  1778. ret = alloc_reserved_file_extent(trans, root,
  1779. parent, ref_root, flags,
  1780. ref->objectid, ref->offset,
  1781. &ins, node->ref_mod);
  1782. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1783. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1784. node->num_bytes, parent,
  1785. ref_root, ref->objectid,
  1786. ref->offset, node->ref_mod,
  1787. extent_op);
  1788. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1789. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1790. node->num_bytes, parent,
  1791. ref_root, ref->objectid,
  1792. ref->offset, node->ref_mod,
  1793. extent_op);
  1794. } else {
  1795. BUG();
  1796. }
  1797. return ret;
  1798. }
  1799. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1800. struct extent_buffer *leaf,
  1801. struct btrfs_extent_item *ei)
  1802. {
  1803. u64 flags = btrfs_extent_flags(leaf, ei);
  1804. if (extent_op->update_flags) {
  1805. flags |= extent_op->flags_to_set;
  1806. btrfs_set_extent_flags(leaf, ei, flags);
  1807. }
  1808. if (extent_op->update_key) {
  1809. struct btrfs_tree_block_info *bi;
  1810. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1811. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1812. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1813. }
  1814. }
  1815. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1816. struct btrfs_root *root,
  1817. struct btrfs_delayed_ref_node *node,
  1818. struct btrfs_delayed_extent_op *extent_op)
  1819. {
  1820. struct btrfs_key key;
  1821. struct btrfs_path *path;
  1822. struct btrfs_extent_item *ei;
  1823. struct extent_buffer *leaf;
  1824. u32 item_size;
  1825. int ret;
  1826. int err = 0;
  1827. path = btrfs_alloc_path();
  1828. if (!path)
  1829. return -ENOMEM;
  1830. key.objectid = node->bytenr;
  1831. key.type = BTRFS_EXTENT_ITEM_KEY;
  1832. key.offset = node->num_bytes;
  1833. path->reada = 1;
  1834. path->leave_spinning = 1;
  1835. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1836. path, 0, 1);
  1837. if (ret < 0) {
  1838. err = ret;
  1839. goto out;
  1840. }
  1841. if (ret > 0) {
  1842. err = -EIO;
  1843. goto out;
  1844. }
  1845. leaf = path->nodes[0];
  1846. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1847. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1848. if (item_size < sizeof(*ei)) {
  1849. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1850. path, (u64)-1, 0);
  1851. if (ret < 0) {
  1852. err = ret;
  1853. goto out;
  1854. }
  1855. leaf = path->nodes[0];
  1856. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1857. }
  1858. #endif
  1859. BUG_ON(item_size < sizeof(*ei));
  1860. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1861. __run_delayed_extent_op(extent_op, leaf, ei);
  1862. btrfs_mark_buffer_dirty(leaf);
  1863. out:
  1864. btrfs_free_path(path);
  1865. return err;
  1866. }
  1867. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1868. struct btrfs_root *root,
  1869. struct btrfs_delayed_ref_node *node,
  1870. struct btrfs_delayed_extent_op *extent_op,
  1871. int insert_reserved)
  1872. {
  1873. int ret = 0;
  1874. struct btrfs_delayed_tree_ref *ref;
  1875. struct btrfs_key ins;
  1876. u64 parent = 0;
  1877. u64 ref_root = 0;
  1878. ins.objectid = node->bytenr;
  1879. ins.offset = node->num_bytes;
  1880. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1881. ref = btrfs_delayed_node_to_tree_ref(node);
  1882. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1883. parent = ref->parent;
  1884. else
  1885. ref_root = ref->root;
  1886. BUG_ON(node->ref_mod != 1);
  1887. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1888. BUG_ON(!extent_op || !extent_op->update_flags ||
  1889. !extent_op->update_key);
  1890. ret = alloc_reserved_tree_block(trans, root,
  1891. parent, ref_root,
  1892. extent_op->flags_to_set,
  1893. &extent_op->key,
  1894. ref->level, &ins);
  1895. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1896. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1897. node->num_bytes, parent, ref_root,
  1898. ref->level, 0, 1, extent_op);
  1899. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1900. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1901. node->num_bytes, parent, ref_root,
  1902. ref->level, 0, 1, extent_op);
  1903. } else {
  1904. BUG();
  1905. }
  1906. return ret;
  1907. }
  1908. /* helper function to actually process a single delayed ref entry */
  1909. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1910. struct btrfs_root *root,
  1911. struct btrfs_delayed_ref_node *node,
  1912. struct btrfs_delayed_extent_op *extent_op,
  1913. int insert_reserved)
  1914. {
  1915. int ret;
  1916. if (btrfs_delayed_ref_is_head(node)) {
  1917. struct btrfs_delayed_ref_head *head;
  1918. /*
  1919. * we've hit the end of the chain and we were supposed
  1920. * to insert this extent into the tree. But, it got
  1921. * deleted before we ever needed to insert it, so all
  1922. * we have to do is clean up the accounting
  1923. */
  1924. BUG_ON(extent_op);
  1925. head = btrfs_delayed_node_to_head(node);
  1926. if (insert_reserved) {
  1927. btrfs_pin_extent(root, node->bytenr,
  1928. node->num_bytes, 1);
  1929. if (head->is_data) {
  1930. ret = btrfs_del_csums(trans, root,
  1931. node->bytenr,
  1932. node->num_bytes);
  1933. BUG_ON(ret);
  1934. }
  1935. }
  1936. mutex_unlock(&head->mutex);
  1937. return 0;
  1938. }
  1939. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1940. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1941. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1942. insert_reserved);
  1943. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  1944. node->type == BTRFS_SHARED_DATA_REF_KEY)
  1945. ret = run_delayed_data_ref(trans, root, node, extent_op,
  1946. insert_reserved);
  1947. else
  1948. BUG();
  1949. return ret;
  1950. }
  1951. static noinline struct btrfs_delayed_ref_node *
  1952. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  1953. {
  1954. struct rb_node *node;
  1955. struct btrfs_delayed_ref_node *ref;
  1956. int action = BTRFS_ADD_DELAYED_REF;
  1957. again:
  1958. /*
  1959. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  1960. * this prevents ref count from going down to zero when
  1961. * there still are pending delayed ref.
  1962. */
  1963. node = rb_prev(&head->node.rb_node);
  1964. while (1) {
  1965. if (!node)
  1966. break;
  1967. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  1968. rb_node);
  1969. if (ref->bytenr != head->node.bytenr)
  1970. break;
  1971. if (ref->action == action)
  1972. return ref;
  1973. node = rb_prev(node);
  1974. }
  1975. if (action == BTRFS_ADD_DELAYED_REF) {
  1976. action = BTRFS_DROP_DELAYED_REF;
  1977. goto again;
  1978. }
  1979. return NULL;
  1980. }
  1981. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  1982. struct btrfs_root *root,
  1983. struct list_head *cluster)
  1984. {
  1985. struct btrfs_delayed_ref_root *delayed_refs;
  1986. struct btrfs_delayed_ref_node *ref;
  1987. struct btrfs_delayed_ref_head *locked_ref = NULL;
  1988. struct btrfs_delayed_extent_op *extent_op;
  1989. int ret;
  1990. int count = 0;
  1991. int must_insert_reserved = 0;
  1992. delayed_refs = &trans->transaction->delayed_refs;
  1993. while (1) {
  1994. if (!locked_ref) {
  1995. /* pick a new head ref from the cluster list */
  1996. if (list_empty(cluster))
  1997. break;
  1998. locked_ref = list_entry(cluster->next,
  1999. struct btrfs_delayed_ref_head, cluster);
  2000. /* grab the lock that says we are going to process
  2001. * all the refs for this head */
  2002. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2003. /*
  2004. * we may have dropped the spin lock to get the head
  2005. * mutex lock, and that might have given someone else
  2006. * time to free the head. If that's true, it has been
  2007. * removed from our list and we can move on.
  2008. */
  2009. if (ret == -EAGAIN) {
  2010. locked_ref = NULL;
  2011. count++;
  2012. continue;
  2013. }
  2014. }
  2015. /*
  2016. * record the must insert reserved flag before we
  2017. * drop the spin lock.
  2018. */
  2019. must_insert_reserved = locked_ref->must_insert_reserved;
  2020. locked_ref->must_insert_reserved = 0;
  2021. extent_op = locked_ref->extent_op;
  2022. locked_ref->extent_op = NULL;
  2023. /*
  2024. * locked_ref is the head node, so we have to go one
  2025. * node back for any delayed ref updates
  2026. */
  2027. ref = select_delayed_ref(locked_ref);
  2028. if (!ref) {
  2029. /* All delayed refs have been processed, Go ahead
  2030. * and send the head node to run_one_delayed_ref,
  2031. * so that any accounting fixes can happen
  2032. */
  2033. ref = &locked_ref->node;
  2034. if (extent_op && must_insert_reserved) {
  2035. kfree(extent_op);
  2036. extent_op = NULL;
  2037. }
  2038. if (extent_op) {
  2039. spin_unlock(&delayed_refs->lock);
  2040. ret = run_delayed_extent_op(trans, root,
  2041. ref, extent_op);
  2042. BUG_ON(ret);
  2043. kfree(extent_op);
  2044. cond_resched();
  2045. spin_lock(&delayed_refs->lock);
  2046. continue;
  2047. }
  2048. list_del_init(&locked_ref->cluster);
  2049. locked_ref = NULL;
  2050. }
  2051. ref->in_tree = 0;
  2052. rb_erase(&ref->rb_node, &delayed_refs->root);
  2053. delayed_refs->num_entries--;
  2054. spin_unlock(&delayed_refs->lock);
  2055. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2056. must_insert_reserved);
  2057. BUG_ON(ret);
  2058. btrfs_put_delayed_ref(ref);
  2059. kfree(extent_op);
  2060. count++;
  2061. cond_resched();
  2062. spin_lock(&delayed_refs->lock);
  2063. }
  2064. return count;
  2065. }
  2066. /*
  2067. * this starts processing the delayed reference count updates and
  2068. * extent insertions we have queued up so far. count can be
  2069. * 0, which means to process everything in the tree at the start
  2070. * of the run (but not newly added entries), or it can be some target
  2071. * number you'd like to process.
  2072. */
  2073. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2074. struct btrfs_root *root, unsigned long count)
  2075. {
  2076. struct rb_node *node;
  2077. struct btrfs_delayed_ref_root *delayed_refs;
  2078. struct btrfs_delayed_ref_node *ref;
  2079. struct list_head cluster;
  2080. int ret;
  2081. int run_all = count == (unsigned long)-1;
  2082. int run_most = 0;
  2083. if (root == root->fs_info->extent_root)
  2084. root = root->fs_info->tree_root;
  2085. delayed_refs = &trans->transaction->delayed_refs;
  2086. INIT_LIST_HEAD(&cluster);
  2087. again:
  2088. spin_lock(&delayed_refs->lock);
  2089. if (count == 0) {
  2090. count = delayed_refs->num_entries * 2;
  2091. run_most = 1;
  2092. }
  2093. while (1) {
  2094. if (!(run_all || run_most) &&
  2095. delayed_refs->num_heads_ready < 64)
  2096. break;
  2097. /*
  2098. * go find something we can process in the rbtree. We start at
  2099. * the beginning of the tree, and then build a cluster
  2100. * of refs to process starting at the first one we are able to
  2101. * lock
  2102. */
  2103. ret = btrfs_find_ref_cluster(trans, &cluster,
  2104. delayed_refs->run_delayed_start);
  2105. if (ret)
  2106. break;
  2107. ret = run_clustered_refs(trans, root, &cluster);
  2108. BUG_ON(ret < 0);
  2109. count -= min_t(unsigned long, ret, count);
  2110. if (count == 0)
  2111. break;
  2112. }
  2113. if (run_all) {
  2114. node = rb_first(&delayed_refs->root);
  2115. if (!node)
  2116. goto out;
  2117. count = (unsigned long)-1;
  2118. while (node) {
  2119. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2120. rb_node);
  2121. if (btrfs_delayed_ref_is_head(ref)) {
  2122. struct btrfs_delayed_ref_head *head;
  2123. head = btrfs_delayed_node_to_head(ref);
  2124. atomic_inc(&ref->refs);
  2125. spin_unlock(&delayed_refs->lock);
  2126. /*
  2127. * Mutex was contended, block until it's
  2128. * released and try again
  2129. */
  2130. mutex_lock(&head->mutex);
  2131. mutex_unlock(&head->mutex);
  2132. btrfs_put_delayed_ref(ref);
  2133. cond_resched();
  2134. goto again;
  2135. }
  2136. node = rb_next(node);
  2137. }
  2138. spin_unlock(&delayed_refs->lock);
  2139. schedule_timeout(1);
  2140. goto again;
  2141. }
  2142. out:
  2143. spin_unlock(&delayed_refs->lock);
  2144. return 0;
  2145. }
  2146. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2147. struct btrfs_root *root,
  2148. u64 bytenr, u64 num_bytes, u64 flags,
  2149. int is_data)
  2150. {
  2151. struct btrfs_delayed_extent_op *extent_op;
  2152. int ret;
  2153. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  2154. if (!extent_op)
  2155. return -ENOMEM;
  2156. extent_op->flags_to_set = flags;
  2157. extent_op->update_flags = 1;
  2158. extent_op->update_key = 0;
  2159. extent_op->is_data = is_data ? 1 : 0;
  2160. ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
  2161. if (ret)
  2162. kfree(extent_op);
  2163. return ret;
  2164. }
  2165. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2166. struct btrfs_root *root,
  2167. struct btrfs_path *path,
  2168. u64 objectid, u64 offset, u64 bytenr)
  2169. {
  2170. struct btrfs_delayed_ref_head *head;
  2171. struct btrfs_delayed_ref_node *ref;
  2172. struct btrfs_delayed_data_ref *data_ref;
  2173. struct btrfs_delayed_ref_root *delayed_refs;
  2174. struct rb_node *node;
  2175. int ret = 0;
  2176. ret = -ENOENT;
  2177. delayed_refs = &trans->transaction->delayed_refs;
  2178. spin_lock(&delayed_refs->lock);
  2179. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2180. if (!head)
  2181. goto out;
  2182. if (!mutex_trylock(&head->mutex)) {
  2183. atomic_inc(&head->node.refs);
  2184. spin_unlock(&delayed_refs->lock);
  2185. btrfs_release_path(path);
  2186. /*
  2187. * Mutex was contended, block until it's released and let
  2188. * caller try again
  2189. */
  2190. mutex_lock(&head->mutex);
  2191. mutex_unlock(&head->mutex);
  2192. btrfs_put_delayed_ref(&head->node);
  2193. return -EAGAIN;
  2194. }
  2195. node = rb_prev(&head->node.rb_node);
  2196. if (!node)
  2197. goto out_unlock;
  2198. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2199. if (ref->bytenr != bytenr)
  2200. goto out_unlock;
  2201. ret = 1;
  2202. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2203. goto out_unlock;
  2204. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2205. node = rb_prev(node);
  2206. if (node) {
  2207. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2208. if (ref->bytenr == bytenr)
  2209. goto out_unlock;
  2210. }
  2211. if (data_ref->root != root->root_key.objectid ||
  2212. data_ref->objectid != objectid || data_ref->offset != offset)
  2213. goto out_unlock;
  2214. ret = 0;
  2215. out_unlock:
  2216. mutex_unlock(&head->mutex);
  2217. out:
  2218. spin_unlock(&delayed_refs->lock);
  2219. return ret;
  2220. }
  2221. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2222. struct btrfs_root *root,
  2223. struct btrfs_path *path,
  2224. u64 objectid, u64 offset, u64 bytenr)
  2225. {
  2226. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2227. struct extent_buffer *leaf;
  2228. struct btrfs_extent_data_ref *ref;
  2229. struct btrfs_extent_inline_ref *iref;
  2230. struct btrfs_extent_item *ei;
  2231. struct btrfs_key key;
  2232. u32 item_size;
  2233. int ret;
  2234. key.objectid = bytenr;
  2235. key.offset = (u64)-1;
  2236. key.type = BTRFS_EXTENT_ITEM_KEY;
  2237. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2238. if (ret < 0)
  2239. goto out;
  2240. BUG_ON(ret == 0);
  2241. ret = -ENOENT;
  2242. if (path->slots[0] == 0)
  2243. goto out;
  2244. path->slots[0]--;
  2245. leaf = path->nodes[0];
  2246. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2247. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2248. goto out;
  2249. ret = 1;
  2250. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2251. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2252. if (item_size < sizeof(*ei)) {
  2253. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2254. goto out;
  2255. }
  2256. #endif
  2257. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2258. if (item_size != sizeof(*ei) +
  2259. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2260. goto out;
  2261. if (btrfs_extent_generation(leaf, ei) <=
  2262. btrfs_root_last_snapshot(&root->root_item))
  2263. goto out;
  2264. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2265. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2266. BTRFS_EXTENT_DATA_REF_KEY)
  2267. goto out;
  2268. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2269. if (btrfs_extent_refs(leaf, ei) !=
  2270. btrfs_extent_data_ref_count(leaf, ref) ||
  2271. btrfs_extent_data_ref_root(leaf, ref) !=
  2272. root->root_key.objectid ||
  2273. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2274. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2275. goto out;
  2276. ret = 0;
  2277. out:
  2278. return ret;
  2279. }
  2280. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2281. struct btrfs_root *root,
  2282. u64 objectid, u64 offset, u64 bytenr)
  2283. {
  2284. struct btrfs_path *path;
  2285. int ret;
  2286. int ret2;
  2287. path = btrfs_alloc_path();
  2288. if (!path)
  2289. return -ENOENT;
  2290. do {
  2291. ret = check_committed_ref(trans, root, path, objectid,
  2292. offset, bytenr);
  2293. if (ret && ret != -ENOENT)
  2294. goto out;
  2295. ret2 = check_delayed_ref(trans, root, path, objectid,
  2296. offset, bytenr);
  2297. } while (ret2 == -EAGAIN);
  2298. if (ret2 && ret2 != -ENOENT) {
  2299. ret = ret2;
  2300. goto out;
  2301. }
  2302. if (ret != -ENOENT || ret2 != -ENOENT)
  2303. ret = 0;
  2304. out:
  2305. btrfs_free_path(path);
  2306. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2307. WARN_ON(ret > 0);
  2308. return ret;
  2309. }
  2310. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2311. struct btrfs_root *root,
  2312. struct extent_buffer *buf,
  2313. int full_backref, int inc)
  2314. {
  2315. u64 bytenr;
  2316. u64 num_bytes;
  2317. u64 parent;
  2318. u64 ref_root;
  2319. u32 nritems;
  2320. struct btrfs_key key;
  2321. struct btrfs_file_extent_item *fi;
  2322. int i;
  2323. int level;
  2324. int ret = 0;
  2325. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2326. u64, u64, u64, u64, u64, u64);
  2327. ref_root = btrfs_header_owner(buf);
  2328. nritems = btrfs_header_nritems(buf);
  2329. level = btrfs_header_level(buf);
  2330. if (!root->ref_cows && level == 0)
  2331. return 0;
  2332. if (inc)
  2333. process_func = btrfs_inc_extent_ref;
  2334. else
  2335. process_func = btrfs_free_extent;
  2336. if (full_backref)
  2337. parent = buf->start;
  2338. else
  2339. parent = 0;
  2340. for (i = 0; i < nritems; i++) {
  2341. if (level == 0) {
  2342. btrfs_item_key_to_cpu(buf, &key, i);
  2343. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2344. continue;
  2345. fi = btrfs_item_ptr(buf, i,
  2346. struct btrfs_file_extent_item);
  2347. if (btrfs_file_extent_type(buf, fi) ==
  2348. BTRFS_FILE_EXTENT_INLINE)
  2349. continue;
  2350. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2351. if (bytenr == 0)
  2352. continue;
  2353. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2354. key.offset -= btrfs_file_extent_offset(buf, fi);
  2355. ret = process_func(trans, root, bytenr, num_bytes,
  2356. parent, ref_root, key.objectid,
  2357. key.offset);
  2358. if (ret)
  2359. goto fail;
  2360. } else {
  2361. bytenr = btrfs_node_blockptr(buf, i);
  2362. num_bytes = btrfs_level_size(root, level - 1);
  2363. ret = process_func(trans, root, bytenr, num_bytes,
  2364. parent, ref_root, level - 1, 0);
  2365. if (ret)
  2366. goto fail;
  2367. }
  2368. }
  2369. return 0;
  2370. fail:
  2371. BUG();
  2372. return ret;
  2373. }
  2374. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2375. struct extent_buffer *buf, int full_backref)
  2376. {
  2377. return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
  2378. }
  2379. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2380. struct extent_buffer *buf, int full_backref)
  2381. {
  2382. return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
  2383. }
  2384. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2385. struct btrfs_root *root,
  2386. struct btrfs_path *path,
  2387. struct btrfs_block_group_cache *cache)
  2388. {
  2389. int ret;
  2390. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2391. unsigned long bi;
  2392. struct extent_buffer *leaf;
  2393. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2394. if (ret < 0)
  2395. goto fail;
  2396. BUG_ON(ret);
  2397. leaf = path->nodes[0];
  2398. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2399. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2400. btrfs_mark_buffer_dirty(leaf);
  2401. btrfs_release_path(path);
  2402. fail:
  2403. if (ret)
  2404. return ret;
  2405. return 0;
  2406. }
  2407. static struct btrfs_block_group_cache *
  2408. next_block_group(struct btrfs_root *root,
  2409. struct btrfs_block_group_cache *cache)
  2410. {
  2411. struct rb_node *node;
  2412. spin_lock(&root->fs_info->block_group_cache_lock);
  2413. node = rb_next(&cache->cache_node);
  2414. btrfs_put_block_group(cache);
  2415. if (node) {
  2416. cache = rb_entry(node, struct btrfs_block_group_cache,
  2417. cache_node);
  2418. btrfs_get_block_group(cache);
  2419. } else
  2420. cache = NULL;
  2421. spin_unlock(&root->fs_info->block_group_cache_lock);
  2422. return cache;
  2423. }
  2424. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2425. struct btrfs_trans_handle *trans,
  2426. struct btrfs_path *path)
  2427. {
  2428. struct btrfs_root *root = block_group->fs_info->tree_root;
  2429. struct inode *inode = NULL;
  2430. u64 alloc_hint = 0;
  2431. int dcs = BTRFS_DC_ERROR;
  2432. int num_pages = 0;
  2433. int retries = 0;
  2434. int ret = 0;
  2435. /*
  2436. * If this block group is smaller than 100 megs don't bother caching the
  2437. * block group.
