builtin-sched.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/parse-options.h"
  9. #include "util/trace-event.h"
  10. #include "util/debug.h"
  11. #include <sys/types.h>
  12. #include <sys/prctl.h>
  13. #include <semaphore.h>
  14. #include <pthread.h>
  15. #include <math.h>
  16. static char const *input_name = "perf.data";
  17. static int input;
  18. static unsigned long page_size;
  19. static unsigned long mmap_window = 32;
  20. static unsigned long total_comm = 0;
  21. static struct rb_root threads;
  22. static struct thread *last_match;
  23. static struct perf_header *header;
  24. static u64 sample_type;
  25. static char default_sort_order[] = "avg, max, switch, runtime";
  26. static char *sort_order = default_sort_order;
  27. #define PR_SET_NAME 15 /* Set process name */
  28. #define MAX_CPUS 4096
  29. #define BUG_ON(x) assert(!(x))
  30. static u64 run_measurement_overhead;
  31. static u64 sleep_measurement_overhead;
  32. #define COMM_LEN 20
  33. #define SYM_LEN 129
  34. #define MAX_PID 65536
  35. static unsigned long nr_tasks;
  36. struct sched_event;
  37. struct task_desc {
  38. unsigned long nr;
  39. unsigned long pid;
  40. char comm[COMM_LEN];
  41. unsigned long nr_events;
  42. unsigned long curr_event;
  43. struct sched_event **events;
  44. pthread_t thread;
  45. sem_t sleep_sem;
  46. sem_t ready_for_work;
  47. sem_t work_done_sem;
  48. u64 cpu_usage;
  49. };
  50. enum sched_event_type {
  51. SCHED_EVENT_RUN,
  52. SCHED_EVENT_SLEEP,
  53. SCHED_EVENT_WAKEUP,
  54. };
  55. struct sched_event {
  56. enum sched_event_type type;
  57. u64 timestamp;
  58. u64 duration;
  59. unsigned long nr;
  60. int specific_wait;
  61. sem_t *wait_sem;
  62. struct task_desc *wakee;
  63. };
  64. static struct task_desc *pid_to_task[MAX_PID];
  65. static struct task_desc **tasks;
  66. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  67. static u64 start_time;
  68. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  69. static unsigned long nr_run_events;
  70. static unsigned long nr_sleep_events;
  71. static unsigned long nr_wakeup_events;
  72. static unsigned long nr_sleep_corrections;
  73. static unsigned long nr_run_events_optimized;
  74. static unsigned long targetless_wakeups;
  75. static unsigned long multitarget_wakeups;
  76. static u64 cpu_usage;
  77. static u64 runavg_cpu_usage;
  78. static u64 parent_cpu_usage;
  79. static u64 runavg_parent_cpu_usage;
  80. static unsigned long nr_runs;
  81. static u64 sum_runtime;
  82. static u64 sum_fluct;
  83. static u64 run_avg;
  84. static unsigned long replay_repeat = 10;
  85. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  86. enum thread_state {
  87. THREAD_SLEEPING = 0,
  88. THREAD_WAIT_CPU,
  89. THREAD_SCHED_IN,
  90. THREAD_IGNORE
  91. };
  92. struct work_atom {
  93. struct list_head list;
  94. enum thread_state state;
  95. u64 sched_out_time;
  96. u64 wake_up_time;
  97. u64 sched_in_time;
  98. u64 runtime;
  99. };
  100. struct task_atoms {
  101. struct list_head atom_list;
  102. struct thread *thread;
  103. struct rb_node node;
  104. u64 max_lat;
  105. u64 total_lat;
  106. u64 nb_atoms;
  107. u64 total_runtime;
  108. };
  109. typedef int (*sort_fn_t)(struct task_atoms *, struct task_atoms *);
  110. static struct rb_root atom_root, sorted_atom_root;
  111. static u64 all_runtime;
  112. static u64 all_count;
  113. static int read_events(void);
  114. static u64 get_nsecs(void)
  115. {
  116. struct timespec ts;
  117. clock_gettime(CLOCK_MONOTONIC, &ts);
  118. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  119. }
  120. static void burn_nsecs(u64 nsecs)
  121. {
  122. u64 T0 = get_nsecs(), T1;
  123. do {
  124. T1 = get_nsecs();
  125. } while (T1 + run_measurement_overhead < T0 + nsecs);
  126. }
  127. static void sleep_nsecs(u64 nsecs)
  128. {
  129. struct timespec ts;
  130. ts.tv_nsec = nsecs % 999999999;
  131. ts.tv_sec = nsecs / 999999999;
  132. nanosleep(&ts, NULL);
  133. }
  134. static void calibrate_run_measurement_overhead(void)
  135. {
  136. u64 T0, T1, delta, min_delta = 1000000000ULL;
  137. int i;
  138. for (i = 0; i < 10; i++) {
  139. T0 = get_nsecs();
  140. burn_nsecs(0);
  141. T1 = get_nsecs();
  142. delta = T1-T0;
  143. min_delta = min(min_delta, delta);
  144. }
  145. run_measurement_overhead = min_delta;
  146. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  147. }
  148. static void calibrate_sleep_measurement_overhead(void)
  149. {
  150. u64 T0, T1, delta, min_delta = 1000000000ULL;
  151. int i;
  152. for (i = 0; i < 10; i++) {
  153. T0 = get_nsecs();
  154. sleep_nsecs(10000);
  155. T1 = get_nsecs();
  156. delta = T1-T0;
  157. min_delta = min(min_delta, delta);
  158. }
  159. min_delta -= 10000;
  160. sleep_measurement_overhead = min_delta;
  161. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  162. }
  163. static struct sched_event *
  164. get_new_event(struct task_desc *task, u64 timestamp)
  165. {
  166. struct sched_event *event = calloc(1, sizeof(*event));
  167. unsigned long idx = task->nr_events;
  168. size_t size;
  169. event->timestamp = timestamp;
  170. event->nr = idx;
  171. task->nr_events++;
  172. size = sizeof(struct sched_event *) * task->nr_events;
  173. task->events = realloc(task->events, size);
  174. BUG_ON(!task->events);
  175. task->events[idx] = event;
  176. return event;
  177. }
  178. static struct sched_event *last_event(struct task_desc *task)
  179. {
  180. if (!task->nr_events)
  181. return NULL;
  182. return task->events[task->nr_events - 1];
  183. }
  184. static void
  185. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  186. {
  187. struct sched_event *event, *curr_event = last_event(task);
