fault.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * arch/s390/mm/fault.c
  3. *
  4. * S390 version
  5. * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Hartmut Penner (hp@de.ibm.com)
  7. * Ulrich Weigand (uweigand@de.ibm.com)
  8. *
  9. * Derived from "arch/i386/mm/fault.c"
  10. * Copyright (C) 1995 Linus Torvalds
  11. */
  12. #include <linux/kernel_stat.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/errno.h>
  18. #include <linux/string.h>
  19. #include <linux/types.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/mman.h>
  22. #include <linux/mm.h>
  23. #include <linux/compat.h>
  24. #include <linux/smp.h>
  25. #include <linux/kdebug.h>
  26. #include <linux/init.h>
  27. #include <linux/console.h>
  28. #include <linux/module.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/kprobes.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/hugetlb.h>
  33. #include <asm/asm-offsets.h>
  34. #include <asm/system.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/irq.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/compat.h>
  39. #include "../kernel/entry.h"
  40. #ifndef CONFIG_64BIT
  41. #define __FAIL_ADDR_MASK 0x7ffff000
  42. #define __SUBCODE_MASK 0x0200
  43. #define __PF_RES_FIELD 0ULL
  44. #else /* CONFIG_64BIT */
  45. #define __FAIL_ADDR_MASK -4096L
  46. #define __SUBCODE_MASK 0x0600
  47. #define __PF_RES_FIELD 0x8000000000000000ULL
  48. #endif /* CONFIG_64BIT */
  49. #define VM_FAULT_BADCONTEXT 0x010000
  50. #define VM_FAULT_BADMAP 0x020000
  51. #define VM_FAULT_BADACCESS 0x040000
  52. static unsigned long store_indication;
  53. void fault_init(void)
  54. {
  55. if (test_facility(2) && test_facility(75))
  56. store_indication = 0xc00;
  57. }
  58. static inline int notify_page_fault(struct pt_regs *regs)
  59. {
  60. int ret = 0;
  61. /* kprobe_running() needs smp_processor_id() */
  62. if (kprobes_built_in() && !user_mode(regs)) {
  63. preempt_disable();
  64. if (kprobe_running() && kprobe_fault_handler(regs, 14))
  65. ret = 1;
  66. preempt_enable();
  67. }
  68. return ret;
  69. }
  70. /*
  71. * Unlock any spinlocks which will prevent us from getting the
  72. * message out.
  73. */
  74. void bust_spinlocks(int yes)
  75. {
  76. if (yes) {
  77. oops_in_progress = 1;
  78. } else {
  79. int loglevel_save = console_loglevel;
  80. console_unblank();
  81. oops_in_progress = 0;
  82. /*
  83. * OK, the message is on the console. Now we call printk()
  84. * without oops_in_progress set so that printk will give klogd
  85. * a poke. Hold onto your hats...
  86. */
  87. console_loglevel = 15;
  88. printk(" ");
  89. console_loglevel = loglevel_save;
  90. }
  91. }
  92. /*
  93. * Returns the address space associated with the fault.
  94. * Returns 0 for kernel space and 1 for user space.
  95. */
  96. static inline int user_space_fault(unsigned long trans_exc_code)
  97. {
  98. /*
  99. * The lowest two bits of the translation exception
  100. * identification indicate which paging table was used.
  101. */
  102. trans_exc_code &= 3;
  103. if (trans_exc_code == 2)
  104. /* Access via secondary space, set_fs setting decides */
  105. return current->thread.mm_segment.ar4;
  106. if (user_mode == HOME_SPACE_MODE)
  107. /* User space if the access has been done via home space. */
  108. return trans_exc_code == 3;
  109. /*
  110. * If the user space is not the home space the kernel runs in home
  111. * space. Access via secondary space has already been covered,
  112. * access via primary space or access register is from user space
  113. * and access via home space is from the kernel.