  2438. */
  2439. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2440. spin_lock(&block_group->lock);
  2441. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2442. spin_unlock(&block_group->lock);
  2443. return 0;
  2444. }
  2445. again:
  2446. inode = lookup_free_space_inode(root, block_group, path);
  2447. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2448. ret = PTR_ERR(inode);
  2449. btrfs_release_path(path);
  2450. goto out;
  2451. }
  2452. if (IS_ERR(inode)) {
  2453. BUG_ON(retries);
  2454. retries++;
  2455. if (block_group->ro)
  2456. goto out_free;
  2457. ret = create_free_space_inode(root, trans, block_group, path);
  2458. if (ret)
  2459. goto out_free;
  2460. goto again;
  2461. }
  2462. /* We've already setup this transaction, go ahead and exit */
  2463. if (block_group->cache_generation == trans->transid &&
  2464. i_size_read(inode)) {
  2465. dcs = BTRFS_DC_SETUP;
  2466. goto out_put;
  2467. }
  2468. /*
  2469. * We want to set the generation to 0, that way if anything goes wrong
  2470. * from here on out we know not to trust this cache when we load up next
  2471. * time.
  2472. */
  2473. BTRFS_I(inode)->generation = 0;
  2474. ret = btrfs_update_inode(trans, root, inode);
  2475. WARN_ON(ret);
  2476. if (i_size_read(inode) > 0) {
  2477. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2478. inode);
  2479. if (ret)
  2480. goto out_put;
  2481. }
  2482. spin_lock(&block_group->lock);
  2483. if (block_group->cached != BTRFS_CACHE_FINISHED) {
  2484. /* We're not cached, don't bother trying to write stuff out */
  2485. dcs = BTRFS_DC_WRITTEN;
  2486. spin_unlock(&block_group->lock);
  2487. goto out_put;
  2488. }
  2489. spin_unlock(&block_group->lock);
  2490. num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
  2491. if (!num_pages)
  2492. num_pages = 1;
  2493. /*
  2494. * Just to make absolutely sure we have enough space, we're going to
  2495. * preallocate 12 pages worth of space for each block group. In
  2496. * practice we ought to use at most 8, but we need extra space so we can
  2497. * add our header and have a terminator between the extents and the
  2498. * bitmaps.
  2499. */
  2500. num_pages *= 16;
  2501. num_pages *= PAGE_CACHE_SIZE;
  2502. ret = btrfs_check_data_free_space(inode, num_pages);
  2503. if (ret)
  2504. goto out_put;
  2505. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2506. num_pages, num_pages,
  2507. &alloc_hint);
  2508. if (!ret)
  2509. dcs = BTRFS_DC_SETUP;
  2510. btrfs_free_reserved_data_space(inode, num_pages);
  2511. out_put:
  2512. iput(inode);
  2513. out_free:
  2514. btrfs_release_path(path);
  2515. out:
  2516. spin_lock(&block_group->lock);
  2517. if (!ret)
  2518. block_group->cache_generation = trans->transid;
  2519. block_group->disk_cache_state = dcs;
  2520. spin_unlock(&block_group->lock);
  2521. return ret;
  2522. }
  2523. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2524. struct btrfs_root *root)
  2525. {
  2526. struct btrfs_block_group_cache *cache;
  2527. int err = 0;
  2528. struct btrfs_path *path;
  2529. u64 last = 0;
  2530. path = btrfs_alloc_path();
  2531. if (!path)
  2532. return -ENOMEM;
  2533. again:
  2534. while (1) {
  2535. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2536. while (cache) {
  2537. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2538. break;
  2539. cache = next_block_group(root, cache);
  2540. }
  2541. if (!cache) {
  2542. if (last == 0)
  2543. break;
  2544. last = 0;
  2545. continue;
  2546. }
  2547. err = cache_save_setup(cache, trans, path);
  2548. last = cache->key.objectid + cache->key.offset;
  2549. btrfs_put_block_group(cache);
  2550. }
  2551. while (1) {
  2552. if (last == 0) {
  2553. err = btrfs_run_delayed_refs(trans, root,
  2554. (unsigned long)-1);
  2555. BUG_ON(err);
  2556. }
  2557. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2558. while (cache) {
  2559. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2560. btrfs_put_block_group(cache);
  2561. goto again;
  2562. }
  2563. if (cache->dirty)
  2564. break;
  2565. cache = next_block_group(root, cache);
  2566. }
  2567. if (!cache) {
  2568. if (last == 0)
  2569. break;
  2570. last = 0;
  2571. continue;
  2572. }
  2573. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2574. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2575. cache->dirty = 0;
  2576. last = cache->key.objectid + cache->key.offset;
  2577. err = write_one_cache_group(trans, root, path, cache);
  2578. BUG_ON(err);
  2579. btrfs_put_block_group(cache);
  2580. }
  2581. while (1) {
  2582. /*
  2583. * I don't think this is needed since we're just marking our
  2584. * preallocated extent as written, but just in case it can't
  2585. * hurt.
  2586. */
  2587. if (last == 0) {
  2588. err = btrfs_run_delayed_refs(trans, root,
  2589. (unsigned long)-1);
  2590. BUG_ON(err);
  2591. }
  2592. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2593. while (cache) {
  2594. /*
  2595. * Really this shouldn't happen, but it could if we
  2596. * couldn't write the entire preallocated extent and
  2597. * splitting the extent resulted in a new block.
  2598. */
  2599. if (cache->dirty) {
  2600. btrfs_put_block_group(cache);
  2601. goto again;
  2602. }
  2603. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2604. break;
  2605. cache = next_block_group(root, cache);
  2606. }
  2607. if (!cache) {
  2608. if (last == 0)
  2609. break;
  2610. last = 0;
  2611. continue;
  2612. }
  2613. btrfs_write_out_cache(root, trans, cache, path);
  2614. /*
  2615. * If we didn't have an error then the cache state is still
  2616. * NEED_WRITE, so we can set it to WRITTEN.
  2617. */
  2618. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2619. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2620. last = cache->key.objectid + cache->key.offset;
  2621. btrfs_put_block_group(cache);
  2622. }
  2623. btrfs_free_path(path);
  2624. return 0;
  2625. }
  2626. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2627. {
  2628. struct btrfs_block_group_cache *block_group;
  2629. int readonly = 0;
  2630. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2631. if (!block_group || block_group->ro)
  2632. readonly = 1;
  2633. if (block_group)
  2634. btrfs_put_block_group(block_group);
  2635. return readonly;
  2636. }
  2637. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2638. u64 total_bytes, u64 bytes_used,
  2639. struct btrfs_space_info **space_info)
  2640. {
  2641. struct btrfs_space_info *found;
  2642. int i;
  2643. int factor;
  2644. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2645. BTRFS_BLOCK_GROUP_RAID10))
  2646. factor = 2;
  2647. else
  2648. factor = 1;
  2649. found = __find_space_info(info, flags);
  2650. if (found) {
  2651. spin_lock(&found->lock);
  2652. found->total_bytes += total_bytes;
  2653. found->disk_total += total_bytes * factor;
  2654. found->bytes_used += bytes_used;
  2655. found->disk_used += bytes_used * factor;
  2656. found->full = 0;
  2657. spin_unlock(&found->lock);
  2658. *space_info = found;
  2659. return 0;
  2660. }
  2661. found = kzalloc(sizeof(*found), GFP_NOFS);
  2662. if (!found)
  2663. return -ENOMEM;
  2664. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2665. INIT_LIST_HEAD(&found->block_groups[i]);
  2666. init_rwsem(&found->groups_sem);
  2667. spin_lock_init(&found->lock);
  2668. found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
  2669. BTRFS_BLOCK_GROUP_SYSTEM |
  2670. BTRFS_BLOCK_GROUP_METADATA);
  2671. found->total_bytes = total_bytes;
  2672. found->disk_total = total_bytes * factor;
  2673. found->bytes_used = bytes_used;
  2674. found->disk_used = bytes_used * factor;
  2675. found->bytes_pinned = 0;
  2676. found->bytes_reserved = 0;
  2677. found->bytes_readonly = 0;
  2678. found->bytes_may_use = 0;
  2679. found->full = 0;
  2680. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2681. found->chunk_alloc = 0;
  2682. found->flush = 0;
  2683. init_waitqueue_head(&found->wait);
  2684. *space_info = found;
  2685. list_add_rcu(&found->list, &info->space_info);
  2686. return 0;
  2687. }
  2688. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2689. {
  2690. u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
  2691. BTRFS_BLOCK_GROUP_RAID1 |
  2692. BTRFS_BLOCK_GROUP_RAID10 |
  2693. BTRFS_BLOCK_GROUP_DUP);
  2694. if (extra_flags) {
  2695. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2696. fs_info->avail_data_alloc_bits |= extra_flags;
  2697. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2698. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2699. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2700. fs_info->avail_system_alloc_bits |= extra_flags;
  2701. }
  2702. }
  2703. u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  2704. {
  2705. /*
  2706. * we add in the count of missing devices because we want
  2707. * to make sure that any RAID levels on a degraded FS
  2708. * continue to be honored.
  2709. */
  2710. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  2711. root->fs_info->fs_devices->missing_devices;
  2712. if (num_devices == 1)
  2713. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
  2714. if (num_devices < 4)
  2715. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  2716. if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
  2717. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2718. BTRFS_BLOCK_GROUP_RAID10))) {
  2719. flags &= ~BTRFS_BLOCK_GROUP_DUP;
  2720. }
  2721. if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
  2722. (flags & BTRFS_BLOCK_GROUP_RAID10)) {
  2723. flags &= ~BTRFS_BLOCK_GROUP_RAID1;
  2724. }
  2725. if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
  2726. ((flags & BTRFS_BLOCK_GROUP_RAID1) |
  2727. (flags & BTRFS_BLOCK_GROUP_RAID10) |
  2728. (flags & BTRFS_BLOCK_GROUP_DUP)))
  2729. flags &= ~BTRFS_BLOCK_GROUP_RAID0;
  2730. return flags;
  2731. }
  2732. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  2733. {
  2734. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2735. flags |= root->fs_info->avail_data_alloc_bits &
  2736. root->fs_info->data_alloc_profile;
  2737. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2738. flags |= root->fs_info->avail_system_alloc_bits &
  2739. root->fs_info->system_alloc_profile;
  2740. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2741. flags |= root->fs_info->avail_metadata_alloc_bits &
  2742. root->fs_info->metadata_alloc_profile;
  2743. return btrfs_reduce_alloc_profile(root, flags);
  2744. }
  2745. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  2746. {
  2747. u64 flags;
  2748. if (data)
  2749. flags = BTRFS_BLOCK_GROUP_DATA;
  2750. else if (root == root->fs_info->chunk_root)
  2751. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  2752. else
  2753. flags = BTRFS_BLOCK_GROUP_METADATA;
  2754. return get_alloc_profile(root, flags);
  2755. }
  2756. void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
  2757. {
  2758. BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
  2759. BTRFS_BLOCK_GROUP_DATA);
  2760. }
  2761. /*
  2762. * This will check the space that the inode allocates from to make sure we have
  2763. * enough space for bytes.
  2764. */
  2765. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  2766. {
  2767. struct btrfs_space_info *data_sinfo;
  2768. struct btrfs_root *root = BTRFS_I(inode)->root;
  2769. u64 used;
  2770. int ret = 0, committed = 0, alloc_chunk = 1;
  2771. /* make sure bytes are sectorsize aligned */
  2772. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2773. if (root == root->fs_info->tree_root ||
  2774. BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
  2775. alloc_chunk = 0;
  2776. committed = 1;
  2777. }
  2778. data_sinfo = BTRFS_I(inode)->space_info;
  2779. if (!data_sinfo)
  2780. goto alloc;
  2781. again:
  2782. /* make sure we have enough space to handle the data first */
  2783. spin_lock(&data_sinfo->lock);
  2784. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  2785. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  2786. data_sinfo->bytes_may_use;
  2787. if (used + bytes > data_sinfo->total_bytes) {
  2788. struct btrfs_trans_handle *trans;
  2789. /*
  2790. * if we don't have enough free bytes in this space then we need
  2791. * to alloc a new chunk.
  2792. */
  2793. if (!data_sinfo->full && alloc_chunk) {
  2794. u64 alloc_target;
  2795. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  2796. spin_unlock(&data_sinfo->lock);
  2797. alloc:
  2798. alloc_target = btrfs_get_alloc_profile(root, 1);
  2799. trans = btrfs_join_transaction(root);
  2800. if (IS_ERR(trans))
  2801. return PTR_ERR(trans);
  2802. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  2803. bytes + 2 * 1024 * 1024,
  2804. alloc_target,
  2805. CHUNK_ALLOC_NO_FORCE);
  2806. btrfs_end_transaction(trans, root);
  2807. if (ret < 0) {
  2808. if (ret != -ENOSPC)
  2809. return ret;
  2810. else
  2811. goto commit_trans;
  2812. }
  2813. if (!data_sinfo) {
  2814. btrfs_set_inode_space_info(root, inode);
  2815. data_sinfo = BTRFS_I(inode)->space_info;
  2816. }
  2817. goto again;
  2818. }
  2819. /*
  2820. * If we have less pinned bytes than we want to allocate then
  2821. * don't bother committing the transaction, it won't help us.
  2822. */
  2823. if (data_sinfo->bytes_pinned < bytes)
  2824. committed = 1;
  2825. spin_unlock(&data_sinfo->lock);
  2826. /* commit the current transaction and try again */
  2827. commit_trans:
  2828. if (!committed &&
  2829. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  2830. committed = 1;
  2831. trans = btrfs_join_transaction(root);
  2832. if (IS_ERR(trans))
  2833. return PTR_ERR(trans);
  2834. ret = btrfs_commit_transaction(trans, root);
  2835. if (ret)
  2836. return ret;
  2837. goto again;
  2838. }
  2839. return -ENOSPC;
  2840. }
  2841. data_sinfo->bytes_may_use += bytes;
  2842. spin_unlock(&data_sinfo->lock);
  2843. return 0;
  2844. }
  2845. /*
  2846. * Called if we need to clear a data reservation for this inode.
  2847. */
  2848. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  2849. {
  2850. struct btrfs_root *root = BTRFS_I(inode)->root;
  2851. struct btrfs_space_info *data_sinfo;
  2852. /* make sure bytes are sectorsize aligned */
  2853. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2854. data_sinfo = BTRFS_I(inode)->space_info;
  2855. spin_lock(&data_sinfo->lock);
  2856. data_sinfo->bytes_may_use -= bytes;
  2857. spin_unlock(&data_sinfo->lock);
  2858. }
  2859. static void force_metadata_allocation(struct btrfs_fs_info *info)
  2860. {
  2861. struct list_head *head = &info->space_info;
  2862. struct btrfs_space_info *found;
  2863. rcu_read_lock();
  2864. list_for_each_entry_rcu(found, head, list) {
  2865. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  2866. found->force_alloc = CHUNK_ALLOC_FORCE;
  2867. }
  2868. rcu_read_unlock();
  2869. }
  2870. static int should_alloc_chunk(struct btrfs_root *root,
  2871. struct btrfs_space_info *sinfo, u64 alloc_bytes,
  2872. int force)
  2873. {
  2874. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  2875. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  2876. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  2877. u64 thresh;
  2878. if (force == CHUNK_ALLOC_FORCE)
  2879. return 1;
  2880. /*
  2881. * We need to take into account the global rsv because for all intents
  2882. * and purposes it's used space. Don't worry about locking the
  2883. * global_rsv, it doesn't change except when the transaction commits.
  2884. */
  2885. num_allocated += global_rsv->size;
  2886. /*
  2887. * in limited mode, we want to have some free space up to
  2888. * about 1% of the FS size.
  2889. */
  2890. if (force == CHUNK_ALLOC_LIMITED) {
  2891. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  2892. thresh = max_t(u64, 64 * 1024 * 1024,
  2893. div_factor_fine(thresh, 1));
  2894. if (num_bytes - num_allocated < thresh)
  2895. return 1;
  2896. }
  2897. /*
  2898. * we have two similar checks here, one based on percentage
  2899. * and once based on a hard number of 256MB. The idea
  2900. * is that if we have a good amount of free
  2901. * room, don't allocate a chunk. A good mount is
  2902. * less than 80% utilized of the chunks we have allocated,
  2903. * or more than 256MB free
  2904. */
  2905. if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
  2906. return 0;
  2907. if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
  2908. return 0;
  2909. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  2910. /* 256MB or 5% of the FS */
  2911. thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
  2912. if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
  2913. return 0;
  2914. return 1;
  2915. }
  2916. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  2917. struct btrfs_root *extent_root, u64 alloc_bytes,
  2918. u64 flags, int force)
  2919. {
  2920. struct btrfs_space_info *space_info;
  2921. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  2922. int wait_for_alloc = 0;
  2923. int ret = 0;
  2924. flags = btrfs_reduce_alloc_profile(extent_root, flags);
  2925. space_info = __find_space_info(extent_root->fs_info, flags);
  2926. if (!space_info) {
  2927. ret = update_space_info(extent_root->fs_info, flags,
  2928. 0, 0, &space_info);
  2929. BUG_ON(ret);
  2930. }
  2931. BUG_ON(!space_info);
  2932. again:
  2933. spin_lock(&space_info->lock);
  2934. if (space_info->force_alloc)
  2935. force = space_info->force_alloc;
  2936. if (space_info->full) {
  2937. spin_unlock(&space_info->lock);
  2938. return 0;
  2939. }
  2940. if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
  2941. spin_unlock(&space_info->lock);
  2942. return 0;
  2943. } else if (space_info->chunk_alloc) {
  2944. wait_for_alloc = 1;
  2945. } else {
  2946. space_info->chunk_alloc = 1;
  2947. }
  2948. spin_unlock(&space_info->lock);
  2949. mutex_lock(&fs_info->chunk_mutex);
  2950. /*
  2951. * The chunk_mutex is held throughout the entirety of a chunk
  2952. * allocation, so once we've acquired the chunk_mutex we know that the
  2953. * other guy is done and we need to recheck and see if we should
  2954. * allocate.
  2955. */
  2956. if (wait_for_alloc) {
  2957. mutex_unlock(&fs_info->chunk_mutex);
  2958. wait_for_alloc = 0;
  2959. goto again;
  2960. }
  2961. /*
  2962. * If we have mixed data/metadata chunks we want to make sure we keep
  2963. * allocating mixed chunks instead of individual chunks.
  2964. */
  2965. if (btrfs_mixed_space_info(space_info))
  2966. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  2967. /*
  2968. * if we're doing a data chunk, go ahead and make sure that
  2969. * we keep a reasonable number of metadata chunks allocated in the
  2970. * FS as well.
  2971. */
  2972. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  2973. fs_info->data_chunk_allocations++;
  2974. if (!(fs_info->data_chunk_allocations %
  2975. fs_info->metadata_ratio))
  2976. force_metadata_allocation(fs_info);
  2977. }
  2978. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  2979. if (ret < 0 && ret != -ENOSPC)
  2980. goto out;
  2981. spin_lock(&space_info->lock);
  2982. if (ret)
  2983. space_info->full = 1;
  2984. else
  2985. ret = 1;
  2986. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  2987. space_info->chunk_alloc = 0;
  2988. spin_unlock(&space_info->lock);
  2989. out:
  2990. mutex_unlock(&extent_root->fs_info->chunk_mutex);
  2991. return ret;
  2992. }
  2993. /*
  2994. * shrink metadata reservation for delalloc
  2995. */
  2996. static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
  2997. bool wait_ordered)
  2998. {
  2999. struct btrfs_block_rsv *block_rsv;
  3000. struct btrfs_space_info *space_info;
  3001. struct btrfs_trans_handle *trans;
  3002. u64 reserved;
  3003. u64 max_reclaim;
  3004. u64 reclaimed = 0;
  3005. long time_left;
  3006. unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  3007. int loops = 0;
  3008. unsigned long progress;
  3009. trans = (struct btrfs_trans_handle *)current->journal_info;
  3010. block_rsv = &root->fs_info->delalloc_block_rsv;
  3011. space_info = block_rsv->space_info;
  3012. smp_mb();
  3013. reserved = space_info->bytes_may_use;
  3014. progress = space_info->reservation_progress;
  3015. if (reserved == 0)
  3016. return 0;
  3017. smp_mb();
  3018. if (root->fs_info->delalloc_bytes == 0) {
  3019. if (trans)
  3020. return 0;
  3021. btrfs_wait_ordered_extents(root, 0, 0);
  3022. return 0;
  3023. }
  3024. max_reclaim = min(reserved, to_reclaim);
  3025. nr_pages = max_t(unsigned long, nr_pages,
  3026. max_reclaim >> PAGE_CACHE_SHIFT);
  3027. while (loops < 1024) {
  3028. /* have the flusher threads jump in and do some IO */
  3029. smp_mb();
  3030. nr_pages = min_t(unsigned long, nr_pages,
  3031. root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
  3032. writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
  3033. spin_lock(&space_info->lock);
  3034. if (reserved > space_info->bytes_may_use)
  3035. reclaimed += reserved - space_info->bytes_may_use;
  3036. reserved = space_info->bytes_may_use;
  3037. spin_unlock(&space_info->lock);
  3038. loops++;
  3039. if (reserved == 0 || reclaimed >= max_reclaim)
  3040. break;
  3041. if (trans && trans->transaction->blocked)
  3042. return -EAGAIN;
  3043. if (wait_ordered && !trans) {
  3044. btrfs_wait_ordered_extents(root, 0, 0);
  3045. } else {
  3046. time_left = schedule_timeout_interruptible(1);
  3047. /* We were interrupted, exit */
  3048. if (time_left)
  3049. break;
  3050. }
  3051. /* we've kicked the IO a few times, if anything has been freed,
  3052. * exit. There is no sense in looping here for a long time
  3053. * when we really need to commit the transaction, or there are
  3054. * just too many writers without enough free space
  3055. */
  3056. if (loops > 3) {
  3057. smp_mb();
  3058. if (progress != space_info->reservation_progress)
  3059. break;
  3060. }
  3061. }
  3062. return reclaimed >= to_reclaim;
  3063. }
  3064. /**
  3065. * maybe_commit_transaction - possibly commit the transaction if its ok to
  3066. * @root - the root we're allocating for
  3067. * @bytes - the number of bytes we want to reserve
  3068. * @force - force the commit
  3069. *
  3070. * This will check to make sure that committing the transaction will actually
  3071. * get us somewhere and then commit the transaction if it does. Otherwise it
  3072. * will return -ENOSPC.