  188. /*
  189. * optimize an existing RUN event by merging this one
  190. * to it:
  191. */
  192. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  193. nr_run_events_optimized++;
  194. curr_event->duration += duration;
  195. return;
  196. }
  197. event = get_new_event(task, timestamp);
  198. event->type = SCHED_EVENT_RUN;
  199. event->duration = duration;
  200. nr_run_events++;
  201. }
  202. static void
  203. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  204. struct task_desc *wakee)
  205. {
  206. struct sched_event *event, *wakee_event;
  207. event = get_new_event(task, timestamp);
  208. event->type = SCHED_EVENT_WAKEUP;
  209. event->wakee = wakee;
  210. wakee_event = last_event(wakee);
  211. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  212. targetless_wakeups++;
  213. return;
  214. }
  215. if (wakee_event->wait_sem) {
  216. multitarget_wakeups++;
  217. return;
  218. }
  219. wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
  220. sem_init(wakee_event->wait_sem, 0, 0);
  221. wakee_event->specific_wait = 1;
  222. event->wait_sem = wakee_event->wait_sem;
  223. nr_wakeup_events++;
  224. }
  225. static void
  226. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  227. u64 task_state __used)
  228. {
  229. struct sched_event *event = get_new_event(task, timestamp);
  230. event->type = SCHED_EVENT_SLEEP;
  231. nr_sleep_events++;
  232. }
  233. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  234. {
  235. struct task_desc *task;
  236. BUG_ON(pid >= MAX_PID);
  237. task = pid_to_task[pid];
  238. if (task)
  239. return task;
  240. task = calloc(1, sizeof(*task));
  241. task->pid = pid;
  242. task->nr = nr_tasks;
  243. strcpy(task->comm, comm);
  244. /*
  245. * every task starts in sleeping state - this gets ignored
  246. * if there's no wakeup pointing to this sleep state:
  247. */
  248. add_sched_event_sleep(task, 0, 0);
  249. pid_to_task[pid] = task;
  250. nr_tasks++;
  251. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  252. BUG_ON(!tasks);
  253. tasks[task->nr] = task;
  254. if (verbose)
  255. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  256. return task;
  257. }
  258. static void print_task_traces(void)
  259. {
  260. struct task_desc *task;
  261. unsigned long i;
  262. for (i = 0; i < nr_tasks; i++) {
  263. task = tasks[i];
  264. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  265. task->nr, task->comm, task->pid, task->nr_events);
  266. }
  267. }
  268. static void add_cross_task_wakeups(void)
  269. {
  270. struct task_desc *task1, *task2;
  271. unsigned long i, j;
  272. for (i = 0; i < nr_tasks; i++) {
  273. task1 = tasks[i];
  274. j = i + 1;
  275. if (j == nr_tasks)
  276. j = 0;
  277. task2 = tasks[j];
  278. add_sched_event_wakeup(task1, 0, task2);
  279. }
  280. }
  281. static void
  282. process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
  283. {
  284. int ret = 0;
  285. u64 now;
  286. long long delta;
  287. now = get_nsecs();
  288. delta = start_time + event->timestamp - now;
  289. switch (event->type) {
  290. case SCHED_EVENT_RUN:
  291. burn_nsecs(event->duration);
  292. break;
  293. case SCHED_EVENT_SLEEP:
  294. if (event->wait_sem)
  295. ret = sem_wait(event->wait_sem);
  296. BUG_ON(ret);
  297. break;
  298. case SCHED_EVENT_WAKEUP:
  299. if (event->wait_sem)
  300. ret = sem_post(event->wait_sem);
  301. BUG_ON(ret);
  302. break;
  303. default:
  304. BUG_ON(1);
  305. }
  306. }
  307. static u64 get_cpu_usage_nsec_parent(void)
  308. {
  309. struct rusage ru;
  310. u64 sum;
  311. int err;
  312. err = getrusage(RUSAGE_SELF, &ru);
  313. BUG_ON(err);
  314. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  315. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  316. return sum;
  317. }
  318. static u64 get_cpu_usage_nsec_self(void)
  319. {
  320. char filename [] = "/proc/1234567890/sched";
  321. unsigned long msecs, nsecs;
  322. char *line = NULL;
  323. u64 total = 0;
  324. size_t len = 0;
  325. ssize_t chars;
  326. FILE *file;
  327. int ret;
  328. sprintf(filename, "/proc/%d/sched", getpid());
  329. file = fopen(filename, "r");
  330. BUG_ON(!file);
  331. while ((chars = getline(&line, &len, file)) != -1) {
  332. ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
  333. &msecs, &nsecs);
  334. if (ret == 2) {
  335. total = msecs*1e6 + nsecs;
  336. break;
  337. }
  338. }
  339. if (line)
  340. free(line);
  341. fclose(file);
  342. return total;
  343. }
  344. static void *thread_func(void *ctx)
  345. {
  346. struct task_desc *this_task = ctx;
  347. u64 cpu_usage_0, cpu_usage_1;
  348. unsigned long i, ret;
  349. char comm2[22];
  350. sprintf(comm2, ":%s", this_task->comm);
  351. prctl(PR_SET_NAME, comm2);
  352. again:
  353. ret = sem_post(&this_task->ready_for_work);
  354. BUG_ON(ret);
  355. ret = pthread_mutex_lock(&start_work_mutex);
  356. BUG_ON(ret);
  357. ret = pthread_mutex_unlock(&start_work_mutex);
  358. BUG_ON(ret);
  359. cpu_usage_0 = get_cpu_usage_nsec_self();
  360. for (i = 0; i < this_task->nr_events; i++) {
  361. this_task->curr_event = i;
  362. process_sched_event(this_task, this_task->events[i]);
  363. }
  364. cpu_usage_1 = get_cpu_usage_nsec_self();
  365. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  366. ret = sem_post(&this_task->work_done_sem);
  367. BUG_ON(ret);
  368. ret = pthread_mutex_lock(&work_done_wait_mutex);
  369. BUG_ON(ret);
  370. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  371. BUG_ON(ret);
  372. goto again;
  373. }
  374. static void create_tasks(void)
  375. {
  376. struct task_desc *task;
  377. pthread_attr_t attr;
  378. unsigned long i;
  379. int err;