  114. */
  115. return trans_exc_code != 3;
  116. }
  117. static inline void report_user_fault(struct pt_regs *regs, long signr)
  118. {
  119. if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
  120. return;
  121. if (!unhandled_signal(current, signr))
  122. return;
  123. if (!printk_ratelimit())
  124. return;
  125. printk(KERN_ALERT "User process fault: interruption code 0x%X ",
  126. regs->int_code);
  127. print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
  128. printk(KERN_CONT "\n");
  129. printk(KERN_ALERT "failing address: %lX\n",
  130. regs->int_parm_long & __FAIL_ADDR_MASK);
  131. show_regs(regs);
  132. }
  133. /*
  134. * Send SIGSEGV to task. This is an external routine
  135. * to keep the stack usage of do_page_fault small.
  136. */
  137. static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
  138. {
  139. struct siginfo si;
  140. report_user_fault(regs, SIGSEGV);
  141. si.si_signo = SIGSEGV;
  142. si.si_code = si_code;
  143. si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
  144. force_sig_info(SIGSEGV, &si, current);
  145. }
  146. static noinline void do_no_context(struct pt_regs *regs)
  147. {
  148. const struct exception_table_entry *fixup;
  149. unsigned long address;
  150. /* Are we prepared to handle this kernel fault? */
  151. fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
  152. if (fixup) {
  153. regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
  154. return;
  155. }
  156. /*
  157. * Oops. The kernel tried to access some bad page. We'll have to
  158. * terminate things with extreme prejudice.
  159. */
  160. address = regs->int_parm_long & __FAIL_ADDR_MASK;
  161. if (!user_space_fault(regs->int_parm_long))
  162. printk(KERN_ALERT "Unable to handle kernel pointer dereference"
  163. " at virtual kernel address %p\n", (void *)address);
  164. else
  165. printk(KERN_ALERT "Unable to handle kernel paging request"
  166. " at virtual user address %p\n", (void *)address);
  167. die(regs, "Oops");
  168. do_exit(SIGKILL);
  169. }
  170. static noinline void do_low_address(struct pt_regs *regs)
  171. {
  172. /* Low-address protection hit in kernel mode means
  173. NULL pointer write access in kernel mode. */
  174. if (regs->psw.mask & PSW_MASK_PSTATE) {
  175. /* Low-address protection hit in user mode 'cannot happen'. */
  176. die (regs, "Low-address protection");
  177. do_exit(SIGKILL);
  178. }
  179. do_no_context(regs);
  180. }
  181. static noinline void do_sigbus(struct pt_regs *regs)
  182. {
  183. struct task_struct *tsk = current;
  184. struct siginfo si;
  185. /*
  186. * Send a sigbus, regardless of whether we were in kernel
  187. * or user mode.
  188. */
  189. si.si_signo = SIGBUS;
  190. si.si_errno = 0;
  191. si.si_code = BUS_ADRERR;
  192. si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
  193. force_sig_info(SIGBUS, &si, tsk);
  194. }
  195. static noinline void do_fault_error(struct pt_regs *regs, int fault)
  196. {
  197. int si_code;
  198. switch (fault) {
  199. case VM_FAULT_BADACCESS:
  200. case VM_FAULT_BADMAP:
  201. /* Bad memory access. Check if it is kernel or user space. */
  202. if (regs->psw.mask & PSW_MASK_PSTATE) {
  203. /* User mode accesses just cause a SIGSEGV */
  204. si_code = (fault == VM_FAULT_BADMAP) ?
  205. SEGV_MAPERR : SEGV_ACCERR;
  206. do_sigsegv(regs, si_code);
  207. return;
  208. }
  209. case VM_FAULT_BADCONTEXT:
  210. do_no_context(regs);
  211. break;
  212. default: /* fault & VM_FAULT_ERROR */
  213. if (fault & VM_FAULT_OOM) {
  214. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  215. do_no_context(regs);
  216. else
  217. pagefault_out_of_memory();
  218. } else if (fault & VM_FAULT_SIGBUS) {
  219. /* Kernel mode? Handle exceptions or die */
  220. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  221. do_no_context(regs);
  222. else
  223. do_sigbus(regs);
  224. } else
  225. BUG();
  226. break;
  227. }
  228. }
  229. /*
  230. * This routine handles page faults. It determines the address,
  231. * and the problem, and then passes it off to one of the appropriate
  232. * routines.