  3073. */
  3074. static int may_commit_transaction(struct btrfs_root *root,
  3075. struct btrfs_space_info *space_info,
  3076. u64 bytes, int force)
  3077. {
  3078. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  3079. struct btrfs_trans_handle *trans;
  3080. trans = (struct btrfs_trans_handle *)current->journal_info;
  3081. if (trans)
  3082. return -EAGAIN;
  3083. if (force)
  3084. goto commit;
  3085. /* See if there is enough pinned space to make this reservation */
  3086. spin_lock(&space_info->lock);
  3087. if (space_info->bytes_pinned >= bytes) {
  3088. spin_unlock(&space_info->lock);
  3089. goto commit;
  3090. }
  3091. spin_unlock(&space_info->lock);
  3092. /*
  3093. * See if there is some space in the delayed insertion reservation for
  3094. * this reservation.
  3095. */
  3096. if (space_info != delayed_rsv->space_info)
  3097. return -ENOSPC;
  3098. spin_lock(&delayed_rsv->lock);
  3099. if (delayed_rsv->size < bytes) {
  3100. spin_unlock(&delayed_rsv->lock);
  3101. return -ENOSPC;
  3102. }
  3103. spin_unlock(&delayed_rsv->lock);
  3104. commit:
  3105. trans = btrfs_join_transaction(root);
  3106. if (IS_ERR(trans))
  3107. return -ENOSPC;
  3108. return btrfs_commit_transaction(trans, root);
  3109. }
  3110. /**
  3111. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  3112. * @root - the root we're allocating for
  3113. * @block_rsv - the block_rsv we're allocating for
  3114. * @orig_bytes - the number of bytes we want
  3115. * @flush - wether or not we can flush to make our reservation
  3116. *
  3117. * This will reserve orgi_bytes number of bytes from the space info associated
  3118. * with the block_rsv. If there is not enough space it will make an attempt to
  3119. * flush out space to make room. It will do this by flushing delalloc if
  3120. * possible or committing the transaction. If flush is 0 then no attempts to
  3121. * regain reservations will be made and this will fail if there is not enough
  3122. * space already.
  3123. */
  3124. static int reserve_metadata_bytes(struct btrfs_root *root,
  3125. struct btrfs_block_rsv *block_rsv,
  3126. u64 orig_bytes, int flush)
  3127. {
  3128. struct btrfs_space_info *space_info = block_rsv->space_info;
  3129. u64 used;
  3130. u64 num_bytes = orig_bytes;
  3131. int retries = 0;
  3132. int ret = 0;
  3133. bool committed = false;
  3134. bool flushing = false;
  3135. bool wait_ordered = false;
  3136. again:
  3137. ret = 0;
  3138. spin_lock(&space_info->lock);
  3139. /*
  3140. * We only want to wait if somebody other than us is flushing and we are
  3141. * actually alloed to flush.
  3142. */
  3143. while (flush && !flushing && space_info->flush) {
  3144. spin_unlock(&space_info->lock);
  3145. /*
  3146. * If we have a trans handle we can't wait because the flusher
  3147. * may have to commit the transaction, which would mean we would
  3148. * deadlock since we are waiting for the flusher to finish, but
  3149. * hold the current transaction open.
  3150. */
  3151. if (current->journal_info)
  3152. return -EAGAIN;
  3153. ret = wait_event_interruptible(space_info->wait,
  3154. !space_info->flush);
  3155. /* Must have been interrupted, return */
  3156. if (ret)
  3157. return -EINTR;
  3158. spin_lock(&space_info->lock);
  3159. }
  3160. ret = -ENOSPC;
  3161. used = space_info->bytes_used + space_info->bytes_reserved +
  3162. space_info->bytes_pinned + space_info->bytes_readonly +
  3163. space_info->bytes_may_use;
  3164. /*
  3165. * The idea here is that we've not already over-reserved the block group
  3166. * then we can go ahead and save our reservation first and then start
  3167. * flushing if we need to. Otherwise if we've already overcommitted
  3168. * lets start flushing stuff first and then come back and try to make
  3169. * our reservation.
  3170. */
  3171. if (used <= space_info->total_bytes) {
  3172. if (used + orig_bytes <= space_info->total_bytes) {
  3173. space_info->bytes_may_use += orig_bytes;
  3174. ret = 0;
  3175. } else {
  3176. /*
  3177. * Ok set num_bytes to orig_bytes since we aren't
  3178. * overocmmitted, this way we only try and reclaim what
  3179. * we need.
  3180. */
  3181. num_bytes = orig_bytes;
  3182. }
  3183. } else {
  3184. /*
  3185. * Ok we're over committed, set num_bytes to the overcommitted
  3186. * amount plus the amount of bytes that we need for this
  3187. * reservation.
  3188. */
  3189. wait_ordered = true;
  3190. num_bytes = used - space_info->total_bytes +
  3191. (orig_bytes * (retries + 1));
  3192. }
  3193. if (ret) {
  3194. u64 profile = btrfs_get_alloc_profile(root, 0);
  3195. u64 avail;
  3196. /*
  3197. * If we have a lot of space that's pinned, don't bother doing
  3198. * the overcommit dance yet and just commit the transaction.
  3199. */
  3200. avail = (space_info->total_bytes - space_info->bytes_used) * 8;
  3201. do_div(avail, 10);
  3202. if (space_info->bytes_pinned >= avail && flush && !committed) {
  3203. space_info->flush = 1;
  3204. flushing = true;
  3205. spin_unlock(&space_info->lock);
  3206. ret = may_commit_transaction(root, space_info,
  3207. orig_bytes, 1);
  3208. if (ret)
  3209. goto out;
  3210. committed = true;
  3211. goto again;
  3212. }
  3213. spin_lock(&root->fs_info->free_chunk_lock);
  3214. avail = root->fs_info->free_chunk_space;
  3215. /*
  3216. * If we have dup, raid1 or raid10 then only half of the free
  3217. * space is actually useable.
  3218. */
  3219. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  3220. BTRFS_BLOCK_GROUP_RAID1 |
  3221. BTRFS_BLOCK_GROUP_RAID10))
  3222. avail >>= 1;
  3223. /*
  3224. * If we aren't flushing don't let us overcommit too much, say
  3225. * 1/8th of the space. If we can flush, let it overcommit up to
  3226. * 1/2 of the space.
  3227. */
  3228. if (flush)
  3229. avail >>= 3;
  3230. else
  3231. avail >>= 1;
  3232. spin_unlock(&root->fs_info->free_chunk_lock);
  3233. if (used + num_bytes < space_info->total_bytes + avail) {
  3234. space_info->bytes_may_use += orig_bytes;
  3235. ret = 0;
  3236. } else {
  3237. wait_ordered = true;
  3238. }
  3239. }
  3240. /*
  3241. * Couldn't make our reservation, save our place so while we're trying
  3242. * to reclaim space we can actually use it instead of somebody else
  3243. * stealing it from us.
  3244. */
  3245. if (ret && flush) {
  3246. flushing = true;
  3247. space_info->flush = 1;
  3248. }
  3249. spin_unlock(&space_info->lock);
  3250. if (!ret || !flush)
  3251. goto out;
  3252. /*
  3253. * We do synchronous shrinking since we don't actually unreserve
  3254. * metadata until after the IO is completed.
  3255. */
  3256. ret = shrink_delalloc(root, num_bytes, wait_ordered);
  3257. if (ret < 0)
  3258. goto out;
  3259. ret = 0;
  3260. /*
  3261. * So if we were overcommitted it's possible that somebody else flushed
  3262. * out enough space and we simply didn't have enough space to reclaim,
  3263. * so go back around and try again.
  3264. */
  3265. if (retries < 2) {
  3266. wait_ordered = true;
  3267. retries++;
  3268. goto again;
  3269. }
  3270. ret = -ENOSPC;
  3271. if (committed)
  3272. goto out;
  3273. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  3274. if (!ret) {
  3275. committed = true;
  3276. goto again;
  3277. }
  3278. out:
  3279. if (flushing) {
  3280. spin_lock(&space_info->lock);
  3281. space_info->flush = 0;
  3282. wake_up_all(&space_info->wait);
  3283. spin_unlock(&space_info->lock);
  3284. }
  3285. return ret;
  3286. }
  3287. static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
  3288. struct btrfs_root *root)
  3289. {
  3290. struct btrfs_block_rsv *block_rsv = NULL;
  3291. if (root->ref_cows || root == root->fs_info->csum_root)
  3292. block_rsv = trans->block_rsv;
  3293. if (!block_rsv)
  3294. block_rsv = root->block_rsv;
  3295. if (!block_rsv)
  3296. block_rsv = &root->fs_info->empty_block_rsv;
  3297. return block_rsv;
  3298. }
  3299. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3300. u64 num_bytes)
  3301. {
  3302. int ret = -ENOSPC;
  3303. spin_lock(&block_rsv->lock);
  3304. if (block_rsv->reserved >= num_bytes) {
  3305. block_rsv->reserved -= num_bytes;
  3306. if (block_rsv->reserved < block_rsv->size)
  3307. block_rsv->full = 0;
  3308. ret = 0;
  3309. }
  3310. spin_unlock(&block_rsv->lock);
  3311. return ret;
  3312. }
  3313. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3314. u64 num_bytes, int update_size)
  3315. {
  3316. spin_lock(&block_rsv->lock);
  3317. block_rsv->reserved += num_bytes;
  3318. if (update_size)
  3319. block_rsv->size += num_bytes;
  3320. else if (block_rsv->reserved >= block_rsv->size)
  3321. block_rsv->full = 1;
  3322. spin_unlock(&block_rsv->lock);
  3323. }
  3324. static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
  3325. struct btrfs_block_rsv *dest, u64 num_bytes)
  3326. {
  3327. struct btrfs_space_info *space_info = block_rsv->space_info;
  3328. spin_lock(&block_rsv->lock);
  3329. if (num_bytes == (u64)-1)
  3330. num_bytes = block_rsv->size;
  3331. block_rsv->size -= num_bytes;
  3332. if (block_rsv->reserved >= block_rsv->size) {
  3333. num_bytes = block_rsv->reserved - block_rsv->size;
  3334. block_rsv->reserved = block_rsv->size;
  3335. block_rsv->full = 1;
  3336. } else {
  3337. num_bytes = 0;
  3338. }
  3339. spin_unlock(&block_rsv->lock);
  3340. if (num_bytes > 0) {
  3341. if (dest) {
  3342. spin_lock(&dest->lock);
  3343. if (!dest->full) {
  3344. u64 bytes_to_add;
  3345. bytes_to_add = dest->size - dest->reserved;
  3346. bytes_to_add = min(num_bytes, bytes_to_add);
  3347. dest->reserved += bytes_to_add;
  3348. if (dest->reserved >= dest->size)
  3349. dest->full = 1;
  3350. num_bytes -= bytes_to_add;
  3351. }
  3352. spin_unlock(&dest->lock);
  3353. }
  3354. if (num_bytes) {
  3355. spin_lock(&space_info->lock);
  3356. space_info->bytes_may_use -= num_bytes;
  3357. space_info->reservation_progress++;
  3358. spin_unlock(&space_info->lock);
  3359. }
  3360. }
  3361. }
  3362. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3363. struct btrfs_block_rsv *dst, u64 num_bytes)
  3364. {
  3365. int ret;
  3366. ret = block_rsv_use_bytes(src, num_bytes);
  3367. if (ret)
  3368. return ret;
  3369. block_rsv_add_bytes(dst, num_bytes, 1);
  3370. return 0;
  3371. }
  3372. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
  3373. {
  3374. memset(rsv, 0, sizeof(*rsv));
  3375. spin_lock_init(&rsv->lock);
  3376. }
  3377. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
  3378. {
  3379. struct btrfs_block_rsv *block_rsv;
  3380. struct btrfs_fs_info *fs_info = root->fs_info;
  3381. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3382. if (!block_rsv)
  3383. return NULL;
  3384. btrfs_init_block_rsv(block_rsv);
  3385. block_rsv->space_info = __find_space_info(fs_info,
  3386. BTRFS_BLOCK_GROUP_METADATA);
  3387. return block_rsv;
  3388. }
  3389. void btrfs_free_block_rsv(struct btrfs_root *root,
  3390. struct btrfs_block_rsv *rsv)
  3391. {
  3392. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3393. kfree(rsv);
  3394. }
  3395. static inline int __block_rsv_add(struct btrfs_root *root,
  3396. struct btrfs_block_rsv *block_rsv,
  3397. u64 num_bytes, int flush)
  3398. {
  3399. int ret;
  3400. if (num_bytes == 0)
  3401. return 0;
  3402. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3403. if (!ret) {
  3404. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3405. return 0;
  3406. }
  3407. return ret;
  3408. }
  3409. int btrfs_block_rsv_add(struct btrfs_root *root,
  3410. struct btrfs_block_rsv *block_rsv,
  3411. u64 num_bytes)
  3412. {
  3413. return __block_rsv_add(root, block_rsv, num_bytes, 1);
  3414. }
  3415. int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
  3416. struct btrfs_block_rsv *block_rsv,
  3417. u64 num_bytes)
  3418. {
  3419. return __block_rsv_add(root, block_rsv, num_bytes, 0);
  3420. }
  3421. int btrfs_block_rsv_check(struct btrfs_root *root,
  3422. struct btrfs_block_rsv *block_rsv, int min_factor)
  3423. {
  3424. u64 num_bytes = 0;
  3425. int ret = -ENOSPC;
  3426. if (!block_rsv)
  3427. return 0;
  3428. spin_lock(&block_rsv->lock);
  3429. num_bytes = div_factor(block_rsv->size, min_factor);
  3430. if (block_rsv->reserved >= num_bytes)
  3431. ret = 0;
  3432. spin_unlock(&block_rsv->lock);
  3433. return ret;
  3434. }
  3435. static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
  3436. struct btrfs_block_rsv *block_rsv,
  3437. u64 min_reserved, int flush)
  3438. {
  3439. u64 num_bytes = 0;
  3440. int ret = -ENOSPC;
  3441. if (!block_rsv)
  3442. return 0;
  3443. spin_lock(&block_rsv->lock);
  3444. num_bytes = min_reserved;
  3445. if (block_rsv->reserved >= num_bytes)
  3446. ret = 0;
  3447. else
  3448. num_bytes -= block_rsv->reserved;
  3449. spin_unlock(&block_rsv->lock);
  3450. if (!ret)
  3451. return 0;
  3452. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  3453. if (!ret) {
  3454. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3455. return 0;
  3456. }
  3457. return ret;
  3458. }
  3459. int btrfs_block_rsv_refill(struct btrfs_root *root,
  3460. struct btrfs_block_rsv *block_rsv,
  3461. u64 min_reserved)
  3462. {
  3463. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
  3464. }
  3465. int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
  3466. struct btrfs_block_rsv *block_rsv,
  3467. u64 min_reserved)
  3468. {
  3469. return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
  3470. }
  3471. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3472. struct btrfs_block_rsv *dst_rsv,
  3473. u64 num_bytes)
  3474. {
  3475. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3476. }
  3477. void btrfs_block_rsv_release(struct btrfs_root *root,
  3478. struct btrfs_block_rsv *block_rsv,
  3479. u64 num_bytes)
  3480. {
  3481. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3482. if (global_rsv->full || global_rsv == block_rsv ||
  3483. block_rsv->space_info != global_rsv->space_info)
  3484. global_rsv = NULL;
  3485. block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
  3486. }
  3487. /*
  3488. * helper to calculate size of global block reservation.
  3489. * the desired value is sum of space used by extent tree,
  3490. * checksum tree and root tree
  3491. */
  3492. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3493. {
  3494. struct btrfs_space_info *sinfo;
  3495. u64 num_bytes;
  3496. u64 meta_used;
  3497. u64 data_used;
  3498. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  3499. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3500. spin_lock(&sinfo->lock);
  3501. data_used = sinfo->bytes_used;
  3502. spin_unlock(&sinfo->lock);
  3503. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3504. spin_lock(&sinfo->lock);
  3505. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3506. data_used = 0;
  3507. meta_used = sinfo->bytes_used;
  3508. spin_unlock(&sinfo->lock);
  3509. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3510. csum_size * 2;
  3511. num_bytes += div64_u64(data_used + meta_used, 50);
  3512. if (num_bytes * 3 > meta_used)
  3513. num_bytes = div64_u64(meta_used, 3);
  3514. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3515. }
  3516. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3517. {
  3518. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3519. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3520. u64 num_bytes;
  3521. num_bytes = calc_global_metadata_size(fs_info);
  3522. spin_lock(&block_rsv->lock);
  3523. spin_lock(&sinfo->lock);
  3524. block_rsv->size = num_bytes;
  3525. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3526. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3527. sinfo->bytes_may_use;
  3528. if (sinfo->total_bytes > num_bytes) {
  3529. num_bytes = sinfo->total_bytes - num_bytes;
  3530. block_rsv->reserved += num_bytes;
  3531. sinfo->bytes_may_use += num_bytes;
  3532. }
  3533. if (block_rsv->reserved >= block_rsv->size) {
  3534. num_bytes = block_rsv->reserved - block_rsv->size;
  3535. sinfo->bytes_may_use -= num_bytes;
  3536. sinfo->reservation_progress++;
  3537. block_rsv->reserved = block_rsv->size;
  3538. block_rsv->full = 1;
  3539. }
  3540. spin_unlock(&sinfo->lock);
  3541. spin_unlock(&block_rsv->lock);
  3542. }
  3543. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  3544. {
  3545. struct btrfs_space_info *space_info;
  3546. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3547. fs_info->chunk_block_rsv.space_info = space_info;
  3548. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3549. fs_info->global_block_rsv.space_info = space_info;
  3550. fs_info->delalloc_block_rsv.space_info = space_info;
  3551. fs_info->trans_block_rsv.space_info = space_info;
  3552. fs_info->empty_block_rsv.space_info = space_info;
  3553. fs_info->delayed_block_rsv.space_info = space_info;
  3554. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  3555. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  3556. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  3557. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  3558. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  3559. update_global_block_rsv(fs_info);
  3560. }
  3561. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  3562. {
  3563. block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
  3564. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  3565. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  3566. WARN_ON(fs_info->trans_block_rsv.size > 0);
  3567. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  3568. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  3569. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  3570. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  3571. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  3572. }
  3573. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  3574. struct btrfs_root *root)
  3575. {
  3576. if (!trans->bytes_reserved)
  3577. return;
  3578. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  3579. trans->bytes_reserved = 0;
  3580. }
  3581. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  3582. struct inode *inode)
  3583. {
  3584. struct btrfs_root *root = BTRFS_I(inode)->root;
  3585. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3586. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  3587. /*
  3588. * We need to hold space in order to delete our orphan item once we've
  3589. * added it, so this takes the reservation so we can release it later
  3590. * when we are truly done with the orphan item.
  3591. */
  3592. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3593. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3594. }
  3595. void btrfs_orphan_release_metadata(struct inode *inode)
  3596. {
  3597. struct btrfs_root *root = BTRFS_I(inode)->root;
  3598. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  3599. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  3600. }
  3601. int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
  3602. struct btrfs_pending_snapshot *pending)
  3603. {
  3604. struct btrfs_root *root = pending->root;
  3605. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3606. struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
  3607. /*
  3608. * two for root back/forward refs, two for directory entries
  3609. * and one for root of the snapshot.
  3610. */
  3611. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
  3612. dst_rsv->space_info = src_rsv->space_info;
  3613. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3614. }
  3615. /**
  3616. * drop_outstanding_extent - drop an outstanding extent
  3617. * @inode: the inode we're dropping the extent for
  3618. *
  3619. * This is called when we are freeing up an outstanding extent, either called
  3620. * after an error or after an extent is written. This will return the number of
  3621. * reserved extents that need to be freed. This must be called with
  3622. * BTRFS_I(inode)->lock held.
  3623. */
  3624. static unsigned drop_outstanding_extent(struct inode *inode)
  3625. {
  3626. unsigned drop_inode_space = 0;
  3627. unsigned dropped_extents = 0;
  3628. BUG_ON(!BTRFS_I(inode)->outstanding_extents);
  3629. BTRFS_I(inode)->outstanding_extents--;
  3630. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  3631. BTRFS_I(inode)->delalloc_meta_reserved) {
  3632. drop_inode_space = 1;
  3633. BTRFS_I(inode)->delalloc_meta_reserved = 0;
  3634. }
  3635. /*
  3636. * If we have more or the same amount of outsanding extents than we have
  3637. * reserved then we need to leave the reserved extents count alone.
  3638. */
  3639. if (BTRFS_I(inode)->outstanding_extents >=
  3640. BTRFS_I(inode)->reserved_extents)
  3641. return drop_inode_space;
  3642. dropped_extents = BTRFS_I(inode)->reserved_extents -
  3643. BTRFS_I(inode)->outstanding_extents;
  3644. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  3645. return dropped_extents + drop_inode_space;
  3646. }
  3647. /**
  3648. * calc_csum_metadata_size - return the amount of metada space that must be
  3649. * reserved/free'd for the given bytes.
  3650. * @inode: the inode we're manipulating
  3651. * @num_bytes: the number of bytes in question
  3652. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  3653. *
  3654. * This adjusts the number of csum_bytes in the inode and then returns the
  3655. * correct amount of metadata that must either be reserved or freed. We
  3656. * calculate how many checksums we can fit into one leaf and then divide the
  3657. * number of bytes that will need to be checksumed by this value to figure out
  3658. * how many checksums will be required. If we are adding bytes then the number
  3659. * may go up and we will return the number of additional bytes that must be
  3660. * reserved. If it is going down we will return the number of bytes that must
  3661. * be freed.
  3662. *
  3663. * This must be called with BTRFS_I(inode)->lock held.
