ste_dma40.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954
  1. /*
  2. * driver/dma/ste_dma40.c
  3. *
  4. * Copyright (C) ST-Ericsson 2007-2010
  5. * License terms: GNU General Public License (GPL) version 2
  6. * Author: Per Friden <per.friden@stericsson.com>
  7. * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
  8. *
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/slab.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <plat/ste_dma40.h>
  17. #include "ste_dma40_ll.h"
  18. #define D40_NAME "dma40"
  19. #define D40_PHY_CHAN -1
  20. /* For masking out/in 2 bit channel positions */
  21. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  22. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  23. /* Maximum iterations taken before giving up suspending a channel */
  24. #define D40_SUSPEND_MAX_IT 500
  25. /* Hardware requirement on LCLA alignment */
  26. #define LCLA_ALIGNMENT 0x40000
  27. /* Attempts before giving up to trying to get pages that are aligned */
  28. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  29. /* Bit markings for allocation map */
  30. #define D40_ALLOC_FREE (1 << 31)
  31. #define D40_ALLOC_PHY (1 << 30)
  32. #define D40_ALLOC_LOG_FREE 0
  33. /* Hardware designer of the block */
  34. #define D40_HW_DESIGNER 0x8
  35. /**
  36. * enum 40_command - The different commands and/or statuses.
  37. *
  38. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  39. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  40. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  41. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  42. */
  43. enum d40_command {
  44. D40_DMA_STOP = 0,
  45. D40_DMA_RUN = 1,
  46. D40_DMA_SUSPEND_REQ = 2,
  47. D40_DMA_SUSPENDED = 3
  48. };
  49. /**
  50. * struct d40_lli_pool - Structure for keeping LLIs in memory
  51. *
  52. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  53. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  54. * pre_alloc_lli is used.
  55. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  56. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  57. * one buffer to one buffer.
  58. */
  59. struct d40_lli_pool {
  60. void *base;
  61. int size;
  62. /* Space for dst and src, plus an extra for padding */
  63. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  64. };
  65. /**
  66. * struct d40_desc - A descriptor is one DMA job.
  67. *
  68. * @lli_phy: LLI settings for physical channel. Both src and dst=
  69. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  70. * lli_len equals one.
  71. * @lli_log: Same as above but for logical channels.
  72. * @lli_pool: The pool with two entries pre-allocated.
  73. * @lli_len: Number of llis of current descriptor.
  74. * @lli_count: Number of transfered llis.
  75. * @lli_tx_len: Max number of LLIs per transfer, there can be
  76. * many transfer for one descriptor.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @dir: The transfer direction of this job.
  81. * @is_in_client_list: true if the client owns this descriptor.
  82. * @is_hw_linked: true if this job will automatically be continued for
  83. * the previous one.
  84. *
  85. * This descriptor is used for both logical and physical transfers.
  86. */
  87. struct d40_desc {
  88. /* LLI physical */
  89. struct d40_phy_lli_bidir lli_phy;
  90. /* LLI logical */
  91. struct d40_log_lli_bidir lli_log;
  92. struct d40_lli_pool lli_pool;
  93. int lli_len;
  94. int lli_count;
  95. u32 lli_tx_len;
  96. struct dma_async_tx_descriptor txd;
  97. struct list_head node;
  98. enum dma_data_direction dir;
  99. bool is_in_client_list;
  100. bool is_hw_linked;
  101. };
  102. /**
  103. * struct d40_lcla_pool - LCLA pool settings and data.
  104. *
  105. * @base: The virtual address of LCLA. 18 bit aligned.
  106. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  107. * This pointer is only there for clean-up on error.
  108. * @pages: The number of pages needed for all physical channels.
  109. * Only used later for clean-up on error
  110. * @lock: Lock to protect the content in this struct.
  111. * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
  112. * @num_blocks: The number of entries of alloc_map. Equals to the
  113. * number of physical channels.
  114. */
  115. struct d40_lcla_pool {
  116. void *base;
  117. void *base_unaligned;
  118. int pages;
  119. spinlock_t lock;
  120. u32 *alloc_map;
  121. int num_blocks;
  122. };
  123. /**
  124. * struct d40_phy_res - struct for handling eventlines mapped to physical
  125. * channels.
  126. *
  127. * @lock: A lock protection this entity.
  128. * @num: The physical channel number of this entity.
  129. * @allocated_src: Bit mapped to show which src event line's are mapped to
  130. * this physical channel. Can also be free or physically allocated.
  131. * @allocated_dst: Same as for src but is dst.
  132. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  133. * event line number. Both allocated_src and allocated_dst can not be
  134. * allocated to a physical channel, since the interrupt handler has then
  135. * no way of figure out which one the interrupt belongs to.
  136. */
  137. struct d40_phy_res {
  138. spinlock_t lock;
  139. int num;
  140. u32 allocated_src;
  141. u32 allocated_dst;
  142. };
  143. struct d40_base;
  144. /**
  145. * struct d40_chan - Struct that describes a channel.
  146. *
  147. * @lock: A spinlock to protect this struct.
  148. * @log_num: The logical number, if any of this channel.
  149. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  150. * current cookie.
  151. * @pending_tx: The number of pending transfers. Used between interrupt handler
  152. * and tasklet.
  153. * @busy: Set to true when transfer is ongoing on this channel.
  154. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  155. * point is NULL, then the channel is not allocated.
  156. * @chan: DMA engine handle.
  157. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  158. * transfer and call client callback.
  159. * @client: Cliented owned descriptor list.
  160. * @active: Active descriptor.
  161. * @queue: Queued jobs.
  162. * @dma_cfg: The client configuration of this dma channel.
  163. * @base: Pointer to the device instance struct.
  164. * @src_def_cfg: Default cfg register setting for src.
  165. * @dst_def_cfg: Default cfg register setting for dst.
  166. * @log_def: Default logical channel settings.
  167. * @lcla: Space for one dst src pair for logical channel transfers.
  168. * @lcpa: Pointer to dst and src lcpa settings.
  169. *
  170. * This struct can either "be" a logical or a physical channel.
  171. */
  172. struct d40_chan {
  173. spinlock_t lock;
  174. int log_num;
  175. /* ID of the most recent completed transfer */
  176. int completed;
  177. int pending_tx;
  178. bool busy;
  179. struct d40_phy_res *phy_chan;
  180. struct dma_chan chan;
  181. struct tasklet_struct tasklet;
  182. struct list_head client;
  183. struct list_head active;
  184. struct list_head queue;
  185. struct stedma40_chan_cfg dma_cfg;
  186. struct d40_base *base;
  187. /* Default register configurations */
  188. u32 src_def_cfg;
  189. u32 dst_def_cfg;
  190. struct d40_def_lcsp log_def;
  191. struct d40_lcla_elem lcla;
  192. struct d40_log_lli_full *lcpa;
  193. /* Runtime reconfiguration */
  194. dma_addr_t runtime_addr;
  195. enum dma_data_direction runtime_direction;
  196. };
  197. /**
  198. * struct d40_base - The big global struct, one for each probe'd instance.
  199. *
  200. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  201. * @execmd_lock: Lock for execute command usage since several channels share
  202. * the same physical register.
  203. * @dev: The device structure.
  204. * @virtbase: The virtual base address of the DMA's register.
  205. * @rev: silicon revision detected.
  206. * @clk: Pointer to the DMA clock structure.
  207. * @phy_start: Physical memory start of the DMA registers.
  208. * @phy_size: Size of the DMA register map.
  209. * @irq: The IRQ number.
  210. * @num_phy_chans: The number of physical channels. Read from HW. This
  211. * is the number of available channels for this driver, not counting "Secure
  212. * mode" allocated physical channels.
  213. * @num_log_chans: The number of logical channels. Calculated from
  214. * num_phy_chans.
  215. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  216. * @dma_slave: dma_device channels that can do only do slave transfers.
  217. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  218. * @phy_chans: Room for all possible physical channels in system.
  219. * @log_chans: Room for all possible logical channels in system.
  220. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  221. * to log_chans entries.
  222. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  223. * to phy_chans entries.
  224. * @plat_data: Pointer to provided platform_data which is the driver
  225. * configuration.
  226. * @phy_res: Vector containing all physical channels.
  227. * @lcla_pool: lcla pool settings and data.
  228. * @lcpa_base: The virtual mapped address of LCPA.
  229. * @phy_lcpa: The physical address of the LCPA.
  230. * @lcpa_size: The size of the LCPA area.
  231. * @desc_slab: cache for descriptors.
  232. */
  233. struct d40_base {
  234. spinlock_t interrupt_lock;
  235. spinlock_t execmd_lock;
  236. struct device *dev;
  237. void __iomem *virtbase;
  238. u8 rev:4;
  239. struct clk *clk;
  240. phys_addr_t phy_start;
  241. resource_size_t phy_size;
  242. int irq;
  243. int num_phy_chans;
  244. int num_log_chans;
  245. struct dma_device dma_both;
  246. struct dma_device dma_slave;
  247. struct dma_device dma_memcpy;
  248. struct d40_chan *phy_chans;
  249. struct d40_chan *log_chans;
  250. struct d40_chan **lookup_log_chans;
  251. struct d40_chan **lookup_phy_chans;
  252. struct stedma40_platform_data *plat_data;
  253. /* Physical half channels */
  254. struct d40_phy_res *phy_res;
  255. struct d40_lcla_pool lcla_pool;
  256. void *lcpa_base;
  257. dma_addr_t phy_lcpa;
  258. resource_size_t lcpa_size;
  259. struct kmem_cache *desc_slab;
  260. };
  261. /**
  262. * struct d40_interrupt_lookup - lookup table for interrupt handler
  263. *
  264. * @src: Interrupt mask register.
  265. * @clr: Interrupt clear register.
  266. * @is_error: true if this is an error interrupt.
  267. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  268. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  269. */
  270. struct d40_interrupt_lookup {
  271. u32 src;
  272. u32 clr;
  273. bool is_error;
  274. int offset;
  275. };
  276. /**
  277. * struct d40_reg_val - simple lookup struct
  278. *
  279. * @reg: The register.
  280. * @val: The value that belongs to the register in reg.
