core.c 197 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. *
  311. * Its all a bit involved since we cannot program an hrt while holding the
  312. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  313. * reschedule event.
  314. *
  315. * When we get rescheduled we reprogram the hrtick_timer outside of the
  316. * rq->lock.
  317. */
  318. static void hrtick_clear(struct rq *rq)
  319. {
  320. if (hrtimer_active(&rq->hrtick_timer))
  321. hrtimer_cancel(&rq->hrtick_timer);
  322. }
  323. /*
  324. * High-resolution timer tick.
  325. * Runs from hardirq context with interrupts disabled.
  326. */
  327. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  328. {
  329. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  330. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  331. raw_spin_lock(&rq->lock);
  332. update_rq_clock(rq);
  333. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  334. raw_spin_unlock(&rq->lock);
  335. return HRTIMER_NORESTART;
  336. }
  337. #ifdef CONFIG_SMP
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. hrtimer_restart(&rq->hrtick_timer);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. hrtimer_restart(timer);
  361. } else if (!rq->hrtick_csd_pending) {
  362. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. #ifdef CONFIG_SMP
  431. #ifndef tsk_is_polling
  432. #define tsk_is_polling(t) 0
  433. #endif
  434. void resched_task(struct task_struct *p)
  435. {
  436. int cpu;
  437. assert_raw_spin_locked(&task_rq(p)->lock);
  438. if (test_tsk_need_resched(p))
  439. return;
  440. set_tsk_need_resched(p);
  441. cpu = task_cpu(p);
  442. if (cpu == smp_processor_id())
  443. return;
  444. /* NEED_RESCHED must be visible before we test polling */
  445. smp_mb();
  446. if (!tsk_is_polling(p))
  447. smp_send_reschedule(cpu);
  448. }
  449. void resched_cpu(int cpu)
  450. {
  451. struct rq *rq = cpu_rq(cpu);
  452. unsigned long flags;
  453. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  454. return;
  455. resched_task(cpu_curr(cpu));
  456. raw_spin_unlock_irqrestore(&rq->lock, flags);
  457. }
  458. #ifdef CONFIG_NO_HZ
  459. /*
  460. * In the semi idle case, use the nearest busy cpu for migrating timers
  461. * from an idle cpu. This is good for power-savings.
  462. *
  463. * We don't do similar optimization for completely idle system, as
  464. * selecting an idle cpu will add more delays to the timers than intended
  465. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  466. */
  467. int get_nohz_timer_target(void)
  468. {
  469. int cpu = smp_processor_id();
  470. int i;
  471. struct sched_domain *sd;
  472. rcu_read_lock();
  473. for_each_domain(cpu, sd) {
  474. for_each_cpu(i, sched_domain_span(sd)) {
  475. if (!idle_cpu(i)) {
  476. cpu = i;
  477. goto unlock;
  478. }
  479. }
  480. }
  481. unlock:
  482. rcu_read_unlock();
  483. return cpu;
  484. }
  485. /*
  486. * When add_timer_on() enqueues a timer into the timer wheel of an
  487. * idle CPU then this timer might expire before the next timer event
  488. * which is scheduled to wake up that CPU. In case of a completely
  489. * idle system the next event might even be infinite time into the
  490. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  491. * leaves the inner idle loop so the newly added timer is taken into
  492. * account when the CPU goes back to idle and evaluates the timer
  493. * wheel for the next timer event.
  494. */
  495. void wake_up_idle_cpu(int cpu)
  496. {
  497. struct rq *rq = cpu_rq(cpu);
  498. if (cpu == smp_processor_id())
  499. return;
  500. /*
  501. * This is safe, as this function is called with the timer
  502. * wheel base lock of (cpu) held. When the CPU is on the way
  503. * to idle and has not yet set rq->curr to idle then it will
  504. * be serialized on the timer wheel base lock and take the new
  505. * timer into account automatically.
  506. */
  507. if (rq->curr != rq->idle)
  508. return;
  509. /*
  510. * We can set TIF_RESCHED on the idle task of the other CPU
  511. * lockless. The worst case is that the other CPU runs the
  512. * idle task through an additional NOOP schedule()
  513. */
  514. set_tsk_need_resched(rq->idle);
  515. /* NEED_RESCHED must be visible before we test polling */
  516. smp_mb();
  517. if (!tsk_is_polling(rq->idle))
  518. smp_send_reschedule(cpu);
  519. }
  520. static inline bool got_nohz_idle_kick(void)
  521. {
  522. int cpu = smp_processor_id();
  523. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  524. }
  525. #else /* CONFIG_NO_HZ */
  526. static inline bool got_nohz_idle_kick(void)
  527. {
  528. return false;
  529. }
  530. #endif /* CONFIG_NO_HZ */
  531. void sched_avg_update(struct rq *rq)
  532. {
  533. s64 period = sched_avg_period();
  534. while ((s64)(rq->clock - rq->age_stamp) > period) {
  535. /*
  536. * Inline assembly required to prevent the compiler
  537. * optimising this loop into a divmod call.
  538. * See __iter_div_u64_rem() for another example of this.
  539. */
  540. asm("" : "+rm" (rq->age_stamp));
  541. rq->age_stamp += period;
  542. rq->rt_avg /= 2;
  543. }
  544. }
  545. #else /* !CONFIG_SMP */
  546. void resched_task(struct task_struct *p)
  547. {
  548. assert_raw_spin_locked(&task_rq(p)->lock);
  549. set_tsk_need_resched(p);
  550. }
  551. #endif /* CONFIG_SMP */
  552. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  553. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  554. /*
  555. * Iterate task_group tree rooted at *from, calling @down when first entering a
  556. * node and @up when leaving it for the final time.
  557. *
  558. * Caller must hold rcu_lock or sufficient equivalent.
  559. */
  560. int walk_tg_tree_from(struct task_group *from,
  561. tg_visitor down, tg_visitor up, void *data)
  562. {
  563. struct task_group *parent, *child;
  564. int ret;
  565. parent = from;
  566. down:
  567. ret = (*down)(parent, data);
  568. if (ret)
  569. goto out;
  570. list_for_each_entry_rcu(child, &parent->children, siblings) {
  571. parent = child;
  572. goto down;
  573. up:
  574. continue;
  575. }
  576. ret = (*up)(parent, data);
  577. if (ret || parent == from)
  578. goto out;
  579. child = parent;
  580. parent = parent->parent;
  581. if (parent)
  582. goto up;
  583. out:
  584. return ret;
  585. }
  586. int tg_nop(struct task_group *tg, void *data)
  587. {
  588. return 0;
  589. }
  590. #endif
  591. static void set_load_weight(struct task_struct *p)
  592. {
  593. int prio = p->static_prio - MAX_RT_PRIO;
  594. struct load_weight *load = &p->se.load;
  595. /*
  596. * SCHED_IDLE tasks get minimal weight:
  597. */
  598. if (p->policy == SCHED_IDLE) {
  599. load->weight = scale_load(WEIGHT_IDLEPRIO);
  600. load->inv_weight = WMULT_IDLEPRIO;
  601. return;
  602. }
  603. load->weight = scale_load(prio_to_weight[prio]);
  604. load->inv_weight = prio_to_wmult[prio];
  605. }
  606. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_queued(p);
  610. p->sched_class->enqueue_task(rq, p, flags);
  611. }
  612. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. update_rq_clock(rq);
  615. sched_info_dequeued(p);
  616. p->sched_class->dequeue_task(rq, p, flags);
  617. }
  618. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible--;
  622. enqueue_task(rq, p, flags);
  623. }
  624. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  625. {
  626. if (task_contributes_to_load(p))
  627. rq->nr_uninterruptible++;
  628. dequeue_task(rq, p, flags);
  629. }
  630. static void update_rq_clock_task(struct rq *rq, s64 delta)
  631. {
  632. /*
  633. * In theory, the compile should just see 0 here, and optimize out the call
  634. * to sched_rt_avg_update. But I don't trust it...