  380. err = pthread_attr_init(&attr);
  381. BUG_ON(err);
  382. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  383. BUG_ON(err);
  384. err = pthread_mutex_lock(&start_work_mutex);
  385. BUG_ON(err);
  386. err = pthread_mutex_lock(&work_done_wait_mutex);
  387. BUG_ON(err);
  388. for (i = 0; i < nr_tasks; i++) {
  389. task = tasks[i];
  390. sem_init(&task->sleep_sem, 0, 0);
  391. sem_init(&task->ready_for_work, 0, 0);
  392. sem_init(&task->work_done_sem, 0, 0);
  393. task->curr_event = 0;
  394. err = pthread_create(&task->thread, &attr, thread_func, task);
  395. BUG_ON(err);
  396. }
  397. }
  398. static void wait_for_tasks(void)
  399. {
  400. u64 cpu_usage_0, cpu_usage_1;
  401. struct task_desc *task;
  402. unsigned long i, ret;
  403. start_time = get_nsecs();
  404. cpu_usage = 0;
  405. pthread_mutex_unlock(&work_done_wait_mutex);
  406. for (i = 0; i < nr_tasks; i++) {
  407. task = tasks[i];
  408. ret = sem_wait(&task->ready_for_work);
  409. BUG_ON(ret);
  410. sem_init(&task->ready_for_work, 0, 0);
  411. }
  412. ret = pthread_mutex_lock(&work_done_wait_mutex);
  413. BUG_ON(ret);
  414. cpu_usage_0 = get_cpu_usage_nsec_parent();
  415. pthread_mutex_unlock(&start_work_mutex);
  416. for (i = 0; i < nr_tasks; i++) {
  417. task = tasks[i];
  418. ret = sem_wait(&task->work_done_sem);
  419. BUG_ON(ret);
  420. sem_init(&task->work_done_sem, 0, 0);
  421. cpu_usage += task->cpu_usage;
  422. task->cpu_usage = 0;
  423. }
  424. cpu_usage_1 = get_cpu_usage_nsec_parent();
  425. if (!runavg_cpu_usage)
  426. runavg_cpu_usage = cpu_usage;
  427. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  428. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  429. if (!runavg_parent_cpu_usage)
  430. runavg_parent_cpu_usage = parent_cpu_usage;
  431. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  432. parent_cpu_usage)/10;
  433. ret = pthread_mutex_lock(&start_work_mutex);
  434. BUG_ON(ret);
  435. for (i = 0; i < nr_tasks; i++) {
  436. task = tasks[i];
  437. sem_init(&task->sleep_sem, 0, 0);
  438. task->curr_event = 0;
  439. }
  440. }
  441. static void run_one_test(void)
  442. {
  443. u64 T0, T1, delta, avg_delta, fluct, std_dev;
  444. T0 = get_nsecs();
  445. wait_for_tasks();
  446. T1 = get_nsecs();
  447. delta = T1 - T0;
  448. sum_runtime += delta;
  449. nr_runs++;
  450. avg_delta = sum_runtime / nr_runs;
  451. if (delta < avg_delta)
  452. fluct = avg_delta - delta;
  453. else
  454. fluct = delta - avg_delta;
  455. sum_fluct += fluct;
  456. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  457. if (!run_avg)
  458. run_avg = delta;
  459. run_avg = (run_avg*9 + delta)/10;
  460. printf("#%-3ld: %0.3f, ",
  461. nr_runs, (double)delta/1000000.0);
  462. printf("ravg: %0.2f, ",
  463. (double)run_avg/1e6);
  464. printf("cpu: %0.2f / %0.2f",
  465. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  466. #if 0
  467. /*
  468. * rusage statistics done by the parent, these are less
  469. * accurate than the sum_exec_runtime based statistics:
  470. */
  471. printf(" [%0.2f / %0.2f]",
  472. (double)parent_cpu_usage/1e6,
  473. (double)runavg_parent_cpu_usage/1e6);
  474. #endif
  475. printf("\n");
  476. if (nr_sleep_corrections)
  477. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  478. nr_sleep_corrections = 0;
  479. }
  480. static void test_calibrations(void)
  481. {
  482. u64 T0, T1;
  483. T0 = get_nsecs();
  484. burn_nsecs(1e6);
  485. T1 = get_nsecs();
  486. printf("the run test took %Ld nsecs\n", T1-T0);
  487. T0 = get_nsecs();
  488. sleep_nsecs(1e6);
  489. T1 = get_nsecs();
  490. printf("the sleep test took %Ld nsecs\n", T1-T0);
  491. }
  492. static void __cmd_replay(void)
  493. {
  494. unsigned long i;
  495. calibrate_run_measurement_overhead();
  496. calibrate_sleep_measurement_overhead();
  497. test_calibrations();
  498. read_events();
  499. printf("nr_run_events: %ld\n", nr_run_events);
  500. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  501. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  502. if (targetless_wakeups)
  503. printf("target-less wakeups: %ld\n", targetless_wakeups);
  504. if (multitarget_wakeups)
  505. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  506. if (nr_run_events_optimized)
  507. printf("run events optimized: %ld\n",
  508. nr_run_events_optimized);
  509. print_task_traces();
  510. add_cross_task_wakeups();
  511. create_tasks();
  512. printf("------------------------------------------------------------\n");
  513. for (i = 0; i < replay_repeat; i++)
  514. run_one_test();
  515. }
  516. static int
  517. process_comm_event(event_t *event, unsigned long offset, unsigned long head)
  518. {
  519. struct thread *thread;
  520. thread = threads__findnew(event->comm.pid, &threads, &last_match);
  521. dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
  522. (void *)(offset + head),
  523. (void *)(long)(event->header.size),
  524. event->comm.comm, event->comm.pid);
  525. if (thread == NULL ||
  526. thread__set_comm(thread, event->comm.comm)) {
  527. dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
  528. return -1;
  529. }
  530. total_comm++;
  531. return 0;
  532. }
  533. struct raw_event_sample {
  534. u32 size;
  535. char data[0];
  536. };
  537. #define FILL_FIELD(ptr, field, event, data) \
  538. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  539. #define FILL_ARRAY(ptr, array, event, data) \
  540. do { \
  541. void *__array = raw_field_ptr(event, #array, data); \
  542. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  543. } while(0)
  544. #define FILL_COMMON_FIELDS(ptr, event, data) \
  545. do { \
  546. FILL_FIELD(ptr, common_type, event, data); \
  547. FILL_FIELD(ptr, common_flags, event, data); \