  281. */
  282. struct d40_reg_val {
  283. unsigned int reg;
  284. unsigned int val;
  285. };
  286. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  287. int lli_len, bool is_log)
  288. {
  289. u32 align;
  290. void *base;
  291. if (is_log)
  292. align = sizeof(struct d40_log_lli);
  293. else
  294. align = sizeof(struct d40_phy_lli);
  295. if (lli_len == 1) {
  296. base = d40d->lli_pool.pre_alloc_lli;
  297. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  298. d40d->lli_pool.base = NULL;
  299. } else {
  300. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  301. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  302. d40d->lli_pool.base = base;
  303. if (d40d->lli_pool.base == NULL)
  304. return -ENOMEM;
  305. }
  306. if (is_log) {
  307. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  308. align);
  309. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  310. align);
  311. } else {
  312. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  313. align);
  314. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  315. align);
  316. }
  317. return 0;
  318. }
  319. static void d40_pool_lli_free(struct d40_desc *d40d)
  320. {
  321. kfree(d40d->lli_pool.base);
  322. d40d->lli_pool.base = NULL;
  323. d40d->lli_pool.size = 0;
  324. d40d->lli_log.src = NULL;
  325. d40d->lli_log.dst = NULL;
  326. d40d->lli_phy.src = NULL;
  327. d40d->lli_phy.dst = NULL;
  328. }
  329. static void d40_desc_remove(struct d40_desc *d40d)
  330. {
  331. list_del(&d40d->node);
  332. }
  333. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  334. {
  335. struct d40_desc *d;
  336. struct d40_desc *_d;
  337. if (!list_empty(&d40c->client)) {
  338. list_for_each_entry_safe(d, _d, &d40c->client, node)
  339. if (async_tx_test_ack(&d->txd)) {
  340. d40_pool_lli_free(d);
  341. d40_desc_remove(d);
  342. break;
  343. }
  344. } else {
  345. d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
  346. if (d != NULL) {
  347. memset(d, 0, sizeof(struct d40_desc));
  348. INIT_LIST_HEAD(&d->node);
  349. }
  350. }
  351. return d;
  352. }
  353. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  354. {
  355. kmem_cache_free(d40c->base->desc_slab, d40d);
  356. }
  357. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  358. {
  359. list_add_tail(&desc->node, &d40c->active);
  360. }
  361. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  362. {
  363. struct d40_desc *d;
  364. if (list_empty(&d40c->active))
  365. return NULL;
  366. d = list_first_entry(&d40c->active,
  367. struct d40_desc,
  368. node);
  369. return d;
  370. }
  371. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  372. {
  373. list_add_tail(&desc->node, &d40c->queue);
  374. }
  375. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  376. {
  377. struct d40_desc *d;
  378. if (list_empty(&d40c->queue))
  379. return NULL;
  380. d = list_first_entry(&d40c->queue,
  381. struct d40_desc,
  382. node);
  383. return d;
  384. }
  385. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  386. {
  387. struct d40_desc *d;
  388. if (list_empty(&d40c->queue))
  389. return NULL;
  390. list_for_each_entry(d, &d40c->queue, node)
  391. if (list_is_last(&d->node, &d40c->queue))
  392. break;
  393. return d;
  394. }
  395. /* Support functions for logical channels */
  396. static int d40_lcla_id_get(struct d40_chan *d40c)
  397. {
  398. int src_id = 0;
  399. int dst_id = 0;
  400. struct d40_log_lli *lcla_lidx_base =
  401. d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
  402. int i;
  403. int lli_per_log = d40c->base->plat_data->llis_per_log;
  404. unsigned long flags;
  405. if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
  406. return 0;
  407. if (d40c->base->lcla_pool.num_blocks > 32)
  408. return -EINVAL;
  409. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  410. for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
  411. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  412. (0x1 << i))) {
  413. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  414. (0x1 << i);
  415. break;
  416. }
  417. }
  418. src_id = i;
  419. if (src_id >= d40c->base->lcla_pool.num_blocks)
  420. goto err;
  421. for (; i < d40c->base->lcla_pool.num_blocks; i++) {
  422. if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
  423. (0x1 << i))) {
  424. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
  425. (0x1 << i);
  426. break;
  427. }
  428. }
  429. dst_id = i;
  430. if (dst_id == src_id)
  431. goto err;
  432. d40c->lcla.src_id = src_id;
  433. d40c->lcla.dst_id = dst_id;
  434. d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
  435. d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
  436. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  437. return 0;
  438. err:
  439. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  440. return -EINVAL;
  441. }
  442. static int d40_channel_execute_command(struct d40_chan *d40c,
  443. enum d40_command command)
  444. {
  445. int status, i;
  446. void __iomem *active_reg;
  447. int ret = 0;
  448. unsigned long flags;
  449. u32 wmask;
  450. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  451. if (d40c->phy_chan->num % 2 == 0)
  452. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  453. else
  454. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  455. if (command == D40_DMA_SUSPEND_REQ) {
  456. status = (readl(active_reg) &
  457. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  458. D40_CHAN_POS(d40c->phy_chan->num);
  459. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  460. goto done;
  461. }
  462. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  463. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  464. active_reg);
  465. if (command == D40_DMA_SUSPEND_REQ) {
  466. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  467. status = (readl(active_reg) &
  468. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  469. D40_CHAN_POS(d40c->phy_chan->num);
  470. cpu_relax();
  471. /*
  472. * Reduce the number of bus accesses while
  473. * waiting for the DMA to suspend.
  474. */
  475. udelay(3);
  476. if (status == D40_DMA_STOP ||
  477. status == D40_DMA_SUSPENDED)
  478. break;
  479. }
  480. if (i == D40_SUSPEND_MAX_IT) {
  481. dev_err(&d40c->chan.dev->device,
  482. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  483. __func__, d40c->phy_chan->num, d40c->log_num,
  484. status);
  485. dump_stack();
  486. ret = -EBUSY;
  487. }
  488. }
  489. done:
  490. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  491. return ret;
  492. }
  493. static void d40_term_all(struct d40_chan *d40c)
  494. {
  495. struct d40_desc *d40d;
  496. unsigned long flags;
  497. /* Release active descriptors */
  498. while ((d40d = d40_first_active_get(d40c))) {
  499. d40_desc_remove(d40d);
  500. /* Return desc to free-list */
  501. d40_desc_free(d40c, d40d);
  502. }
  503. /* Release queued descriptors waiting for transfer */
  504. while ((d40d = d40_first_queued(d40c))) {
  505. d40_desc_remove(d40d);
  506. /* Return desc to free-list */
  507. d40_desc_free(d40c, d40d);
  508. }
  509. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  510. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  511. (~(0x1 << d40c->lcla.dst_id));
  512. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
  513. (~(0x1 << d40c->lcla.src_id));
  514. d40c->lcla.src_id = -1;
  515. d40c->lcla.dst_id = -1;
  516. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  517. d40c->pending_tx = 0;
  518. d40c->busy = false;
  519. }
  520. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  521. {
  522. u32 val;
  523. unsigned long flags;
  524. /* Notice, that disable requires the physical channel to be stopped */
  525. if (do_enable)
  526. val = D40_ACTIVATE_EVENTLINE;
  527. else
  528. val = D40_DEACTIVATE_EVENTLINE;
  529. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  530. /* Enable event line connected to device (or memcpy) */
  531. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  532. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  533. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  534. writel((val << D40_EVENTLINE_POS(event)) |
  535. ~D40_EVENTLINE_MASK(event),
  536. d40c->base->virtbase + D40_DREG_PCBASE +
  537. d40c->phy_chan->num * D40_DREG_PCDELTA +
  538. D40_CHAN_REG_SSLNK);
  539. }
  540. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  541. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  542. writel((val << D40_EVENTLINE_POS(event)) |
  543. ~D40_EVENTLINE_MASK(event),
  544. d40c->base->virtbase + D40_DREG_PCBASE +
  545. d40c->phy_chan->num * D40_DREG_PCDELTA +
  546. D40_CHAN_REG_SDLNK);
  547. }
  548. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  549. }
  550. static u32 d40_chan_has_events(struct d40_chan *d40c)
  551. {
  552. u32 val;
  553. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  554. d40c->phy_chan->num * D40_DREG_PCDELTA +
  555. D40_CHAN_REG_SSLNK);
  556. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  557. d40c->phy_chan->num * D40_DREG_PCDELTA +
  558. D40_CHAN_REG_SDLNK);
  559. return val;
  560. }
  561. static void d40_config_write(struct d40_chan *d40c)
  562. {
  563. u32 addr_base;
  564. u32 var;
  565. /* Odd addresses are even addresses + 4 */
  566. addr_base = (d40c->phy_chan->num % 2) * 4;
  567. /* Setup channel mode to logical or physical */
  568. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  569. D40_CHAN_POS(d40c->phy_chan->num);
  570. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  571. /* Setup operational mode option register */
  572. var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
  573. 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
  574. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  575. if (d40c->log_num != D40_PHY_CHAN) {
  576. /* Set default config for CFG reg */
  577. writel(d40c->src_def_cfg,
  578. d40c->base->virtbase + D40_DREG_PCBASE +
  579. d40c->phy_chan->num * D40_DREG_PCDELTA +
  580. D40_CHAN_REG_SSCFG);
  581. writel(d40c->dst_def_cfg,
  582. d40c->base->virtbase + D40_DREG_PCBASE +
  583. d40c->phy_chan->num * D40_DREG_PCDELTA +
  584. D40_CHAN_REG_SDCFG);
  585. /* Set LIDX for lcla */
  586. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  587. D40_SREG_ELEM_LOG_LIDX_MASK,
  588. d40c->base->virtbase + D40_DREG_PCBASE +
  589. d40c->phy_chan->num * D40_DREG_PCDELTA +
  590. D40_CHAN_REG_SDELT);
  591. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  592. D40_SREG_ELEM_LOG_LIDX_MASK,
  593. d40c->base->virtbase + D40_DREG_PCBASE +
  594. d40c->phy_chan->num * D40_DREG_PCDELTA +
  595. D40_CHAN_REG_SSELT);
  596. }
  597. }
  598. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  599. {
  600. if (d40d->lli_phy.dst && d40d->lli_phy.src) {
  601. d40_phy_lli_write(d40c->base->virtbase,
  602. d40c->phy_chan->num,
  603. d40d->lli_phy.dst,
  604. d40d->lli_phy.src);
  605. } else if (d40d->lli_log.dst && d40d->lli_log.src) {
  606. struct d40_log_lli *src = d40d->lli_log.src;
  607. struct d40_log_lli *dst = d40d->lli_log.dst;
  608. int s;
  609. src += d40d->lli_count;
  610. dst += d40d->lli_count;
  611. s = d40_log_lli_write(d40c->lcpa,
  612. d40c->lcla.src, d40c->lcla.dst,
  613. dst, src,
  614. d40c->base->plat_data->llis_per_log);
  615. /* If s equals to zero, the job is not linked */
  616. if (s > 0) {
  617. (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
  618. s * sizeof(struct d40_log_lli),
  619. DMA_TO_DEVICE);
  620. (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
  621. s * sizeof(struct d40_log_lli),
  622. DMA_TO_DEVICE);
  623. }
  624. }
  625. d40d->lli_count += d40d->lli_tx_len;
  626. }
  627. static u32 d40_residue(struct d40_chan *d40c)
  628. {
  629. u32 num_elt;
  630. if (d40c->log_num != D40_PHY_CHAN)
  631. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  632. >> D40_MEM_LCSP2_ECNT_POS;
  633. else
  634. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  635. d40c->phy_chan->num * D40_DREG_PCDELTA +
  636. D40_CHAN_REG_SDELT) &
  637. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  638. D40_SREG_ELEM_PHY_ECNT_POS;
  639. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  640. }
  641. static bool d40_tx_is_linked(struct d40_chan *d40c)
  642. {
  643. bool is_link;
  644. if (d40c->log_num != D40_PHY_CHAN)