  635. */
  636. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  637. s64 steal = 0, irq_delta = 0;
  638. #endif
  639. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  640. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  641. /*
  642. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  643. * this case when a previous update_rq_clock() happened inside a
  644. * {soft,}irq region.
  645. *
  646. * When this happens, we stop ->clock_task and only update the
  647. * prev_irq_time stamp to account for the part that fit, so that a next
  648. * update will consume the rest. This ensures ->clock_task is
  649. * monotonic.
  650. *
  651. * It does however cause some slight miss-attribution of {soft,}irq
  652. * time, a more accurate solution would be to update the irq_time using
  653. * the current rq->clock timestamp, except that would require using
  654. * atomic ops.
  655. */
  656. if (irq_delta > delta)
  657. irq_delta = delta;
  658. rq->prev_irq_time += irq_delta;
  659. delta -= irq_delta;
  660. #endif
  661. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  662. if (static_key_false((&paravirt_steal_rq_enabled))) {
  663. u64 st;
  664. steal = paravirt_steal_clock(cpu_of(rq));
  665. steal -= rq->prev_steal_time_rq;
  666. if (unlikely(steal > delta))
  667. steal = delta;
  668. st = steal_ticks(steal);
  669. steal = st * TICK_NSEC;
  670. rq->prev_steal_time_rq += steal;
  671. delta -= steal;
  672. }
  673. #endif
  674. rq->clock_task += delta;
  675. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  676. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  677. sched_rt_avg_update(rq, irq_delta + steal);
  678. #endif
  679. }
  680. void sched_set_stop_task(int cpu, struct task_struct *stop)
  681. {
  682. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  683. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  684. if (stop) {
  685. /*
  686. * Make it appear like a SCHED_FIFO task, its something
  687. * userspace knows about and won't get confused about.
  688. *
  689. * Also, it will make PI more or less work without too
  690. * much confusion -- but then, stop work should not
  691. * rely on PI working anyway.
  692. */
  693. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  694. stop->sched_class = &stop_sched_class;
  695. }
  696. cpu_rq(cpu)->stop = stop;
  697. if (old_stop) {
  698. /*
  699. * Reset it back to a normal scheduling class so that
  700. * it can die in pieces.
  701. */
  702. old_stop->sched_class = &rt_sched_class;
  703. }
  704. }
  705. /*
  706. * __normal_prio - return the priority that is based on the static prio
  707. */
  708. static inline int __normal_prio(struct task_struct *p)
  709. {
  710. return p->static_prio;
  711. }
  712. /*
  713. * Calculate the expected normal priority: i.e. priority
  714. * without taking RT-inheritance into account. Might be
  715. * boosted by interactivity modifiers. Changes upon fork,
  716. * setprio syscalls, and whenever the interactivity
  717. * estimator recalculates.
  718. */
  719. static inline int normal_prio(struct task_struct *p)
  720. {
  721. int prio;
  722. if (task_has_rt_policy(p))
  723. prio = MAX_RT_PRIO-1 - p->rt_priority;
  724. else
  725. prio = __normal_prio(p);
  726. return prio;
  727. }
  728. /*
  729. * Calculate the current priority, i.e. the priority
  730. * taken into account by the scheduler. This value might
  731. * be boosted by RT tasks, or might be boosted by
  732. * interactivity modifiers. Will be RT if the task got
  733. * RT-boosted. If not then it returns p->normal_prio.
  734. */
  735. static int effective_prio(struct task_struct *p)
  736. {
  737. p->normal_prio = normal_prio(p);
  738. /*
  739. * If we are RT tasks or we were boosted to RT priority,
  740. * keep the priority unchanged. Otherwise, update priority
  741. * to the normal priority:
  742. */
  743. if (!rt_prio(p->prio))
  744. return p->normal_prio;
  745. return p->prio;
  746. }
  747. /**
  748. * task_curr - is this task currently executing on a CPU?
  749. * @p: the task in question.
  750. */
  751. inline int task_curr(const struct task_struct *p)
  752. {
  753. return cpu_curr(task_cpu(p)) == p;
  754. }
  755. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  756. const struct sched_class *prev_class,
  757. int oldprio)
  758. {
  759. if (prev_class != p->sched_class) {
  760. if (prev_class->switched_from)
  761. prev_class->switched_from(rq, p);
  762. p->sched_class->switched_to(rq, p);
  763. } else if (oldprio != p->prio)
  764. p->sched_class->prio_changed(rq, p, oldprio);
  765. }
  766. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  767. {
  768. const struct sched_class *class;
  769. if (p->sched_class == rq->curr->sched_class) {
  770. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  771. } else {
  772. for_each_class(class) {
  773. if (class == rq->curr->sched_class)
  774. break;
  775. if (class == p->sched_class) {
  776. resched_task(rq->curr);
  777. break;
  778. }
  779. }
  780. }
  781. /*
  782. * A queue event has occurred, and we're going to schedule. In
  783. * this case, we can save a useless back to back clock update.
  784. */
  785. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  786. rq->skip_clock_update = 1;
  787. }
  788. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  789. void register_task_migration_notifier(struct notifier_block *n)
  790. {
  791. atomic_notifier_chain_register(&task_migration_notifier, n);
  792. }
  793. #ifdef CONFIG_SMP
  794. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  795. {
  796. #ifdef CONFIG_SCHED_DEBUG
  797. /*
  798. * We should never call set_task_cpu() on a blocked task,
  799. * ttwu() will sort out the placement.
  800. */
  801. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  802. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  803. #ifdef CONFIG_LOCKDEP
  804. /*
  805. * The caller should hold either p->pi_lock or rq->lock, when changing
  806. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  807. *
  808. * sched_move_task() holds both and thus holding either pins the cgroup,
  809. * see task_group().
  810. *
  811. * Furthermore, all task_rq users should acquire both locks, see
  812. * task_rq_lock().
  813. */
  814. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  815. lockdep_is_held(&task_rq(p)->lock)));
  816. #endif
  817. #endif
  818. trace_sched_migrate_task(p, new_cpu);
  819. if (task_cpu(p) != new_cpu) {
  820. struct task_migration_notifier tmn;
  821. if (p->sched_class->migrate_task_rq)
  822. p->sched_class->migrate_task_rq(p, new_cpu);
  823. p->se.nr_migrations++;
  824. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  825. tmn.task = p;
  826. tmn.from_cpu = task_cpu(p);
  827. tmn.to_cpu = new_cpu;
  828. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  829. }
  830. __set_task_cpu(p, new_cpu);
  831. }
  832. struct migration_arg {
  833. struct task_struct *task;
  834. int dest_cpu;
  835. };
  836. static int migration_cpu_stop(void *data);
  837. /*
  838. * wait_task_inactive - wait for a thread to unschedule.
  839. *
  840. * If @match_state is nonzero, it's the @p->state value just checked and
  841. * not expected to change. If it changes, i.e. @p might have woken up,
  842. * then return zero. When we succeed in waiting for @p to be off its CPU,
  843. * we return a positive number (its total switch count). If a second call
  844. * a short while later returns the same number, the caller can be sure that
  845. * @p has remained unscheduled the whole time.
  846. *
  847. * The caller must ensure that the task *will* unschedule sometime soon,
  848. * else this function might spin for a *long* time. This function can't
  849. * be called with interrupts off, or it may introduce deadlock with
  850. * smp_call_function() if an IPI is sent by the same process we are
  851. * waiting to become inactive.
  852. */
  853. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  854. {
  855. unsigned long flags;
  856. int running, on_rq;
  857. unsigned long ncsw;
  858. struct rq *rq;
  859. for (;;) {
  860. /*
  861. * We do the initial early heuristics without holding
  862. * any task-queue locks at all. We'll only try to get
  863. * the runqueue lock when things look like they will
  864. * work out!
  865. */
  866. rq = task_rq(p);
  867. /*
  868. * If the task is actively running on another CPU
  869. * still, just relax and busy-wait without holding
  870. * any locks.
  871. *
  872. * NOTE! Since we don't hold any locks, it's not
  873. * even sure that "rq" stays as the right runqueue!