  3664. */
  3665. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  3666. int reserve)
  3667. {
  3668. struct btrfs_root *root = BTRFS_I(inode)->root;
  3669. u64 csum_size;
  3670. int num_csums_per_leaf;
  3671. int num_csums;
  3672. int old_csums;
  3673. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  3674. BTRFS_I(inode)->csum_bytes == 0)
  3675. return 0;
  3676. old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3677. if (reserve)
  3678. BTRFS_I(inode)->csum_bytes += num_bytes;
  3679. else
  3680. BTRFS_I(inode)->csum_bytes -= num_bytes;
  3681. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  3682. num_csums_per_leaf = (int)div64_u64(csum_size,
  3683. sizeof(struct btrfs_csum_item) +
  3684. sizeof(struct btrfs_disk_key));
  3685. num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
  3686. num_csums = num_csums + num_csums_per_leaf - 1;
  3687. num_csums = num_csums / num_csums_per_leaf;
  3688. old_csums = old_csums + num_csums_per_leaf - 1;
  3689. old_csums = old_csums / num_csums_per_leaf;
  3690. /* No change, no need to reserve more */
  3691. if (old_csums == num_csums)
  3692. return 0;
  3693. if (reserve)
  3694. return btrfs_calc_trans_metadata_size(root,
  3695. num_csums - old_csums);
  3696. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  3697. }
  3698. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  3699. {
  3700. struct btrfs_root *root = BTRFS_I(inode)->root;
  3701. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  3702. u64 to_reserve = 0;
  3703. unsigned nr_extents = 0;
  3704. int flush = 1;
  3705. int ret;
  3706. if (btrfs_is_free_space_inode(root, inode))
  3707. flush = 0;
  3708. if (flush && btrfs_transaction_in_commit(root->fs_info))
  3709. schedule_timeout(1);
  3710. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3711. spin_lock(&BTRFS_I(inode)->lock);
  3712. BTRFS_I(inode)->outstanding_extents++;
  3713. if (BTRFS_I(inode)->outstanding_extents >
  3714. BTRFS_I(inode)->reserved_extents) {
  3715. nr_extents = BTRFS_I(inode)->outstanding_extents -
  3716. BTRFS_I(inode)->reserved_extents;
  3717. BTRFS_I(inode)->reserved_extents += nr_extents;
  3718. }
  3719. /*
  3720. * Add an item to reserve for updating the inode when we complete the
  3721. * delalloc io.
  3722. */
  3723. if (!BTRFS_I(inode)->delalloc_meta_reserved) {
  3724. nr_extents++;
  3725. BTRFS_I(inode)->delalloc_meta_reserved = 1;
  3726. }
  3727. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  3728. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  3729. spin_unlock(&BTRFS_I(inode)->lock);
  3730. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  3731. if (ret) {
  3732. u64 to_free = 0;
  3733. unsigned dropped;
  3734. spin_lock(&BTRFS_I(inode)->lock);
  3735. dropped = drop_outstanding_extent(inode);
  3736. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  3737. spin_unlock(&BTRFS_I(inode)->lock);
  3738. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  3739. /*
  3740. * Somebody could have come in and twiddled with the
  3741. * reservation, so if we have to free more than we would have
  3742. * reserved from this reservation go ahead and release those
  3743. * bytes.
  3744. */
  3745. to_free -= to_reserve;
  3746. if (to_free)
  3747. btrfs_block_rsv_release(root, block_rsv, to_free);
  3748. return ret;
  3749. }
  3750. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  3751. return 0;
  3752. }
  3753. /**
  3754. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  3755. * @inode: the inode to release the reservation for
  3756. * @num_bytes: the number of bytes we're releasing
  3757. *
  3758. * This will release the metadata reservation for an inode. This can be called
  3759. * once we complete IO for a given set of bytes to release their metadata
  3760. * reservations.
  3761. */
  3762. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  3763. {
  3764. struct btrfs_root *root = BTRFS_I(inode)->root;
  3765. u64 to_free = 0;
  3766. unsigned dropped;
  3767. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3768. spin_lock(&BTRFS_I(inode)->lock);
  3769. dropped = drop_outstanding_extent(inode);
  3770. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  3771. spin_unlock(&BTRFS_I(inode)->lock);
  3772. if (dropped > 0)
  3773. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  3774. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  3775. to_free);
  3776. }
  3777. /**
  3778. * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
  3779. * @inode: inode we're writing to
  3780. * @num_bytes: the number of bytes we want to allocate
  3781. *
  3782. * This will do the following things
  3783. *
  3784. * o reserve space in the data space info for num_bytes
  3785. * o reserve space in the metadata space info based on number of outstanding
  3786. * extents and how much csums will be needed
  3787. * o add to the inodes ->delalloc_bytes
  3788. * o add it to the fs_info's delalloc inodes list.
  3789. *
  3790. * This will return 0 for success and -ENOSPC if there is no space left.
  3791. */
  3792. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  3793. {
  3794. int ret;
  3795. ret = btrfs_check_data_free_space(inode, num_bytes);
  3796. if (ret)
  3797. return ret;
  3798. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  3799. if (ret) {
  3800. btrfs_free_reserved_data_space(inode, num_bytes);
  3801. return ret;
  3802. }
  3803. return 0;
  3804. }
  3805. /**
  3806. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  3807. * @inode: inode we're releasing space for
  3808. * @num_bytes: the number of bytes we want to free up
  3809. *
  3810. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  3811. * called in the case that we don't need the metadata AND data reservations
  3812. * anymore. So if there is an error or we insert an inline extent.
  3813. *
  3814. * This function will release the metadata space that was not used and will
  3815. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  3816. * list if there are no delalloc bytes left.
  3817. */
  3818. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  3819. {
  3820. btrfs_delalloc_release_metadata(inode, num_bytes);
  3821. btrfs_free_reserved_data_space(inode, num_bytes);
  3822. }
  3823. static int update_block_group(struct btrfs_trans_handle *trans,
  3824. struct btrfs_root *root,
  3825. u64 bytenr, u64 num_bytes, int alloc)
  3826. {
  3827. struct btrfs_block_group_cache *cache = NULL;
  3828. struct btrfs_fs_info *info = root->fs_info;
  3829. u64 total = num_bytes;
  3830. u64 old_val;
  3831. u64 byte_in_group;
  3832. int factor;
  3833. /* block accounting for super block */
  3834. spin_lock(&info->delalloc_lock);
  3835. old_val = btrfs_super_bytes_used(info->super_copy);
  3836. if (alloc)
  3837. old_val += num_bytes;
  3838. else
  3839. old_val -= num_bytes;
  3840. btrfs_set_super_bytes_used(info->super_copy, old_val);
  3841. spin_unlock(&info->delalloc_lock);
  3842. while (total) {
  3843. cache = btrfs_lookup_block_group(info, bytenr);
  3844. if (!cache)
  3845. return -1;
  3846. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  3847. BTRFS_BLOCK_GROUP_RAID1 |
  3848. BTRFS_BLOCK_GROUP_RAID10))
  3849. factor = 2;
  3850. else
  3851. factor = 1;
  3852. /*
  3853. * If this block group has free space cache written out, we
  3854. * need to make sure to load it if we are removing space. This
  3855. * is because we need the unpinning stage to actually add the
  3856. * space back to the block group, otherwise we will leak space.
  3857. */
  3858. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  3859. cache_block_group(cache, trans, NULL, 1);
  3860. byte_in_group = bytenr - cache->key.objectid;
  3861. WARN_ON(byte_in_group > cache->key.offset);
  3862. spin_lock(&cache->space_info->lock);
  3863. spin_lock(&cache->lock);
  3864. if (btrfs_test_opt(root, SPACE_CACHE) &&
  3865. cache->disk_cache_state < BTRFS_DC_CLEAR)
  3866. cache->disk_cache_state = BTRFS_DC_CLEAR;
  3867. cache->dirty = 1;
  3868. old_val = btrfs_block_group_used(&cache->item);
  3869. num_bytes = min(total, cache->key.offset - byte_in_group);
  3870. if (alloc) {
  3871. old_val += num_bytes;
  3872. btrfs_set_block_group_used(&cache->item, old_val);
  3873. cache->reserved -= num_bytes;
  3874. cache->space_info->bytes_reserved -= num_bytes;
  3875. cache->space_info->bytes_used += num_bytes;
  3876. cache->space_info->disk_used += num_bytes * factor;
  3877. spin_unlock(&cache->lock);
  3878. spin_unlock(&cache->space_info->lock);
  3879. } else {
  3880. old_val -= num_bytes;
  3881. btrfs_set_block_group_used(&cache->item, old_val);
  3882. cache->pinned += num_bytes;
  3883. cache->space_info->bytes_pinned += num_bytes;
  3884. cache->space_info->bytes_used -= num_bytes;
  3885. cache->space_info->disk_used -= num_bytes * factor;
  3886. spin_unlock(&cache->lock);
  3887. spin_unlock(&cache->space_info->lock);
  3888. set_extent_dirty(info->pinned_extents,
  3889. bytenr, bytenr + num_bytes - 1,
  3890. GFP_NOFS | __GFP_NOFAIL);
  3891. }
  3892. btrfs_put_block_group(cache);
  3893. total -= num_bytes;
  3894. bytenr += num_bytes;
  3895. }
  3896. return 0;
  3897. }
  3898. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  3899. {
  3900. struct btrfs_block_group_cache *cache;
  3901. u64 bytenr;
  3902. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  3903. if (!cache)
  3904. return 0;
  3905. bytenr = cache->key.objectid;
  3906. btrfs_put_block_group(cache);
  3907. return bytenr;
  3908. }
  3909. static int pin_down_extent(struct btrfs_root *root,
  3910. struct btrfs_block_group_cache *cache,
  3911. u64 bytenr, u64 num_bytes, int reserved)
  3912. {
  3913. spin_lock(&cache->space_info->lock);
  3914. spin_lock(&cache->lock);
  3915. cache->pinned += num_bytes;
  3916. cache->space_info->bytes_pinned += num_bytes;
  3917. if (reserved) {
  3918. cache->reserved -= num_bytes;
  3919. cache->space_info->bytes_reserved -= num_bytes;
  3920. }
  3921. spin_unlock(&cache->lock);
  3922. spin_unlock(&cache->space_info->lock);
  3923. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  3924. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  3925. return 0;
  3926. }
  3927. /*
  3928. * this function must be called within transaction
  3929. */
  3930. int btrfs_pin_extent(struct btrfs_root *root,
  3931. u64 bytenr, u64 num_bytes, int reserved)
  3932. {
  3933. struct btrfs_block_group_cache *cache;
  3934. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  3935. BUG_ON(!cache);
  3936. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  3937. btrfs_put_block_group(cache);
  3938. return 0;
  3939. }
  3940. /*
  3941. * this function must be called within transaction
  3942. */
  3943. int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
  3944. struct btrfs_root *root,
  3945. u64 bytenr, u64 num_bytes)
  3946. {
  3947. struct btrfs_block_group_cache *cache;
  3948. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  3949. BUG_ON(!cache);
  3950. /*
  3951. * pull in the free space cache (if any) so that our pin
  3952. * removes the free space from the cache. We have load_only set
  3953. * to one because the slow code to read in the free extents does check
  3954. * the pinned extents.
  3955. */
  3956. cache_block_group(cache, trans, root, 1);
  3957. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  3958. /* remove us from the free space cache (if we're there at all) */
  3959. btrfs_remove_free_space(cache, bytenr, num_bytes);
  3960. btrfs_put_block_group(cache);
  3961. return 0;
  3962. }
  3963. /**
  3964. * btrfs_update_reserved_bytes - update the block_group and space info counters
  3965. * @cache: The cache we are manipulating
  3966. * @num_bytes: The number of bytes in question
  3967. * @reserve: One of the reservation enums
  3968. *
  3969. * This is called by the allocator when it reserves space, or by somebody who is
  3970. * freeing space that was never actually used on disk. For example if you
  3971. * reserve some space for a new leaf in transaction A and before transaction A
  3972. * commits you free that leaf, you call this with reserve set to 0 in order to
  3973. * clear the reservation.
  3974. *
  3975. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  3976. * ENOSPC accounting. For data we handle the reservation through clearing the
  3977. * delalloc bits in the io_tree. We have to do this since we could end up
  3978. * allocating less disk space for the amount of data we have reserved in the
  3979. * case of compression.
  3980. *
  3981. * If this is a reservation and the block group has become read only we cannot
  3982. * make the reservation and return -EAGAIN, otherwise this function always
  3983. * succeeds.
  3984. */
  3985. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  3986. u64 num_bytes, int reserve)
  3987. {
  3988. struct btrfs_space_info *space_info = cache->space_info;
  3989. int ret = 0;
  3990. spin_lock(&space_info->lock);
  3991. spin_lock(&cache->lock);
  3992. if (reserve != RESERVE_FREE) {
  3993. if (cache->ro) {
  3994. ret = -EAGAIN;
  3995. } else {
  3996. cache->reserved += num_bytes;
  3997. space_info->bytes_reserved += num_bytes;
  3998. if (reserve == RESERVE_ALLOC) {
  3999. BUG_ON(space_info->bytes_may_use < num_bytes);
  4000. space_info->bytes_may_use -= num_bytes;
  4001. }
  4002. }
  4003. } else {
  4004. if (cache->ro)
  4005. space_info->bytes_readonly += num_bytes;
  4006. cache->reserved -= num_bytes;
  4007. space_info->bytes_reserved -= num_bytes;
  4008. space_info->reservation_progress++;
  4009. }
  4010. spin_unlock(&cache->lock);
  4011. spin_unlock(&space_info->lock);
  4012. return ret;
  4013. }
  4014. int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  4015. struct btrfs_root *root)
  4016. {
  4017. struct btrfs_fs_info *fs_info = root->fs_info;
  4018. struct btrfs_caching_control *next;
  4019. struct btrfs_caching_control *caching_ctl;
  4020. struct btrfs_block_group_cache *cache;
  4021. down_write(&fs_info->extent_commit_sem);
  4022. list_for_each_entry_safe(caching_ctl, next,
  4023. &fs_info->caching_block_groups, list) {
  4024. cache = caching_ctl->block_group;
  4025. if (block_group_cache_done(cache)) {
  4026. cache->last_byte_to_unpin = (u64)-1;
  4027. list_del_init(&caching_ctl->list);
  4028. put_caching_control(caching_ctl);
  4029. } else {
  4030. cache->last_byte_to_unpin = caching_ctl->progress;
  4031. }
  4032. }
  4033. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4034. fs_info->pinned_extents = &fs_info->freed_extents[1];
  4035. else
  4036. fs_info->pinned_extents = &fs_info->freed_extents[0];
  4037. up_write(&fs_info->extent_commit_sem);
  4038. update_global_block_rsv(fs_info);
  4039. return 0;
  4040. }
  4041. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  4042. {
  4043. struct btrfs_fs_info *fs_info = root->fs_info;
  4044. struct btrfs_block_group_cache *cache = NULL;
  4045. u64 len;
  4046. while (start <= end) {
  4047. if (!cache ||
  4048. start >= cache->key.objectid + cache->key.offset) {
  4049. if (cache)
  4050. btrfs_put_block_group(cache);
  4051. cache = btrfs_lookup_block_group(fs_info, start);
  4052. BUG_ON(!cache);
  4053. }
  4054. len = cache->key.objectid + cache->key.offset - start;
  4055. len = min(len, end + 1 - start);
  4056. if (start < cache->last_byte_to_unpin) {
  4057. len = min(len, cache->last_byte_to_unpin - start);
  4058. btrfs_add_free_space(cache, start, len);
  4059. }
  4060. start += len;
  4061. spin_lock(&cache->space_info->lock);
  4062. spin_lock(&cache->lock);
  4063. cache->pinned -= len;
  4064. cache->space_info->bytes_pinned -= len;
  4065. if (cache->ro)
  4066. cache->space_info->bytes_readonly += len;
  4067. spin_unlock(&cache->lock);
  4068. spin_unlock(&cache->space_info->lock);
  4069. }
  4070. if (cache)
  4071. btrfs_put_block_group(cache);
  4072. return 0;
  4073. }
  4074. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  4075. struct btrfs_root *root)
  4076. {
  4077. struct btrfs_fs_info *fs_info = root->fs_info;
  4078. struct extent_io_tree *unpin;
  4079. u64 start;
  4080. u64 end;
  4081. int ret;
  4082. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  4083. unpin = &fs_info->freed_extents[1];
  4084. else
  4085. unpin = &fs_info->freed_extents[0];
  4086. while (1) {
  4087. ret = find_first_extent_bit(unpin, 0, &start, &end,
  4088. EXTENT_DIRTY);
  4089. if (ret)
  4090. break;
  4091. if (btrfs_test_opt(root, DISCARD))
  4092. ret = btrfs_discard_extent(root, start,
  4093. end + 1 - start, NULL);
  4094. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  4095. unpin_extent_range(root, start, end);
  4096. cond_resched();
  4097. }
  4098. return 0;
  4099. }
  4100. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  4101. struct btrfs_root *root,
  4102. u64 bytenr, u64 num_bytes, u64 parent,
  4103. u64 root_objectid, u64 owner_objectid,
  4104. u64 owner_offset, int refs_to_drop,
  4105. struct btrfs_delayed_extent_op *extent_op)
  4106. {
  4107. struct btrfs_key key;
  4108. struct btrfs_path *path;
  4109. struct btrfs_fs_info *info = root->fs_info;
  4110. struct btrfs_root *extent_root = info->extent_root;
  4111. struct extent_buffer *leaf;
  4112. struct btrfs_extent_item *ei;
  4113. struct btrfs_extent_inline_ref *iref;
  4114. int ret;
  4115. int is_data;
  4116. int extent_slot = 0;
  4117. int found_extent = 0;
  4118. int num_to_del = 1;
  4119. u32 item_size;
  4120. u64 refs;
  4121. path = btrfs_alloc_path();
  4122. if (!path)
  4123. return -ENOMEM;
  4124. path->reada = 1;
  4125. path->leave_spinning = 1;
  4126. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  4127. BUG_ON(!is_data && refs_to_drop != 1);
  4128. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  4129. bytenr, num_bytes, parent,
  4130. root_objectid, owner_objectid,
  4131. owner_offset);
  4132. if (ret == 0) {
  4133. extent_slot = path->slots[0];
  4134. while (extent_slot >= 0) {
  4135. btrfs_item_key_to_cpu(path->nodes[0], &key,
  4136. extent_slot);
  4137. if (key.objectid != bytenr)
  4138. break;
  4139. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  4140. key.offset == num_bytes) {
  4141. found_extent = 1;
  4142. break;
  4143. }
  4144. if (path->slots[0] - extent_slot > 5)
  4145. break;
  4146. extent_slot--;
  4147. }
  4148. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4149. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  4150. if (found_extent && item_size < sizeof(*ei))
  4151. found_extent = 0;
  4152. #endif
  4153. if (!found_extent) {
  4154. BUG_ON(iref);
  4155. ret = remove_extent_backref(trans, extent_root, path,
  4156. NULL, refs_to_drop,
  4157. is_data);
  4158. BUG_ON(ret);
  4159. btrfs_release_path(path);
  4160. path->leave_spinning = 1;
  4161. key.objectid = bytenr;
  4162. key.type = BTRFS_EXTENT_ITEM_KEY;
  4163. key.offset = num_bytes;
  4164. ret = btrfs_search_slot(trans, extent_root,
  4165. &key, path, -1, 1);
  4166. if (ret) {
  4167. printk(KERN_ERR "umm, got %d back from search"
  4168. ", was looking for %llu\n", ret,
  4169. (unsigned long long)bytenr);
  4170. if (ret > 0)
  4171. btrfs_print_leaf(extent_root,
  4172. path->nodes[0]);
  4173. }
  4174. BUG_ON(ret);
  4175. extent_slot = path->slots[0];
  4176. }
  4177. } else {
  4178. btrfs_print_leaf(extent_root, path->nodes[0]);
  4179. WARN_ON(1);
  4180. printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
  4181. "parent %llu root %llu owner %llu offset %llu\n",
  4182. (unsigned long long)bytenr,
  4183. (unsigned long long)parent,
  4184. (unsigned long long)root_objectid,
  4185. (unsigned long long)owner_objectid,
  4186. (unsigned long long)owner_offset);
  4187. }
  4188. leaf = path->nodes[0];
  4189. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4190. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  4191. if (item_size < sizeof(*ei)) {
  4192. BUG_ON(found_extent || extent_slot != path->slots[0]);
  4193. ret = convert_extent_item_v0(trans, extent_root, path,
  4194. owner_objectid, 0);
  4195. BUG_ON(ret < 0);
  4196. btrfs_release_path(path);
  4197. path->leave_spinning = 1;
  4198. key.objectid = bytenr;
  4199. key.type = BTRFS_EXTENT_ITEM_KEY;
  4200. key.offset = num_bytes;
  4201. ret = btrfs_search_slot(trans, extent_root, &key, path,
  4202. -1, 1);
  4203. if (ret) {
  4204. printk(KERN_ERR "umm, got %d back from search"
  4205. ", was looking for %llu\n", ret,
  4206. (unsigned long long)bytenr);
  4207. btrfs_print_leaf(extent_root, path->nodes[0]);
  4208. }
  4209. BUG_ON(ret);
  4210. extent_slot = path->slots[0];
  4211. leaf = path->nodes[0];
  4212. item_size = btrfs_item_size_nr(leaf, extent_slot);
  4213. }
  4214. #endif
  4215. BUG_ON(item_size < sizeof(*ei));
  4216. ei = btrfs_item_ptr(leaf, extent_slot,
  4217. struct btrfs_extent_item);
  4218. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  4219. struct btrfs_tree_block_info *bi;
  4220. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  4221. bi = (struct btrfs_tree_block_info *)(ei + 1);
  4222. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  4223. }
  4224. refs = btrfs_extent_refs(leaf, ei);
  4225. BUG_ON(refs < refs_to_drop);
  4226. refs -= refs_to_drop;
  4227. if (refs > 0) {
  4228. if (extent_op)
  4229. __run_delayed_extent_op(extent_op, leaf, ei);
  4230. /*
  4231. * In the case of inline back ref, reference count will
  4232. * be updated by remove_extent_backref
  4233. */
  4234. if (iref) {
  4235. BUG_ON(!found_extent);
  4236. } else {
  4237. btrfs_set_extent_refs(leaf, ei, refs);
  4238. btrfs_mark_buffer_dirty(leaf);
  4239. }
  4240. if (found_extent) {
  4241. ret = remove_extent_backref(trans, extent_root, path,
  4242. iref, refs_to_drop,
  4243. is_data);
  4244. BUG_ON(ret);
  4245. }
  4246. } else {
  4247. if (found_extent) {
  4248. BUG_ON(is_data && refs_to_drop !=
  4249. extent_data_ref_count(root, path, iref));
  4250. if (iref) {
  4251. BUG_ON(path->slots[0] != extent_slot);
  4252. } else {
  4253. BUG_ON(path->slots[0] != extent_slot + 1);
  4254. path->slots[0] = extent_slot;
  4255. num_to_del = 2;
  4256. }
  4257. }
  4258. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4259. num_to_del);
  4260. BUG_ON(ret);
  4261. btrfs_release_path(path);
  4262. if (is_data) {
  4263. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4264. BUG_ON(ret);
  4265. } else {
  4266. invalidate_mapping_pages(info->btree_inode->i_mapping,
  4267. bytenr >> PAGE_CACHE_SHIFT,
  4268. (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
  4269. }
  4270. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  4271. BUG_ON(ret);
  4272. }
  4273. btrfs_free_path(path);
  4274. return ret;
  4275. }
  4276. /*
  4277. * when we free an block, it is possible (and likely) that we free the last
  4278. * delayed ref for that extent as well. This searches the delayed ref tree for
  4279. * a given extent, and if there are no other delayed refs to be processed, it
  4280. * removes it from the tree.