  645. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  646. else
  647. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  648. d40c->phy_chan->num * D40_DREG_PCDELTA +
  649. D40_CHAN_REG_SDLNK) &
  650. D40_SREG_LNK_PHYS_LNK_MASK;
  651. return is_link;
  652. }
  653. static int d40_pause(struct dma_chan *chan)
  654. {
  655. struct d40_chan *d40c =
  656. container_of(chan, struct d40_chan, chan);
  657. int res = 0;
  658. unsigned long flags;
  659. spin_lock_irqsave(&d40c->lock, flags);
  660. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  661. if (res == 0) {
  662. if (d40c->log_num != D40_PHY_CHAN) {
  663. d40_config_set_event(d40c, false);
  664. /* Resume the other logical channels if any */
  665. if (d40_chan_has_events(d40c))
  666. res = d40_channel_execute_command(d40c,
  667. D40_DMA_RUN);
  668. }
  669. }
  670. spin_unlock_irqrestore(&d40c->lock, flags);
  671. return res;
  672. }
  673. static int d40_resume(struct dma_chan *chan)
  674. {
  675. struct d40_chan *d40c =
  676. container_of(chan, struct d40_chan, chan);
  677. int res = 0;
  678. unsigned long flags;
  679. spin_lock_irqsave(&d40c->lock, flags);
  680. if (d40c->base->rev == 0)
  681. if (d40c->log_num != D40_PHY_CHAN) {
  682. res = d40_channel_execute_command(d40c,
  683. D40_DMA_SUSPEND_REQ);
  684. goto no_suspend;
  685. }
  686. /* If bytes left to transfer or linked tx resume job */
  687. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  688. if (d40c->log_num != D40_PHY_CHAN)
  689. d40_config_set_event(d40c, true);
  690. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  691. }
  692. no_suspend:
  693. spin_unlock_irqrestore(&d40c->lock, flags);
  694. return res;
  695. }
  696. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  697. {
  698. /* TODO: Write */
  699. }
  700. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  701. {
  702. struct d40_desc *d40d_prev = NULL;
  703. int i;
  704. u32 val;
  705. if (!list_empty(&d40c->queue))
  706. d40d_prev = d40_last_queued(d40c);
  707. else if (!list_empty(&d40c->active))
  708. d40d_prev = d40_first_active_get(d40c);
  709. if (!d40d_prev)
  710. return;
  711. /* Here we try to join this job with previous jobs */
  712. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  713. d40c->phy_chan->num * D40_DREG_PCDELTA +
  714. D40_CHAN_REG_SSLNK);
  715. /* Figure out which link we're currently transmitting */
  716. for (i = 0; i < d40d_prev->lli_len; i++)
  717. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  718. break;
  719. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  720. d40c->phy_chan->num * D40_DREG_PCDELTA +
  721. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  722. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  723. /* Change the current one */
  724. writel(virt_to_phys(d40d->lli_phy.src),
  725. d40c->base->virtbase + D40_DREG_PCBASE +
  726. d40c->phy_chan->num * D40_DREG_PCDELTA +
  727. D40_CHAN_REG_SSLNK);
  728. writel(virt_to_phys(d40d->lli_phy.dst),
  729. d40c->base->virtbase + D40_DREG_PCBASE +
  730. d40c->phy_chan->num * D40_DREG_PCDELTA +
  731. D40_CHAN_REG_SDLNK);
  732. d40d->is_hw_linked = true;
  733. } else if (i < d40d_prev->lli_len) {
  734. (void) dma_unmap_single(d40c->base->dev,
  735. virt_to_phys(d40d_prev->lli_phy.src),
  736. d40d_prev->lli_pool.size,
  737. DMA_TO_DEVICE);
  738. /* Keep the settings */
  739. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  740. ~D40_SREG_LNK_PHYS_LNK_MASK;
  741. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  742. val | virt_to_phys(d40d->lli_phy.src);
  743. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  744. ~D40_SREG_LNK_PHYS_LNK_MASK;
  745. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  746. val | virt_to_phys(d40d->lli_phy.dst);
  747. (void) dma_map_single(d40c->base->dev,
  748. d40d_prev->lli_phy.src,
  749. d40d_prev->lli_pool.size,
  750. DMA_TO_DEVICE);
  751. d40d->is_hw_linked = true;
  752. }
  753. }
  754. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  755. {
  756. struct d40_chan *d40c = container_of(tx->chan,
  757. struct d40_chan,
  758. chan);
  759. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  760. unsigned long flags;
  761. (void) d40_pause(&d40c->chan);
  762. spin_lock_irqsave(&d40c->lock, flags);
  763. d40c->chan.cookie++;
  764. if (d40c->chan.cookie < 0)
  765. d40c->chan.cookie = 1;
  766. d40d->txd.cookie = d40c->chan.cookie;
  767. if (d40c->log_num == D40_PHY_CHAN)
  768. d40_tx_submit_phy(d40c, d40d);
  769. else
  770. d40_tx_submit_log(d40c, d40d);
  771. d40_desc_queue(d40c, d40d);
  772. spin_unlock_irqrestore(&d40c->lock, flags);
  773. (void) d40_resume(&d40c->chan);
  774. return tx->cookie;
  775. }
  776. static int d40_start(struct d40_chan *d40c)
  777. {
  778. if (d40c->base->rev == 0) {
  779. int err;
  780. if (d40c->log_num != D40_PHY_CHAN) {
  781. err = d40_channel_execute_command(d40c,
  782. D40_DMA_SUSPEND_REQ);
  783. if (err)
  784. return err;
  785. }
  786. }
  787. if (d40c->log_num != D40_PHY_CHAN)
  788. d40_config_set_event(d40c, true);
  789. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  790. }
  791. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  792. {
  793. struct d40_desc *d40d;
  794. int err;
  795. /* Start queued jobs, if any */
  796. d40d = d40_first_queued(d40c);
  797. if (d40d != NULL) {
  798. d40c->busy = true;
  799. /* Remove from queue */
  800. d40_desc_remove(d40d);
  801. /* Add to active queue */
  802. d40_desc_submit(d40c, d40d);
  803. /*
  804. * If this job is already linked in hw,
  805. * do not submit it.
  806. */
  807. if (!d40d->is_hw_linked) {
  808. /* Initiate DMA job */
  809. d40_desc_load(d40c, d40d);
  810. /* Start dma job */
  811. err = d40_start(d40c);
  812. if (err)
  813. return NULL;
  814. }
  815. }
  816. return d40d;
  817. }
  818. /* called from interrupt context */
  819. static void dma_tc_handle(struct d40_chan *d40c)
  820. {
  821. struct d40_desc *d40d;
  822. if (!d40c->phy_chan)
  823. return;
  824. /* Get first active entry from list */
  825. d40d = d40_first_active_get(d40c);
  826. if (d40d == NULL)
  827. return;
  828. if (d40d->lli_count < d40d->lli_len) {
  829. d40_desc_load(d40c, d40d);
  830. /* Start dma job */
  831. (void) d40_start(d40c);
  832. return;
  833. }
  834. if (d40_queue_start(d40c) == NULL)
  835. d40c->busy = false;
  836. d40c->pending_tx++;
  837. tasklet_schedule(&d40c->tasklet);
  838. }
  839. static void dma_tasklet(unsigned long data)
  840. {
  841. struct d40_chan *d40c = (struct d40_chan *) data;
  842. struct d40_desc *d40d_fin;
  843. unsigned long flags;
  844. dma_async_tx_callback callback;
  845. void *callback_param;
  846. spin_lock_irqsave(&d40c->lock, flags);
  847. /* Get first active entry from list */
  848. d40d_fin = d40_first_active_get(d40c);
  849. if (d40d_fin == NULL)
  850. goto err;
  851. d40c->completed = d40d_fin->txd.cookie;
  852. /*
  853. * If terminating a channel pending_tx is set to zero.
  854. * This prevents any finished active jobs to return to the client.
  855. */
  856. if (d40c->pending_tx == 0) {
  857. spin_unlock_irqrestore(&d40c->lock, flags);
  858. return;
  859. }
  860. /* Callback to client */
  861. callback = d40d_fin->txd.callback;
  862. callback_param = d40d_fin->txd.callback_param;
  863. if (async_tx_test_ack(&d40d_fin->txd)) {
  864. d40_pool_lli_free(d40d_fin);
  865. d40_desc_remove(d40d_fin);
  866. /* Return desc to free-list */
  867. d40_desc_free(d40c, d40d_fin);
  868. } else {
  869. if (!d40d_fin->is_in_client_list) {
  870. d40_desc_remove(d40d_fin);
  871. list_add_tail(&d40d_fin->node, &d40c->client);
  872. d40d_fin->is_in_client_list = true;
  873. }
  874. }
  875. d40c->pending_tx--;
  876. if (d40c->pending_tx)
  877. tasklet_schedule(&d40c->tasklet);
  878. spin_unlock_irqrestore(&d40c->lock, flags);
  879. if (callback && (d40d_fin->txd.flags & DMA_PREP_INTERRUPT))
  880. callback(callback_param);
  881. return;
  882. err:
  883. /* Rescue manouver if receiving double interrupts */
  884. if (d40c->pending_tx > 0)
  885. d40c->pending_tx--;
  886. spin_unlock_irqrestore(&d40c->lock, flags);
  887. }
  888. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  889. {
  890. static const struct d40_interrupt_lookup il[] = {
  891. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  892. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  893. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  894. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  895. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  896. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  897. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  898. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  899. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  900. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  901. };
  902. int i;
  903. u32 regs[ARRAY_SIZE(il)];
  904. u32 idx;
  905. u32 row;
  906. long chan = -1;
  907. struct d40_chan *d40c;
  908. unsigned long flags;
  909. struct d40_base *base = data;
  910. spin_lock_irqsave(&base->interrupt_lock, flags);
  911. /* Read interrupt status of both logical and physical channels */
  912. for (i = 0; i < ARRAY_SIZE(il); i++)
  913. regs[i] = readl(base->virtbase + il[i].src);
  914. for (;;) {
  915. chan = find_next_bit((unsigned long *)regs,
  916. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  917. /* No more set bits found? */
  918. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  919. break;
  920. row = chan / BITS_PER_LONG;
  921. idx = chan & (BITS_PER_LONG - 1);
  922. /* ACK interrupt */
  923. writel(1 << idx, base->virtbase + il[row].clr);
  924. if (il[row].offset == D40_PHY_CHAN)
  925. d40c = base->lookup_phy_chans[idx];
  926. else
  927. d40c = base->lookup_log_chans[il[row].offset + idx];
  928. spin_lock(&d40c->lock);
  929. if (!il[row].is_error)
  930. dma_tc_handle(d40c);
  931. else
  932. dev_err(base->dev,
  933. "[%s] IRQ chan: %ld offset %d idx %d\n",
  934. __func__, chan, il[row].offset, idx);
  935. spin_unlock(&d40c->lock);
  936. }
  937. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  938. return IRQ_HANDLED;
  939. }
  940. static int d40_validate_conf(struct d40_chan *d40c,
  941. struct stedma40_chan_cfg *conf)
  942. {
  943. int res = 0;
  944. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  945. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  946. bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
  947. == STEDMA40_CHANNEL_IN_LOG_MODE;
  948. if (!conf->dir) {
  949. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  950. __func__);
  951. res = -EINVAL;
  952. }
  953. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  954. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  955. d40c->runtime_addr == 0) {
  956. dev_err(&d40c->chan.dev->device,
  957. "[%s] Invalid TX channel address (%d)\n",
  958. __func__, conf->dst_dev_type);
  959. res = -EINVAL;
  960. }
  961. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  962. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  963. d40c->runtime_addr == 0) {
  964. dev_err(&d40c->chan.dev->device,
  965. "[%s] Invalid RX channel address (%d)\n",
  966. __func__, conf->src_dev_type);
  967. res = -EINVAL;
  968. }
  969. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  970. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  971. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  972. __func__);
  973. res = -EINVAL;
  974. }
  975. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  976. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  977. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  978. __func__);
  979. res = -EINVAL;
  980. }
  981. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  982. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  983. dev_err(&d40c->chan.dev->device,
  984. "[%s] No event line\n", __func__);
  985. res = -EINVAL;
  986. }
  987. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  988. (src_event_group != dst_event_group)) {
  989. dev_err(&d40c->chan.dev->device,
  990. "[%s] Invalid event group\n", __func__);
  991. res = -EINVAL;
  992. }
  993. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  994. /*
  995. * DMAC HW supports it. Will be added to this driver,
  996. * in case any dma client requires it.