  874. * But we don't care, since "task_running()" will
  875. * return false if the runqueue has changed and p
  876. * is actually now running somewhere else!
  877. */
  878. while (task_running(rq, p)) {
  879. if (match_state && unlikely(p->state != match_state))
  880. return 0;
  881. cpu_relax();
  882. }
  883. /*
  884. * Ok, time to look more closely! We need the rq
  885. * lock now, to be *sure*. If we're wrong, we'll
  886. * just go back and repeat.
  887. */
  888. rq = task_rq_lock(p, &flags);
  889. trace_sched_wait_task(p);
  890. running = task_running(rq, p);
  891. on_rq = p->on_rq;
  892. ncsw = 0;
  893. if (!match_state || p->state == match_state)
  894. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  895. task_rq_unlock(rq, p, &flags);
  896. /*
  897. * If it changed from the expected state, bail out now.
  898. */
  899. if (unlikely(!ncsw))
  900. break;
  901. /*
  902. * Was it really running after all now that we
  903. * checked with the proper locks actually held?
  904. *
  905. * Oops. Go back and try again..
  906. */
  907. if (unlikely(running)) {
  908. cpu_relax();
  909. continue;
  910. }
  911. /*
  912. * It's not enough that it's not actively running,
  913. * it must be off the runqueue _entirely_, and not
  914. * preempted!
  915. *
  916. * So if it was still runnable (but just not actively
  917. * running right now), it's preempted, and we should
  918. * yield - it could be a while.
  919. */
  920. if (unlikely(on_rq)) {
  921. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  922. set_current_state(TASK_UNINTERRUPTIBLE);
  923. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  924. continue;
  925. }
  926. /*
  927. * Ahh, all good. It wasn't running, and it wasn't
  928. * runnable, which means that it will never become
  929. * running in the future either. We're all done!
  930. */
  931. break;
  932. }
  933. return ncsw;
  934. }
  935. /***
  936. * kick_process - kick a running thread to enter/exit the kernel
  937. * @p: the to-be-kicked thread
  938. *
  939. * Cause a process which is running on another CPU to enter
  940. * kernel-mode, without any delay. (to get signals handled.)
  941. *
  942. * NOTE: this function doesn't have to take the runqueue lock,
  943. * because all it wants to ensure is that the remote task enters
  944. * the kernel. If the IPI races and the task has been migrated
  945. * to another CPU then no harm is done and the purpose has been
  946. * achieved as well.
  947. */
  948. void kick_process(struct task_struct *p)
  949. {
  950. int cpu;
  951. preempt_disable();
  952. cpu = task_cpu(p);
  953. if ((cpu != smp_processor_id()) && task_curr(p))
  954. smp_send_reschedule(cpu);
  955. preempt_enable();
  956. }
  957. EXPORT_SYMBOL_GPL(kick_process);
  958. #endif /* CONFIG_SMP */
  959. #ifdef CONFIG_SMP
  960. /*
  961. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  962. */
  963. static int select_fallback_rq(int cpu, struct task_struct *p)
  964. {
  965. int nid = cpu_to_node(cpu);
  966. const struct cpumask *nodemask = NULL;
  967. enum { cpuset, possible, fail } state = cpuset;
  968. int dest_cpu;
  969. /*
  970. * If the node that the cpu is on has been offlined, cpu_to_node()
  971. * will return -1. There is no cpu on the node, and we should
  972. * select the cpu on the other node.
  973. */
  974. if (nid != -1) {
  975. nodemask = cpumask_of_node(nid);
  976. /* Look for allowed, online CPU in same node. */
  977. for_each_cpu(dest_cpu, nodemask) {
  978. if (!cpu_online(dest_cpu))
  979. continue;
  980. if (!cpu_active(dest_cpu))
  981. continue;
  982. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  983. return dest_cpu;
  984. }
  985. }
  986. for (;;) {
  987. /* Any allowed, online CPU? */
  988. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  989. if (!cpu_online(dest_cpu))
  990. continue;
  991. if (!cpu_active(dest_cpu))
  992. continue;
  993. goto out;
  994. }
  995. switch (state) {
  996. case cpuset:
  997. /* No more Mr. Nice Guy. */
  998. cpuset_cpus_allowed_fallback(p);
  999. state = possible;
  1000. break;
  1001. case possible:
  1002. do_set_cpus_allowed(p, cpu_possible_mask);
  1003. state = fail;
  1004. break;
  1005. case fail:
  1006. BUG();
  1007. break;
  1008. }
  1009. }
  1010. out:
  1011. if (state != cpuset) {
  1012. /*
  1013. * Don't tell them about moving exiting tasks or
  1014. * kernel threads (both mm NULL), since they never
  1015. * leave kernel.
  1016. */
  1017. if (p->mm && printk_ratelimit()) {
  1018. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1019. task_pid_nr(p), p->comm, cpu);
  1020. }
  1021. }
  1022. return dest_cpu;
  1023. }
  1024. /*
  1025. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1026. */
  1027. static inline
  1028. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1029. {
  1030. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1031. /*
  1032. * In order not to call set_task_cpu() on a blocking task we need
  1033. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1034. * cpu.
  1035. *
  1036. * Since this is common to all placement strategies, this lives here.
  1037. *
  1038. * [ this allows ->select_task() to simply return task_cpu(p) and
  1039. * not worry about this generic constraint ]
  1040. */
  1041. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1042. !cpu_online(cpu)))
  1043. cpu = select_fallback_rq(task_cpu(p), p);
  1044. return cpu;
  1045. }
  1046. static void update_avg(u64 *avg, u64 sample)
  1047. {
  1048. s64 diff = sample - *avg;
  1049. *avg += diff >> 3;
  1050. }
  1051. #endif
  1052. static void
  1053. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1054. {
  1055. #ifdef CONFIG_SCHEDSTATS
  1056. struct rq *rq = this_rq();
  1057. #ifdef CONFIG_SMP
  1058. int this_cpu = smp_processor_id();
  1059. if (cpu == this_cpu) {
  1060. schedstat_inc(rq, ttwu_local);
  1061. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1062. } else {
  1063. struct sched_domain *sd;
  1064. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1065. rcu_read_lock();
  1066. for_each_domain(this_cpu, sd) {
  1067. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1068. schedstat_inc(sd, ttwu_wake_remote);
  1069. break;
  1070. }
  1071. }
  1072. rcu_read_unlock();
  1073. }
  1074. if (wake_flags & WF_MIGRATED)
  1075. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1076. #endif /* CONFIG_SMP */
  1077. schedstat_inc(rq, ttwu_count);
  1078. schedstat_inc(p, se.statistics.nr_wakeups);
  1079. if (wake_flags & WF_SYNC)
  1080. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1081. #endif /* CONFIG_SCHEDSTATS */
  1082. }
  1083. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1084. {
  1085. activate_task(rq, p, en_flags);
  1086. p->on_rq = 1;
  1087. /* if a worker is waking up, notify workqueue */
  1088. if (p->flags & PF_WQ_WORKER)
  1089. wq_worker_waking_up(p, cpu_of(rq));
  1090. }
  1091. /*
  1092. * Mark the task runnable and perform wakeup-preemption.
  1093. */
  1094. static void
  1095. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1096. {
  1097. trace_sched_wakeup(p, true);
  1098. check_preempt_curr(rq, p, wake_flags);
  1099. p->state = TASK_RUNNING;
  1100. #ifdef CONFIG_SMP
  1101. if (p->sched_class->task_woken)
  1102. p->sched_class->task_woken(rq, p);
  1103. if (rq->idle_stamp) {
  1104. u64 delta = rq->clock - rq->idle_stamp;
  1105. u64 max = 2*sysctl_sched_migration_cost;
  1106. if (delta > max)
  1107. rq->avg_idle = max;
  1108. else
  1109. update_avg(&rq->avg_idle, delta);
  1110. rq->idle_stamp = 0;
  1111. }
  1112. #endif
  1113. }
  1114. static void
  1115. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1116. {
  1117. #ifdef CONFIG_SMP
  1118. if (p->sched_contributes_to_load)
  1119. rq->nr_uninterruptible--;
  1120. #endif
  1121. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1122. ttwu_do_wakeup(rq, p, wake_flags);
  1123. }
  1124. /*
  1125. * Called in case the task @p isn't fully descheduled from its runqueue,
  1126. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1127. * since all we need to do is flip p->state to TASK_RUNNING, since
  1128. * the task is still ->on_rq.