  233. *
  234. * interruption code (int_code):
  235. * 04 Protection -> Write-Protection (suprression)
  236. * 10 Segment translation -> Not present (nullification)
  237. * 11 Page translation -> Not present (nullification)
  238. * 3b Region third trans. -> Not present (nullification)
  239. */
  240. static inline int do_exception(struct pt_regs *regs, int access)
  241. {
  242. struct task_struct *tsk;
  243. struct mm_struct *mm;
  244. struct vm_area_struct *vma;
  245. unsigned long trans_exc_code;
  246. unsigned long address;
  247. unsigned int flags;
  248. int fault;
  249. if (notify_page_fault(regs))
  250. return 0;
  251. tsk = current;
  252. mm = tsk->mm;
  253. trans_exc_code = regs->int_parm_long;
  254. /*
  255. * Verify that the fault happened in user space, that
  256. * we are not in an interrupt and that there is a
  257. * user context.
  258. */
  259. fault = VM_FAULT_BADCONTEXT;
  260. if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
  261. goto out;
  262. address = trans_exc_code & __FAIL_ADDR_MASK;
  263. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  264. flags = FAULT_FLAG_ALLOW_RETRY;
  265. if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
  266. flags |= FAULT_FLAG_WRITE;
  267. down_read(&mm->mmap_sem);
  268. #ifdef CONFIG_PGSTE
  269. if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
  270. address = __gmap_fault(address,
  271. (struct gmap *) S390_lowcore.gmap);
  272. if (address == -EFAULT) {
  273. fault = VM_FAULT_BADMAP;
  274. goto out_up;
  275. }
  276. if (address == -ENOMEM) {
  277. fault = VM_FAULT_OOM;
  278. goto out_up;
  279. }
  280. }
  281. #endif
  282. retry:
  283. fault = VM_FAULT_BADMAP;
  284. vma = find_vma(mm, address);
  285. if (!vma)
  286. goto out_up;
  287. if (unlikely(vma->vm_start > address)) {
  288. if (!(vma->vm_flags & VM_GROWSDOWN))
  289. goto out_up;
  290. if (expand_stack(vma, address))
  291. goto out_up;
  292. }
  293. /*
  294. * Ok, we have a good vm_area for this memory access, so
  295. * we can handle it..
  296. */
  297. fault = VM_FAULT_BADACCESS;
  298. if (unlikely(!(vma->vm_flags & access)))
  299. goto out_up;
  300. if (is_vm_hugetlb_page(vma))
  301. address &= HPAGE_MASK;
  302. /*
  303. * If for any reason at all we couldn't handle the fault,
  304. * make sure we exit gracefully rather than endlessly redo
  305. * the fault.
  306. */
  307. fault = handle_mm_fault(mm, vma, address, flags);
  308. if (unlikely(fault & VM_FAULT_ERROR))
  309. goto out_up;
  310. /*
  311. * Major/minor page fault accounting is only done on the
  312. * initial attempt. If we go through a retry, it is extremely
  313. * likely that the page will be found in page cache at that point.
  314. */
  315. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  316. if (fault & VM_FAULT_MAJOR) {
  317. tsk->maj_flt++;
  318. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  319. regs, address);
  320. } else {
  321. tsk->min_flt++;
  322. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  323. regs, address);
  324. }
  325. if (fault & VM_FAULT_RETRY) {
  326. /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  327. * of starvation. */
  328. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  329. down_read(&mm->mmap_sem);
  330. goto retry;
  331. }
  332. }
  333. /*
  334. * The instruction that caused the program check will
  335. * be repeated. Don't signal single step via SIGTRAP.
  336. */
  337. clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
  338. fault = 0;
  339. out_up:
  340. up_read(&mm->mmap_sem);
  341. out:
  342. return fault;
  343. }
  344. void __kprobes do_protection_exception(struct pt_regs *regs)
  345. {
  346. unsigned long trans_exc_code;
  347. int fault;
  348. trans_exc_code = regs->int_parm_long;
  349. /* Protection exception is suppressing, decrement psw address. */
  350. regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
  351. /*
  352. * Check for low-address protection. This needs to be treated
  353. * as a special case because the translation exception code
  354. * field is not guaranteed to contain valid data in this case.