  997. */
  998. dev_err(&d40c->chan.dev->device,
  999. "[%s] periph to periph not supported\n",
  1000. __func__);
  1001. res = -EINVAL;
  1002. }
  1003. return res;
  1004. }
  1005. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1006. int log_event_line, bool is_log)
  1007. {
  1008. unsigned long flags;
  1009. spin_lock_irqsave(&phy->lock, flags);
  1010. if (!is_log) {
  1011. /* Physical interrupts are masked per physical full channel */
  1012. if (phy->allocated_src == D40_ALLOC_FREE &&
  1013. phy->allocated_dst == D40_ALLOC_FREE) {
  1014. phy->allocated_dst = D40_ALLOC_PHY;
  1015. phy->allocated_src = D40_ALLOC_PHY;
  1016. goto found;
  1017. } else
  1018. goto not_found;
  1019. }
  1020. /* Logical channel */
  1021. if (is_src) {
  1022. if (phy->allocated_src == D40_ALLOC_PHY)
  1023. goto not_found;
  1024. if (phy->allocated_src == D40_ALLOC_FREE)
  1025. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1026. if (!(phy->allocated_src & (1 << log_event_line))) {
  1027. phy->allocated_src |= 1 << log_event_line;
  1028. goto found;
  1029. } else
  1030. goto not_found;
  1031. } else {
  1032. if (phy->allocated_dst == D40_ALLOC_PHY)
  1033. goto not_found;
  1034. if (phy->allocated_dst == D40_ALLOC_FREE)
  1035. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1036. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1037. phy->allocated_dst |= 1 << log_event_line;
  1038. goto found;
  1039. } else
  1040. goto not_found;
  1041. }
  1042. not_found:
  1043. spin_unlock_irqrestore(&phy->lock, flags);
  1044. return false;
  1045. found:
  1046. spin_unlock_irqrestore(&phy->lock, flags);
  1047. return true;
  1048. }
  1049. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1050. int log_event_line)
  1051. {
  1052. unsigned long flags;
  1053. bool is_free = false;
  1054. spin_lock_irqsave(&phy->lock, flags);
  1055. if (!log_event_line) {
  1056. /* Physical interrupts are masked per physical full channel */
  1057. phy->allocated_dst = D40_ALLOC_FREE;
  1058. phy->allocated_src = D40_ALLOC_FREE;
  1059. is_free = true;
  1060. goto out;
  1061. }
  1062. /* Logical channel */
  1063. if (is_src) {
  1064. phy->allocated_src &= ~(1 << log_event_line);
  1065. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1066. phy->allocated_src = D40_ALLOC_FREE;
  1067. } else {
  1068. phy->allocated_dst &= ~(1 << log_event_line);
  1069. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1070. phy->allocated_dst = D40_ALLOC_FREE;
  1071. }
  1072. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1073. D40_ALLOC_FREE);
  1074. out:
  1075. spin_unlock_irqrestore(&phy->lock, flags);
  1076. return is_free;
  1077. }
  1078. static int d40_allocate_channel(struct d40_chan *d40c)
  1079. {
  1080. int dev_type;
  1081. int event_group;
  1082. int event_line;
  1083. struct d40_phy_res *phys;
  1084. int i;
  1085. int j;
  1086. int log_num;
  1087. bool is_src;
  1088. bool is_log = (d40c->dma_cfg.channel_type &
  1089. STEDMA40_CHANNEL_IN_OPER_MODE)
  1090. == STEDMA40_CHANNEL_IN_LOG_MODE;
  1091. phys = d40c->base->phy_res;
  1092. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1093. dev_type = d40c->dma_cfg.src_dev_type;
  1094. log_num = 2 * dev_type;
  1095. is_src = true;
  1096. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1097. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1098. /* dst event lines are used for logical memcpy */
  1099. dev_type = d40c->dma_cfg.dst_dev_type;
  1100. log_num = 2 * dev_type + 1;
  1101. is_src = false;
  1102. } else
  1103. return -EINVAL;
  1104. event_group = D40_TYPE_TO_GROUP(dev_type);
  1105. event_line = D40_TYPE_TO_EVENT(dev_type);
  1106. if (!is_log) {
  1107. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1108. /* Find physical half channel */
  1109. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1110. if (d40_alloc_mask_set(&phys[i], is_src,
  1111. 0, is_log))
  1112. goto found_phy;
  1113. }
  1114. } else
  1115. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1116. int phy_num = j + event_group * 2;
  1117. for (i = phy_num; i < phy_num + 2; i++) {
  1118. if (d40_alloc_mask_set(&phys[i],
  1119. is_src,
  1120. 0,
  1121. is_log))
  1122. goto found_phy;
  1123. }
  1124. }
  1125. return -EINVAL;
  1126. found_phy:
  1127. d40c->phy_chan = &phys[i];
  1128. d40c->log_num = D40_PHY_CHAN;
  1129. goto out;
  1130. }
  1131. if (dev_type == -1)
  1132. return -EINVAL;
  1133. /* Find logical channel */
  1134. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1135. int phy_num = j + event_group * 2;
  1136. /*
  1137. * Spread logical channels across all available physical rather
  1138. * than pack every logical channel at the first available phy
  1139. * channels.
  1140. */
  1141. if (is_src) {
  1142. for (i = phy_num; i < phy_num + 2; i++) {
  1143. if (d40_alloc_mask_set(&phys[i], is_src,
  1144. event_line, is_log))
  1145. goto found_log;
  1146. }
  1147. } else {
  1148. for (i = phy_num + 1; i >= phy_num; i--) {
  1149. if (d40_alloc_mask_set(&phys[i], is_src,
  1150. event_line, is_log))
  1151. goto found_log;
  1152. }
  1153. }
  1154. }
  1155. return -EINVAL;
  1156. found_log:
  1157. d40c->phy_chan = &phys[i];
  1158. d40c->log_num = log_num;
  1159. out:
  1160. if (is_log)
  1161. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1162. else
  1163. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1164. return 0;
  1165. }
  1166. static int d40_config_memcpy(struct d40_chan *d40c)
  1167. {
  1168. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1169. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1170. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1171. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1172. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1173. memcpy[d40c->chan.chan_id];
  1174. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1175. dma_has_cap(DMA_SLAVE, cap)) {
  1176. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1177. } else {
  1178. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1179. __func__);
  1180. return -EINVAL;
  1181. }
  1182. return 0;
  1183. }
  1184. static int d40_free_dma(struct d40_chan *d40c)
  1185. {
  1186. int res = 0;
  1187. u32 event;
  1188. struct d40_phy_res *phy = d40c->phy_chan;
  1189. bool is_src;
  1190. struct d40_desc *d;
  1191. struct d40_desc *_d;
  1192. /* Terminate all queued and active transfers */
  1193. d40_term_all(d40c);
  1194. /* Release client owned descriptors */
  1195. if (!list_empty(&d40c->client))
  1196. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1197. d40_pool_lli_free(d);
  1198. d40_desc_remove(d);
  1199. /* Return desc to free-list */
  1200. d40_desc_free(d40c, d);
  1201. }
  1202. if (phy == NULL) {
  1203. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1204. __func__);
  1205. return -EINVAL;
  1206. }
  1207. if (phy->allocated_src == D40_ALLOC_FREE &&
  1208. phy->allocated_dst == D40_ALLOC_FREE) {
  1209. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1210. __func__);
  1211. return -EINVAL;
  1212. }
  1213. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1214. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1215. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1216. is_src = false;
  1217. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1218. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1219. is_src = true;
  1220. } else {
  1221. dev_err(&d40c->chan.dev->device,
  1222. "[%s] Unknown direction\n", __func__);
  1223. return -EINVAL;
  1224. }
  1225. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1226. if (res) {
  1227. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1228. __func__);
  1229. return res;
  1230. }
  1231. if (d40c->log_num != D40_PHY_CHAN) {
  1232. /* Release logical channel, deactivate the event line */
  1233. d40_config_set_event(d40c, false);
  1234. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1235. /*
  1236. * Check if there are more logical allocation
  1237. * on this phy channel.