  1129. */
  1130. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1131. {
  1132. struct rq *rq;
  1133. int ret = 0;
  1134. rq = __task_rq_lock(p);
  1135. if (p->on_rq) {
  1136. ttwu_do_wakeup(rq, p, wake_flags);
  1137. ret = 1;
  1138. }
  1139. __task_rq_unlock(rq);
  1140. return ret;
  1141. }
  1142. #ifdef CONFIG_SMP
  1143. static void sched_ttwu_pending(void)
  1144. {
  1145. struct rq *rq = this_rq();
  1146. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1147. struct task_struct *p;
  1148. raw_spin_lock(&rq->lock);
  1149. while (llist) {
  1150. p = llist_entry(llist, struct task_struct, wake_entry);
  1151. llist = llist_next(llist);
  1152. ttwu_do_activate(rq, p, 0);
  1153. }
  1154. raw_spin_unlock(&rq->lock);
  1155. }
  1156. void scheduler_ipi(void)
  1157. {
  1158. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1159. return;
  1160. /*
  1161. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1162. * traditionally all their work was done from the interrupt return
  1163. * path. Now that we actually do some work, we need to make sure
  1164. * we do call them.
  1165. *
  1166. * Some archs already do call them, luckily irq_enter/exit nest
  1167. * properly.
  1168. *
  1169. * Arguably we should visit all archs and update all handlers,
  1170. * however a fair share of IPIs are still resched only so this would
  1171. * somewhat pessimize the simple resched case.
  1172. */
  1173. irq_enter();
  1174. sched_ttwu_pending();
  1175. /*
  1176. * Check if someone kicked us for doing the nohz idle load balance.
  1177. */
  1178. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1179. this_rq()->idle_balance = 1;
  1180. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1181. }
  1182. irq_exit();
  1183. }
  1184. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1185. {
  1186. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1187. smp_send_reschedule(cpu);
  1188. }
  1189. bool cpus_share_cache(int this_cpu, int that_cpu)
  1190. {
  1191. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1192. }
  1193. #endif /* CONFIG_SMP */
  1194. static void ttwu_queue(struct task_struct *p, int cpu)
  1195. {
  1196. struct rq *rq = cpu_rq(cpu);
  1197. #if defined(CONFIG_SMP)
  1198. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1199. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1200. ttwu_queue_remote(p, cpu);
  1201. return;
  1202. }
  1203. #endif
  1204. raw_spin_lock(&rq->lock);
  1205. ttwu_do_activate(rq, p, 0);
  1206. raw_spin_unlock(&rq->lock);
  1207. }
  1208. /**
  1209. * try_to_wake_up - wake up a thread
  1210. * @p: the thread to be awakened
  1211. * @state: the mask of task states that can be woken
  1212. * @wake_flags: wake modifier flags (WF_*)
  1213. *
  1214. * Put it on the run-queue if it's not already there. The "current"
  1215. * thread is always on the run-queue (except when the actual
  1216. * re-schedule is in progress), and as such you're allowed to do
  1217. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1218. * runnable without the overhead of this.
  1219. *
  1220. * Returns %true if @p was woken up, %false if it was already running
  1221. * or @state didn't match @p's state.
  1222. */
  1223. static int
  1224. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1225. {
  1226. unsigned long flags;
  1227. int cpu, success = 0;
  1228. smp_wmb();
  1229. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1230. if (!(p->state & state))
  1231. goto out;
  1232. success = 1; /* we're going to change ->state */
  1233. cpu = task_cpu(p);
  1234. if (p->on_rq && ttwu_remote(p, wake_flags))
  1235. goto stat;
  1236. #ifdef CONFIG_SMP
  1237. /*
  1238. * If the owning (remote) cpu is still in the middle of schedule() with
  1239. * this task as prev, wait until its done referencing the task.
  1240. */
  1241. while (p->on_cpu)
  1242. cpu_relax();
  1243. /*
  1244. * Pairs with the smp_wmb() in finish_lock_switch().
  1245. */
  1246. smp_rmb();
  1247. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1248. p->state = TASK_WAKING;
  1249. if (p->sched_class->task_waking)
  1250. p->sched_class->task_waking(p);
  1251. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1252. if (task_cpu(p) != cpu) {
  1253. wake_flags |= WF_MIGRATED;
  1254. set_task_cpu(p, cpu);
  1255. }
  1256. #endif /* CONFIG_SMP */
  1257. ttwu_queue(p, cpu);
  1258. stat:
  1259. ttwu_stat(p, cpu, wake_flags);
  1260. out:
  1261. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1262. return success;
  1263. }
  1264. /**
  1265. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1266. * @p: the thread to be awakened
  1267. *
  1268. * Put @p on the run-queue if it's not already there. The caller must
  1269. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1270. * the current task.
  1271. */
  1272. static void try_to_wake_up_local(struct task_struct *p)
  1273. {
  1274. struct rq *rq = task_rq(p);
  1275. BUG_ON(rq != this_rq());
  1276. BUG_ON(p == current);
  1277. lockdep_assert_held(&rq->lock);
  1278. if (!raw_spin_trylock(&p->pi_lock)) {
  1279. raw_spin_unlock(&rq->lock);
  1280. raw_spin_lock(&p->pi_lock);
  1281. raw_spin_lock(&rq->lock);
  1282. }
  1283. if (!(p->state & TASK_NORMAL))
  1284. goto out;
  1285. if (!p->on_rq)
  1286. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1287. ttwu_do_wakeup(rq, p, 0);
  1288. ttwu_stat(p, smp_processor_id(), 0);
  1289. out:
  1290. raw_spin_unlock(&p->pi_lock);
  1291. }
  1292. /**
  1293. * wake_up_process - Wake up a specific process
  1294. * @p: The process to be woken up.
  1295. *
  1296. * Attempt to wake up the nominated process and move it to the set of runnable
  1297. * processes. Returns 1 if the process was woken up, 0 if it was already
  1298. * running.
  1299. *
  1300. * It may be assumed that this function implies a write memory barrier before
  1301. * changing the task state if and only if any tasks are woken up.
  1302. */
  1303. int wake_up_process(struct task_struct *p)
  1304. {
  1305. WARN_ON(task_is_stopped_or_traced(p));
  1306. return try_to_wake_up(p, TASK_NORMAL, 0);
  1307. }
  1308. EXPORT_SYMBOL(wake_up_process);
  1309. int wake_up_state(struct task_struct *p, unsigned int state)
  1310. {
  1311. return try_to_wake_up(p, state, 0);
  1312. }
  1313. /*
  1314. * Perform scheduler related setup for a newly forked process p.
  1315. * p is forked by current.
  1316. *
  1317. * __sched_fork() is basic setup used by init_idle() too:
  1318. */
  1319. static void __sched_fork(struct task_struct *p)
  1320. {
  1321. p->on_rq = 0;
  1322. p->se.on_rq = 0;
  1323. p->se.exec_start = 0;
  1324. p->se.sum_exec_runtime = 0;
  1325. p->se.prev_sum_exec_runtime = 0;
  1326. p->se.nr_migrations = 0;
  1327. p->se.vruntime = 0;
  1328. INIT_LIST_HEAD(&p->se.group_node);
  1329. /*
  1330. * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
  1331. * removed when useful for applications beyond shares distribution (e.g.
  1332. * load-balance).