  355. */
  356. if (unlikely(!(trans_exc_code & 4))) {
  357. do_low_address(regs);
  358. return;
  359. }
  360. fault = do_exception(regs, VM_WRITE);
  361. if (unlikely(fault))
  362. do_fault_error(regs, fault);
  363. }
  364. void __kprobes do_dat_exception(struct pt_regs *regs)
  365. {
  366. int access, fault;
  367. access = VM_READ | VM_EXEC | VM_WRITE;
  368. fault = do_exception(regs, access);
  369. if (unlikely(fault))
  370. do_fault_error(regs, fault);
  371. }
  372. #ifdef CONFIG_64BIT
  373. void __kprobes do_asce_exception(struct pt_regs *regs)
  374. {
  375. struct mm_struct *mm = current->mm;
  376. struct vm_area_struct *vma;
  377. unsigned long trans_exc_code;
  378. trans_exc_code = regs->int_parm_long;
  379. if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
  380. goto no_context;
  381. down_read(&mm->mmap_sem);
  382. vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
  383. up_read(&mm->mmap_sem);
  384. if (vma) {
  385. update_mm(mm, current);
  386. return;
  387. }
  388. /* User mode accesses just cause a SIGSEGV */
  389. if (regs->psw.mask & PSW_MASK_PSTATE) {
  390. do_sigsegv(regs, SEGV_MAPERR);
  391. return;
  392. }
  393. no_context:
  394. do_no_context(regs);
  395. }
  396. #endif
  397. int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
  398. {
  399. struct pt_regs regs;
  400. int access, fault;
  401. regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
  402. if (!irqs_disabled())
  403. regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
  404. regs.psw.addr = (unsigned long) __builtin_return_address(0);
  405. regs.psw.addr |= PSW_ADDR_AMODE;
  406. regs.int_code = pgm_int_code;
  407. regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
  408. access = write ? VM_WRITE : VM_READ;
  409. fault = do_exception(&regs, access);
  410. if (unlikely(fault)) {
  411. if (fault & VM_FAULT_OOM)
  412. return -EFAULT;
  413. else if (fault & VM_FAULT_SIGBUS)
  414. do_sigbus(&regs);
  415. }
  416. return fault ? -EFAULT : 0;
  417. }
  418. #ifdef CONFIG_PFAULT
  419. /*
  420. * 'pfault' pseudo page faults routines.
  421. */
  422. static int pfault_disable;
  423. static int __init nopfault(char *str)
  424. {
  425. pfault_disable = 1;
  426. return 1;
  427. }
  428. __setup("nopfault", nopfault);
  429. struct pfault_refbk {
  430. u16 refdiagc;
  431. u16 reffcode;
  432. u16 refdwlen;
  433. u16 refversn;
  434. u64 refgaddr;
  435. u64 refselmk;
  436. u64 refcmpmk;
  437. u64 reserved;
  438. } __attribute__ ((packed, aligned(8)));
  439. int pfault_init(void)
  440. {
  441. struct pfault_refbk refbk = {
  442. .refdiagc = 0x258,
  443. .reffcode = 0,
  444. .refdwlen = 5,
  445. .refversn = 2,
  446. .refgaddr = __LC_CURRENT_PID,
  447. .refselmk = 1ULL << 48,
  448. .refcmpmk = 1ULL << 48,
  449. .reserved = __PF_RES_FIELD };
  450. int rc;
  451. if (pfault_disable)
  452. return -1;
  453. asm volatile(
  454. " diag %1,%0,0x258\n"
  455. "0: j 2f\n"
  456. "1: la %0,8\n"
  457. "2:\n"
  458. EX_TABLE(0b,1b)
  459. : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
  460. return rc;
  461. }
  462. void pfault_fini(void)
  463. {
  464. struct pfault_refbk refbk = {
  465. .refdiagc = 0x258,
  466. .reffcode = 1,
  467. .refdwlen = 5,
  468. .refversn = 2,
  469. };
  470. if (pfault_disable)
  471. return;
  472. asm volatile(
  473. " diag %0,0,0x258\n"
  474. "0:\n"
  475. EX_TABLE(0b,0b)
  476. : : "a" (&refbk), "m" (refbk) : "cc");
  477. }
  478. static DEFINE_SPINLOCK(pfault_lock);
  479. static LIST_HEAD(pfault_list);
  480. static void pfault_interrupt(unsigned int ext_int_code,
  481. unsigned int param32, unsigned long param64)
  482. {
  483. struct task_struct *tsk;
  484. __u16 subcode;
  485. pid_t pid;
  486. /*
  487. * Get the external interruption subcode & pfault
  488. * initial/completion signal bit. VM stores this
  489. * in the 'cpu address' field associated with the
  490. * external interrupt.