  1238. */
  1239. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1240. /* Resume the other logical channels if any */
  1241. if (d40_chan_has_events(d40c)) {
  1242. res = d40_channel_execute_command(d40c,
  1243. D40_DMA_RUN);
  1244. if (res) {
  1245. dev_err(&d40c->chan.dev->device,
  1246. "[%s] Executing RUN command\n",
  1247. __func__);
  1248. return res;
  1249. }
  1250. }
  1251. return 0;
  1252. }
  1253. } else {
  1254. (void) d40_alloc_mask_free(phy, is_src, 0);
  1255. }
  1256. /* Release physical channel */
  1257. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1258. if (res) {
  1259. dev_err(&d40c->chan.dev->device,
  1260. "[%s] Failed to stop channel\n", __func__);
  1261. return res;
  1262. }
  1263. d40c->phy_chan = NULL;
  1264. /* Invalidate channel type */
  1265. d40c->dma_cfg.channel_type = 0;
  1266. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1267. return 0;
  1268. }
  1269. static bool d40_is_paused(struct d40_chan *d40c)
  1270. {
  1271. bool is_paused = false;
  1272. unsigned long flags;
  1273. void __iomem *active_reg;
  1274. u32 status;
  1275. u32 event;
  1276. spin_lock_irqsave(&d40c->lock, flags);
  1277. if (d40c->log_num == D40_PHY_CHAN) {
  1278. if (d40c->phy_chan->num % 2 == 0)
  1279. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1280. else
  1281. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1282. status = (readl(active_reg) &
  1283. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1284. D40_CHAN_POS(d40c->phy_chan->num);
  1285. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1286. is_paused = true;
  1287. goto _exit;
  1288. }
  1289. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1290. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
  1291. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1292. else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1293. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1294. else {
  1295. dev_err(&d40c->chan.dev->device,
  1296. "[%s] Unknown direction\n", __func__);
  1297. goto _exit;
  1298. }
  1299. status = d40_chan_has_events(d40c);
  1300. status = (status & D40_EVENTLINE_MASK(event)) >>
  1301. D40_EVENTLINE_POS(event);
  1302. if (status != D40_DMA_RUN)
  1303. is_paused = true;
  1304. _exit:
  1305. spin_unlock_irqrestore(&d40c->lock, flags);
  1306. return is_paused;
  1307. }
  1308. static u32 stedma40_residue(struct dma_chan *chan)
  1309. {
  1310. struct d40_chan *d40c =
  1311. container_of(chan, struct d40_chan, chan);
  1312. u32 bytes_left;
  1313. unsigned long flags;
  1314. spin_lock_irqsave(&d40c->lock, flags);
  1315. bytes_left = d40_residue(d40c);
  1316. spin_unlock_irqrestore(&d40c->lock, flags);
  1317. return bytes_left;
  1318. }
  1319. /* Public DMA functions in addition to the DMA engine framework */
  1320. int stedma40_set_psize(struct dma_chan *chan,
  1321. int src_psize,
  1322. int dst_psize)
  1323. {
  1324. struct d40_chan *d40c =
  1325. container_of(chan, struct d40_chan, chan);
  1326. unsigned long flags;
  1327. spin_lock_irqsave(&d40c->lock, flags);
  1328. if (d40c->log_num != D40_PHY_CHAN) {
  1329. d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1330. d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1331. d40c->log_def.lcsp1 |= src_psize <<
  1332. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1333. d40c->log_def.lcsp3 |= dst_psize <<
  1334. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1335. goto out;
  1336. }
  1337. if (src_psize == STEDMA40_PSIZE_PHY_1)
  1338. d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1339. else {
  1340. d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1341. d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1342. D40_SREG_CFG_PSIZE_POS);
  1343. d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
  1344. }
  1345. if (dst_psize == STEDMA40_PSIZE_PHY_1)
  1346. d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1347. else {
  1348. d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1349. d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1350. D40_SREG_CFG_PSIZE_POS);
  1351. d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
  1352. }
  1353. out:
  1354. spin_unlock_irqrestore(&d40c->lock, flags);
  1355. return 0;
  1356. }
  1357. EXPORT_SYMBOL(stedma40_set_psize);
  1358. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1359. struct scatterlist *sgl_dst,
  1360. struct scatterlist *sgl_src,
  1361. unsigned int sgl_len,
  1362. unsigned long dma_flags)
  1363. {
  1364. int res;
  1365. struct d40_desc *d40d;
  1366. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1367. chan);
  1368. unsigned long flags;
  1369. if (d40c->phy_chan == NULL) {
  1370. dev_err(&d40c->chan.dev->device,
  1371. "[%s] Unallocated channel.\n", __func__);
  1372. return ERR_PTR(-EINVAL);
  1373. }
  1374. spin_lock_irqsave(&d40c->lock, flags);
  1375. d40d = d40_desc_get(d40c);
  1376. if (d40d == NULL)
  1377. goto err;
  1378. d40d->lli_len = sgl_len;
  1379. d40d->lli_tx_len = d40d->lli_len;
  1380. d40d->txd.flags = dma_flags;
  1381. if (d40c->log_num != D40_PHY_CHAN) {
  1382. if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
  1383. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1384. if (sgl_len > 1)
  1385. /*
  1386. * Check if there is space available in lcla. If not,
  1387. * split list into 1-length and run only in lcpa
  1388. * space.
  1389. */
  1390. if (d40_lcla_id_get(d40c) != 0)
  1391. d40d->lli_tx_len = 1;
  1392. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1393. dev_err(&d40c->chan.dev->device,
  1394. "[%s] Out of memory\n", __func__);
  1395. goto err;
  1396. }
  1397. (void) d40_log_sg_to_lli(d40c->lcla.src_id,
  1398. sgl_src,
  1399. sgl_len,
  1400. d40d->lli_log.src,
  1401. d40c->log_def.lcsp1,
  1402. d40c->dma_cfg.src_info.data_width,
  1403. d40d->lli_tx_len,
  1404. d40c->base->plat_data->llis_per_log);
  1405. (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
  1406. sgl_dst,
  1407. sgl_len,
  1408. d40d->lli_log.dst,
  1409. d40c->log_def.lcsp3,
  1410. d40c->dma_cfg.dst_info.data_width,
  1411. d40d->lli_tx_len,
  1412. d40c->base->plat_data->llis_per_log);
  1413. } else {
  1414. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1415. dev_err(&d40c->chan.dev->device,
  1416. "[%s] Out of memory\n", __func__);
  1417. goto err;
  1418. }
  1419. res = d40_phy_sg_to_lli(sgl_src,
  1420. sgl_len,
  1421. 0,
  1422. d40d->lli_phy.src,
  1423. virt_to_phys(d40d->lli_phy.src),
  1424. d40c->src_def_cfg,
  1425. d40c->dma_cfg.src_info.data_width,
  1426. d40c->dma_cfg.src_info.psize);
  1427. if (res < 0)
  1428. goto err;
  1429. res = d40_phy_sg_to_lli(sgl_dst,
  1430. sgl_len,
  1431. 0,
  1432. d40d->lli_phy.dst,
  1433. virt_to_phys(d40d->lli_phy.dst),
  1434. d40c->dst_def_cfg,
  1435. d40c->dma_cfg.dst_info.data_width,
  1436. d40c->dma_cfg.dst_info.psize);
  1437. if (res < 0)
  1438. goto err;
  1439. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1440. d40d->lli_pool.size, DMA_TO_DEVICE);
  1441. }
  1442. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1443. d40d->txd.tx_submit = d40_tx_submit;
  1444. spin_unlock_irqrestore(&d40c->lock, flags);
  1445. return &d40d->txd;
  1446. err:
  1447. spin_unlock_irqrestore(&d40c->lock, flags);
  1448. return NULL;
  1449. }
  1450. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1451. bool stedma40_filter(struct dma_chan *chan, void *data)
  1452. {
  1453. struct stedma40_chan_cfg *info = data;
  1454. struct d40_chan *d40c =
  1455. container_of(chan, struct d40_chan, chan);
  1456. int err;
  1457. if (data) {
  1458. err = d40_validate_conf(d40c, info);
  1459. if (!err)
  1460. d40c->dma_cfg = *info;
  1461. } else
  1462. err = d40_config_memcpy(d40c);
  1463. return err == 0;
  1464. }
  1465. EXPORT_SYMBOL(stedma40_filter);
  1466. /* DMA ENGINE functions */
  1467. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1468. {
  1469. int err;
  1470. unsigned long flags;
  1471. struct d40_chan *d40c =
  1472. container_of(chan, struct d40_chan, chan);
  1473. bool is_free_phy;
  1474. spin_lock_irqsave(&d40c->lock, flags);
  1475. d40c->completed = chan->cookie = 1;
  1476. /*
  1477. * If no dma configuration is set (channel_type == 0)
  1478. * use default configuration (memcpy)
  1479. */
  1480. if (d40c->dma_cfg.channel_type == 0) {
  1481. err = d40_config_memcpy(d40c);
  1482. if (err) {
  1483. dev_err(&d40c->chan.dev->device,
  1484. "[%s] Failed to configure memcpy channel\n",
  1485. __func__);
  1486. goto fail;
  1487. }
  1488. }
  1489. is_free_phy = (d40c->phy_chan == NULL);
  1490. err = d40_allocate_channel(d40c);
  1491. if (err) {
  1492. dev_err(&d40c->chan.dev->device,
  1493. "[%s] Failed to allocate channel\n", __func__);
  1494. goto fail;
  1495. }
  1496. /* Fill in basic CFG register values */
  1497. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1498. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1499. if (d40c->log_num != D40_PHY_CHAN) {
  1500. d40_log_cfg(&d40c->dma_cfg,
  1501. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1502. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1503. d40c->lcpa = d40c->base->lcpa_base +
  1504. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1505. else
  1506. d40c->lcpa = d40c->base->lcpa_base +
  1507. d40c->dma_cfg.dst_dev_type *
  1508. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1509. }
  1510. /*
  1511. * Only write channel configuration to the DMA if the physical
  1512. * resource is free. In case of multiple logical channels
  1513. * on the same physical resource, only the first write is necessary.