  1333. */
  1334. #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
  1335. p->se.avg.runnable_avg_period = 0;
  1336. p->se.avg.runnable_avg_sum = 0;
  1337. #endif
  1338. #ifdef CONFIG_SCHEDSTATS
  1339. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1340. #endif
  1341. INIT_LIST_HEAD(&p->rt.run_list);
  1342. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1343. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1344. #endif
  1345. #ifdef CONFIG_NUMA_BALANCING
  1346. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1347. p->mm->numa_next_scan = jiffies;
  1348. p->mm->numa_next_reset = jiffies;
  1349. p->mm->numa_scan_seq = 0;
  1350. }
  1351. p->node_stamp = 0ULL;
  1352. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1353. p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
  1354. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1355. p->numa_work.next = &p->numa_work;
  1356. #endif /* CONFIG_NUMA_BALANCING */
  1357. }
  1358. #ifdef CONFIG_NUMA_BALANCING
  1359. #ifdef CONFIG_SCHED_DEBUG
  1360. void set_numabalancing_state(bool enabled)
  1361. {
  1362. if (enabled)
  1363. sched_feat_set("NUMA");
  1364. else
  1365. sched_feat_set("NO_NUMA");
  1366. }
  1367. #else
  1368. __read_mostly bool numabalancing_enabled;
  1369. void set_numabalancing_state(bool enabled)
  1370. {
  1371. numabalancing_enabled = enabled;
  1372. }
  1373. #endif /* CONFIG_SCHED_DEBUG */
  1374. #endif /* CONFIG_NUMA_BALANCING */
  1375. /*
  1376. * fork()/clone()-time setup:
  1377. */
  1378. void sched_fork(struct task_struct *p)
  1379. {
  1380. unsigned long flags;
  1381. int cpu = get_cpu();
  1382. __sched_fork(p);
  1383. /*
  1384. * We mark the process as running here. This guarantees that
  1385. * nobody will actually run it, and a signal or other external
  1386. * event cannot wake it up and insert it on the runqueue either.
  1387. */
  1388. p->state = TASK_RUNNING;
  1389. /*
  1390. * Make sure we do not leak PI boosting priority to the child.
  1391. */
  1392. p->prio = current->normal_prio;
  1393. /*
  1394. * Revert to default priority/policy on fork if requested.
  1395. */
  1396. if (unlikely(p->sched_reset_on_fork)) {
  1397. if (task_has_rt_policy(p)) {
  1398. p->policy = SCHED_NORMAL;
  1399. p->static_prio = NICE_TO_PRIO(0);
  1400. p->rt_priority = 0;
  1401. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1402. p->static_prio = NICE_TO_PRIO(0);
  1403. p->prio = p->normal_prio = __normal_prio(p);
  1404. set_load_weight(p);
  1405. /*
  1406. * We don't need the reset flag anymore after the fork. It has
  1407. * fulfilled its duty:
  1408. */
  1409. p->sched_reset_on_fork = 0;
  1410. }
  1411. if (!rt_prio(p->prio))
  1412. p->sched_class = &fair_sched_class;
  1413. if (p->sched_class->task_fork)
  1414. p->sched_class->task_fork(p);
  1415. /*
  1416. * The child is not yet in the pid-hash so no cgroup attach races,
  1417. * and the cgroup is pinned to this child due to cgroup_fork()
  1418. * is ran before sched_fork().
  1419. *
  1420. * Silence PROVE_RCU.
  1421. */
  1422. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1423. set_task_cpu(p, cpu);
  1424. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1425. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1426. if (likely(sched_info_on()))
  1427. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1428. #endif
  1429. #if defined(CONFIG_SMP)
  1430. p->on_cpu = 0;
  1431. #endif
  1432. #ifdef CONFIG_PREEMPT_COUNT
  1433. /* Want to start with kernel preemption disabled. */
  1434. task_thread_info(p)->preempt_count = 1;
  1435. #endif
  1436. #ifdef CONFIG_SMP
  1437. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1438. #endif
  1439. put_cpu();
  1440. }
  1441. /*
  1442. * wake_up_new_task - wake up a newly created task for the first time.
  1443. *
  1444. * This function will do some initial scheduler statistics housekeeping
  1445. * that must be done for every newly created context, then puts the task
  1446. * on the runqueue and wakes it.
  1447. */
  1448. void wake_up_new_task(struct task_struct *p)
  1449. {
  1450. unsigned long flags;
  1451. struct rq *rq;
  1452. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1453. #ifdef CONFIG_SMP
  1454. /*
  1455. * Fork balancing, do it here and not earlier because:
  1456. * - cpus_allowed can change in the fork path
  1457. * - any previously selected cpu might disappear through hotplug
  1458. */
  1459. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1460. #endif
  1461. rq = __task_rq_lock(p);
  1462. activate_task(rq, p, 0);
  1463. p->on_rq = 1;
  1464. trace_sched_wakeup_new(p, true);
  1465. check_preempt_curr(rq, p, WF_FORK);
  1466. #ifdef CONFIG_SMP
  1467. if (p->sched_class->task_woken)
  1468. p->sched_class->task_woken(rq, p);
  1469. #endif
  1470. task_rq_unlock(rq, p, &flags);
  1471. }
  1472. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1473. /**
  1474. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1475. * @notifier: notifier struct to register
  1476. */
  1477. void preempt_notifier_register(struct preempt_notifier *notifier)
  1478. {
  1479. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1480. }
  1481. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1482. /**
  1483. * preempt_notifier_unregister - no longer interested in preemption notifications
  1484. * @notifier: notifier struct to unregister
  1485. *
  1486. * This is safe to call from within a preemption notifier.
  1487. */
  1488. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1489. {
  1490. hlist_del(&notifier->link);
  1491. }
  1492. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1493. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1494. {
  1495. struct preempt_notifier *notifier;
  1496. struct hlist_node *node;
  1497. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1498. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1499. }
  1500. static void
  1501. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1502. struct task_struct *next)
  1503. {
  1504. struct preempt_notifier *notifier;
  1505. struct hlist_node *node;
  1506. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1507. notifier->ops->sched_out(notifier, next);
  1508. }
  1509. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1510. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1511. {
  1512. }
  1513. static void
  1514. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1515. struct task_struct *next)
  1516. {
  1517. }
  1518. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1519. /**
  1520. * prepare_task_switch - prepare to switch tasks
  1521. * @rq: the runqueue preparing to switch
  1522. * @prev: the current task that is being switched out
  1523. * @next: the task we are going to switch to.
  1524. *
  1525. * This is called with the rq lock held and interrupts off. It must
  1526. * be paired with a subsequent finish_task_switch after the context
  1527. * switch.
  1528. *
  1529. * prepare_task_switch sets up locking and calls architecture specific
  1530. * hooks.
  1531. */
  1532. static inline void
  1533. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1534. struct task_struct *next)
  1535. {
  1536. trace_sched_switch(prev, next);
  1537. sched_info_switch(prev, next);
  1538. perf_event_task_sched_out(prev, next);
  1539. fire_sched_out_preempt_notifiers(prev, next);
  1540. prepare_lock_switch(rq, next);
  1541. prepare_arch_switch(next);
  1542. }
  1543. /**
  1544. * finish_task_switch - clean up after a task-switch
  1545. * @rq: runqueue associated with task-switch
  1546. * @prev: the thread we just switched away from.
  1547. *
  1548. * finish_task_switch must be called after the context switch, paired
  1549. * with a prepare_task_switch call before the context switch.
  1550. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1551. * and do any other architecture-specific cleanup actions.
  1552. *
  1553. * Note that we may have delayed dropping an mm in context_switch(). If
  1554. * so, we finish that here outside of the runqueue lock. (Doing it
  1555. * with the lock held can cause deadlocks; see schedule() for
  1556. * details.)
  1557. */
  1558. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1559. __releases(rq->lock)
  1560. {
  1561. struct mm_struct *mm = rq->prev_mm;
  1562. long prev_state;
  1563. rq->prev_mm = NULL;
  1564. /*
  1565. * A task struct has one reference for the use as "current".
  1566. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1567. * schedule one last time. The schedule call will never return, and
  1568. * the scheduled task must drop that reference.