  548. FILL_FIELD(ptr, common_preempt_count, event, data); \
  549. FILL_FIELD(ptr, common_pid, event, data); \
  550. FILL_FIELD(ptr, common_tgid, event, data); \
  551. } while (0)
  552. struct trace_switch_event {
  553. u32 size;
  554. u16 common_type;
  555. u8 common_flags;
  556. u8 common_preempt_count;
  557. u32 common_pid;
  558. u32 common_tgid;
  559. char prev_comm[16];
  560. u32 prev_pid;
  561. u32 prev_prio;
  562. u64 prev_state;
  563. char next_comm[16];
  564. u32 next_pid;
  565. u32 next_prio;
  566. };
  567. struct trace_wakeup_event {
  568. u32 size;
  569. u16 common_type;
  570. u8 common_flags;
  571. u8 common_preempt_count;
  572. u32 common_pid;
  573. u32 common_tgid;
  574. char comm[16];
  575. u32 pid;
  576. u32 prio;
  577. u32 success;
  578. u32 cpu;
  579. };
  580. struct trace_fork_event {
  581. u32 size;
  582. u16 common_type;
  583. u8 common_flags;
  584. u8 common_preempt_count;
  585. u32 common_pid;
  586. u32 common_tgid;
  587. char parent_comm[16];
  588. u32 parent_pid;
  589. char child_comm[16];
  590. u32 child_pid;
  591. };
  592. struct trace_sched_handler {
  593. void (*switch_event)(struct trace_switch_event *,
  594. struct event *,
  595. int cpu,
  596. u64 timestamp,
  597. struct thread *thread);
  598. void (*wakeup_event)(struct trace_wakeup_event *,
  599. struct event *,
  600. int cpu,
  601. u64 timestamp,
  602. struct thread *thread);
  603. void (*fork_event)(struct trace_fork_event *,
  604. struct event *,
  605. int cpu,
  606. u64 timestamp,
  607. struct thread *thread);
  608. };
  609. static void
  610. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  611. struct event *event,
  612. int cpu __used,
  613. u64 timestamp __used,
  614. struct thread *thread __used)
  615. {
  616. struct task_desc *waker, *wakee;
  617. if (verbose) {
  618. printf("sched_wakeup event %p\n", event);
  619. printf(" ... pid %d woke up %s/%d\n",
  620. wakeup_event->common_pid,
  621. wakeup_event->comm,
  622. wakeup_event->pid);
  623. }
  624. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  625. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  626. add_sched_event_wakeup(waker, timestamp, wakee);
  627. }
  628. static unsigned long cpu_last_switched[MAX_CPUS];
  629. static void
  630. replay_switch_event(struct trace_switch_event *switch_event,
  631. struct event *event,
  632. int cpu,
  633. u64 timestamp,
  634. struct thread *thread __used)
  635. {
  636. struct task_desc *prev, *next;
  637. u64 timestamp0;
  638. s64 delta;
  639. if (verbose)
  640. printf("sched_switch event %p\n", event);
  641. if (cpu >= MAX_CPUS || cpu < 0)
  642. return;
  643. timestamp0 = cpu_last_switched[cpu];
  644. if (timestamp0)
  645. delta = timestamp - timestamp0;
  646. else
  647. delta = 0;
  648. if (delta < 0)
  649. die("hm, delta: %Ld < 0 ?\n", delta);
  650. if (verbose) {
  651. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  652. switch_event->prev_comm, switch_event->prev_pid,
  653. switch_event->next_comm, switch_event->next_pid,
  654. delta);
  655. }
  656. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  657. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  658. cpu_last_switched[cpu] = timestamp;
  659. add_sched_event_run(prev, timestamp, delta);
  660. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  661. }
  662. static void
  663. replay_fork_event(struct trace_fork_event *fork_event,
  664. struct event *event,
  665. int cpu __used,
  666. u64 timestamp __used,
  667. struct thread *thread __used)
  668. {
  669. if (verbose) {
  670. printf("sched_fork event %p\n", event);
  671. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  672. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  673. }
  674. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  675. register_pid(fork_event->child_pid, fork_event->child_comm);
  676. }
  677. static struct trace_sched_handler replay_ops = {
  678. .wakeup_event = replay_wakeup_event,
  679. .switch_event = replay_switch_event,
  680. .fork_event = replay_fork_event,
  681. };
  682. struct sort_dimension {
  683. const char *name;
  684. sort_fn_t cmp;
  685. struct list_head list;
  686. };
  687. static LIST_HEAD(cmp_pid);
  688. static int
  689. thread_lat_cmp(struct list_head *list, struct task_atoms *l, struct task_atoms *r)
  690. {
  691. struct sort_dimension *sort;
  692. int ret = 0;
  693. BUG_ON(list_empty(list));
  694. list_for_each_entry(sort, list, list) {
  695. ret = sort->cmp(l, r);
  696. if (ret)
  697. return ret;
  698. }
  699. return ret;
  700. }
  701. static struct task_atoms *
  702. thread_atoms_search(struct rb_root *root, struct thread *thread,
  703. struct list_head *sort_list)
  704. {
  705. struct rb_node *node = root->rb_node;
  706. struct task_atoms key = { .thread = thread };
  707. while (node) {
  708. struct task_atoms *atoms;
  709. int cmp;
  710. atoms = container_of(node, struct task_atoms, node);
  711. cmp = thread_lat_cmp(sort_list, &key, atoms);
  712. if (cmp > 0)
  713. node = node->rb_left;
  714. else if (cmp < 0)
  715. node = node->rb_right;
  716. else {
  717. BUG_ON(thread != atoms->thread);
  718. return atoms;
  719. }
  720. }
  721. return NULL;
  722. }
  723. static void
  724. __thread_latency_insert(struct rb_root *root, struct task_atoms *data,
  725. struct list_head *sort_list)
  726. {
  727. struct rb_node **new = &(root->rb_node), *parent = NULL;
  728. while (*new) {
  729. struct task_atoms *this;
  730. int cmp;
  731. this = container_of(*new, struct task_atoms, node);
  732. parent = *new;
  733. cmp = thread_lat_cmp(sort_list, data, this);
  734. if (cmp > 0)
  735. new = &((*new)->rb_left);