  4281. */
  4282. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4283. struct btrfs_root *root, u64 bytenr)
  4284. {
  4285. struct btrfs_delayed_ref_head *head;
  4286. struct btrfs_delayed_ref_root *delayed_refs;
  4287. struct btrfs_delayed_ref_node *ref;
  4288. struct rb_node *node;
  4289. int ret = 0;
  4290. delayed_refs = &trans->transaction->delayed_refs;
  4291. spin_lock(&delayed_refs->lock);
  4292. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4293. if (!head)
  4294. goto out;
  4295. node = rb_prev(&head->node.rb_node);
  4296. if (!node)
  4297. goto out;
  4298. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4299. /* there are still entries for this ref, we can't drop it */
  4300. if (ref->bytenr == bytenr)
  4301. goto out;
  4302. if (head->extent_op) {
  4303. if (!head->must_insert_reserved)
  4304. goto out;
  4305. kfree(head->extent_op);
  4306. head->extent_op = NULL;
  4307. }
  4308. /*
  4309. * waiting for the lock here would deadlock. If someone else has it
  4310. * locked they are already in the process of dropping it anyway
  4311. */
  4312. if (!mutex_trylock(&head->mutex))
  4313. goto out;
  4314. /*
  4315. * at this point we have a head with no other entries. Go
  4316. * ahead and process it.
  4317. */
  4318. head->node.in_tree = 0;
  4319. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4320. delayed_refs->num_entries--;
  4321. /*
  4322. * we don't take a ref on the node because we're removing it from the
  4323. * tree, so we just steal the ref the tree was holding.
  4324. */
  4325. delayed_refs->num_heads--;
  4326. if (list_empty(&head->cluster))
  4327. delayed_refs->num_heads_ready--;
  4328. list_del_init(&head->cluster);
  4329. spin_unlock(&delayed_refs->lock);
  4330. BUG_ON(head->extent_op);
  4331. if (head->must_insert_reserved)
  4332. ret = 1;
  4333. mutex_unlock(&head->mutex);
  4334. btrfs_put_delayed_ref(&head->node);
  4335. return ret;
  4336. out:
  4337. spin_unlock(&delayed_refs->lock);
  4338. return 0;
  4339. }
  4340. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  4341. struct btrfs_root *root,
  4342. struct extent_buffer *buf,
  4343. u64 parent, int last_ref)
  4344. {
  4345. struct btrfs_block_group_cache *cache = NULL;
  4346. int ret;
  4347. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4348. ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
  4349. parent, root->root_key.objectid,
  4350. btrfs_header_level(buf),
  4351. BTRFS_DROP_DELAYED_REF, NULL);
  4352. BUG_ON(ret);
  4353. }
  4354. if (!last_ref)
  4355. return;
  4356. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  4357. if (btrfs_header_generation(buf) == trans->transid) {
  4358. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4359. ret = check_ref_cleanup(trans, root, buf->start);
  4360. if (!ret)
  4361. goto out;
  4362. }
  4363. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  4364. pin_down_extent(root, cache, buf->start, buf->len, 1);
  4365. goto out;
  4366. }
  4367. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  4368. btrfs_add_free_space(cache, buf->start, buf->len);
  4369. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
  4370. }
  4371. out:
  4372. /*
  4373. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  4374. * anymore.
  4375. */
  4376. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  4377. btrfs_put_block_group(cache);
  4378. }
  4379. int btrfs_free_extent(struct btrfs_trans_handle *trans,
  4380. struct btrfs_root *root,
  4381. u64 bytenr, u64 num_bytes, u64 parent,
  4382. u64 root_objectid, u64 owner, u64 offset)
  4383. {
  4384. int ret;
  4385. /*
  4386. * tree log blocks never actually go into the extent allocation
  4387. * tree, just update pinning info and exit early.
  4388. */
  4389. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  4390. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  4391. /* unlocks the pinned mutex */
  4392. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  4393. ret = 0;
  4394. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4395. ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
  4396. parent, root_objectid, (int)owner,
  4397. BTRFS_DROP_DELAYED_REF, NULL);
  4398. BUG_ON(ret);
  4399. } else {
  4400. ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
  4401. parent, root_objectid, owner,
  4402. offset, BTRFS_DROP_DELAYED_REF, NULL);
  4403. BUG_ON(ret);
  4404. }
  4405. return ret;
  4406. }
  4407. static u64 stripe_align(struct btrfs_root *root, u64 val)
  4408. {
  4409. u64 mask = ((u64)root->stripesize - 1);
  4410. u64 ret = (val + mask) & ~mask;
  4411. return ret;
  4412. }
  4413. /*
  4414. * when we wait for progress in the block group caching, its because
  4415. * our allocation attempt failed at least once. So, we must sleep
  4416. * and let some progress happen before we try again.
  4417. *
  4418. * This function will sleep at least once waiting for new free space to
  4419. * show up, and then it will check the block group free space numbers
  4420. * for our min num_bytes. Another option is to have it go ahead
  4421. * and look in the rbtree for a free extent of a given size, but this
  4422. * is a good start.
  4423. */
  4424. static noinline int
  4425. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  4426. u64 num_bytes)
  4427. {
  4428. struct btrfs_caching_control *caching_ctl;
  4429. DEFINE_WAIT(wait);
  4430. caching_ctl = get_caching_control(cache);
  4431. if (!caching_ctl)
  4432. return 0;
  4433. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  4434. (cache->free_space_ctl->free_space >= num_bytes));
  4435. put_caching_control(caching_ctl);
  4436. return 0;
  4437. }
  4438. static noinline int
  4439. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  4440. {
  4441. struct btrfs_caching_control *caching_ctl;
  4442. DEFINE_WAIT(wait);
  4443. caching_ctl = get_caching_control(cache);
  4444. if (!caching_ctl)
  4445. return 0;
  4446. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  4447. put_caching_control(caching_ctl);
  4448. return 0;
  4449. }
  4450. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  4451. {
  4452. int index;
  4453. if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
  4454. index = 0;
  4455. else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
  4456. index = 1;
  4457. else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
  4458. index = 2;
  4459. else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
  4460. index = 3;
  4461. else
  4462. index = 4;
  4463. return index;
  4464. }
  4465. enum btrfs_loop_type {
  4466. LOOP_FIND_IDEAL = 0,
  4467. LOOP_CACHING_NOWAIT = 1,
  4468. LOOP_CACHING_WAIT = 2,
  4469. LOOP_ALLOC_CHUNK = 3,
  4470. LOOP_NO_EMPTY_SIZE = 4,
  4471. };
  4472. /*
  4473. * walks the btree of allocated extents and find a hole of a given size.
  4474. * The key ins is changed to record the hole:
  4475. * ins->objectid == block start
  4476. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  4477. * ins->offset == number of blocks
  4478. * Any available blocks before search_start are skipped.
  4479. */
  4480. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  4481. struct btrfs_root *orig_root,
  4482. u64 num_bytes, u64 empty_size,
  4483. u64 search_start, u64 search_end,
  4484. u64 hint_byte, struct btrfs_key *ins,
  4485. u64 data)
  4486. {
  4487. int ret = 0;
  4488. struct btrfs_root *root = orig_root->fs_info->extent_root;
  4489. struct btrfs_free_cluster *last_ptr = NULL;
  4490. struct btrfs_block_group_cache *block_group = NULL;
  4491. int empty_cluster = 2 * 1024 * 1024;
  4492. int allowed_chunk_alloc = 0;
  4493. int done_chunk_alloc = 0;
  4494. struct btrfs_space_info *space_info;
  4495. int last_ptr_loop = 0;
  4496. int loop = 0;
  4497. int index = 0;
  4498. int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
  4499. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  4500. bool found_uncached_bg = false;
  4501. bool failed_cluster_refill = false;
  4502. bool failed_alloc = false;
  4503. bool use_cluster = true;
  4504. bool have_caching_bg = false;
  4505. u64 ideal_cache_percent = 0;
  4506. u64 ideal_cache_offset = 0;
  4507. WARN_ON(num_bytes < root->sectorsize);
  4508. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  4509. ins->objectid = 0;
  4510. ins->offset = 0;
  4511. space_info = __find_space_info(root->fs_info, data);
  4512. if (!space_info) {
  4513. printk(KERN_ERR "No space info for %llu\n", data);
  4514. return -ENOSPC;
  4515. }
  4516. /*
  4517. * If the space info is for both data and metadata it means we have a
  4518. * small filesystem and we can't use the clustering stuff.
  4519. */
  4520. if (btrfs_mixed_space_info(space_info))
  4521. use_cluster = false;
  4522. if (orig_root->ref_cows || empty_size)
  4523. allowed_chunk_alloc = 1;
  4524. if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  4525. last_ptr = &root->fs_info->meta_alloc_cluster;
  4526. if (!btrfs_test_opt(root, SSD))
  4527. empty_cluster = 64 * 1024;
  4528. }
  4529. if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  4530. btrfs_test_opt(root, SSD)) {
  4531. last_ptr = &root->fs_info->data_alloc_cluster;
  4532. }
  4533. if (last_ptr) {
  4534. spin_lock(&last_ptr->lock);
  4535. if (last_ptr->block_group)
  4536. hint_byte = last_ptr->window_start;
  4537. spin_unlock(&last_ptr->lock);
  4538. }
  4539. search_start = max(search_start, first_logical_byte(root, 0));
  4540. search_start = max(search_start, hint_byte);
  4541. if (!last_ptr)
  4542. empty_cluster = 0;
  4543. if (search_start == hint_byte) {
  4544. ideal_cache:
  4545. block_group = btrfs_lookup_block_group(root->fs_info,
  4546. search_start);
  4547. /*
  4548. * we don't want to use the block group if it doesn't match our
  4549. * allocation bits, or if its not cached.
  4550. *
  4551. * However if we are re-searching with an ideal block group
  4552. * picked out then we don't care that the block group is cached.
  4553. */
  4554. if (block_group && block_group_bits(block_group, data) &&
  4555. (block_group->cached != BTRFS_CACHE_NO ||
  4556. search_start == ideal_cache_offset)) {
  4557. down_read(&space_info->groups_sem);
  4558. if (list_empty(&block_group->list) ||
  4559. block_group->ro) {
  4560. /*
  4561. * someone is removing this block group,
  4562. * we can't jump into the have_block_group
  4563. * target because our list pointers are not
  4564. * valid
  4565. */
  4566. btrfs_put_block_group(block_group);
  4567. up_read(&space_info->groups_sem);
  4568. } else {
  4569. index = get_block_group_index(block_group);
  4570. goto have_block_group;
  4571. }
  4572. } else if (block_group) {
  4573. btrfs_put_block_group(block_group);
  4574. }
  4575. }
  4576. search:
  4577. have_caching_bg = false;
  4578. down_read(&space_info->groups_sem);
  4579. list_for_each_entry(block_group, &space_info->block_groups[index],
  4580. list) {
  4581. u64 offset;
  4582. int cached;
  4583. btrfs_get_block_group(block_group);
  4584. search_start = block_group->key.objectid;
  4585. /*
  4586. * this can happen if we end up cycling through all the
  4587. * raid types, but we want to make sure we only allocate
  4588. * for the proper type.
  4589. */
  4590. if (!block_group_bits(block_group, data)) {
  4591. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  4592. BTRFS_BLOCK_GROUP_RAID1 |
  4593. BTRFS_BLOCK_GROUP_RAID10;
  4594. /*
  4595. * if they asked for extra copies and this block group
  4596. * doesn't provide them, bail. This does allow us to
  4597. * fill raid0 from raid1.
  4598. */
  4599. if ((data & extra) && !(block_group->flags & extra))
  4600. goto loop;
  4601. }
  4602. have_block_group:
  4603. cached = block_group_cache_done(block_group);
  4604. if (unlikely(!cached)) {
  4605. u64 free_percent;
  4606. found_uncached_bg = true;
  4607. ret = cache_block_group(block_group, trans,
  4608. orig_root, 1);
  4609. if (block_group->cached == BTRFS_CACHE_FINISHED)
  4610. goto alloc;
  4611. free_percent = btrfs_block_group_used(&block_group->item);
  4612. free_percent *= 100;
  4613. free_percent = div64_u64(free_percent,
  4614. block_group->key.offset);
  4615. free_percent = 100 - free_percent;
  4616. if (free_percent > ideal_cache_percent &&
  4617. likely(!block_group->ro)) {
  4618. ideal_cache_offset = block_group->key.objectid;
  4619. ideal_cache_percent = free_percent;
  4620. }
  4621. /*
  4622. * The caching workers are limited to 2 threads, so we
  4623. * can queue as much work as we care to.
  4624. */
  4625. if (loop > LOOP_FIND_IDEAL) {
  4626. ret = cache_block_group(block_group, trans,
  4627. orig_root, 0);
  4628. BUG_ON(ret);
  4629. }
  4630. /*
  4631. * If loop is set for cached only, try the next block
  4632. * group.
  4633. */
  4634. if (loop == LOOP_FIND_IDEAL)
  4635. goto loop;
  4636. }
  4637. alloc:
  4638. if (unlikely(block_group->ro))
  4639. goto loop;
  4640. spin_lock(&block_group->free_space_ctl->tree_lock);
  4641. if (cached &&
  4642. block_group->free_space_ctl->free_space <
  4643. num_bytes + empty_size) {
  4644. spin_unlock(&block_group->free_space_ctl->tree_lock);
  4645. goto loop;
  4646. }
  4647. spin_unlock(&block_group->free_space_ctl->tree_lock);
  4648. /*
  4649. * Ok we want to try and use the cluster allocator, so lets look
  4650. * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
  4651. * have tried the cluster allocator plenty of times at this
  4652. * point and not have found anything, so we are likely way too
  4653. * fragmented for the clustering stuff to find anything, so lets
  4654. * just skip it and let the allocator find whatever block it can
  4655. * find
  4656. */
  4657. if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
  4658. /*
  4659. * the refill lock keeps out other
  4660. * people trying to start a new cluster
  4661. */
  4662. spin_lock(&last_ptr->refill_lock);
  4663. if (last_ptr->block_group &&
  4664. (last_ptr->block_group->ro ||
  4665. !block_group_bits(last_ptr->block_group, data))) {
  4666. offset = 0;
  4667. goto refill_cluster;
  4668. }
  4669. offset = btrfs_alloc_from_cluster(block_group, last_ptr,
  4670. num_bytes, search_start);
  4671. if (offset) {
  4672. /* we have a block, we're done */
  4673. spin_unlock(&last_ptr->refill_lock);
  4674. goto checks;
  4675. }
  4676. spin_lock(&last_ptr->lock);
  4677. /*
  4678. * whoops, this cluster doesn't actually point to
  4679. * this block group. Get a ref on the block
  4680. * group is does point to and try again
  4681. */
  4682. if (!last_ptr_loop && last_ptr->block_group &&
  4683. last_ptr->block_group != block_group &&
  4684. index <=
  4685. get_block_group_index(last_ptr->block_group)) {
  4686. btrfs_put_block_group(block_group);
  4687. block_group = last_ptr->block_group;
  4688. btrfs_get_block_group(block_group);
  4689. spin_unlock(&last_ptr->lock);
  4690. spin_unlock(&last_ptr->refill_lock);
  4691. last_ptr_loop = 1;
  4692. search_start = block_group->key.objectid;
  4693. /*
  4694. * we know this block group is properly
  4695. * in the list because
  4696. * btrfs_remove_block_group, drops the
  4697. * cluster before it removes the block
  4698. * group from the list
  4699. */
  4700. goto have_block_group;
  4701. }
  4702. spin_unlock(&last_ptr->lock);
  4703. refill_cluster:
  4704. /*
  4705. * this cluster didn't work out, free it and
  4706. * start over
  4707. */
  4708. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  4709. last_ptr_loop = 0;
  4710. /* allocate a cluster in this block group */
  4711. ret = btrfs_find_space_cluster(trans, root,
  4712. block_group, last_ptr,
  4713. offset, num_bytes,
  4714. empty_cluster + empty_size);
  4715. if (ret == 0) {
  4716. /*
  4717. * now pull our allocation out of this
  4718. * cluster
  4719. */
  4720. offset = btrfs_alloc_from_cluster(block_group,
  4721. last_ptr, num_bytes,
  4722. search_start);
  4723. if (offset) {
  4724. /* we found one, proceed */
  4725. spin_unlock(&last_ptr->refill_lock);
  4726. goto checks;
  4727. }
  4728. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  4729. && !failed_cluster_refill) {
  4730. spin_unlock(&last_ptr->refill_lock);
  4731. failed_cluster_refill = true;
  4732. wait_block_group_cache_progress(block_group,
  4733. num_bytes + empty_cluster + empty_size);
  4734. goto have_block_group;
  4735. }
  4736. /*
  4737. * at this point we either didn't find a cluster
  4738. * or we weren't able to allocate a block from our
  4739. * cluster. Free the cluster we've been trying
  4740. * to use, and go to the next block group
  4741. */
  4742. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  4743. spin_unlock(&last_ptr->refill_lock);
  4744. goto loop;
  4745. }
  4746. offset = btrfs_find_space_for_alloc(block_group, search_start,
  4747. num_bytes, empty_size);
  4748. /*
  4749. * If we didn't find a chunk, and we haven't failed on this
  4750. * block group before, and this block group is in the middle of
  4751. * caching and we are ok with waiting, then go ahead and wait
  4752. * for progress to be made, and set failed_alloc to true.
  4753. *
  4754. * If failed_alloc is true then we've already waited on this
  4755. * block group once and should move on to the next block group.
  4756. */
  4757. if (!offset && !failed_alloc && !cached &&
  4758. loop > LOOP_CACHING_NOWAIT) {
  4759. wait_block_group_cache_progress(block_group,
  4760. num_bytes + empty_size);
  4761. failed_alloc = true;
  4762. goto have_block_group;
  4763. } else if (!offset) {
  4764. if (!cached)
  4765. have_caching_bg = true;
  4766. goto loop;
  4767. }
  4768. checks:
  4769. search_start = stripe_align(root, offset);
  4770. /* move on to the next group */
  4771. if (search_start + num_bytes >= search_end) {
  4772. btrfs_add_free_space(block_group, offset, num_bytes);
  4773. goto loop;
  4774. }
  4775. /* move on to the next group */
  4776. if (search_start + num_bytes >
  4777. block_group->key.objectid + block_group->key.offset) {
  4778. btrfs_add_free_space(block_group, offset, num_bytes);
  4779. goto loop;
  4780. }
  4781. ins->objectid = search_start;
  4782. ins->offset = num_bytes;
  4783. if (offset < search_start)
  4784. btrfs_add_free_space(block_group, offset,
  4785. search_start - offset);
  4786. BUG_ON(offset > search_start);
  4787. ret = btrfs_update_reserved_bytes(block_group, num_bytes,
  4788. alloc_type);
  4789. if (ret == -EAGAIN) {
  4790. btrfs_add_free_space(block_group, offset, num_bytes);
  4791. goto loop;
  4792. }
  4793. /* we are all good, lets return */
  4794. ins->objectid = search_start;
  4795. ins->offset = num_bytes;
  4796. if (offset < search_start)
  4797. btrfs_add_free_space(block_group, offset,
  4798. search_start - offset);
  4799. BUG_ON(offset > search_start);
  4800. btrfs_put_block_group(block_group);
  4801. break;
  4802. loop:
  4803. failed_cluster_refill = false;
  4804. failed_alloc = false;
  4805. BUG_ON(index != get_block_group_index(block_group));
  4806. btrfs_put_block_group(block_group);
  4807. }
  4808. up_read(&space_info->groups_sem);
  4809. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  4810. goto search;
  4811. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  4812. goto search;
  4813. /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
  4814. * for them to make caching progress. Also
  4815. * determine the best possible bg to cache
  4816. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  4817. * caching kthreads as we move along
  4818. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  4819. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  4820. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  4821. * again
  4822. */
  4823. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  4824. index = 0;
  4825. if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
  4826. found_uncached_bg = false;
  4827. loop++;
  4828. if (!ideal_cache_percent)
  4829. goto search;
  4830. /*
  4831. * 1 of the following 2 things have happened so far
  4832. *
  4833. * 1) We found an ideal block group for caching that
  4834. * is mostly full and will cache quickly, so we might
  4835. * as well wait for it.
  4836. *
  4837. * 2) We searched for cached only and we didn't find
  4838. * anything, and we didn't start any caching kthreads
  4839. * either, so chances are we will loop through and
  4840. * start a couple caching kthreads, and then come back
  4841. * around and just wait for them. This will be slower
  4842. * because we will have 2 caching kthreads reading at
  4843. * the same time when we could have just started one
  4844. * and waited for it to get far enough to give us an
  4845. * allocation, so go ahead and go to the wait caching
  4846. * loop.
  4847. */
  4848. loop = LOOP_CACHING_WAIT;
  4849. search_start = ideal_cache_offset;
  4850. ideal_cache_percent = 0;
  4851. goto ideal_cache;
  4852. } else if (loop == LOOP_FIND_IDEAL) {
  4853. /*
  4854. * Didn't find a uncached bg, wait on anything we find
  4855. * next.
  4856. */
  4857. loop = LOOP_CACHING_WAIT;
  4858. goto search;
  4859. }
  4860. loop++;
  4861. if (loop == LOOP_ALLOC_CHUNK) {
  4862. if (allowed_chunk_alloc) {
  4863. ret = do_chunk_alloc(trans, root, num_bytes +
  4864. 2 * 1024 * 1024, data,
  4865. CHUNK_ALLOC_LIMITED);
  4866. allowed_chunk_alloc = 0;
  4867. if (ret == 1)
  4868. done_chunk_alloc = 1;
  4869. } else if (!done_chunk_alloc &&
  4870. space_info->force_alloc ==
  4871. CHUNK_ALLOC_NO_FORCE) {
  4872. space_info->force_alloc = CHUNK_ALLOC_LIMITED;
  4873. }
  4874. /*
  4875. * We didn't allocate a chunk, go ahead and drop the
  4876. * empty size and loop again.