  1569. * The test for TASK_DEAD must occur while the runqueue locks are
  1570. * still held, otherwise prev could be scheduled on another cpu, die
  1571. * there before we look at prev->state, and then the reference would
  1572. * be dropped twice.
  1573. * Manfred Spraul <manfred@colorfullife.com>
  1574. */
  1575. prev_state = prev->state;
  1576. vtime_task_switch(prev);
  1577. finish_arch_switch(prev);
  1578. perf_event_task_sched_in(prev, current);
  1579. finish_lock_switch(rq, prev);
  1580. finish_arch_post_lock_switch();
  1581. fire_sched_in_preempt_notifiers(current);
  1582. if (mm)
  1583. mmdrop(mm);
  1584. if (unlikely(prev_state == TASK_DEAD)) {
  1585. /*
  1586. * Remove function-return probe instances associated with this
  1587. * task and put them back on the free list.
  1588. */
  1589. kprobe_flush_task(prev);
  1590. put_task_struct(prev);
  1591. }
  1592. }
  1593. #ifdef CONFIG_SMP
  1594. /* assumes rq->lock is held */
  1595. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1596. {
  1597. if (prev->sched_class->pre_schedule)
  1598. prev->sched_class->pre_schedule(rq, prev);
  1599. }
  1600. /* rq->lock is NOT held, but preemption is disabled */
  1601. static inline void post_schedule(struct rq *rq)
  1602. {
  1603. if (rq->post_schedule) {
  1604. unsigned long flags;
  1605. raw_spin_lock_irqsave(&rq->lock, flags);
  1606. if (rq->curr->sched_class->post_schedule)
  1607. rq->curr->sched_class->post_schedule(rq);
  1608. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1609. rq->post_schedule = 0;
  1610. }
  1611. }
  1612. #else
  1613. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1614. {
  1615. }
  1616. static inline void post_schedule(struct rq *rq)
  1617. {
  1618. }
  1619. #endif
  1620. /**
  1621. * schedule_tail - first thing a freshly forked thread must call.
  1622. * @prev: the thread we just switched away from.
  1623. */
  1624. asmlinkage void schedule_tail(struct task_struct *prev)
  1625. __releases(rq->lock)
  1626. {
  1627. struct rq *rq = this_rq();
  1628. finish_task_switch(rq, prev);
  1629. /*
  1630. * FIXME: do we need to worry about rq being invalidated by the
  1631. * task_switch?
  1632. */
  1633. post_schedule(rq);
  1634. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1635. /* In this case, finish_task_switch does not reenable preemption */
  1636. preempt_enable();
  1637. #endif
  1638. if (current->set_child_tid)
  1639. put_user(task_pid_vnr(current), current->set_child_tid);
  1640. }
  1641. /*
  1642. * context_switch - switch to the new MM and the new
  1643. * thread's register state.
  1644. */
  1645. static inline void
  1646. context_switch(struct rq *rq, struct task_struct *prev,
  1647. struct task_struct *next)
  1648. {
  1649. struct mm_struct *mm, *oldmm;
  1650. prepare_task_switch(rq, prev, next);
  1651. mm = next->mm;
  1652. oldmm = prev->active_mm;
  1653. /*
  1654. * For paravirt, this is coupled with an exit in switch_to to
  1655. * combine the page table reload and the switch backend into
  1656. * one hypercall.
  1657. */
  1658. arch_start_context_switch(prev);
  1659. if (!mm) {
  1660. next->active_mm = oldmm;
  1661. atomic_inc(&oldmm->mm_count);
  1662. enter_lazy_tlb(oldmm, next);
  1663. } else
  1664. switch_mm(oldmm, mm, next);
  1665. if (!prev->mm) {
  1666. prev->active_mm = NULL;
  1667. rq->prev_mm = oldmm;
  1668. }
  1669. /*
  1670. * Since the runqueue lock will be released by the next
  1671. * task (which is an invalid locking op but in the case
  1672. * of the scheduler it's an obvious special-case), so we
  1673. * do an early lockdep release here:
  1674. */
  1675. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1676. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1677. #endif
  1678. context_tracking_task_switch(prev, next);
  1679. /* Here we just switch the register state and the stack. */
  1680. switch_to(prev, next, prev);
  1681. barrier();
  1682. /*
  1683. * this_rq must be evaluated again because prev may have moved
  1684. * CPUs since it called schedule(), thus the 'rq' on its stack
  1685. * frame will be invalid.
  1686. */
  1687. finish_task_switch(this_rq(), prev);
  1688. }
  1689. /*
  1690. * nr_running, nr_uninterruptible and nr_context_switches:
  1691. *
  1692. * externally visible scheduler statistics: current number of runnable
  1693. * threads, current number of uninterruptible-sleeping threads, total
  1694. * number of context switches performed since bootup.
  1695. */
  1696. unsigned long nr_running(void)
  1697. {
  1698. unsigned long i, sum = 0;
  1699. for_each_online_cpu(i)
  1700. sum += cpu_rq(i)->nr_running;
  1701. return sum;
  1702. }
  1703. unsigned long nr_uninterruptible(void)
  1704. {
  1705. unsigned long i, sum = 0;
  1706. for_each_possible_cpu(i)
  1707. sum += cpu_rq(i)->nr_uninterruptible;
  1708. /*
  1709. * Since we read the counters lockless, it might be slightly
  1710. * inaccurate. Do not allow it to go below zero though:
  1711. */
  1712. if (unlikely((long)sum < 0))
  1713. sum = 0;
  1714. return sum;
  1715. }
  1716. unsigned long long nr_context_switches(void)
  1717. {
  1718. int i;
  1719. unsigned long long sum = 0;
  1720. for_each_possible_cpu(i)
  1721. sum += cpu_rq(i)->nr_switches;
  1722. return sum;
  1723. }
  1724. unsigned long nr_iowait(void)
  1725. {
  1726. unsigned long i, sum = 0;
  1727. for_each_possible_cpu(i)
  1728. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1729. return sum;
  1730. }
  1731. unsigned long nr_iowait_cpu(int cpu)
  1732. {
  1733. struct rq *this = cpu_rq(cpu);
  1734. return atomic_read(&this->nr_iowait);
  1735. }
  1736. unsigned long this_cpu_load(void)
  1737. {
  1738. struct rq *this = this_rq();
  1739. return this->cpu_load[0];
  1740. }
  1741. /*
  1742. * Global load-average calculations
  1743. *
  1744. * We take a distributed and async approach to calculating the global load-avg
  1745. * in order to minimize overhead.
  1746. *
  1747. * The global load average is an exponentially decaying average of nr_running +
  1748. * nr_uninterruptible.
  1749. *
  1750. * Once every LOAD_FREQ:
  1751. *
  1752. * nr_active = 0;
  1753. * for_each_possible_cpu(cpu)
  1754. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1755. *
  1756. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1757. *
  1758. * Due to a number of reasons the above turns in the mess below:
  1759. *
  1760. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1761. * serious number of cpus, therefore we need to take a distributed approach
  1762. * to calculating nr_active.
  1763. *
  1764. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1765. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1766. *
  1767. * So assuming nr_active := 0 when we start out -- true per definition, we
  1768. * can simply take per-cpu deltas and fold those into a global accumulate
  1769. * to obtain the same result. See calc_load_fold_active().
  1770. *
  1771. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1772. * across the machine, we assume 10 ticks is sufficient time for every
  1773. * cpu to have completed this task.
  1774. *
  1775. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1776. * again, being late doesn't loose the delta, just wrecks the sample.
  1777. *
  1778. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1779. * this would add another cross-cpu cacheline miss and atomic operation
  1780. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1781. * when it went into uninterruptible state and decrement on whatever cpu
  1782. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1783. * all cpus yields the correct result.