  736. else
  737. new = &((*new)->rb_right);
  738. }
  739. rb_link_node(&data->node, parent, new);
  740. rb_insert_color(&data->node, root);
  741. }
  742. static void thread_atoms_insert(struct thread *thread)
  743. {
  744. struct task_atoms *atoms;
  745. atoms = calloc(sizeof(*atoms), 1);
  746. if (!atoms)
  747. die("No memory");
  748. atoms->thread = thread;
  749. INIT_LIST_HEAD(&atoms->atom_list);
  750. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  751. }
  752. static void
  753. latency_fork_event(struct trace_fork_event *fork_event __used,
  754. struct event *event __used,
  755. int cpu __used,
  756. u64 timestamp __used,
  757. struct thread *thread __used)
  758. {
  759. /* should insert the newcomer */
  760. }
  761. __used
  762. static char sched_out_state(struct trace_switch_event *switch_event)
  763. {
  764. const char *str = TASK_STATE_TO_CHAR_STR;
  765. return str[switch_event->prev_state];
  766. }
  767. static void
  768. lat_sched_out(struct task_atoms *atoms,
  769. struct trace_switch_event *switch_event __used,
  770. u64 delta,
  771. u64 timestamp)
  772. {
  773. struct work_atom *atom;
  774. atom = calloc(sizeof(*atom), 1);
  775. if (!atom)
  776. die("Non memory");
  777. atom->sched_out_time = timestamp;
  778. if (sched_out_state(switch_event) == 'R') {
  779. atom->state = THREAD_WAIT_CPU;
  780. atom->wake_up_time = atom->sched_out_time;
  781. }
  782. atom->runtime = delta;
  783. list_add_tail(&atom->list, &atoms->atom_list);
  784. }
  785. static void
  786. lat_sched_in(struct task_atoms *atoms, u64 timestamp)
  787. {
  788. struct work_atom *atom;
  789. u64 delta;
  790. if (list_empty(&atoms->atom_list))
  791. return;
  792. atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
  793. if (atom->state != THREAD_WAIT_CPU)
  794. return;
  795. if (timestamp < atom->wake_up_time) {
  796. atom->state = THREAD_IGNORE;
  797. return;
  798. }
  799. atom->state = THREAD_SCHED_IN;
  800. atom->sched_in_time = timestamp;
  801. delta = atom->sched_in_time - atom->wake_up_time;
  802. atoms->total_lat += delta;
  803. if (delta > atoms->max_lat)
  804. atoms->max_lat = delta;
  805. atoms->nb_atoms++;
  806. atoms->total_runtime += atom->runtime;
  807. }
  808. static void
  809. latency_switch_event(struct trace_switch_event *switch_event,
  810. struct event *event __used,
  811. int cpu,
  812. u64 timestamp,
  813. struct thread *thread __used)
  814. {
  815. struct task_atoms *out_atoms, *in_atoms;
  816. struct thread *sched_out, *sched_in;
  817. u64 timestamp0;
  818. s64 delta;
  819. if (cpu >= MAX_CPUS || cpu < 0)
  820. return;
  821. timestamp0 = cpu_last_switched[cpu];
  822. cpu_last_switched[cpu] = timestamp;
  823. if (timestamp0)
  824. delta = timestamp - timestamp0;
  825. else
  826. delta = 0;
  827. if (delta < 0)
  828. die("hm, delta: %Ld < 0 ?\n", delta);
  829. sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
  830. sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
  831. in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  832. if (!in_atoms) {
  833. thread_atoms_insert(sched_in);
  834. in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  835. if (!in_atoms)
  836. die("in-atom: Internal tree error");
  837. }
  838. out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  839. if (!out_atoms) {
  840. thread_atoms_insert(sched_out);
  841. out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  842. if (!out_atoms)
  843. die("out-atom: Internal tree error");
  844. }
  845. lat_sched_in(in_atoms, timestamp);
  846. lat_sched_out(out_atoms, switch_event, delta, timestamp);
  847. }
  848. static void
  849. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  850. struct event *event __used,
  851. int cpu __used,
  852. u64 timestamp,
  853. struct thread *thread __used)
  854. {
  855. struct task_atoms *atoms;
  856. struct work_atom *atom;
  857. struct thread *wakee;
  858. /* Note for later, it may be interesting to observe the failing cases */
  859. if (!wakeup_event->success)
  860. return;
  861. wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
  862. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  863. if (!atoms) {
  864. thread_atoms_insert(wakee);
  865. return;
  866. }
  867. if (list_empty(&atoms->atom_list))
  868. return;
  869. atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
  870. if (atom->state != THREAD_SLEEPING)
  871. return;
  872. if (atom->sched_out_time > timestamp)
  873. return;
  874. atom->state = THREAD_WAIT_CPU;
  875. atom->wake_up_time = timestamp;
  876. }
  877. static struct trace_sched_handler lat_ops = {
  878. .wakeup_event = latency_wakeup_event,
  879. .switch_event = latency_switch_event,
  880. .fork_event = latency_fork_event,
  881. };
  882. static void output_lat_thread(struct task_atoms *atom_list)
  883. {
  884. int i;
  885. int ret;
  886. u64 avg;
  887. if (!atom_list->nb_atoms)
  888. return;
  889. all_runtime += atom_list->total_runtime;
  890. all_count += atom_list->nb_atoms;
  891. ret = printf(" %s ", atom_list->thread->comm);
  892. for (i = 0; i < 19 - ret; i++)
  893. printf(" ");
  894. avg = atom_list->total_lat / atom_list->nb_atoms;
  895. printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
  896. (double)atom_list->total_runtime / 1e6,
  897. atom_list->nb_atoms, (double)avg / 1e6,
  898. (double)atom_list->max_lat / 1e6);
  899. }
  900. static int pid_cmp(struct task_atoms *l, struct task_atoms *r)
  901. {
  902. if (l->thread->pid < r->thread->pid)
  903. return -1;
  904. if (l->thread->pid > r->thread->pid)
  905. return 1;
  906. return 0;
  907. }
  908. static struct sort_dimension pid_sort_dimension = {
  909. .name = "pid",