  4877. */
  4878. if (!done_chunk_alloc)
  4879. loop = LOOP_NO_EMPTY_SIZE;
  4880. }
  4881. if (loop == LOOP_NO_EMPTY_SIZE) {
  4882. empty_size = 0;
  4883. empty_cluster = 0;
  4884. }
  4885. goto search;
  4886. } else if (!ins->objectid) {
  4887. ret = -ENOSPC;
  4888. } else if (ins->objectid) {
  4889. ret = 0;
  4890. }
  4891. return ret;
  4892. }
  4893. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  4894. int dump_block_groups)
  4895. {
  4896. struct btrfs_block_group_cache *cache;
  4897. int index = 0;
  4898. spin_lock(&info->lock);
  4899. printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
  4900. (unsigned long long)info->flags,
  4901. (unsigned long long)(info->total_bytes - info->bytes_used -
  4902. info->bytes_pinned - info->bytes_reserved -
  4903. info->bytes_readonly),
  4904. (info->full) ? "" : "not ");
  4905. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  4906. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  4907. (unsigned long long)info->total_bytes,
  4908. (unsigned long long)info->bytes_used,
  4909. (unsigned long long)info->bytes_pinned,
  4910. (unsigned long long)info->bytes_reserved,
  4911. (unsigned long long)info->bytes_may_use,
  4912. (unsigned long long)info->bytes_readonly);
  4913. spin_unlock(&info->lock);
  4914. if (!dump_block_groups)
  4915. return;
  4916. down_read(&info->groups_sem);
  4917. again:
  4918. list_for_each_entry(cache, &info->block_groups[index], list) {
  4919. spin_lock(&cache->lock);
  4920. printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
  4921. "%llu pinned %llu reserved\n",
  4922. (unsigned long long)cache->key.objectid,
  4923. (unsigned long long)cache->key.offset,
  4924. (unsigned long long)btrfs_block_group_used(&cache->item),
  4925. (unsigned long long)cache->pinned,
  4926. (unsigned long long)cache->reserved);
  4927. btrfs_dump_free_space(cache, bytes);
  4928. spin_unlock(&cache->lock);
  4929. }
  4930. if (++index < BTRFS_NR_RAID_TYPES)
  4931. goto again;
  4932. up_read(&info->groups_sem);
  4933. }
  4934. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  4935. struct btrfs_root *root,
  4936. u64 num_bytes, u64 min_alloc_size,
  4937. u64 empty_size, u64 hint_byte,
  4938. u64 search_end, struct btrfs_key *ins,
  4939. u64 data)
  4940. {
  4941. int ret;
  4942. u64 search_start = 0;
  4943. data = btrfs_get_alloc_profile(root, data);
  4944. again:
  4945. /*
  4946. * the only place that sets empty_size is btrfs_realloc_node, which
  4947. * is not called recursively on allocations
  4948. */
  4949. if (empty_size || root->ref_cows)
  4950. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  4951. num_bytes + 2 * 1024 * 1024, data,
  4952. CHUNK_ALLOC_NO_FORCE);
  4953. WARN_ON(num_bytes < root->sectorsize);
  4954. ret = find_free_extent(trans, root, num_bytes, empty_size,
  4955. search_start, search_end, hint_byte,
  4956. ins, data);
  4957. if (ret == -ENOSPC && num_bytes > min_alloc_size) {
  4958. num_bytes = num_bytes >> 1;
  4959. num_bytes = num_bytes & ~(root->sectorsize - 1);
  4960. num_bytes = max(num_bytes, min_alloc_size);
  4961. do_chunk_alloc(trans, root->fs_info->extent_root,
  4962. num_bytes, data, CHUNK_ALLOC_FORCE);
  4963. goto again;
  4964. }
  4965. if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  4966. struct btrfs_space_info *sinfo;
  4967. sinfo = __find_space_info(root->fs_info, data);
  4968. printk(KERN_ERR "btrfs allocation failed flags %llu, "
  4969. "wanted %llu\n", (unsigned long long)data,
  4970. (unsigned long long)num_bytes);
  4971. dump_space_info(sinfo, num_bytes, 1);
  4972. }
  4973. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  4974. return ret;
  4975. }
  4976. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  4977. u64 start, u64 len, int pin)
  4978. {
  4979. struct btrfs_block_group_cache *cache;
  4980. int ret = 0;
  4981. cache = btrfs_lookup_block_group(root->fs_info, start);
  4982. if (!cache) {
  4983. printk(KERN_ERR "Unable to find block group for %llu\n",
  4984. (unsigned long long)start);
  4985. return -ENOSPC;
  4986. }
  4987. if (btrfs_test_opt(root, DISCARD))
  4988. ret = btrfs_discard_extent(root, start, len, NULL);
  4989. if (pin)
  4990. pin_down_extent(root, cache, start, len, 1);
  4991. else {
  4992. btrfs_add_free_space(cache, start, len);
  4993. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
  4994. }
  4995. btrfs_put_block_group(cache);
  4996. trace_btrfs_reserved_extent_free(root, start, len);
  4997. return ret;
  4998. }
  4999. int btrfs_free_reserved_extent(struct btrfs_root *root,
  5000. u64 start, u64 len)
  5001. {
  5002. return __btrfs_free_reserved_extent(root, start, len, 0);
  5003. }
  5004. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  5005. u64 start, u64 len)
  5006. {
  5007. return __btrfs_free_reserved_extent(root, start, len, 1);
  5008. }
  5009. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5010. struct btrfs_root *root,
  5011. u64 parent, u64 root_objectid,
  5012. u64 flags, u64 owner, u64 offset,
  5013. struct btrfs_key *ins, int ref_mod)
  5014. {
  5015. int ret;
  5016. struct btrfs_fs_info *fs_info = root->fs_info;
  5017. struct btrfs_extent_item *extent_item;
  5018. struct btrfs_extent_inline_ref *iref;
  5019. struct btrfs_path *path;
  5020. struct extent_buffer *leaf;
  5021. int type;
  5022. u32 size;
  5023. if (parent > 0)
  5024. type = BTRFS_SHARED_DATA_REF_KEY;
  5025. else
  5026. type = BTRFS_EXTENT_DATA_REF_KEY;
  5027. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  5028. path = btrfs_alloc_path();
  5029. if (!path)
  5030. return -ENOMEM;
  5031. path->leave_spinning = 1;
  5032. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5033. ins, size);
  5034. BUG_ON(ret);
  5035. leaf = path->nodes[0];
  5036. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5037. struct btrfs_extent_item);
  5038. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  5039. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5040. btrfs_set_extent_flags(leaf, extent_item,
  5041. flags | BTRFS_EXTENT_FLAG_DATA);
  5042. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  5043. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  5044. if (parent > 0) {
  5045. struct btrfs_shared_data_ref *ref;
  5046. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  5047. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5048. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  5049. } else {
  5050. struct btrfs_extent_data_ref *ref;
  5051. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  5052. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  5053. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  5054. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  5055. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  5056. }
  5057. btrfs_mark_buffer_dirty(path->nodes[0]);
  5058. btrfs_free_path(path);
  5059. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5060. if (ret) {
  5061. printk(KERN_ERR "btrfs update block group failed for %llu "
  5062. "%llu\n", (unsigned long long)ins->objectid,
  5063. (unsigned long long)ins->offset);
  5064. BUG();
  5065. }
  5066. return ret;
  5067. }
  5068. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  5069. struct btrfs_root *root,
  5070. u64 parent, u64 root_objectid,
  5071. u64 flags, struct btrfs_disk_key *key,
  5072. int level, struct btrfs_key *ins)
  5073. {
  5074. int ret;
  5075. struct btrfs_fs_info *fs_info = root->fs_info;
  5076. struct btrfs_extent_item *extent_item;
  5077. struct btrfs_tree_block_info *block_info;
  5078. struct btrfs_extent_inline_ref *iref;
  5079. struct btrfs_path *path;
  5080. struct extent_buffer *leaf;
  5081. u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
  5082. path = btrfs_alloc_path();
  5083. if (!path)
  5084. return -ENOMEM;
  5085. path->leave_spinning = 1;
  5086. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  5087. ins, size);
  5088. BUG_ON(ret);
  5089. leaf = path->nodes[0];
  5090. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  5091. struct btrfs_extent_item);
  5092. btrfs_set_extent_refs(leaf, extent_item, 1);
  5093. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  5094. btrfs_set_extent_flags(leaf, extent_item,
  5095. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  5096. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  5097. btrfs_set_tree_block_key(leaf, block_info, key);
  5098. btrfs_set_tree_block_level(leaf, block_info, level);
  5099. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  5100. if (parent > 0) {
  5101. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  5102. btrfs_set_extent_inline_ref_type(leaf, iref,
  5103. BTRFS_SHARED_BLOCK_REF_KEY);
  5104. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  5105. } else {
  5106. btrfs_set_extent_inline_ref_type(leaf, iref,
  5107. BTRFS_TREE_BLOCK_REF_KEY);
  5108. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  5109. }
  5110. btrfs_mark_buffer_dirty(leaf);
  5111. btrfs_free_path(path);
  5112. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  5113. if (ret) {
  5114. printk(KERN_ERR "btrfs update block group failed for %llu "
  5115. "%llu\n", (unsigned long long)ins->objectid,
  5116. (unsigned long long)ins->offset);
  5117. BUG();
  5118. }
  5119. return ret;
  5120. }
  5121. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  5122. struct btrfs_root *root,
  5123. u64 root_objectid, u64 owner,
  5124. u64 offset, struct btrfs_key *ins)
  5125. {
  5126. int ret;
  5127. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  5128. ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
  5129. 0, root_objectid, owner, offset,
  5130. BTRFS_ADD_DELAYED_EXTENT, NULL);
  5131. return ret;
  5132. }
  5133. /*
  5134. * this is used by the tree logging recovery code. It records that
  5135. * an extent has been allocated and makes sure to clear the free
  5136. * space cache bits as well
  5137. */
  5138. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  5139. struct btrfs_root *root,
  5140. u64 root_objectid, u64 owner, u64 offset,
  5141. struct btrfs_key *ins)
  5142. {
  5143. int ret;
  5144. struct btrfs_block_group_cache *block_group;
  5145. struct btrfs_caching_control *caching_ctl;
  5146. u64 start = ins->objectid;
  5147. u64 num_bytes = ins->offset;
  5148. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  5149. cache_block_group(block_group, trans, NULL, 0);
  5150. caching_ctl = get_caching_control(block_group);
  5151. if (!caching_ctl) {
  5152. BUG_ON(!block_group_cache_done(block_group));
  5153. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5154. BUG_ON(ret);
  5155. } else {
  5156. mutex_lock(&caching_ctl->mutex);
  5157. if (start >= caching_ctl->progress) {
  5158. ret = add_excluded_extent(root, start, num_bytes);
  5159. BUG_ON(ret);
  5160. } else if (start + num_bytes <= caching_ctl->progress) {
  5161. ret = btrfs_remove_free_space(block_group,
  5162. start, num_bytes);
  5163. BUG_ON(ret);
  5164. } else {
  5165. num_bytes = caching_ctl->progress - start;
  5166. ret = btrfs_remove_free_space(block_group,
  5167. start, num_bytes);
  5168. BUG_ON(ret);
  5169. start = caching_ctl->progress;
  5170. num_bytes = ins->objectid + ins->offset -
  5171. caching_ctl->progress;
  5172. ret = add_excluded_extent(root, start, num_bytes);
  5173. BUG_ON(ret);
  5174. }
  5175. mutex_unlock(&caching_ctl->mutex);
  5176. put_caching_control(caching_ctl);
  5177. }
  5178. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  5179. RESERVE_ALLOC_NO_ACCOUNT);
  5180. BUG_ON(ret);
  5181. btrfs_put_block_group(block_group);
  5182. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  5183. 0, owner, offset, ins, 1);
  5184. return ret;
  5185. }
  5186. struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
  5187. struct btrfs_root *root,
  5188. u64 bytenr, u32 blocksize,
  5189. int level)
  5190. {
  5191. struct extent_buffer *buf;
  5192. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5193. if (!buf)
  5194. return ERR_PTR(-ENOMEM);
  5195. btrfs_set_header_generation(buf, trans->transid);
  5196. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  5197. btrfs_tree_lock(buf);
  5198. clean_tree_block(trans, root, buf);
  5199. btrfs_set_lock_blocking(buf);
  5200. btrfs_set_buffer_uptodate(buf);
  5201. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  5202. /*
  5203. * we allow two log transactions at a time, use different
  5204. * EXENT bit to differentiate dirty pages.
  5205. */
  5206. if (root->log_transid % 2 == 0)
  5207. set_extent_dirty(&root->dirty_log_pages, buf->start,
  5208. buf->start + buf->len - 1, GFP_NOFS);
  5209. else
  5210. set_extent_new(&root->dirty_log_pages, buf->start,
  5211. buf->start + buf->len - 1, GFP_NOFS);
  5212. } else {
  5213. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  5214. buf->start + buf->len - 1, GFP_NOFS);
  5215. }
  5216. trans->blocks_used++;
  5217. /* this returns a buffer locked for blocking */
  5218. return buf;
  5219. }
  5220. static struct btrfs_block_rsv *
  5221. use_block_rsv(struct btrfs_trans_handle *trans,
  5222. struct btrfs_root *root, u32 blocksize)
  5223. {
  5224. struct btrfs_block_rsv *block_rsv;
  5225. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  5226. int ret;
  5227. block_rsv = get_block_rsv(trans, root);
  5228. if (block_rsv->size == 0) {
  5229. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5230. /*
  5231. * If we couldn't reserve metadata bytes try and use some from
  5232. * the global reserve.
  5233. */
  5234. if (ret && block_rsv != global_rsv) {
  5235. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5236. if (!ret)
  5237. return global_rsv;
  5238. return ERR_PTR(ret);
  5239. } else if (ret) {
  5240. return ERR_PTR(ret);
  5241. }
  5242. return block_rsv;
  5243. }
  5244. ret = block_rsv_use_bytes(block_rsv, blocksize);
  5245. if (!ret)
  5246. return block_rsv;
  5247. if (ret) {
  5248. static DEFINE_RATELIMIT_STATE(_rs,
  5249. DEFAULT_RATELIMIT_INTERVAL,
  5250. /*DEFAULT_RATELIMIT_BURST*/ 2);
  5251. if (__ratelimit(&_rs)) {
  5252. printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
  5253. WARN_ON(1);
  5254. }
  5255. ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
  5256. if (!ret) {
  5257. return block_rsv;
  5258. } else if (ret && block_rsv != global_rsv) {
  5259. ret = block_rsv_use_bytes(global_rsv, blocksize);
  5260. if (!ret)
  5261. return global_rsv;
  5262. }
  5263. }
  5264. return ERR_PTR(-ENOSPC);
  5265. }
  5266. static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
  5267. {
  5268. block_rsv_add_bytes(block_rsv, blocksize, 0);
  5269. block_rsv_release_bytes(block_rsv, NULL, 0);
  5270. }
  5271. /*
  5272. * finds a free extent and does all the dirty work required for allocation
  5273. * returns the key for the extent through ins, and a tree buffer for
  5274. * the first block of the extent through buf.
  5275. *
  5276. * returns the tree buffer or NULL.
  5277. */
  5278. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  5279. struct btrfs_root *root, u32 blocksize,
  5280. u64 parent, u64 root_objectid,
  5281. struct btrfs_disk_key *key, int level,
  5282. u64 hint, u64 empty_size)
  5283. {
  5284. struct btrfs_key ins;
  5285. struct btrfs_block_rsv *block_rsv;
  5286. struct extent_buffer *buf;
  5287. u64 flags = 0;
  5288. int ret;
  5289. block_rsv = use_block_rsv(trans, root, blocksize);
  5290. if (IS_ERR(block_rsv))
  5291. return ERR_CAST(block_rsv);
  5292. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5293. empty_size, hint, (u64)-1, &ins, 0);
  5294. if (ret) {
  5295. unuse_block_rsv(block_rsv, blocksize);
  5296. return ERR_PTR(ret);
  5297. }
  5298. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5299. blocksize, level);
  5300. BUG_ON(IS_ERR(buf));
  5301. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5302. if (parent == 0)
  5303. parent = ins.objectid;
  5304. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5305. } else
  5306. BUG_ON(parent > 0);
  5307. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5308. struct btrfs_delayed_extent_op *extent_op;
  5309. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  5310. BUG_ON(!extent_op);
  5311. if (key)
  5312. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5313. else
  5314. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5315. extent_op->flags_to_set = flags;
  5316. extent_op->update_key = 1;
  5317. extent_op->update_flags = 1;
  5318. extent_op->is_data = 0;
  5319. ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
  5320. ins.offset, parent, root_objectid,
  5321. level, BTRFS_ADD_DELAYED_EXTENT,
  5322. extent_op);
  5323. BUG_ON(ret);
  5324. }
  5325. return buf;
  5326. }
  5327. struct walk_control {
  5328. u64 refs[BTRFS_MAX_LEVEL];
  5329. u64 flags[BTRFS_MAX_LEVEL];
  5330. struct btrfs_key update_progress;
  5331. int stage;
  5332. int level;
  5333. int shared_level;
  5334. int update_ref;
  5335. int keep_locks;
  5336. int reada_slot;
  5337. int reada_count;
  5338. };
  5339. #define DROP_REFERENCE 1
  5340. #define UPDATE_BACKREF 2
  5341. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5342. struct btrfs_root *root,
  5343. struct walk_control *wc,
  5344. struct btrfs_path *path)
  5345. {
  5346. u64 bytenr;
  5347. u64 generation;
  5348. u64 refs;
  5349. u64 flags;
  5350. u32 nritems;
  5351. u32 blocksize;
  5352. struct btrfs_key key;
  5353. struct extent_buffer *eb;
  5354. int ret;
  5355. int slot;
  5356. int nread = 0;
  5357. if (path->slots[wc->level] < wc->reada_slot) {
  5358. wc->reada_count = wc->reada_count * 2 / 3;
  5359. wc->reada_count = max(wc->reada_count, 2);
  5360. } else {
  5361. wc->reada_count = wc->reada_count * 3 / 2;
  5362. wc->reada_count = min_t(int, wc->reada_count,
  5363. BTRFS_NODEPTRS_PER_BLOCK(root));
  5364. }
  5365. eb = path->nodes[wc->level];
  5366. nritems = btrfs_header_nritems(eb);
  5367. blocksize = btrfs_level_size(root, wc->level - 1);
  5368. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  5369. if (nread >= wc->reada_count)
  5370. break;
  5371. cond_resched();
  5372. bytenr = btrfs_node_blockptr(eb, slot);
  5373. generation = btrfs_node_ptr_generation(eb, slot);
  5374. if (slot == path->slots[wc->level])
  5375. goto reada;
  5376. if (wc->stage == UPDATE_BACKREF &&
  5377. generation <= root->root_key.offset)
  5378. continue;
  5379. /* We don't lock the tree block, it's OK to be racy here */
  5380. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5381. &refs, &flags);
  5382. BUG_ON(ret);
  5383. BUG_ON(refs == 0);
  5384. if (wc->stage == DROP_REFERENCE) {
  5385. if (refs == 1)
  5386. goto reada;
  5387. if (wc->level == 1 &&
  5388. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5389. continue;
  5390. if (!wc->update_ref ||
  5391. generation <= root->root_key.offset)
  5392. continue;
  5393. btrfs_node_key_to_cpu(eb, &key, slot);
  5394. ret = btrfs_comp_cpu_keys(&key,
  5395. &wc->update_progress);
  5396. if (ret < 0)
  5397. continue;
  5398. } else {
  5399. if (wc->level == 1 &&
  5400. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5401. continue;
  5402. }
  5403. reada:
  5404. ret = readahead_tree_block(root, bytenr, blocksize,
  5405. generation);
  5406. if (ret)
  5407. break;
  5408. nread++;
  5409. }
  5410. wc->reada_slot = slot;
  5411. }
  5412. /*
  5413. * hepler to process tree block while walking down the tree.
  5414. *
  5415. * when wc->stage == UPDATE_BACKREF, this function updates
  5416. * back refs for pointers in the block.
  5417. *
  5418. * NOTE: return value 1 means we should stop walking down.
  5419. */
  5420. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  5421. struct btrfs_root *root,
  5422. struct btrfs_path *path,
  5423. struct walk_control *wc, int lookup_info)
  5424. {
  5425. int level = wc->level;
  5426. struct extent_buffer *eb = path->nodes[level];
  5427. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5428. int ret;
  5429. if (wc->stage == UPDATE_BACKREF &&
  5430. btrfs_header_owner(eb) != root->root_key.objectid)
  5431. return 1;
  5432. /*
  5433. * when reference count of tree block is 1, it won't increase
  5434. * again. once full backref flag is set, we never clear it.
  5435. */
  5436. if (lookup_info &&
  5437. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  5438. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  5439. BUG_ON(!path->locks[level]);
  5440. ret = btrfs_lookup_extent_info(trans, root,
  5441. eb->start, eb->len,
  5442. &wc->refs[level],
  5443. &wc->flags[level]);
  5444. BUG_ON(ret);
  5445. BUG_ON(wc->refs[level] == 0);
  5446. }
  5447. if (wc->stage == DROP_REFERENCE) {
  5448. if (wc->refs[level] > 1)
  5449. return 1;
  5450. if (path->locks[level] && !wc->keep_locks) {
  5451. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5452. path->locks[level] = 0;
  5453. }
  5454. return 0;
  5455. }
  5456. /* wc->stage == UPDATE_BACKREF */
  5457. if (!(wc->flags[level] & flag)) {
  5458. BUG_ON(!path->locks[level]);
  5459. ret = btrfs_inc_ref(trans, root, eb, 1);
  5460. BUG_ON(ret);
  5461. ret = btrfs_dec_ref(trans, root, eb, 0);
  5462. BUG_ON(ret);
  5463. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  5464. eb->len, flag, 0);
  5465. BUG_ON(ret);
  5466. wc->flags[level] |= flag;
  5467. }
  5468. /*
  5469. * the block is shared by multiple trees, so it's not good to
  5470. * keep the tree lock
  5471. */
  5472. if (path->locks[level] && level > 0) {
  5473. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5474. path->locks[level] = 0;
  5475. }
  5476. return 0;
  5477. }
  5478. /*
  5479. * hepler to process tree block pointer.
  5480. *
  5481. * when wc->stage == DROP_REFERENCE, this function checks
  5482. * reference count of the block pointed to. if the block
  5483. * is shared and we need update back refs for the subtree
  5484. * rooted at the block, this function changes wc->stage to
  5485. * UPDATE_BACKREF. if the block is shared and there is no
  5486. * need to update back, this function drops the reference
  5487. * to the block.
  5488. *
  5489. * NOTE: return value 1 means we should stop walking down.