  1784. *
  1785. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1786. */
  1787. /* Variables and functions for calc_load */
  1788. static atomic_long_t calc_load_tasks;
  1789. static unsigned long calc_load_update;
  1790. unsigned long avenrun[3];
  1791. EXPORT_SYMBOL(avenrun); /* should be removed */
  1792. /**
  1793. * get_avenrun - get the load average array
  1794. * @loads: pointer to dest load array
  1795. * @offset: offset to add
  1796. * @shift: shift count to shift the result left
  1797. *
  1798. * These values are estimates at best, so no need for locking.
  1799. */
  1800. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1801. {
  1802. loads[0] = (avenrun[0] + offset) << shift;
  1803. loads[1] = (avenrun[1] + offset) << shift;
  1804. loads[2] = (avenrun[2] + offset) << shift;
  1805. }
  1806. static long calc_load_fold_active(struct rq *this_rq)
  1807. {
  1808. long nr_active, delta = 0;
  1809. nr_active = this_rq->nr_running;
  1810. nr_active += (long) this_rq->nr_uninterruptible;
  1811. if (nr_active != this_rq->calc_load_active) {
  1812. delta = nr_active - this_rq->calc_load_active;
  1813. this_rq->calc_load_active = nr_active;
  1814. }
  1815. return delta;
  1816. }
  1817. /*
  1818. * a1 = a0 * e + a * (1 - e)
  1819. */
  1820. static unsigned long
  1821. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1822. {
  1823. load *= exp;
  1824. load += active * (FIXED_1 - exp);
  1825. load += 1UL << (FSHIFT - 1);
  1826. return load >> FSHIFT;
  1827. }
  1828. #ifdef CONFIG_NO_HZ
  1829. /*
  1830. * Handle NO_HZ for the global load-average.
  1831. *
  1832. * Since the above described distributed algorithm to compute the global
  1833. * load-average relies on per-cpu sampling from the tick, it is affected by
  1834. * NO_HZ.
  1835. *
  1836. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1837. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1838. * when we read the global state.
  1839. *
  1840. * Obviously reality has to ruin such a delightfully simple scheme:
  1841. *
  1842. * - When we go NO_HZ idle during the window, we can negate our sample
  1843. * contribution, causing under-accounting.
  1844. *
  1845. * We avoid this by keeping two idle-delta counters and flipping them
  1846. * when the window starts, thus separating old and new NO_HZ load.
  1847. *
  1848. * The only trick is the slight shift in index flip for read vs write.
  1849. *
  1850. * 0s 5s 10s 15s
  1851. * +10 +10 +10 +10
  1852. * |-|-----------|-|-----------|-|-----------|-|
  1853. * r:0 0 1 1 0 0 1 1 0
  1854. * w:0 1 1 0 0 1 1 0 0
  1855. *
  1856. * This ensures we'll fold the old idle contribution in this window while
  1857. * accumlating the new one.
  1858. *
  1859. * - When we wake up from NO_HZ idle during the window, we push up our
  1860. * contribution, since we effectively move our sample point to a known
  1861. * busy state.
  1862. *
  1863. * This is solved by pushing the window forward, and thus skipping the
  1864. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1865. * was in effect at the time the window opened). This also solves the issue
  1866. * of having to deal with a cpu having been in NOHZ idle for multiple
  1867. * LOAD_FREQ intervals.
  1868. *
  1869. * When making the ILB scale, we should try to pull this in as well.
  1870. */
  1871. static atomic_long_t calc_load_idle[2];
  1872. static int calc_load_idx;
  1873. static inline int calc_load_write_idx(void)
  1874. {
  1875. int idx = calc_load_idx;
  1876. /*
  1877. * See calc_global_nohz(), if we observe the new index, we also
  1878. * need to observe the new update time.
  1879. */
  1880. smp_rmb();
  1881. /*
  1882. * If the folding window started, make sure we start writing in the
  1883. * next idle-delta.
  1884. */
  1885. if (!time_before(jiffies, calc_load_update))
  1886. idx++;
  1887. return idx & 1;
  1888. }
  1889. static inline int calc_load_read_idx(void)
  1890. {
  1891. return calc_load_idx & 1;
  1892. }
  1893. void calc_load_enter_idle(void)
  1894. {
  1895. struct rq *this_rq = this_rq();
  1896. long delta;
  1897. /*
  1898. * We're going into NOHZ mode, if there's any pending delta, fold it
  1899. * into the pending idle delta.
  1900. */
  1901. delta = calc_load_fold_active(this_rq);
  1902. if (delta) {
  1903. int idx = calc_load_write_idx();
  1904. atomic_long_add(delta, &calc_load_idle[idx]);
  1905. }
  1906. }
  1907. void calc_load_exit_idle(void)
  1908. {
  1909. struct rq *this_rq = this_rq();
  1910. /*
  1911. * If we're still before the sample window, we're done.
  1912. */
  1913. if (time_before(jiffies, this_rq->calc_load_update))
  1914. return;
  1915. /*
  1916. * We woke inside or after the sample window, this means we're already
  1917. * accounted through the nohz accounting, so skip the entire deal and
  1918. * sync up for the next window.
  1919. */
  1920. this_rq->calc_load_update = calc_load_update;
  1921. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1922. this_rq->calc_load_update += LOAD_FREQ;
  1923. }
  1924. static long calc_load_fold_idle(void)
  1925. {
  1926. int idx = calc_load_read_idx();
  1927. long delta = 0;
  1928. if (atomic_long_read(&calc_load_idle[idx]))
  1929. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1930. return delta;
  1931. }
  1932. /**
  1933. * fixed_power_int - compute: x^n, in O(log n) time
  1934. *
  1935. * @x: base of the power
  1936. * @frac_bits: fractional bits of @x
  1937. * @n: power to raise @x to.
  1938. *
  1939. * By exploiting the relation between the definition of the natural power
  1940. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1941. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1942. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1943. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1944. * of course trivially computable in O(log_2 n), the length of our binary
  1945. * vector.
  1946. */
  1947. static unsigned long
  1948. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1949. {
  1950. unsigned long result = 1UL << frac_bits;
  1951. if (n) for (;;) {
  1952. if (n & 1) {
  1953. result *= x;
  1954. result += 1UL << (frac_bits - 1);
  1955. result >>= frac_bits;
  1956. }
  1957. n >>= 1;
  1958. if (!n)
  1959. break;
  1960. x *= x;
  1961. x += 1UL << (frac_bits - 1);
  1962. x >>= frac_bits;
  1963. }
  1964. return result;
  1965. }
  1966. /*
  1967. * a1 = a0 * e + a * (1 - e)
  1968. *
  1969. * a2 = a1 * e + a * (1 - e)
  1970. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1971. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1972. *
  1973. * a3 = a2 * e + a * (1 - e)
  1974. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1975. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1976. *
  1977. * ...
  1978. *
  1979. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1980. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1981. * = a0 * e^n + a * (1 - e^n)
  1982. *
  1983. * [1] application of the geometric series:
  1984. *
  1985. * n 1 - x^(n+1)
  1986. * S_n := \Sum x^i = -------------
  1987. * i=0 1 - x
  1988. */
  1989. static unsigned long
  1990. calc_load_n(unsigned long load, unsigned long exp,
  1991. unsigned long active, unsigned int n)
  1992. {
  1993. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1994. }
  1995. /*
  1996. * NO_HZ can leave us missing all per-cpu ticks calling
  1997. * calc_load_account_active(), but since an idle CPU folds its delta into
  1998. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1999. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2000. *
  2001. * Once we've updated the global active value, we need to apply the exponential
  2002. * weights adjusted to the number of cycles missed.
  2003. */
  2004. static void calc_global_nohz(void)
  2005. {
  2006. long delta, active, n;
  2007. if (!time_before(jiffies, calc_load_update + 10)) {
  2008. /*
  2009. * Catch-up, fold however many we are behind still
  2010. */
  2011. delta = jiffies - calc_load_update - 10;
  2012. n = 1 + (delta / LOAD_FREQ);
  2013. active = atomic_long_read(&calc_load_tasks);
  2014. active = active > 0 ? active * FIXED_1 : 0;
  2015. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2016. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2017. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2018. calc_load_update += n * LOAD_FREQ;
  2019. }
  2020. /*
  2021. * Flip the idle index...