  1514. */
  1515. if (is_free_phy)
  1516. d40_config_write(d40c);
  1517. fail:
  1518. spin_unlock_irqrestore(&d40c->lock, flags);
  1519. return err;
  1520. }
  1521. static void d40_free_chan_resources(struct dma_chan *chan)
  1522. {
  1523. struct d40_chan *d40c =
  1524. container_of(chan, struct d40_chan, chan);
  1525. int err;
  1526. unsigned long flags;
  1527. if (d40c->phy_chan == NULL) {
  1528. dev_err(&d40c->chan.dev->device,
  1529. "[%s] Cannot free unallocated channel\n", __func__);
  1530. return;
  1531. }
  1532. spin_lock_irqsave(&d40c->lock, flags);
  1533. err = d40_free_dma(d40c);
  1534. if (err)
  1535. dev_err(&d40c->chan.dev->device,
  1536. "[%s] Failed to free channel\n", __func__);
  1537. spin_unlock_irqrestore(&d40c->lock, flags);
  1538. }
  1539. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1540. dma_addr_t dst,
  1541. dma_addr_t src,
  1542. size_t size,
  1543. unsigned long dma_flags)
  1544. {
  1545. struct d40_desc *d40d;
  1546. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1547. chan);
  1548. unsigned long flags;
  1549. int err = 0;
  1550. if (d40c->phy_chan == NULL) {
  1551. dev_err(&d40c->chan.dev->device,
  1552. "[%s] Channel is not allocated.\n", __func__);
  1553. return ERR_PTR(-EINVAL);
  1554. }
  1555. spin_lock_irqsave(&d40c->lock, flags);
  1556. d40d = d40_desc_get(d40c);
  1557. if (d40d == NULL) {
  1558. dev_err(&d40c->chan.dev->device,
  1559. "[%s] Descriptor is NULL\n", __func__);
  1560. goto err;
  1561. }
  1562. d40d->txd.flags = dma_flags;
  1563. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1564. d40d->txd.tx_submit = d40_tx_submit;
  1565. if (d40c->log_num != D40_PHY_CHAN) {
  1566. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1567. dev_err(&d40c->chan.dev->device,
  1568. "[%s] Out of memory\n", __func__);
  1569. goto err;
  1570. }
  1571. d40d->lli_len = 1;
  1572. d40d->lli_tx_len = 1;
  1573. d40_log_fill_lli(d40d->lli_log.src,
  1574. src,
  1575. size,
  1576. 0,
  1577. d40c->log_def.lcsp1,
  1578. d40c->dma_cfg.src_info.data_width,
  1579. false, true);
  1580. d40_log_fill_lli(d40d->lli_log.dst,
  1581. dst,
  1582. size,
  1583. 0,
  1584. d40c->log_def.lcsp3,
  1585. d40c->dma_cfg.dst_info.data_width,
  1586. true, true);
  1587. } else {
  1588. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1589. dev_err(&d40c->chan.dev->device,
  1590. "[%s] Out of memory\n", __func__);
  1591. goto err;
  1592. }
  1593. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1594. src,
  1595. size,
  1596. d40c->dma_cfg.src_info.psize,
  1597. 0,
  1598. d40c->src_def_cfg,
  1599. true,
  1600. d40c->dma_cfg.src_info.data_width,
  1601. false);
  1602. if (err)
  1603. goto err_fill_lli;
  1604. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1605. dst,
  1606. size,
  1607. d40c->dma_cfg.dst_info.psize,
  1608. 0,
  1609. d40c->dst_def_cfg,
  1610. true,
  1611. d40c->dma_cfg.dst_info.data_width,
  1612. false);
  1613. if (err)
  1614. goto err_fill_lli;
  1615. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1616. d40d->lli_pool.size, DMA_TO_DEVICE);
  1617. }
  1618. spin_unlock_irqrestore(&d40c->lock, flags);
  1619. return &d40d->txd;
  1620. err_fill_lli:
  1621. dev_err(&d40c->chan.dev->device,
  1622. "[%s] Failed filling in PHY LLI\n", __func__);
  1623. d40_pool_lli_free(d40d);
  1624. err:
  1625. spin_unlock_irqrestore(&d40c->lock, flags);
  1626. return NULL;
  1627. }
  1628. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1629. struct d40_chan *d40c,
  1630. struct scatterlist *sgl,
  1631. unsigned int sg_len,
  1632. enum dma_data_direction direction,
  1633. unsigned long dma_flags)
  1634. {
  1635. dma_addr_t dev_addr = 0;
  1636. int total_size;
  1637. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1638. dev_err(&d40c->chan.dev->device,
  1639. "[%s] Out of memory\n", __func__);
  1640. return -ENOMEM;
  1641. }
  1642. d40d->lli_len = sg_len;
  1643. if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
  1644. d40d->lli_tx_len = d40d->lli_len;
  1645. else
  1646. d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
  1647. if (sg_len > 1)
  1648. /*
  1649. * Check if there is space available in lcla.
  1650. * If not, split list into 1-length and run only
  1651. * in lcpa space.
  1652. */
  1653. if (d40_lcla_id_get(d40c) != 0)
  1654. d40d->lli_tx_len = 1;
  1655. if (direction == DMA_FROM_DEVICE)
  1656. if (d40c->runtime_addr)
  1657. dev_addr = d40c->runtime_addr;
  1658. else
  1659. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1660. else if (direction == DMA_TO_DEVICE)
  1661. if (d40c->runtime_addr)
  1662. dev_addr = d40c->runtime_addr;
  1663. else
  1664. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1665. else
  1666. return -EINVAL;
  1667. total_size = d40_log_sg_to_dev(&d40c->lcla,
  1668. sgl, sg_len,
  1669. &d40d->lli_log,
  1670. &d40c->log_def,
  1671. d40c->dma_cfg.src_info.data_width,
  1672. d40c->dma_cfg.dst_info.data_width,
  1673. direction,
  1674. dev_addr, d40d->lli_tx_len,
  1675. d40c->base->plat_data->llis_per_log);
  1676. if (total_size < 0)
  1677. return -EINVAL;
  1678. return 0;
  1679. }
  1680. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1681. struct d40_chan *d40c,
  1682. struct scatterlist *sgl,
  1683. unsigned int sgl_len,
  1684. enum dma_data_direction direction,
  1685. unsigned long dma_flags)
  1686. {
  1687. dma_addr_t src_dev_addr;
  1688. dma_addr_t dst_dev_addr;
  1689. int res;
  1690. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1691. dev_err(&d40c->chan.dev->device,
  1692. "[%s] Out of memory\n", __func__);
  1693. return -ENOMEM;
  1694. }
  1695. d40d->lli_len = sgl_len;
  1696. d40d->lli_tx_len = sgl_len;
  1697. if (direction == DMA_FROM_DEVICE) {
  1698. dst_dev_addr = 0;
  1699. if (d40c->runtime_addr)
  1700. src_dev_addr = d40c->runtime_addr;
  1701. else
  1702. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1703. } else if (direction == DMA_TO_DEVICE) {
  1704. if (d40c->runtime_addr)
  1705. dst_dev_addr = d40c->runtime_addr;
  1706. else
  1707. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1708. src_dev_addr = 0;
  1709. } else
  1710. return -EINVAL;
  1711. res = d40_phy_sg_to_lli(sgl,
  1712. sgl_len,
  1713. src_dev_addr,
  1714. d40d->lli_phy.src,
  1715. virt_to_phys(d40d->lli_phy.src),
  1716. d40c->src_def_cfg,
  1717. d40c->dma_cfg.src_info.data_width,
  1718. d40c->dma_cfg.src_info.psize);
  1719. if (res < 0)
  1720. return res;
  1721. res = d40_phy_sg_to_lli(sgl,
  1722. sgl_len,
  1723. dst_dev_addr,
  1724. d40d->lli_phy.dst,
  1725. virt_to_phys(d40d->lli_phy.dst),
  1726. d40c->dst_def_cfg,
  1727. d40c->dma_cfg.dst_info.data_width,
  1728. d40c->dma_cfg.dst_info.psize);
  1729. if (res < 0)
  1730. return res;
  1731. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1732. d40d->lli_pool.size, DMA_TO_DEVICE);
  1733. return 0;
  1734. }
  1735. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1736. struct scatterlist *sgl,
  1737. unsigned int sg_len,
  1738. enum dma_data_direction direction,
  1739. unsigned long dma_flags)
  1740. {
  1741. struct d40_desc *d40d;
  1742. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1743. chan);
  1744. unsigned long flags;
  1745. int err;
  1746. if (d40c->phy_chan == NULL) {
  1747. dev_err(&d40c->chan.dev->device,
  1748. "[%s] Cannot prepare unallocated channel\n", __func__);
  1749. return ERR_PTR(-EINVAL);
  1750. }
  1751. if (d40c->dma_cfg.pre_transfer)
  1752. d40c->dma_cfg.pre_transfer(chan,
  1753. d40c->dma_cfg.pre_transfer_data,
  1754. sg_dma_len(sgl));
  1755. spin_lock_irqsave(&d40c->lock, flags);
  1756. d40d = d40_desc_get(d40c);
  1757. spin_unlock_irqrestore(&d40c->lock, flags);
  1758. if (d40d == NULL)
  1759. return NULL;
  1760. if (d40c->log_num != D40_PHY_CHAN)
  1761. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1762. direction, dma_flags);
  1763. else
  1764. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1765. direction, dma_flags);
  1766. if (err) {
  1767. dev_err(&d40c->chan.dev->device,
  1768. "[%s] Failed to prepare %s slave sg job: %d\n",
  1769. __func__,
  1770. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1771. return NULL;
  1772. }
  1773. d40d->txd.flags = dma_flags;
  1774. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1775. d40d->txd.tx_submit = d40_tx_submit;
  1776. return &d40d->txd;
  1777. }
  1778. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1779. dma_cookie_t cookie,
  1780. struct dma_tx_state *txstate)
  1781. {
  1782. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1783. dma_cookie_t last_used;
  1784. dma_cookie_t last_complete;
  1785. int ret;
  1786. if (d40c->phy_chan == NULL) {
  1787. dev_err(&d40c->chan.dev->device,
  1788. "[%s] Cannot read status of unallocated channel\n",
  1789. __func__);
  1790. return -EINVAL;
  1791. }
  1792. last_complete = d40c->completed;
  1793. last_used = chan->cookie;
  1794. if (d40_is_paused(d40c))
  1795. ret = DMA_PAUSED;
  1796. else
  1797. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1798. dma_set_tx_state(txstate, last_complete, last_used,
  1799. stedma40_residue(chan));
  1800. return ret;
  1801. }
  1802. static void d40_issue_pending(struct dma_chan *chan)
  1803. {
  1804. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1805. unsigned long flags;
  1806. if (d40c->phy_chan == NULL) {
  1807. dev_err(&d40c->chan.dev->device,
  1808. "[%s] Channel is not allocated!\n", __func__);
  1809. return;
  1810. }
  1811. spin_lock_irqsave(&d40c->lock, flags);
  1812. /* Busy means that pending jobs are already being processed */
  1813. if (!d40c->busy)
  1814. (void) d40_queue_start(d40c);
  1815. spin_unlock_irqrestore(&d40c->lock, flags);
  1816. }
  1817. /* Runtime reconfiguration extension */
  1818. static void d40_set_runtime_config(struct dma_chan *chan,
  1819. struct dma_slave_config *config)
  1820. {
  1821. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1822. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1823. enum dma_slave_buswidth config_addr_width;
  1824. dma_addr_t config_addr;
  1825. u32 config_maxburst;
  1826. enum stedma40_periph_data_width addr_width;
  1827. int psize;
  1828. if (config->direction == DMA_FROM_DEVICE) {
  1829. dma_addr_t dev_addr_rx =
  1830. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1831. config_addr = config->src_addr;
  1832. if (dev_addr_rx)
  1833. dev_dbg(d40c->base->dev,
  1834. "channel has a pre-wired RX address %08x "
  1835. "overriding with %08x\n",
  1836. dev_addr_rx, config_addr);
  1837. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1838. dev_dbg(d40c->base->dev,
  1839. "channel was not configured for peripheral "
  1840. "to memory transfer (%d) overriding\n",
  1841. cfg->dir);
  1842. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1843. config_addr_width = config->src_addr_width;
  1844. config_maxburst = config->src_maxburst;
  1845. } else if (config->direction == DMA_TO_DEVICE) {
  1846. dma_addr_t dev_addr_tx =
  1847. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1848. config_addr = config->dst_addr;
  1849. if (dev_addr_tx)
  1850. dev_dbg(d40c->base->dev,
  1851. "channel has a pre-wired TX address %08x "