  910. .cmp = pid_cmp,
  911. };
  912. static int avg_cmp(struct task_atoms *l, struct task_atoms *r)
  913. {
  914. u64 avgl, avgr;
  915. if (!l->nb_atoms)
  916. return -1;
  917. if (!r->nb_atoms)
  918. return 1;
  919. avgl = l->total_lat / l->nb_atoms;
  920. avgr = r->total_lat / r->nb_atoms;
  921. if (avgl < avgr)
  922. return -1;
  923. if (avgl > avgr)
  924. return 1;
  925. return 0;
  926. }
  927. static struct sort_dimension avg_sort_dimension = {
  928. .name = "avg",
  929. .cmp = avg_cmp,
  930. };
  931. static int max_cmp(struct task_atoms *l, struct task_atoms *r)
  932. {
  933. if (l->max_lat < r->max_lat)
  934. return -1;
  935. if (l->max_lat > r->max_lat)
  936. return 1;
  937. return 0;
  938. }
  939. static struct sort_dimension max_sort_dimension = {
  940. .name = "max",
  941. .cmp = max_cmp,
  942. };
  943. static int switch_cmp(struct task_atoms *l, struct task_atoms *r)
  944. {
  945. if (l->nb_atoms < r->nb_atoms)
  946. return -1;
  947. if (l->nb_atoms > r->nb_atoms)
  948. return 1;
  949. return 0;
  950. }
  951. static struct sort_dimension switch_sort_dimension = {
  952. .name = "switch",
  953. .cmp = switch_cmp,
  954. };
  955. static int runtime_cmp(struct task_atoms *l, struct task_atoms *r)
  956. {
  957. if (l->total_runtime < r->total_runtime)
  958. return -1;
  959. if (l->total_runtime > r->total_runtime)
  960. return 1;
  961. return 0;
  962. }
  963. static struct sort_dimension runtime_sort_dimension = {
  964. .name = "runtime",
  965. .cmp = runtime_cmp,
  966. };
  967. static struct sort_dimension *available_sorts[] = {
  968. &pid_sort_dimension,
  969. &avg_sort_dimension,
  970. &max_sort_dimension,
  971. &switch_sort_dimension,
  972. &runtime_sort_dimension,
  973. };
  974. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  975. static LIST_HEAD(sort_list);
  976. static int sort_dimension__add(char *tok, struct list_head *list)
  977. {
  978. int i;
  979. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  980. if (!strcmp(available_sorts[i]->name, tok)) {
  981. list_add_tail(&available_sorts[i]->list, list);
  982. return 0;
  983. }
  984. }
  985. return -1;
  986. }
  987. static void setup_sorting(void);
  988. static void sort_lat(void)
  989. {
  990. struct rb_node *node;
  991. for (;;) {
  992. struct task_atoms *data;
  993. node = rb_first(&atom_root);
  994. if (!node)
  995. break;
  996. rb_erase(node, &atom_root);
  997. data = rb_entry(node, struct task_atoms, node);
  998. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  999. }
  1000. }
  1001. static void __cmd_lat(void)
  1002. {
  1003. struct rb_node *next;
  1004. setup_pager();
  1005. read_events();
  1006. sort_lat();
  1007. printf("-----------------------------------------------------------------------------------\n");
  1008. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
  1009. printf("-----------------------------------------------------------------------------------\n");
  1010. next = rb_first(&sorted_atom_root);
  1011. while (next) {
  1012. struct task_atoms *atom_list;
  1013. atom_list = rb_entry(next, struct task_atoms, node);
  1014. output_lat_thread(atom_list);
  1015. next = rb_next(next);
  1016. }
  1017. printf("-----------------------------------------------------------------------------------\n");
  1018. printf(" TOTAL: |%9.3f ms |%9Ld |\n",
  1019. (double)all_runtime/1e6, all_count);
  1020. printf("---------------------------------------------\n");
  1021. }
  1022. static struct trace_sched_handler *trace_handler;
  1023. static void
  1024. process_sched_wakeup_event(struct raw_event_sample *raw,
  1025. struct event *event,
  1026. int cpu __used,
  1027. u64 timestamp __used,
  1028. struct thread *thread __used)
  1029. {
  1030. struct trace_wakeup_event wakeup_event;
  1031. FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
  1032. FILL_ARRAY(wakeup_event, comm, event, raw->data);
  1033. FILL_FIELD(wakeup_event, pid, event, raw->data);
  1034. FILL_FIELD(wakeup_event, prio, event, raw->data);
  1035. FILL_FIELD(wakeup_event, success, event, raw->data);
  1036. FILL_FIELD(wakeup_event, cpu, event, raw->data);
  1037. trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
  1038. }
  1039. static void
  1040. process_sched_switch_event(struct raw_event_sample *raw,
  1041. struct event *event,
  1042. int cpu __used,
  1043. u64 timestamp __used,
  1044. struct thread *thread __used)
  1045. {
  1046. struct trace_switch_event switch_event;
  1047. FILL_COMMON_FIELDS(switch_event, event, raw->data);
  1048. FILL_ARRAY(switch_event, prev_comm, event, raw->data);
  1049. FILL_FIELD(switch_event, prev_pid, event, raw->data);
  1050. FILL_FIELD(switch_event, prev_prio, event, raw->data);
  1051. FILL_FIELD(switch_event, prev_state, event, raw->data);
  1052. FILL_ARRAY(switch_event, next_comm, event, raw->data);
  1053. FILL_FIELD(switch_event, next_pid, event, raw->data);
  1054. FILL_FIELD(switch_event, next_prio, event, raw->data);
  1055. trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
  1056. }
  1057. static void
  1058. process_sched_fork_event(struct raw_event_sample *raw,
  1059. struct event *event,
  1060. int cpu __used,
  1061. u64 timestamp __used,
  1062. struct thread *thread __used)
  1063. {
  1064. struct trace_fork_event fork_event;
  1065. FILL_COMMON_FIELDS(fork_event, event, raw->data);
  1066. FILL_ARRAY(fork_event, parent_comm, event, raw->data);
  1067. FILL_FIELD(fork_event, parent_pid, event, raw->data);
  1068. FILL_ARRAY(fork_event, child_comm, event, raw->data);
  1069. FILL_FIELD(fork_event, child_pid, event, raw->data);
  1070. trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
  1071. }
  1072. static void