  491. */
  492. subcode = ext_int_code >> 16;
  493. if ((subcode & 0xff00) != __SUBCODE_MASK)
  494. return;
  495. kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
  496. if (subcode & 0x0080) {
  497. /* Get the token (= pid of the affected task). */
  498. pid = sizeof(void *) == 4 ? param32 : param64;
  499. rcu_read_lock();
  500. tsk = find_task_by_pid_ns(pid, &init_pid_ns);
  501. if (tsk)
  502. get_task_struct(tsk);
  503. rcu_read_unlock();
  504. if (!tsk)
  505. return;
  506. } else {
  507. tsk = current;
  508. }
  509. spin_lock(&pfault_lock);
  510. if (subcode & 0x0080) {
  511. /* signal bit is set -> a page has been swapped in by VM */
  512. if (tsk->thread.pfault_wait == 1) {
  513. /* Initial interrupt was faster than the completion
  514. * interrupt. pfault_wait is valid. Set pfault_wait
  515. * back to zero and wake up the process. This can
  516. * safely be done because the task is still sleeping
  517. * and can't produce new pfaults. */
  518. tsk->thread.pfault_wait = 0;
  519. list_del(&tsk->thread.list);
  520. wake_up_process(tsk);
  521. } else {
  522. /* Completion interrupt was faster than initial
  523. * interrupt. Set pfault_wait to -1 so the initial
  524. * interrupt doesn't put the task to sleep.
  525. * If the task is not running, ignore the completion
  526. * interrupt since it must be a leftover of a PFAULT
  527. * CANCEL operation which didn't remove all pending
  528. * completion interrupts. */
  529. if (tsk->state == TASK_RUNNING)
  530. tsk->thread.pfault_wait = -1;
  531. }
  532. put_task_struct(tsk);
  533. } else {
  534. /* signal bit not set -> a real page is missing. */
  535. if (tsk->thread.pfault_wait == -1) {
  536. /* Completion interrupt was faster than the initial
  537. * interrupt (pfault_wait == -1). Set pfault_wait
  538. * back to zero and exit. */
  539. tsk->thread.pfault_wait = 0;
  540. } else {
  541. /* Initial interrupt arrived before completion
  542. * interrupt. Let the task sleep. */
  543. tsk->thread.pfault_wait = 1;
  544. list_add(&tsk->thread.list, &pfault_list);
  545. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  546. set_tsk_need_resched(tsk);
  547. }
  548. }
  549. spin_unlock(&pfault_lock);
  550. }
  551. static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
  552. unsigned long action, void *hcpu)
  553. {
  554. struct thread_struct *thread, *next;
  555. struct task_struct *tsk;
  556. switch (action) {
  557. case CPU_DEAD:
  558. case CPU_DEAD_FROZEN:
  559. spin_lock_irq(&pfault_lock);
  560. list_for_each_entry_safe(thread, next, &pfault_list, list) {
  561. thread->pfault_wait = 0;
  562. list_del(&thread->list);
  563. tsk = container_of(thread, struct task_struct, thread);
  564. wake_up_process(tsk);
  565. }
  566. spin_unlock_irq(&pfault_lock);
  567. break;
  568. default:
  569. break;
  570. }
  571. return NOTIFY_OK;
  572. }
  573. static int __init pfault_irq_init(void)
  574. {
  575. int rc;
  576. rc = register_external_interrupt(0x2603, pfault_interrupt);
  577. if (rc)
  578. goto out_extint;
  579. rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
  580. if (rc)
  581. goto out_pfault;
  582. service_subclass_irq_register();
  583. hotcpu_notifier(pfault_cpu_notify, 0);
  584. return 0;
  585. out_pfault:
  586. unregister_external_interrupt(0x2603, pfault_interrupt);
  587. out_extint:
  588. pfault_disable = 1;
  589. return rc;
  590. }
  591. early_initcall(pfault_irq_init);
  592. #endif /* CONFIG_PFAULT */