  1852. "overriding with %08x\n",
  1853. dev_addr_tx, config_addr);
  1854. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1855. dev_dbg(d40c->base->dev,
  1856. "channel was not configured for memory "
  1857. "to peripheral transfer (%d) overriding\n",
  1858. cfg->dir);
  1859. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1860. config_addr_width = config->dst_addr_width;
  1861. config_maxburst = config->dst_maxburst;
  1862. } else {
  1863. dev_err(d40c->base->dev,
  1864. "unrecognized channel direction %d\n",
  1865. config->direction);
  1866. return;
  1867. }
  1868. switch (config_addr_width) {
  1869. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1870. addr_width = STEDMA40_BYTE_WIDTH;
  1871. break;
  1872. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1873. addr_width = STEDMA40_HALFWORD_WIDTH;
  1874. break;
  1875. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1876. addr_width = STEDMA40_WORD_WIDTH;
  1877. break;
  1878. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1879. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1880. break;
  1881. default:
  1882. dev_err(d40c->base->dev,
  1883. "illegal peripheral address width "
  1884. "requested (%d)\n",
  1885. config->src_addr_width);
  1886. return;
  1887. }
  1888. if (config_maxburst >= 16)
  1889. psize = STEDMA40_PSIZE_LOG_16;
  1890. else if (config_maxburst >= 8)
  1891. psize = STEDMA40_PSIZE_LOG_8;
  1892. else if (config_maxburst >= 4)
  1893. psize = STEDMA40_PSIZE_LOG_4;
  1894. else
  1895. psize = STEDMA40_PSIZE_LOG_1;
  1896. /* Set up all the endpoint configs */
  1897. cfg->src_info.data_width = addr_width;
  1898. cfg->src_info.psize = psize;
  1899. cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1900. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1901. cfg->dst_info.data_width = addr_width;
  1902. cfg->dst_info.psize = psize;
  1903. cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1904. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1905. /* These settings will take precedence later */
  1906. d40c->runtime_addr = config_addr;
  1907. d40c->runtime_direction = config->direction;
  1908. dev_dbg(d40c->base->dev,
  1909. "configured channel %s for %s, data width %d, "
  1910. "maxburst %d bytes, LE, no flow control\n",
  1911. dma_chan_name(chan),
  1912. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1913. config_addr_width,
  1914. config_maxburst);
  1915. }
  1916. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1917. unsigned long arg)
  1918. {
  1919. unsigned long flags;
  1920. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1921. if (d40c->phy_chan == NULL) {
  1922. dev_err(&d40c->chan.dev->device,
  1923. "[%s] Channel is not allocated!\n", __func__);
  1924. return -EINVAL;
  1925. }
  1926. switch (cmd) {
  1927. case DMA_TERMINATE_ALL:
  1928. spin_lock_irqsave(&d40c->lock, flags);
  1929. d40_term_all(d40c);
  1930. spin_unlock_irqrestore(&d40c->lock, flags);
  1931. return 0;
  1932. case DMA_PAUSE:
  1933. return d40_pause(chan);
  1934. case DMA_RESUME:
  1935. return d40_resume(chan);
  1936. case DMA_SLAVE_CONFIG:
  1937. d40_set_runtime_config(chan,
  1938. (struct dma_slave_config *) arg);
  1939. return 0;
  1940. default:
  1941. break;
  1942. }
  1943. /* Other commands are unimplemented */
  1944. return -ENXIO;
  1945. }
  1946. /* Initialization functions */
  1947. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1948. struct d40_chan *chans, int offset,
  1949. int num_chans)
  1950. {
  1951. int i = 0;
  1952. struct d40_chan *d40c;
  1953. INIT_LIST_HEAD(&dma->channels);
  1954. for (i = offset; i < offset + num_chans; i++) {
  1955. d40c = &chans[i];
  1956. d40c->base = base;
  1957. d40c->chan.device = dma;
  1958. /* Invalidate lcla element */
  1959. d40c->lcla.src_id = -1;
  1960. d40c->lcla.dst_id = -1;
  1961. spin_lock_init(&d40c->lock);
  1962. d40c->log_num = D40_PHY_CHAN;
  1963. INIT_LIST_HEAD(&d40c->active);
  1964. INIT_LIST_HEAD(&d40c->queue);
  1965. INIT_LIST_HEAD(&d40c->client);
  1966. tasklet_init(&d40c->tasklet, dma_tasklet,
  1967. (unsigned long) d40c);
  1968. list_add_tail(&d40c->chan.device_node,
  1969. &dma->channels);
  1970. }
  1971. }
  1972. static int __init d40_dmaengine_init(struct d40_base *base,
  1973. int num_reserved_chans)
  1974. {
  1975. int err ;
  1976. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1977. 0, base->num_log_chans);
  1978. dma_cap_zero(base->dma_slave.cap_mask);
  1979. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1980. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1981. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1982. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1983. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1984. base->dma_slave.device_tx_status = d40_tx_status;
  1985. base->dma_slave.device_issue_pending = d40_issue_pending;
  1986. base->dma_slave.device_control = d40_control;
  1987. base->dma_slave.dev = base->dev;
  1988. err = dma_async_device_register(&base->dma_slave);
  1989. if (err) {
  1990. dev_err(base->dev,
  1991. "[%s] Failed to register slave channels\n",
  1992. __func__);
  1993. goto failure1;
  1994. }
  1995. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1996. base->num_log_chans, base->plat_data->memcpy_len);
  1997. dma_cap_zero(base->dma_memcpy.cap_mask);
  1998. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1999. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  2000. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  2001. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  2002. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  2003. base->dma_memcpy.device_tx_status = d40_tx_status;
  2004. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  2005. base->dma_memcpy.device_control = d40_control;
  2006. base->dma_memcpy.dev = base->dev;
  2007. /*
  2008. * This controller can only access address at even
  2009. * 32bit boundaries, i.e. 2^2
  2010. */
  2011. base->dma_memcpy.copy_align = 2;
  2012. err = dma_async_device_register(&base->dma_memcpy);
  2013. if (err) {
  2014. dev_err(base->dev,
  2015. "[%s] Failed to regsiter memcpy only channels\n",
  2016. __func__);
  2017. goto failure2;
  2018. }
  2019. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2020. 0, num_reserved_chans);
  2021. dma_cap_zero(base->dma_both.cap_mask);
  2022. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2023. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2024. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  2025. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  2026. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  2027. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  2028. base->dma_both.device_tx_status = d40_tx_status;
  2029. base->dma_both.device_issue_pending = d40_issue_pending;
  2030. base->dma_both.device_control = d40_control;
  2031. base->dma_both.dev = base->dev;
  2032. base->dma_both.copy_align = 2;
  2033. err = dma_async_device_register(&base->dma_both);
  2034. if (err) {
  2035. dev_err(base->dev,
  2036. "[%s] Failed to register logical and physical capable channels\n",
  2037. __func__);
  2038. goto failure3;
  2039. }
  2040. return 0;
  2041. failure3:
  2042. dma_async_device_unregister(&base->dma_memcpy);
  2043. failure2:
  2044. dma_async_device_unregister(&base->dma_slave);
  2045. failure1:
  2046. return err;
  2047. }
  2048. /* Initialization functions. */
  2049. static int __init d40_phy_res_init(struct d40_base *base)
  2050. {
  2051. int i;
  2052. int num_phy_chans_avail = 0;
  2053. u32 val[2];
  2054. int odd_even_bit = -2;
  2055. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2056. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2057. for (i = 0; i < base->num_phy_chans; i++) {
  2058. base->phy_res[i].num = i;
  2059. odd_even_bit += 2 * ((i % 2) == 0);
  2060. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2061. /* Mark security only channels as occupied */
  2062. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2063. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2064. } else {
  2065. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2066. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2067. num_phy_chans_avail++;
  2068. }
  2069. spin_lock_init(&base->phy_res[i].lock);
  2070. }
  2071. /* Mark disabled channels as occupied */
  2072. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2073. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2074. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2075. num_phy_chans_avail--;
  2076. }
  2077. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2078. num_phy_chans_avail, base->num_phy_chans);
  2079. /* Verify settings extended vs standard */
  2080. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2081. for (i = 0; i < base->num_phy_chans; i++) {
  2082. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2083. (val[0] & 0x3) != 1)
  2084. dev_info(base->dev,
  2085. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2086. __func__, i, val[0] & 0x3);
  2087. val[0] = val[0] >> 2;
  2088. }
  2089. return num_phy_chans_avail;
  2090. }
  2091. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2092. {
  2093. static const struct d40_reg_val dma_id_regs[] = {
  2094. /* Peripheral Id */
  2095. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2096. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2097. /*
  2098. * D40_DREG_PERIPHID2 Depends on HW revision:
  2099. * MOP500/HREF ED has 0x0008,
  2100. * ? has 0x0018,
  2101. * HREF V1 has 0x0028
  2102. */
  2103. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2104. /* PCell Id */
  2105. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2106. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2107. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2108. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2109. };
  2110. struct stedma40_platform_data *plat_data;
  2111. struct clk *clk = NULL;
  2112. void __iomem *virtbase = NULL;
  2113. struct resource *res = NULL;
  2114. struct d40_base *base = NULL;
  2115. int num_log_chans = 0;
  2116. int num_phy_chans;
  2117. int i;
  2118. u32 val;
  2119. u32 rev;
  2120. clk = clk_get(&pdev->dev, NULL);
  2121. if (IS_ERR(clk)) {
  2122. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2123. __func__);
  2124. goto failure;
  2125. }
  2126. clk_enable(clk);
  2127. /* Get IO for DMAC base address */
  2128. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2129. if (!res)
  2130. goto failure;
  2131. if (request_mem_region(res->start, resource_size(res),
  2132. D40_NAME " I/O base") == NULL)
  2133. goto failure;
  2134. virtbase = ioremap(res->start, resource_size(res));
  2135. if (!virtbase)
  2136. goto failure;
  2137. /* HW version check */
  2138. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2139. if (dma_id_regs[i].val !=
  2140. readl(virtbase + dma_id_regs[i].reg)) {
  2141. dev_err(&pdev->dev,
  2142. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2143. __func__,
  2144. dma_id_regs[i].val,
  2145. dma_id_regs[i].reg,
  2146. readl(virtbase + dma_id_regs[i].reg));
  2147. goto failure;
  2148. }
  2149. }
  2150. /* Get silicon revision and designer */