  5490. */
  5491. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  5492. struct btrfs_root *root,
  5493. struct btrfs_path *path,
  5494. struct walk_control *wc, int *lookup_info)
  5495. {
  5496. u64 bytenr;
  5497. u64 generation;
  5498. u64 parent;
  5499. u32 blocksize;
  5500. struct btrfs_key key;
  5501. struct extent_buffer *next;
  5502. int level = wc->level;
  5503. int reada = 0;
  5504. int ret = 0;
  5505. generation = btrfs_node_ptr_generation(path->nodes[level],
  5506. path->slots[level]);
  5507. /*
  5508. * if the lower level block was created before the snapshot
  5509. * was created, we know there is no need to update back refs
  5510. * for the subtree
  5511. */
  5512. if (wc->stage == UPDATE_BACKREF &&
  5513. generation <= root->root_key.offset) {
  5514. *lookup_info = 1;
  5515. return 1;
  5516. }
  5517. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  5518. blocksize = btrfs_level_size(root, level - 1);
  5519. next = btrfs_find_tree_block(root, bytenr, blocksize);
  5520. if (!next) {
  5521. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5522. if (!next)
  5523. return -ENOMEM;
  5524. reada = 1;
  5525. }
  5526. btrfs_tree_lock(next);
  5527. btrfs_set_lock_blocking(next);
  5528. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5529. &wc->refs[level - 1],
  5530. &wc->flags[level - 1]);
  5531. BUG_ON(ret);
  5532. BUG_ON(wc->refs[level - 1] == 0);
  5533. *lookup_info = 0;
  5534. if (wc->stage == DROP_REFERENCE) {
  5535. if (wc->refs[level - 1] > 1) {
  5536. if (level == 1 &&
  5537. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5538. goto skip;
  5539. if (!wc->update_ref ||
  5540. generation <= root->root_key.offset)
  5541. goto skip;
  5542. btrfs_node_key_to_cpu(path->nodes[level], &key,
  5543. path->slots[level]);
  5544. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  5545. if (ret < 0)
  5546. goto skip;
  5547. wc->stage = UPDATE_BACKREF;
  5548. wc->shared_level = level - 1;
  5549. }
  5550. } else {
  5551. if (level == 1 &&
  5552. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5553. goto skip;
  5554. }
  5555. if (!btrfs_buffer_uptodate(next, generation)) {
  5556. btrfs_tree_unlock(next);
  5557. free_extent_buffer(next);
  5558. next = NULL;
  5559. *lookup_info = 1;
  5560. }
  5561. if (!next) {
  5562. if (reada && level == 1)
  5563. reada_walk_down(trans, root, wc, path);
  5564. next = read_tree_block(root, bytenr, blocksize, generation);
  5565. if (!next)
  5566. return -EIO;
  5567. btrfs_tree_lock(next);
  5568. btrfs_set_lock_blocking(next);
  5569. }
  5570. level--;
  5571. BUG_ON(level != btrfs_header_level(next));
  5572. path->nodes[level] = next;
  5573. path->slots[level] = 0;
  5574. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5575. wc->level = level;
  5576. if (wc->level == 1)
  5577. wc->reada_slot = 0;
  5578. return 0;
  5579. skip:
  5580. wc->refs[level - 1] = 0;
  5581. wc->flags[level - 1] = 0;
  5582. if (wc->stage == DROP_REFERENCE) {
  5583. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  5584. parent = path->nodes[level]->start;
  5585. } else {
  5586. BUG_ON(root->root_key.objectid !=
  5587. btrfs_header_owner(path->nodes[level]));
  5588. parent = 0;
  5589. }
  5590. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  5591. root->root_key.objectid, level - 1, 0);
  5592. BUG_ON(ret);
  5593. }
  5594. btrfs_tree_unlock(next);
  5595. free_extent_buffer(next);
  5596. *lookup_info = 1;
  5597. return 1;
  5598. }
  5599. /*
  5600. * hepler to process tree block while walking up the tree.
  5601. *
  5602. * when wc->stage == DROP_REFERENCE, this function drops
  5603. * reference count on the block.
  5604. *
  5605. * when wc->stage == UPDATE_BACKREF, this function changes
  5606. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  5607. * to UPDATE_BACKREF previously while processing the block.
  5608. *
  5609. * NOTE: return value 1 means we should stop walking up.
  5610. */
  5611. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  5612. struct btrfs_root *root,
  5613. struct btrfs_path *path,
  5614. struct walk_control *wc)
  5615. {
  5616. int ret;
  5617. int level = wc->level;
  5618. struct extent_buffer *eb = path->nodes[level];
  5619. u64 parent = 0;
  5620. if (wc->stage == UPDATE_BACKREF) {
  5621. BUG_ON(wc->shared_level < level);
  5622. if (level < wc->shared_level)
  5623. goto out;
  5624. ret = find_next_key(path, level + 1, &wc->update_progress);
  5625. if (ret > 0)
  5626. wc->update_ref = 0;
  5627. wc->stage = DROP_REFERENCE;
  5628. wc->shared_level = -1;
  5629. path->slots[level] = 0;
  5630. /*
  5631. * check reference count again if the block isn't locked.
  5632. * we should start walking down the tree again if reference
  5633. * count is one.
  5634. */
  5635. if (!path->locks[level]) {
  5636. BUG_ON(level == 0);
  5637. btrfs_tree_lock(eb);
  5638. btrfs_set_lock_blocking(eb);
  5639. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5640. ret = btrfs_lookup_extent_info(trans, root,
  5641. eb->start, eb->len,
  5642. &wc->refs[level],
  5643. &wc->flags[level]);
  5644. BUG_ON(ret);
  5645. BUG_ON(wc->refs[level] == 0);
  5646. if (wc->refs[level] == 1) {
  5647. btrfs_tree_unlock_rw(eb, path->locks[level]);
  5648. return 1;
  5649. }
  5650. }
  5651. }
  5652. /* wc->stage == DROP_REFERENCE */
  5653. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  5654. if (wc->refs[level] == 1) {
  5655. if (level == 0) {
  5656. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5657. ret = btrfs_dec_ref(trans, root, eb, 1);
  5658. else
  5659. ret = btrfs_dec_ref(trans, root, eb, 0);
  5660. BUG_ON(ret);
  5661. }
  5662. /* make block locked assertion in clean_tree_block happy */
  5663. if (!path->locks[level] &&
  5664. btrfs_header_generation(eb) == trans->transid) {
  5665. btrfs_tree_lock(eb);
  5666. btrfs_set_lock_blocking(eb);
  5667. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5668. }
  5669. clean_tree_block(trans, root, eb);
  5670. }
  5671. if (eb == root->node) {
  5672. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5673. parent = eb->start;
  5674. else
  5675. BUG_ON(root->root_key.objectid !=
  5676. btrfs_header_owner(eb));
  5677. } else {
  5678. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5679. parent = path->nodes[level + 1]->start;
  5680. else
  5681. BUG_ON(root->root_key.objectid !=
  5682. btrfs_header_owner(path->nodes[level + 1]));
  5683. }
  5684. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  5685. out:
  5686. wc->refs[level] = 0;
  5687. wc->flags[level] = 0;
  5688. return 0;
  5689. }
  5690. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  5691. struct btrfs_root *root,
  5692. struct btrfs_path *path,
  5693. struct walk_control *wc)
  5694. {
  5695. int level = wc->level;
  5696. int lookup_info = 1;
  5697. int ret;
  5698. while (level >= 0) {
  5699. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  5700. if (ret > 0)
  5701. break;
  5702. if (level == 0)
  5703. break;
  5704. if (path->slots[level] >=
  5705. btrfs_header_nritems(path->nodes[level]))
  5706. break;
  5707. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  5708. if (ret > 0) {
  5709. path->slots[level]++;
  5710. continue;
  5711. } else if (ret < 0)
  5712. return ret;
  5713. level = wc->level;
  5714. }
  5715. return 0;
  5716. }
  5717. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  5718. struct btrfs_root *root,
  5719. struct btrfs_path *path,
  5720. struct walk_control *wc, int max_level)
  5721. {
  5722. int level = wc->level;
  5723. int ret;
  5724. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  5725. while (level < max_level && path->nodes[level]) {
  5726. wc->level = level;
  5727. if (path->slots[level] + 1 <
  5728. btrfs_header_nritems(path->nodes[level])) {
  5729. path->slots[level]++;
  5730. return 0;
  5731. } else {
  5732. ret = walk_up_proc(trans, root, path, wc);
  5733. if (ret > 0)
  5734. return 0;
  5735. if (path->locks[level]) {
  5736. btrfs_tree_unlock_rw(path->nodes[level],
  5737. path->locks[level]);
  5738. path->locks[level] = 0;
  5739. }
  5740. free_extent_buffer(path->nodes[level]);
  5741. path->nodes[level] = NULL;
  5742. level++;
  5743. }
  5744. }
  5745. return 1;
  5746. }
  5747. /*
  5748. * drop a subvolume tree.
  5749. *
  5750. * this function traverses the tree freeing any blocks that only
  5751. * referenced by the tree.
  5752. *
  5753. * when a shared tree block is found. this function decreases its
  5754. * reference count by one. if update_ref is true, this function
  5755. * also make sure backrefs for the shared block and all lower level
  5756. * blocks are properly updated.
  5757. */
  5758. void btrfs_drop_snapshot(struct btrfs_root *root,
  5759. struct btrfs_block_rsv *block_rsv, int update_ref)
  5760. {
  5761. struct btrfs_path *path;
  5762. struct btrfs_trans_handle *trans;
  5763. struct btrfs_root *tree_root = root->fs_info->tree_root;
  5764. struct btrfs_root_item *root_item = &root->root_item;
  5765. struct walk_control *wc;
  5766. struct btrfs_key key;
  5767. int err = 0;
  5768. int ret;
  5769. int level;
  5770. path = btrfs_alloc_path();
  5771. if (!path) {
  5772. err = -ENOMEM;
  5773. goto out;
  5774. }
  5775. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  5776. if (!wc) {
  5777. btrfs_free_path(path);
  5778. err = -ENOMEM;
  5779. goto out;
  5780. }
  5781. trans = btrfs_start_transaction(tree_root, 0);
  5782. BUG_ON(IS_ERR(trans));
  5783. if (block_rsv)
  5784. trans->block_rsv = block_rsv;
  5785. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  5786. level = btrfs_header_level(root->node);
  5787. path->nodes[level] = btrfs_lock_root_node(root);
  5788. btrfs_set_lock_blocking(path->nodes[level]);
  5789. path->slots[level] = 0;
  5790. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5791. memset(&wc->update_progress, 0,
  5792. sizeof(wc->update_progress));
  5793. } else {
  5794. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  5795. memcpy(&wc->update_progress, &key,
  5796. sizeof(wc->update_progress));
  5797. level = root_item->drop_level;
  5798. BUG_ON(level == 0);
  5799. path->lowest_level = level;
  5800. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  5801. path->lowest_level = 0;
  5802. if (ret < 0) {
  5803. err = ret;
  5804. goto out_free;
  5805. }
  5806. WARN_ON(ret > 0);
  5807. /*
  5808. * unlock our path, this is safe because only this
  5809. * function is allowed to delete this snapshot
  5810. */
  5811. btrfs_unlock_up_safe(path, 0);
  5812. level = btrfs_header_level(root->node);
  5813. while (1) {
  5814. btrfs_tree_lock(path->nodes[level]);
  5815. btrfs_set_lock_blocking(path->nodes[level]);
  5816. ret = btrfs_lookup_extent_info(trans, root,
  5817. path->nodes[level]->start,
  5818. path->nodes[level]->len,
  5819. &wc->refs[level],
  5820. &wc->flags[level]);
  5821. BUG_ON(ret);
  5822. BUG_ON(wc->refs[level] == 0);
  5823. if (level == root_item->drop_level)
  5824. break;
  5825. btrfs_tree_unlock(path->nodes[level]);
  5826. WARN_ON(wc->refs[level] != 1);
  5827. level--;
  5828. }
  5829. }
  5830. wc->level = level;
  5831. wc->shared_level = -1;
  5832. wc->stage = DROP_REFERENCE;
  5833. wc->update_ref = update_ref;
  5834. wc->keep_locks = 0;
  5835. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  5836. while (1) {
  5837. ret = walk_down_tree(trans, root, path, wc);
  5838. if (ret < 0) {
  5839. err = ret;
  5840. break;
  5841. }
  5842. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  5843. if (ret < 0) {
  5844. err = ret;
  5845. break;
  5846. }
  5847. if (ret > 0) {
  5848. BUG_ON(wc->stage != DROP_REFERENCE);
  5849. break;
  5850. }
  5851. if (wc->stage == DROP_REFERENCE) {
  5852. level = wc->level;
  5853. btrfs_node_key(path->nodes[level],
  5854. &root_item->drop_progress,
  5855. path->slots[level]);
  5856. root_item->drop_level = level;
  5857. }
  5858. BUG_ON(wc->level == 0);
  5859. if (btrfs_should_end_transaction(trans, tree_root)) {
  5860. ret = btrfs_update_root(trans, tree_root,
  5861. &root->root_key,
  5862. root_item);
  5863. BUG_ON(ret);
  5864. btrfs_end_transaction_throttle(trans, tree_root);
  5865. trans = btrfs_start_transaction(tree_root, 0);
  5866. BUG_ON(IS_ERR(trans));
  5867. if (block_rsv)
  5868. trans->block_rsv = block_rsv;
  5869. }
  5870. }
  5871. btrfs_release_path(path);
  5872. BUG_ON(err);
  5873. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  5874. BUG_ON(ret);
  5875. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  5876. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  5877. NULL, NULL);
  5878. BUG_ON(ret < 0);
  5879. if (ret > 0) {
  5880. /* if we fail to delete the orphan item this time
  5881. * around, it'll get picked up the next time.
  5882. *
  5883. * The most common failure here is just -ENOENT.
  5884. */
  5885. btrfs_del_orphan_item(trans, tree_root,
  5886. root->root_key.objectid);
  5887. }
  5888. }
  5889. if (root->in_radix) {
  5890. btrfs_free_fs_root(tree_root->fs_info, root);
  5891. } else {
  5892. free_extent_buffer(root->node);
  5893. free_extent_buffer(root->commit_root);
  5894. kfree(root);
  5895. }
  5896. out_free:
  5897. btrfs_end_transaction_throttle(trans, tree_root);
  5898. kfree(wc);
  5899. btrfs_free_path(path);
  5900. out:
  5901. if (err)
  5902. btrfs_std_error(root->fs_info, err);
  5903. return;
  5904. }
  5905. /*
  5906. * drop subtree rooted at tree block 'node'.
  5907. *
  5908. * NOTE: this function will unlock and release tree block 'node'
  5909. */
  5910. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  5911. struct btrfs_root *root,
  5912. struct extent_buffer *node,
  5913. struct extent_buffer *parent)
  5914. {
  5915. struct btrfs_path *path;
  5916. struct walk_control *wc;
  5917. int level;
  5918. int parent_level;
  5919. int ret = 0;
  5920. int wret;
  5921. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  5922. path = btrfs_alloc_path();
  5923. if (!path)
  5924. return -ENOMEM;
  5925. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  5926. if (!wc) {
  5927. btrfs_free_path(path);
  5928. return -ENOMEM;
  5929. }
  5930. btrfs_assert_tree_locked(parent);
  5931. parent_level = btrfs_header_level(parent);
  5932. extent_buffer_get(parent);
  5933. path->nodes[parent_level] = parent;
  5934. path->slots[parent_level] = btrfs_header_nritems(parent);
  5935. btrfs_assert_tree_locked(node);
  5936. level = btrfs_header_level(node);
  5937. path->nodes[level] = node;
  5938. path->slots[level] = 0;
  5939. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  5940. wc->refs[parent_level] = 1;
  5941. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5942. wc->level = level;
  5943. wc->shared_level = -1;
  5944. wc->stage = DROP_REFERENCE;
  5945. wc->update_ref = 0;
  5946. wc->keep_locks = 1;
  5947. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  5948. while (1) {
  5949. wret = walk_down_tree(trans, root, path, wc);
  5950. if (wret < 0) {
  5951. ret = wret;
  5952. break;
  5953. }
  5954. wret = walk_up_tree(trans, root, path, wc, parent_level);
  5955. if (wret < 0)
  5956. ret = wret;
  5957. if (wret != 0)
  5958. break;
  5959. }
  5960. kfree(wc);
  5961. btrfs_free_path(path);
  5962. return ret;
  5963. }
  5964. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  5965. {
  5966. u64 num_devices;
  5967. u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
  5968. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  5969. /*
  5970. * we add in the count of missing devices because we want
  5971. * to make sure that any RAID levels on a degraded FS
  5972. * continue to be honored.
  5973. */
  5974. num_devices = root->fs_info->fs_devices->rw_devices +
  5975. root->fs_info->fs_devices->missing_devices;
  5976. if (num_devices == 1) {
  5977. stripped |= BTRFS_BLOCK_GROUP_DUP;
  5978. stripped = flags & ~stripped;
  5979. /* turn raid0 into single device chunks */
  5980. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  5981. return stripped;
  5982. /* turn mirroring into duplication */
  5983. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  5984. BTRFS_BLOCK_GROUP_RAID10))
  5985. return stripped | BTRFS_BLOCK_GROUP_DUP;
  5986. return flags;
  5987. } else {
  5988. /* they already had raid on here, just return */
  5989. if (flags & stripped)
  5990. return flags;
  5991. stripped |= BTRFS_BLOCK_GROUP_DUP;
  5992. stripped = flags & ~stripped;
  5993. /* switch duplicated blocks with raid1 */
  5994. if (flags & BTRFS_BLOCK_GROUP_DUP)
  5995. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  5996. /* turn single device chunks into raid0 */
  5997. return stripped | BTRFS_BLOCK_GROUP_RAID0;
  5998. }
  5999. return flags;
  6000. }
  6001. static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  6002. {
  6003. struct btrfs_space_info *sinfo = cache->space_info;
  6004. u64 num_bytes;
  6005. u64 min_allocable_bytes;
  6006. int ret = -ENOSPC;
  6007. /*
  6008. * We need some metadata space and system metadata space for
  6009. * allocating chunks in some corner cases until we force to set
  6010. * it to be readonly.
  6011. */
  6012. if ((sinfo->flags &
  6013. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  6014. !force)
  6015. min_allocable_bytes = 1 * 1024 * 1024;
  6016. else
  6017. min_allocable_bytes = 0;
  6018. spin_lock(&sinfo->lock);
  6019. spin_lock(&cache->lock);
  6020. if (cache->ro) {
  6021. ret = 0;
  6022. goto out;
  6023. }
  6024. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6025. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6026. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  6027. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  6028. min_allocable_bytes <= sinfo->total_bytes) {
  6029. sinfo->bytes_readonly += num_bytes;
  6030. cache->ro = 1;
  6031. ret = 0;
  6032. }
  6033. out:
  6034. spin_unlock(&cache->lock);
  6035. spin_unlock(&sinfo->lock);
  6036. return ret;
  6037. }
  6038. int btrfs_set_block_group_ro(struct btrfs_root *root,
  6039. struct btrfs_block_group_cache *cache)
  6040. {
  6041. struct btrfs_trans_handle *trans;
  6042. u64 alloc_flags;
  6043. int ret;
  6044. BUG_ON(cache->ro);
  6045. trans = btrfs_join_transaction(root);
  6046. BUG_ON(IS_ERR(trans));
  6047. alloc_flags = update_block_group_flags(root, cache->flags);
  6048. if (alloc_flags != cache->flags)
  6049. do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6050. CHUNK_ALLOC_FORCE);
  6051. ret = set_block_group_ro(cache, 0);
  6052. if (!ret)
  6053. goto out;
  6054. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  6055. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6056. CHUNK_ALLOC_FORCE);
  6057. if (ret < 0)
  6058. goto out;
  6059. ret = set_block_group_ro(cache, 0);
  6060. out:
  6061. btrfs_end_transaction(trans, root);
  6062. return ret;
  6063. }
  6064. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  6065. struct btrfs_root *root, u64 type)
  6066. {
  6067. u64 alloc_flags = get_alloc_profile(root, type);
  6068. return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
  6069. CHUNK_ALLOC_FORCE);
  6070. }
  6071. /*
  6072. * helper to account the unused space of all the readonly block group in the
  6073. * list. takes mirrors into account.
  6074. */
  6075. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  6076. {
  6077. struct btrfs_block_group_cache *block_group;
  6078. u64 free_bytes = 0;
  6079. int factor;
  6080. list_for_each_entry(block_group, groups_list, list) {
  6081. spin_lock(&block_group->lock);
  6082. if (!block_group->ro) {
  6083. spin_unlock(&block_group->lock);
  6084. continue;
  6085. }
  6086. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6087. BTRFS_BLOCK_GROUP_RAID10 |
  6088. BTRFS_BLOCK_GROUP_DUP))
  6089. factor = 2;
  6090. else
  6091. factor = 1;
  6092. free_bytes += (block_group->key.offset -
  6093. btrfs_block_group_used(&block_group->item)) *
  6094. factor;
  6095. spin_unlock(&block_group->lock);
  6096. }
  6097. return free_bytes;
  6098. }
  6099. /*
  6100. * helper to account the unused space of all the readonly block group in the
  6101. * space_info. takes mirrors into account.
  6102. */
  6103. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  6104. {
  6105. int i;
  6106. u64 free_bytes = 0;
  6107. spin_lock(&sinfo->lock);
  6108. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  6109. if (!list_empty(&sinfo->block_groups[i]))
  6110. free_bytes += __btrfs_get_ro_block_group_free_space(
  6111. &sinfo->block_groups[i]);
  6112. spin_unlock(&sinfo->lock);
  6113. return free_bytes;
  6114. }
  6115. int btrfs_set_block_group_rw(struct btrfs_root *root,
  6116. struct btrfs_block_group_cache *cache)
  6117. {
  6118. struct btrfs_space_info *sinfo = cache->space_info;
  6119. u64 num_bytes;
  6120. BUG_ON(!cache->ro);
  6121. spin_lock(&sinfo->lock);
  6122. spin_lock(&cache->lock);
  6123. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  6124. cache->bytes_super - btrfs_block_group_used(&cache->item);
  6125. sinfo->bytes_readonly -= num_bytes;
  6126. cache->ro = 0;
  6127. spin_unlock(&cache->lock);
  6128. spin_unlock(&sinfo->lock);
  6129. return 0;
  6130. }
  6131. /*
  6132. * checks to see if its even possible to relocate this block group.
  6133. *
  6134. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  6135. * ok to go ahead and try.