  1073. process_sched_exit_event(struct event *event,
  1074. int cpu __used,
  1075. u64 timestamp __used,
  1076. struct thread *thread __used)
  1077. {
  1078. if (verbose)
  1079. printf("sched_exit event %p\n", event);
  1080. }
  1081. static void
  1082. process_raw_event(event_t *raw_event __used, void *more_data,
  1083. int cpu, u64 timestamp, struct thread *thread)
  1084. {
  1085. struct raw_event_sample *raw = more_data;
  1086. struct event *event;
  1087. int type;
  1088. type = trace_parse_common_type(raw->data);
  1089. event = trace_find_event(type);
  1090. if (!strcmp(event->name, "sched_switch"))
  1091. process_sched_switch_event(raw, event, cpu, timestamp, thread);
  1092. if (!strcmp(event->name, "sched_wakeup"))
  1093. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  1094. if (!strcmp(event->name, "sched_wakeup_new"))
  1095. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  1096. if (!strcmp(event->name, "sched_process_fork"))
  1097. process_sched_fork_event(raw, event, cpu, timestamp, thread);
  1098. if (!strcmp(event->name, "sched_process_exit"))
  1099. process_sched_exit_event(event, cpu, timestamp, thread);
  1100. }
  1101. static int
  1102. process_sample_event(event_t *event, unsigned long offset, unsigned long head)
  1103. {
  1104. char level;
  1105. int show = 0;
  1106. struct dso *dso = NULL;
  1107. struct thread *thread;
  1108. u64 ip = event->ip.ip;
  1109. u64 timestamp = -1;
  1110. u32 cpu = -1;
  1111. u64 period = 1;
  1112. void *more_data = event->ip.__more_data;
  1113. int cpumode;
  1114. thread = threads__findnew(event->ip.pid, &threads, &last_match);
  1115. if (sample_type & PERF_SAMPLE_TIME) {
  1116. timestamp = *(u64 *)more_data;
  1117. more_data += sizeof(u64);
  1118. }
  1119. if (sample_type & PERF_SAMPLE_CPU) {
  1120. cpu = *(u32 *)more_data;
  1121. more_data += sizeof(u32);
  1122. more_data += sizeof(u32); /* reserved */
  1123. }
  1124. if (sample_type & PERF_SAMPLE_PERIOD) {
  1125. period = *(u64 *)more_data;
  1126. more_data += sizeof(u64);
  1127. }
  1128. dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
  1129. (void *)(offset + head),
  1130. (void *)(long)(event->header.size),
  1131. event->header.misc,
  1132. event->ip.pid, event->ip.tid,
  1133. (void *)(long)ip,
  1134. (long long)period);
  1135. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1136. if (thread == NULL) {
  1137. eprintf("problem processing %d event, skipping it.\n",
  1138. event->header.type);
  1139. return -1;
  1140. }
  1141. cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
  1142. if (cpumode == PERF_EVENT_MISC_KERNEL) {
  1143. show = SHOW_KERNEL;
  1144. level = 'k';
  1145. dso = kernel_dso;
  1146. dump_printf(" ...... dso: %s\n", dso->name);
  1147. } else if (cpumode == PERF_EVENT_MISC_USER) {
  1148. show = SHOW_USER;
  1149. level = '.';
  1150. } else {
  1151. show = SHOW_HV;
  1152. level = 'H';
  1153. dso = hypervisor_dso;
  1154. dump_printf(" ...... dso: [hypervisor]\n");
  1155. }
  1156. if (sample_type & PERF_SAMPLE_RAW)
  1157. process_raw_event(event, more_data, cpu, timestamp, thread);
  1158. return 0;
  1159. }
  1160. static int
  1161. process_event(event_t *event, unsigned long offset, unsigned long head)
  1162. {
  1163. trace_event(event);
  1164. switch (event->header.type) {
  1165. case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
  1166. return 0;
  1167. case PERF_EVENT_COMM:
  1168. return process_comm_event(event, offset, head);
  1169. case PERF_EVENT_EXIT ... PERF_EVENT_READ:
  1170. return 0;
  1171. case PERF_EVENT_SAMPLE:
  1172. return process_sample_event(event, offset, head);
  1173. case PERF_EVENT_MAX:
  1174. default:
  1175. return -1;
  1176. }
  1177. return 0;
  1178. }
  1179. static int read_events(void)
  1180. {
  1181. int ret, rc = EXIT_FAILURE;
  1182. unsigned long offset = 0;
  1183. unsigned long head = 0;
  1184. struct stat perf_stat;
  1185. event_t *event;
  1186. uint32_t size;
  1187. char *buf;
  1188. trace_report();
  1189. register_idle_thread(&threads, &last_match);
  1190. input = open(input_name, O_RDONLY);
  1191. if (input < 0) {
  1192. perror("failed to open file");
  1193. exit(-1);
  1194. }
  1195. ret = fstat(input, &perf_stat);
  1196. if (ret < 0) {
  1197. perror("failed to stat file");
  1198. exit(-1);
  1199. }
  1200. if (!perf_stat.st_size) {
  1201. fprintf(stderr, "zero-sized file, nothing to do!\n");
  1202. exit(0);
  1203. }
  1204. header = perf_header__read(input);
  1205. head = header->data_offset;
  1206. sample_type = perf_header__sample_type(header);
  1207. if (!(sample_type & PERF_SAMPLE_RAW))
  1208. die("No trace sample to read. Did you call perf record "
  1209. "without -R?");
  1210. if (load_kernel() < 0) {
  1211. perror("failed to load kernel symbols");
  1212. return EXIT_FAILURE;
  1213. }
  1214. remap:
  1215. buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
  1216. MAP_SHARED, input, offset);
  1217. if (buf == MAP_FAILED) {
  1218. perror("failed to mmap file");
  1219. exit(-1);
  1220. }
  1221. more:
  1222. event = (event_t *)(buf + head);
  1223. size = event->header.size;
  1224. if (!size)
  1225. size = 8;
  1226. if (head + event->header.size >= page_size * mmap_window) {
  1227. unsigned long shift = page_size * (head / page_size);
  1228. int res;
  1229. res = munmap(buf, page_size * mmap_window);
  1230. assert(res == 0);
  1231. offset += shift;
  1232. head -= shift;
  1233. goto remap;
  1234. }
  1235. size = event->header.size;
  1236. if (!size || process_event(event, offset, head) < 0) {
  1237. /*
  1238. * assume we lost track of the stream, check alignment, and
  1239. * increment a single u64 in the hope to catch on again 'soon'.