  2151. val = readl(virtbase + D40_DREG_PERIPHID2);
  2152. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2153. D40_HW_DESIGNER) {
  2154. dev_err(&pdev->dev,
  2155. "[%s] Unknown designer! Got %x wanted %x\n",
  2156. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2157. D40_HW_DESIGNER);
  2158. goto failure;
  2159. }
  2160. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2161. D40_DREG_PERIPHID2_REV_POS;
  2162. /* The number of physical channels on this HW */
  2163. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2164. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2165. rev, res->start);
  2166. plat_data = pdev->dev.platform_data;
  2167. /* Count the number of logical channels in use */
  2168. for (i = 0; i < plat_data->dev_len; i++)
  2169. if (plat_data->dev_rx[i] != 0)
  2170. num_log_chans++;
  2171. for (i = 0; i < plat_data->dev_len; i++)
  2172. if (plat_data->dev_tx[i] != 0)
  2173. num_log_chans++;
  2174. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2175. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2176. sizeof(struct d40_chan), GFP_KERNEL);
  2177. if (base == NULL) {
  2178. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2179. goto failure;
  2180. }
  2181. base->rev = rev;
  2182. base->clk = clk;
  2183. base->num_phy_chans = num_phy_chans;
  2184. base->num_log_chans = num_log_chans;
  2185. base->phy_start = res->start;
  2186. base->phy_size = resource_size(res);
  2187. base->virtbase = virtbase;
  2188. base->plat_data = plat_data;
  2189. base->dev = &pdev->dev;
  2190. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2191. base->log_chans = &base->phy_chans[num_phy_chans];
  2192. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2193. GFP_KERNEL);
  2194. if (!base->phy_res)
  2195. goto failure;
  2196. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2197. sizeof(struct d40_chan *),
  2198. GFP_KERNEL);
  2199. if (!base->lookup_phy_chans)
  2200. goto failure;
  2201. if (num_log_chans + plat_data->memcpy_len) {
  2202. /*
  2203. * The max number of logical channels are event lines for all
  2204. * src devices and dst devices
  2205. */
  2206. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2207. sizeof(struct d40_chan *),
  2208. GFP_KERNEL);
  2209. if (!base->lookup_log_chans)
  2210. goto failure;
  2211. }
  2212. base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
  2213. GFP_KERNEL);
  2214. if (!base->lcla_pool.alloc_map)
  2215. goto failure;
  2216. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2217. 0, SLAB_HWCACHE_ALIGN,
  2218. NULL);
  2219. if (base->desc_slab == NULL)
  2220. goto failure;
  2221. return base;
  2222. failure:
  2223. if (clk) {
  2224. clk_disable(clk);
  2225. clk_put(clk);
  2226. }
  2227. if (virtbase)
  2228. iounmap(virtbase);
  2229. if (res)
  2230. release_mem_region(res->start,
  2231. resource_size(res));
  2232. if (virtbase)
  2233. iounmap(virtbase);
  2234. if (base) {
  2235. kfree(base->lcla_pool.alloc_map);
  2236. kfree(base->lookup_log_chans);
  2237. kfree(base->lookup_phy_chans);
  2238. kfree(base->phy_res);
  2239. kfree(base);
  2240. }
  2241. return NULL;
  2242. }
  2243. static void __init d40_hw_init(struct d40_base *base)
  2244. {
  2245. static const struct d40_reg_val dma_init_reg[] = {
  2246. /* Clock every part of the DMA block from start */
  2247. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2248. /* Interrupts on all logical channels */
  2249. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2250. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2251. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2252. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2253. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2254. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2255. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2256. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2257. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2258. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2259. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2260. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2261. };
  2262. int i;
  2263. u32 prmseo[2] = {0, 0};
  2264. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2265. u32 pcmis = 0;
  2266. u32 pcicr = 0;
  2267. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2268. writel(dma_init_reg[i].val,
  2269. base->virtbase + dma_init_reg[i].reg);
  2270. /* Configure all our dma channels to default settings */
  2271. for (i = 0; i < base->num_phy_chans; i++) {
  2272. activeo[i % 2] = activeo[i % 2] << 2;
  2273. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2274. == D40_ALLOC_PHY) {
  2275. activeo[i % 2] |= 3;
  2276. continue;
  2277. }
  2278. /* Enable interrupt # */
  2279. pcmis = (pcmis << 1) | 1;
  2280. /* Clear interrupt # */
  2281. pcicr = (pcicr << 1) | 1;
  2282. /* Set channel to physical mode */
  2283. prmseo[i % 2] = prmseo[i % 2] << 2;
  2284. prmseo[i % 2] |= 1;
  2285. }
  2286. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2287. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2288. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2289. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2290. /* Write which interrupt to enable */
  2291. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2292. /* Write which interrupt to clear */
  2293. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2294. }
  2295. static int __init d40_lcla_allocate(struct d40_base *base)
  2296. {
  2297. unsigned long *page_list;
  2298. int i, j;
  2299. int ret = 0;
  2300. /*
  2301. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2302. * To full fill this hardware requirement without wasting 256 kb
  2303. * we allocate pages until we get an aligned one.
  2304. */
  2305. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2306. GFP_KERNEL);
  2307. if (!page_list) {
  2308. ret = -ENOMEM;
  2309. goto failure;
  2310. }
  2311. /* Calculating how many pages that are required */
  2312. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2313. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2314. page_list[i] = __get_free_pages(GFP_KERNEL,
  2315. base->lcla_pool.pages);
  2316. if (!page_list[i]) {
  2317. dev_err(base->dev,
  2318. "[%s] Failed to allocate %d pages.\n",
  2319. __func__, base->lcla_pool.pages);
  2320. for (j = 0; j < i; j++)
  2321. free_pages(page_list[j], base->lcla_pool.pages);
  2322. goto failure;
  2323. }
  2324. if ((virt_to_phys((void *)page_list[i]) &
  2325. (LCLA_ALIGNMENT - 1)) == 0)
  2326. break;
  2327. }
  2328. for (j = 0; j < i; j++)
  2329. free_pages(page_list[j], base->lcla_pool.pages);
  2330. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2331. base->lcla_pool.base = (void *)page_list[i];
  2332. } else {
  2333. /* After many attempts, no succees with finding the correct
  2334. * alignment try with allocating a big buffer */
  2335. dev_warn(base->dev,
  2336. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2337. __func__, base->lcla_pool.pages);
  2338. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2339. base->num_phy_chans +
  2340. LCLA_ALIGNMENT,
  2341. GFP_KERNEL);
  2342. if (!base->lcla_pool.base_unaligned) {
  2343. ret = -ENOMEM;
  2344. goto failure;
  2345. }
  2346. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2347. LCLA_ALIGNMENT);
  2348. }
  2349. writel(virt_to_phys(base->lcla_pool.base),
  2350. base->virtbase + D40_DREG_LCLA);
  2351. failure:
  2352. kfree(page_list);
  2353. return ret;
  2354. }
  2355. static int __init d40_probe(struct platform_device *pdev)
  2356. {
  2357. int err;
  2358. int ret = -ENOENT;
  2359. struct d40_base *base;
  2360. struct resource *res = NULL;
  2361. int num_reserved_chans;
  2362. u32 val;
  2363. base = d40_hw_detect_init(pdev);
  2364. if (!base)
  2365. goto failure;
  2366. num_reserved_chans = d40_phy_res_init(base);
  2367. platform_set_drvdata(pdev, base);
  2368. spin_lock_init(&base->interrupt_lock);
  2369. spin_lock_init(&base->execmd_lock);
  2370. /* Get IO for logical channel parameter address */
  2371. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2372. if (!res) {
  2373. ret = -ENOENT;
  2374. dev_err(&pdev->dev,
  2375. "[%s] No \"lcpa\" memory resource\n",
  2376. __func__);
  2377. goto failure;
  2378. }
  2379. base->lcpa_size = resource_size(res);
  2380. base->phy_lcpa = res->start;
  2381. if (request_mem_region(res->start, resource_size(res),
  2382. D40_NAME " I/O lcpa") == NULL) {
  2383. ret = -EBUSY;
  2384. dev_err(&pdev->dev,
  2385. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2386. __func__, res->start, res->end);
  2387. goto failure;
  2388. }
  2389. /* We make use of ESRAM memory for this. */
  2390. val = readl(base->virtbase + D40_DREG_LCPA);
  2391. if (res->start != val && val != 0) {
  2392. dev_warn(&pdev->dev,
  2393. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2394. __func__, val, res->start);
  2395. } else
  2396. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2397. base->lcpa_base = ioremap(res->start, resource_size(res));
  2398. if (!base->lcpa_base) {
  2399. ret = -ENOMEM;
  2400. dev_err(&pdev->dev,
  2401. "[%s] Failed to ioremap LCPA region\n",
  2402. __func__);
  2403. goto failure;
  2404. }
  2405. ret = d40_lcla_allocate(base);
  2406. if (ret) {
  2407. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2408. __func__);
  2409. goto failure;
  2410. }
  2411. spin_lock_init(&base->lcla_pool.lock);
  2412. base->lcla_pool.num_blocks = base->num_phy_chans;
  2413. base->irq = platform_get_irq(pdev, 0);
  2414. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2415. if (ret) {
  2416. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2417. goto failure;
  2418. }
  2419. err = d40_dmaengine_init(base, num_reserved_chans);
  2420. if (err)
  2421. goto failure;
  2422. d40_hw_init(base);
  2423. dev_info(base->dev, "initialized\n");
  2424. return 0;
  2425. failure:
  2426. if (base) {
  2427. if (base->desc_slab)
  2428. kmem_cache_destroy(base->desc_slab);
  2429. if (base->virtbase)
  2430. iounmap(base->virtbase);
  2431. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2432. free_pages((unsigned long)base->lcla_pool.base,
  2433. base->lcla_pool.pages);
  2434. if (base->lcla_pool.base_unaligned)
  2435. kfree(base->lcla_pool.base_unaligned);
  2436. if (base->phy_lcpa)
  2437. release_mem_region(base->phy_lcpa,
  2438. base->lcpa_size);
  2439. if (base->phy_start)
  2440. release_mem_region(base->phy_start,
  2441. base->phy_size);
  2442. if (base->clk) {
  2443. clk_disable(base->clk);
  2444. clk_put(base->clk);
  2445. }
  2446. kfree(base->lcla_pool.alloc_map);
  2447. kfree(base->lookup_log_chans);
  2448. kfree(base->lookup_phy_chans);
  2449. kfree(base->phy_res);
  2450. kfree(base);
  2451. }
  2452. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2453. return ret;
  2454. }
  2455. static struct platform_driver d40_driver = {
  2456. .driver = {
  2457. .owner = THIS_MODULE,
  2458. .name = D40_NAME,
  2459. },
  2460. };
  2461. int __init stedma40_init(void)
  2462. {
  2463. return platform_driver_probe(&d40_driver, d40_probe);
  2464. }
  2465. arch_initcall(stedma40_init);