  6136. */
  6137. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  6138. {
  6139. struct btrfs_block_group_cache *block_group;
  6140. struct btrfs_space_info *space_info;
  6141. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  6142. struct btrfs_device *device;
  6143. u64 min_free;
  6144. u64 dev_min = 1;
  6145. u64 dev_nr = 0;
  6146. int index;
  6147. int full = 0;
  6148. int ret = 0;
  6149. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  6150. /* odd, couldn't find the block group, leave it alone */
  6151. if (!block_group)
  6152. return -1;
  6153. min_free = btrfs_block_group_used(&block_group->item);
  6154. /* no bytes used, we're good */
  6155. if (!min_free)
  6156. goto out;
  6157. space_info = block_group->space_info;
  6158. spin_lock(&space_info->lock);
  6159. full = space_info->full;
  6160. /*
  6161. * if this is the last block group we have in this space, we can't
  6162. * relocate it unless we're able to allocate a new chunk below.
  6163. *
  6164. * Otherwise, we need to make sure we have room in the space to handle
  6165. * all of the extents from this block group. If we can, we're good
  6166. */
  6167. if ((space_info->total_bytes != block_group->key.offset) &&
  6168. (space_info->bytes_used + space_info->bytes_reserved +
  6169. space_info->bytes_pinned + space_info->bytes_readonly +
  6170. min_free < space_info->total_bytes)) {
  6171. spin_unlock(&space_info->lock);
  6172. goto out;
  6173. }
  6174. spin_unlock(&space_info->lock);
  6175. /*
  6176. * ok we don't have enough space, but maybe we have free space on our
  6177. * devices to allocate new chunks for relocation, so loop through our
  6178. * alloc devices and guess if we have enough space. However, if we
  6179. * were marked as full, then we know there aren't enough chunks, and we
  6180. * can just return.
  6181. */
  6182. ret = -1;
  6183. if (full)
  6184. goto out;
  6185. /*
  6186. * index:
  6187. * 0: raid10
  6188. * 1: raid1
  6189. * 2: dup
  6190. * 3: raid0
  6191. * 4: single
  6192. */
  6193. index = get_block_group_index(block_group);
  6194. if (index == 0) {
  6195. dev_min = 4;
  6196. /* Divide by 2 */
  6197. min_free >>= 1;
  6198. } else if (index == 1) {
  6199. dev_min = 2;
  6200. } else if (index == 2) {
  6201. /* Multiply by 2 */
  6202. min_free <<= 1;
  6203. } else if (index == 3) {
  6204. dev_min = fs_devices->rw_devices;
  6205. do_div(min_free, dev_min);
  6206. }
  6207. mutex_lock(&root->fs_info->chunk_mutex);
  6208. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  6209. u64 dev_offset;
  6210. /*
  6211. * check to make sure we can actually find a chunk with enough
  6212. * space to fit our block group in.
  6213. */
  6214. if (device->total_bytes > device->bytes_used + min_free) {
  6215. ret = find_free_dev_extent(NULL, device, min_free,
  6216. &dev_offset, NULL);
  6217. if (!ret)
  6218. dev_nr++;
  6219. if (dev_nr >= dev_min)
  6220. break;
  6221. ret = -1;
  6222. }
  6223. }
  6224. mutex_unlock(&root->fs_info->chunk_mutex);
  6225. out:
  6226. btrfs_put_block_group(block_group);
  6227. return ret;
  6228. }
  6229. static int find_first_block_group(struct btrfs_root *root,
  6230. struct btrfs_path *path, struct btrfs_key *key)
  6231. {
  6232. int ret = 0;
  6233. struct btrfs_key found_key;
  6234. struct extent_buffer *leaf;
  6235. int slot;
  6236. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  6237. if (ret < 0)
  6238. goto out;
  6239. while (1) {
  6240. slot = path->slots[0];
  6241. leaf = path->nodes[0];
  6242. if (slot >= btrfs_header_nritems(leaf)) {
  6243. ret = btrfs_next_leaf(root, path);
  6244. if (ret == 0)
  6245. continue;
  6246. if (ret < 0)
  6247. goto out;
  6248. break;
  6249. }
  6250. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  6251. if (found_key.objectid >= key->objectid &&
  6252. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  6253. ret = 0;
  6254. goto out;
  6255. }
  6256. path->slots[0]++;
  6257. }
  6258. out:
  6259. return ret;
  6260. }
  6261. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  6262. {
  6263. struct btrfs_block_group_cache *block_group;
  6264. u64 last = 0;
  6265. while (1) {
  6266. struct inode *inode;
  6267. block_group = btrfs_lookup_first_block_group(info, last);
  6268. while (block_group) {
  6269. spin_lock(&block_group->lock);
  6270. if (block_group->iref)
  6271. break;
  6272. spin_unlock(&block_group->lock);
  6273. block_group = next_block_group(info->tree_root,
  6274. block_group);
  6275. }
  6276. if (!block_group) {
  6277. if (last == 0)
  6278. break;
  6279. last = 0;
  6280. continue;
  6281. }
  6282. inode = block_group->inode;
  6283. block_group->iref = 0;
  6284. block_group->inode = NULL;
  6285. spin_unlock(&block_group->lock);
  6286. iput(inode);
  6287. last = block_group->key.objectid + block_group->key.offset;
  6288. btrfs_put_block_group(block_group);
  6289. }
  6290. }
  6291. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  6292. {
  6293. struct btrfs_block_group_cache *block_group;
  6294. struct btrfs_space_info *space_info;
  6295. struct btrfs_caching_control *caching_ctl;
  6296. struct rb_node *n;
  6297. down_write(&info->extent_commit_sem);
  6298. while (!list_empty(&info->caching_block_groups)) {
  6299. caching_ctl = list_entry(info->caching_block_groups.next,
  6300. struct btrfs_caching_control, list);
  6301. list_del(&caching_ctl->list);
  6302. put_caching_control(caching_ctl);
  6303. }
  6304. up_write(&info->extent_commit_sem);
  6305. spin_lock(&info->block_group_cache_lock);
  6306. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  6307. block_group = rb_entry(n, struct btrfs_block_group_cache,
  6308. cache_node);
  6309. rb_erase(&block_group->cache_node,
  6310. &info->block_group_cache_tree);
  6311. spin_unlock(&info->block_group_cache_lock);
  6312. down_write(&block_group->space_info->groups_sem);
  6313. list_del(&block_group->list);
  6314. up_write(&block_group->space_info->groups_sem);
  6315. if (block_group->cached == BTRFS_CACHE_STARTED)
  6316. wait_block_group_cache_done(block_group);
  6317. /*
  6318. * We haven't cached this block group, which means we could
  6319. * possibly have excluded extents on this block group.
  6320. */
  6321. if (block_group->cached == BTRFS_CACHE_NO)
  6322. free_excluded_extents(info->extent_root, block_group);
  6323. btrfs_remove_free_space_cache(block_group);
  6324. btrfs_put_block_group(block_group);
  6325. spin_lock(&info->block_group_cache_lock);
  6326. }
  6327. spin_unlock(&info->block_group_cache_lock);
  6328. /* now that all the block groups are freed, go through and
  6329. * free all the space_info structs. This is only called during
  6330. * the final stages of unmount, and so we know nobody is
  6331. * using them. We call synchronize_rcu() once before we start,
  6332. * just to be on the safe side.
  6333. */
  6334. synchronize_rcu();
  6335. release_global_block_rsv(info);
  6336. while(!list_empty(&info->space_info)) {
  6337. space_info = list_entry(info->space_info.next,
  6338. struct btrfs_space_info,
  6339. list);
  6340. if (space_info->bytes_pinned > 0 ||
  6341. space_info->bytes_reserved > 0 ||
  6342. space_info->bytes_may_use > 0) {
  6343. WARN_ON(1);
  6344. dump_space_info(space_info, 0, 0);
  6345. }
  6346. list_del(&space_info->list);
  6347. kfree(space_info);
  6348. }
  6349. return 0;
  6350. }
  6351. static void __link_block_group(struct btrfs_space_info *space_info,
  6352. struct btrfs_block_group_cache *cache)
  6353. {
  6354. int index = get_block_group_index(cache);
  6355. down_write(&space_info->groups_sem);
  6356. list_add_tail(&cache->list, &space_info->block_groups[index]);
  6357. up_write(&space_info->groups_sem);
  6358. }
  6359. int btrfs_read_block_groups(struct btrfs_root *root)
  6360. {
  6361. struct btrfs_path *path;
  6362. int ret;
  6363. struct btrfs_block_group_cache *cache;
  6364. struct btrfs_fs_info *info = root->fs_info;
  6365. struct btrfs_space_info *space_info;
  6366. struct btrfs_key key;
  6367. struct btrfs_key found_key;
  6368. struct extent_buffer *leaf;
  6369. int need_clear = 0;
  6370. u64 cache_gen;
  6371. root = info->extent_root;
  6372. key.objectid = 0;
  6373. key.offset = 0;
  6374. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  6375. path = btrfs_alloc_path();
  6376. if (!path)
  6377. return -ENOMEM;
  6378. path->reada = 1;
  6379. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  6380. if (btrfs_test_opt(root, SPACE_CACHE) &&
  6381. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  6382. need_clear = 1;
  6383. if (btrfs_test_opt(root, CLEAR_CACHE))
  6384. need_clear = 1;
  6385. while (1) {
  6386. ret = find_first_block_group(root, path, &key);
  6387. if (ret > 0)
  6388. break;
  6389. if (ret != 0)
  6390. goto error;
  6391. leaf = path->nodes[0];
  6392. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6393. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6394. if (!cache) {
  6395. ret = -ENOMEM;
  6396. goto error;
  6397. }
  6398. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6399. GFP_NOFS);
  6400. if (!cache->free_space_ctl) {
  6401. kfree(cache);
  6402. ret = -ENOMEM;
  6403. goto error;
  6404. }
  6405. atomic_set(&cache->count, 1);
  6406. spin_lock_init(&cache->lock);
  6407. cache->fs_info = info;
  6408. INIT_LIST_HEAD(&cache->list);
  6409. INIT_LIST_HEAD(&cache->cluster_list);
  6410. if (need_clear)
  6411. cache->disk_cache_state = BTRFS_DC_CLEAR;
  6412. read_extent_buffer(leaf, &cache->item,
  6413. btrfs_item_ptr_offset(leaf, path->slots[0]),
  6414. sizeof(cache->item));
  6415. memcpy(&cache->key, &found_key, sizeof(found_key));
  6416. key.objectid = found_key.objectid + found_key.offset;
  6417. btrfs_release_path(path);
  6418. cache->flags = btrfs_block_group_flags(&cache->item);
  6419. cache->sectorsize = root->sectorsize;
  6420. btrfs_init_free_space_ctl(cache);
  6421. /*
  6422. * We need to exclude the super stripes now so that the space
  6423. * info has super bytes accounted for, otherwise we'll think
  6424. * we have more space than we actually do.
  6425. */
  6426. exclude_super_stripes(root, cache);
  6427. /*
  6428. * check for two cases, either we are full, and therefore
  6429. * don't need to bother with the caching work since we won't
  6430. * find any space, or we are empty, and we can just add all
  6431. * the space in and be done with it. This saves us _alot_ of
  6432. * time, particularly in the full case.
  6433. */
  6434. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  6435. cache->last_byte_to_unpin = (u64)-1;
  6436. cache->cached = BTRFS_CACHE_FINISHED;
  6437. free_excluded_extents(root, cache);
  6438. } else if (btrfs_block_group_used(&cache->item) == 0) {
  6439. cache->last_byte_to_unpin = (u64)-1;
  6440. cache->cached = BTRFS_CACHE_FINISHED;
  6441. add_new_free_space(cache, root->fs_info,
  6442. found_key.objectid,
  6443. found_key.objectid +
  6444. found_key.offset);
  6445. free_excluded_extents(root, cache);
  6446. }
  6447. ret = update_space_info(info, cache->flags, found_key.offset,
  6448. btrfs_block_group_used(&cache->item),
  6449. &space_info);
  6450. BUG_ON(ret);
  6451. cache->space_info = space_info;
  6452. spin_lock(&cache->space_info->lock);
  6453. cache->space_info->bytes_readonly += cache->bytes_super;
  6454. spin_unlock(&cache->space_info->lock);
  6455. __link_block_group(space_info, cache);
  6456. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6457. BUG_ON(ret);
  6458. set_avail_alloc_bits(root->fs_info, cache->flags);
  6459. if (btrfs_chunk_readonly(root, cache->key.objectid))
  6460. set_block_group_ro(cache, 1);
  6461. }
  6462. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  6463. if (!(get_alloc_profile(root, space_info->flags) &
  6464. (BTRFS_BLOCK_GROUP_RAID10 |
  6465. BTRFS_BLOCK_GROUP_RAID1 |
  6466. BTRFS_BLOCK_GROUP_DUP)))
  6467. continue;
  6468. /*
  6469. * avoid allocating from un-mirrored block group if there are
  6470. * mirrored block groups.
  6471. */
  6472. list_for_each_entry(cache, &space_info->block_groups[3], list)
  6473. set_block_group_ro(cache, 1);
  6474. list_for_each_entry(cache, &space_info->block_groups[4], list)
  6475. set_block_group_ro(cache, 1);
  6476. }
  6477. init_global_block_rsv(info);
  6478. ret = 0;
  6479. error:
  6480. btrfs_free_path(path);
  6481. return ret;
  6482. }
  6483. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  6484. struct btrfs_root *root, u64 bytes_used,
  6485. u64 type, u64 chunk_objectid, u64 chunk_offset,
  6486. u64 size)
  6487. {
  6488. int ret;
  6489. struct btrfs_root *extent_root;
  6490. struct btrfs_block_group_cache *cache;
  6491. extent_root = root->fs_info->extent_root;
  6492. root->fs_info->last_trans_log_full_commit = trans->transid;
  6493. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  6494. if (!cache)
  6495. return -ENOMEM;
  6496. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  6497. GFP_NOFS);
  6498. if (!cache->free_space_ctl) {
  6499. kfree(cache);
  6500. return -ENOMEM;
  6501. }
  6502. cache->key.objectid = chunk_offset;
  6503. cache->key.offset = size;
  6504. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  6505. cache->sectorsize = root->sectorsize;
  6506. cache->fs_info = root->fs_info;
  6507. atomic_set(&cache->count, 1);
  6508. spin_lock_init(&cache->lock);
  6509. INIT_LIST_HEAD(&cache->list);
  6510. INIT_LIST_HEAD(&cache->cluster_list);
  6511. btrfs_init_free_space_ctl(cache);
  6512. btrfs_set_block_group_used(&cache->item, bytes_used);
  6513. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  6514. cache->flags = type;
  6515. btrfs_set_block_group_flags(&cache->item, type);
  6516. cache->last_byte_to_unpin = (u64)-1;
  6517. cache->cached = BTRFS_CACHE_FINISHED;
  6518. exclude_super_stripes(root, cache);
  6519. add_new_free_space(cache, root->fs_info, chunk_offset,
  6520. chunk_offset + size);
  6521. free_excluded_extents(root, cache);
  6522. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  6523. &cache->space_info);
  6524. BUG_ON(ret);
  6525. spin_lock(&cache->space_info->lock);
  6526. cache->space_info->bytes_readonly += cache->bytes_super;
  6527. spin_unlock(&cache->space_info->lock);
  6528. __link_block_group(cache->space_info, cache);
  6529. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  6530. BUG_ON(ret);
  6531. ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
  6532. sizeof(cache->item));
  6533. BUG_ON(ret);
  6534. set_avail_alloc_bits(extent_root->fs_info, type);
  6535. return 0;
  6536. }
  6537. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  6538. struct btrfs_root *root, u64 group_start)
  6539. {
  6540. struct btrfs_path *path;
  6541. struct btrfs_block_group_cache *block_group;
  6542. struct btrfs_free_cluster *cluster;
  6543. struct btrfs_root *tree_root = root->fs_info->tree_root;
  6544. struct btrfs_key key;
  6545. struct inode *inode;
  6546. int ret;
  6547. int factor;
  6548. root = root->fs_info->extent_root;
  6549. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  6550. BUG_ON(!block_group);
  6551. BUG_ON(!block_group->ro);
  6552. /*
  6553. * Free the reserved super bytes from this block group before
  6554. * remove it.
  6555. */
  6556. free_excluded_extents(root, block_group);
  6557. memcpy(&key, &block_group->key, sizeof(key));
  6558. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  6559. BTRFS_BLOCK_GROUP_RAID1 |
  6560. BTRFS_BLOCK_GROUP_RAID10))
  6561. factor = 2;
  6562. else
  6563. factor = 1;
  6564. /* make sure this block group isn't part of an allocation cluster */
  6565. cluster = &root->fs_info->data_alloc_cluster;
  6566. spin_lock(&cluster->refill_lock);
  6567. btrfs_return_cluster_to_free_space(block_group, cluster);
  6568. spin_unlock(&cluster->refill_lock);
  6569. /*
  6570. * make sure this block group isn't part of a metadata
  6571. * allocation cluster
  6572. */
  6573. cluster = &root->fs_info->meta_alloc_cluster;
  6574. spin_lock(&cluster->refill_lock);
  6575. btrfs_return_cluster_to_free_space(block_group, cluster);
  6576. spin_unlock(&cluster->refill_lock);
  6577. path = btrfs_alloc_path();
  6578. if (!path) {
  6579. ret = -ENOMEM;
  6580. goto out;
  6581. }
  6582. inode = lookup_free_space_inode(tree_root, block_group, path);
  6583. if (!IS_ERR(inode)) {
  6584. ret = btrfs_orphan_add(trans, inode);
  6585. BUG_ON(ret);
  6586. clear_nlink(inode);
  6587. /* One for the block groups ref */
  6588. spin_lock(&block_group->lock);
  6589. if (block_group->iref) {
  6590. block_group->iref = 0;
  6591. block_group->inode = NULL;
  6592. spin_unlock(&block_group->lock);
  6593. iput(inode);
  6594. } else {
  6595. spin_unlock(&block_group->lock);
  6596. }
  6597. /* One for our lookup ref */
  6598. btrfs_add_delayed_iput(inode);
  6599. }
  6600. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  6601. key.offset = block_group->key.objectid;
  6602. key.type = 0;
  6603. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  6604. if (ret < 0)
  6605. goto out;
  6606. if (ret > 0)
  6607. btrfs_release_path(path);
  6608. if (ret == 0) {
  6609. ret = btrfs_del_item(trans, tree_root, path);
  6610. if (ret)
  6611. goto out;
  6612. btrfs_release_path(path);
  6613. }
  6614. spin_lock(&root->fs_info->block_group_cache_lock);
  6615. rb_erase(&block_group->cache_node,
  6616. &root->fs_info->block_group_cache_tree);
  6617. spin_unlock(&root->fs_info->block_group_cache_lock);
  6618. down_write(&block_group->space_info->groups_sem);
  6619. /*
  6620. * we must use list_del_init so people can check to see if they
  6621. * are still on the list after taking the semaphore
  6622. */
  6623. list_del_init(&block_group->list);
  6624. up_write(&block_group->space_info->groups_sem);
  6625. if (block_group->cached == BTRFS_CACHE_STARTED)
  6626. wait_block_group_cache_done(block_group);
  6627. btrfs_remove_free_space_cache(block_group);
  6628. spin_lock(&block_group->space_info->lock);
  6629. block_group->space_info->total_bytes -= block_group->key.offset;
  6630. block_group->space_info->bytes_readonly -= block_group->key.offset;
  6631. block_group->space_info->disk_total -= block_group->key.offset * factor;
  6632. spin_unlock(&block_group->space_info->lock);
  6633. memcpy(&key, &block_group->key, sizeof(key));
  6634. btrfs_clear_space_info_full(root->fs_info);
  6635. btrfs_put_block_group(block_group);
  6636. btrfs_put_block_group(block_group);
  6637. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  6638. if (ret > 0)
  6639. ret = -EIO;
  6640. if (ret < 0)
  6641. goto out;
  6642. ret = btrfs_del_item(trans, root, path);
  6643. out:
  6644. btrfs_free_path(path);
  6645. return ret;
  6646. }
  6647. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  6648. {
  6649. struct btrfs_space_info *space_info;
  6650. struct btrfs_super_block *disk_super;
  6651. u64 features;
  6652. u64 flags;
  6653. int mixed = 0;
  6654. int ret;
  6655. disk_super = fs_info->super_copy;
  6656. if (!btrfs_super_root(disk_super))
  6657. return 1;
  6658. features = btrfs_super_incompat_flags(disk_super);
  6659. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  6660. mixed = 1;
  6661. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  6662. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6663. if (ret)
  6664. goto out;
  6665. if (mixed) {
  6666. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  6667. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6668. } else {
  6669. flags = BTRFS_BLOCK_GROUP_METADATA;
  6670. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6671. if (ret)
  6672. goto out;
  6673. flags = BTRFS_BLOCK_GROUP_DATA;
  6674. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  6675. }
  6676. out:
  6677. return ret;
  6678. }
  6679. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  6680. {
  6681. return unpin_extent_range(root, start, end);
  6682. }
  6683. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  6684. u64 num_bytes, u64 *actual_bytes)
  6685. {
  6686. return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
  6687. }
  6688. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  6689. {
  6690. struct btrfs_fs_info *fs_info = root->fs_info;
  6691. struct btrfs_block_group_cache *cache = NULL;
  6692. u64 group_trimmed;
  6693. u64 start;
  6694. u64 end;
  6695. u64 trimmed = 0;
  6696. int ret = 0;
  6697. cache = btrfs_lookup_block_group(fs_info, range->start);
  6698. while (cache) {
  6699. if (cache->key.objectid >= (range->start + range->len)) {
  6700. btrfs_put_block_group(cache);
  6701. break;
  6702. }
  6703. start = max(range->start, cache->key.objectid);
  6704. end = min(range->start + range->len,
  6705. cache->key.objectid + cache->key.offset);
  6706. if (end - start >= range->minlen) {
  6707. if (!block_group_cache_done(cache)) {
  6708. ret = cache_block_group(cache, NULL, root, 0);
  6709. if (!ret)
  6710. wait_block_group_cache_done(cache);
  6711. }
  6712. ret = btrfs_trim_block_group(cache,
  6713. &group_trimmed,
  6714. start,
  6715. end,
  6716. range->minlen);
  6717. trimmed += group_trimmed;
  6718. if (ret) {
  6719. btrfs_put_block_group(cache);
  6720. break;
  6721. }
  6722. }
  6723. cache = next_block_group(fs_info->tree_root, cache);
  6724. }
  6725. range->len = trimmed;
  6726. return ret;
  6727. }