  1240. */
  1241. if (unlikely(head & 7))
  1242. head &= ~7ULL;
  1243. size = 8;
  1244. }
  1245. head += size;
  1246. if (offset + head < (unsigned long)perf_stat.st_size)
  1247. goto more;
  1248. rc = EXIT_SUCCESS;
  1249. close(input);
  1250. return rc;
  1251. }
  1252. static const char * const sched_usage[] = {
  1253. "perf sched [<options>] {record|latency|replay|trace}",
  1254. NULL
  1255. };
  1256. static const struct option sched_options[] = {
  1257. OPT_BOOLEAN('v', "verbose", &verbose,
  1258. "be more verbose (show symbol address, etc)"),
  1259. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1260. "dump raw trace in ASCII"),
  1261. OPT_END()
  1262. };
  1263. static const char * const latency_usage[] = {
  1264. "perf sched latency [<options>]",
  1265. NULL
  1266. };
  1267. static const struct option latency_options[] = {
  1268. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1269. "sort by key(s): runtime, switch, avg, max"),
  1270. OPT_BOOLEAN('v', "verbose", &verbose,
  1271. "be more verbose (show symbol address, etc)"),
  1272. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1273. "dump raw trace in ASCII"),
  1274. OPT_END()
  1275. };
  1276. static const char * const replay_usage[] = {
  1277. "perf sched replay [<options>]",
  1278. NULL
  1279. };
  1280. static const struct option replay_options[] = {
  1281. OPT_INTEGER('r', "repeat", &replay_repeat,
  1282. "repeat the workload replay N times (-1: infinite)"),
  1283. OPT_BOOLEAN('v', "verbose", &verbose,
  1284. "be more verbose (show symbol address, etc)"),
  1285. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1286. "dump raw trace in ASCII"),
  1287. OPT_END()
  1288. };
  1289. static void setup_sorting(void)
  1290. {
  1291. char *tmp, *tok, *str = strdup(sort_order);
  1292. for (tok = strtok_r(str, ", ", &tmp);
  1293. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1294. if (sort_dimension__add(tok, &sort_list) < 0) {
  1295. error("Unknown --sort key: `%s'", tok);
  1296. usage_with_options(latency_usage, latency_options);
  1297. }
  1298. }
  1299. free(str);
  1300. sort_dimension__add((char *)"pid", &cmp_pid);
  1301. }
  1302. static const char *record_args[] = {
  1303. "record",
  1304. "-a",
  1305. "-R",
  1306. "-M",
  1307. "-g",
  1308. "-c", "1",
  1309. "-e", "sched:sched_switch:r",
  1310. "-e", "sched:sched_stat_wait:r",
  1311. "-e", "sched:sched_stat_sleep:r",
  1312. "-e", "sched:sched_stat_iowait:r",
  1313. "-e", "sched:sched_process_exit:r",
  1314. "-e", "sched:sched_process_fork:r",
  1315. "-e", "sched:sched_wakeup:r",
  1316. "-e", "sched:sched_migrate_task:r",
  1317. };
  1318. static int __cmd_record(int argc, const char **argv)
  1319. {
  1320. unsigned int rec_argc, i, j;
  1321. const char **rec_argv;
  1322. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1323. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1324. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1325. rec_argv[i] = strdup(record_args[i]);
  1326. for (j = 1; j < (unsigned int)argc; j++, i++)
  1327. rec_argv[i] = argv[j];
  1328. BUG_ON(i != rec_argc);
  1329. return cmd_record(i, rec_argv, NULL);
  1330. }
  1331. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1332. {
  1333. symbol__init();
  1334. page_size = getpagesize();
  1335. argc = parse_options(argc, argv, sched_options, sched_usage,
  1336. PARSE_OPT_STOP_AT_NON_OPTION);
  1337. if (!argc)
  1338. usage_with_options(sched_usage, sched_options);
  1339. if (!strncmp(argv[0], "rec", 3)) {
  1340. return __cmd_record(argc, argv);
  1341. } else if (!strncmp(argv[0], "lat", 3)) {
  1342. trace_handler = &lat_ops;
  1343. if (argc > 1) {
  1344. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1345. if (argc)
  1346. usage_with_options(latency_usage, latency_options);
  1347. }
  1348. setup_sorting();
  1349. __cmd_lat();
  1350. } else if (!strncmp(argv[0], "rep", 3)) {
  1351. trace_handler = &replay_ops;
  1352. if (argc) {
  1353. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1354. if (argc)
  1355. usage_with_options(replay_usage, replay_options);
  1356. }
  1357. __cmd_replay();
  1358. } else if (!strcmp(argv[0], "trace")) {
  1359. /*
  1360. * Aliased to 'perf trace' for now:
  1361. */
  1362. return cmd_trace(argc, argv, prefix);
  1363. } else {
  1364. usage_with_options(sched_usage, sched_options);
  1365. }
  1366. return 0;
  1367. }