  2022. *
  2023. * Make sure we first write the new time then flip the index, so that
  2024. * calc_load_write_idx() will see the new time when it reads the new
  2025. * index, this avoids a double flip messing things up.
  2026. */
  2027. smp_wmb();
  2028. calc_load_idx++;
  2029. }
  2030. #else /* !CONFIG_NO_HZ */
  2031. static inline long calc_load_fold_idle(void) { return 0; }
  2032. static inline void calc_global_nohz(void) { }
  2033. #endif /* CONFIG_NO_HZ */
  2034. /*
  2035. * calc_load - update the avenrun load estimates 10 ticks after the
  2036. * CPUs have updated calc_load_tasks.
  2037. */
  2038. void calc_global_load(unsigned long ticks)
  2039. {
  2040. long active, delta;
  2041. if (time_before(jiffies, calc_load_update + 10))
  2042. return;
  2043. /*
  2044. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2045. */
  2046. delta = calc_load_fold_idle();
  2047. if (delta)
  2048. atomic_long_add(delta, &calc_load_tasks);
  2049. active = atomic_long_read(&calc_load_tasks);
  2050. active = active > 0 ? active * FIXED_1 : 0;
  2051. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2052. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2053. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2054. calc_load_update += LOAD_FREQ;
  2055. /*
  2056. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2057. */
  2058. calc_global_nohz();
  2059. }
  2060. /*
  2061. * Called from update_cpu_load() to periodically update this CPU's
  2062. * active count.
  2063. */
  2064. static void calc_load_account_active(struct rq *this_rq)
  2065. {
  2066. long delta;
  2067. if (time_before(jiffies, this_rq->calc_load_update))
  2068. return;
  2069. delta = calc_load_fold_active(this_rq);
  2070. if (delta)
  2071. atomic_long_add(delta, &calc_load_tasks);
  2072. this_rq->calc_load_update += LOAD_FREQ;
  2073. }
  2074. /*
  2075. * End of global load-average stuff
  2076. */
  2077. /*
  2078. * The exact cpuload at various idx values, calculated at every tick would be
  2079. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2080. *
  2081. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2082. * on nth tick when cpu may be busy, then we have:
  2083. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2084. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2085. *
  2086. * decay_load_missed() below does efficient calculation of
  2087. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2088. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2089. *
  2090. * The calculation is approximated on a 128 point scale.
  2091. * degrade_zero_ticks is the number of ticks after which load at any
  2092. * particular idx is approximated to be zero.
  2093. * degrade_factor is a precomputed table, a row for each load idx.
  2094. * Each column corresponds to degradation factor for a power of two ticks,
  2095. * based on 128 point scale.
  2096. * Example:
  2097. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2098. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2099. *
  2100. * With this power of 2 load factors, we can degrade the load n times
  2101. * by looking at 1 bits in n and doing as many mult/shift instead of
  2102. * n mult/shifts needed by the exact degradation.
  2103. */
  2104. #define DEGRADE_SHIFT 7
  2105. static const unsigned char
  2106. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2107. static const unsigned char
  2108. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2109. {0, 0, 0, 0, 0, 0, 0, 0},
  2110. {64, 32, 8, 0, 0, 0, 0, 0},
  2111. {96, 72, 40, 12, 1, 0, 0},
  2112. {112, 98, 75, 43, 15, 1, 0},
  2113. {120, 112, 98, 76, 45, 16, 2} };
  2114. /*
  2115. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2116. * would be when CPU is idle and so we just decay the old load without
  2117. * adding any new load.
  2118. */
  2119. static unsigned long
  2120. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2121. {
  2122. int j = 0;
  2123. if (!missed_updates)
  2124. return load;
  2125. if (missed_updates >= degrade_zero_ticks[idx])
  2126. return 0;
  2127. if (idx == 1)
  2128. return load >> missed_updates;
  2129. while (missed_updates) {
  2130. if (missed_updates % 2)
  2131. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2132. missed_updates >>= 1;
  2133. j++;
  2134. }
  2135. return load;
  2136. }
  2137. /*
  2138. * Update rq->cpu_load[] statistics. This function is usually called every
  2139. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2140. * every tick. We fix it up based on jiffies.
  2141. */
  2142. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2143. unsigned long pending_updates)
  2144. {
  2145. int i, scale;
  2146. this_rq->nr_load_updates++;
  2147. /* Update our load: */
  2148. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2149. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2150. unsigned long old_load, new_load;
  2151. /* scale is effectively 1 << i now, and >> i divides by scale */
  2152. old_load = this_rq->cpu_load[i];
  2153. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2154. new_load = this_load;
  2155. /*
  2156. * Round up the averaging division if load is increasing. This
  2157. * prevents us from getting stuck on 9 if the load is 10, for
  2158. * example.
  2159. */
  2160. if (new_load > old_load)
  2161. new_load += scale - 1;
  2162. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2163. }
  2164. sched_avg_update(this_rq);
  2165. }
  2166. #ifdef CONFIG_NO_HZ
  2167. /*
  2168. * There is no sane way to deal with nohz on smp when using jiffies because the
  2169. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2170. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2171. *
  2172. * Therefore we cannot use the delta approach from the regular tick since that
  2173. * would seriously skew the load calculation. However we'll make do for those
  2174. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2175. * (tick_nohz_idle_exit).
  2176. *
  2177. * This means we might still be one tick off for nohz periods.
  2178. */
  2179. /*
  2180. * Called from nohz_idle_balance() to update the load ratings before doing the
  2181. * idle balance.
  2182. */
  2183. void update_idle_cpu_load(struct rq *this_rq)
  2184. {
  2185. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2186. unsigned long load = this_rq->load.weight;
  2187. unsigned long pending_updates;
  2188. /*
  2189. * bail if there's load or we're actually up-to-date.
  2190. */
  2191. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2192. return;
  2193. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2194. this_rq->last_load_update_tick = curr_jiffies;
  2195. __update_cpu_load(this_rq, load, pending_updates);
  2196. }
  2197. /*
  2198. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2199. */
  2200. void update_cpu_load_nohz(void)
  2201. {
  2202. struct rq *this_rq = this_rq();
  2203. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2204. unsigned long pending_updates;
  2205. if (curr_jiffies == this_rq->last_load_update_tick)
  2206. return;
  2207. raw_spin_lock(&this_rq->lock);
  2208. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2209. if (pending_updates) {
  2210. this_rq->last_load_update_tick = curr_jiffies;
  2211. /*
  2212. * We were idle, this means load 0, the current load might be
  2213. * !0 due to remote wakeups and the sort.
  2214. */
  2215. __update_cpu_load(this_rq, 0, pending_updates);
  2216. }
  2217. raw_spin_unlock(&this_rq->lock);
  2218. }
  2219. #endif /* CONFIG_NO_HZ */
  2220. /*
  2221. * Called from scheduler_tick()
  2222. */
  2223. static void update_cpu_load_active(struct rq *this_rq)
  2224. {
  2225. /*
  2226. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2227. */
  2228. this_rq->last_load_update_tick = jiffies;
  2229. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2230. calc_load_account_active(this_rq);
  2231. }
  2232. #ifdef CONFIG_SMP
  2233. /*
  2234. * sched_exec - execve() is a valuable balancing opportunity, because at
  2235. * this point the task has the smallest effective memory and cache footprint.
  2236. */
  2237. void sched_exec(void)
  2238. {
  2239. struct task_struct *p = current;
  2240. unsigned long flags;
  2241. int dest_cpu;
  2242. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2243. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2244. if (dest_cpu == smp_processor_id())
  2245. goto unlock;
  2246. if (likely(cpu_active(dest_cpu))) {
  2247. struct migration_arg arg = { p, dest_cpu };
  2248. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2249. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2250. return;
  2251. }
  2252. unlock:
  2253. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2254. }
  2255. #endif
  2256. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2257. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2258. EXPORT_PER_CPU_SYMBOL(kstat);
  2259. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2260. /*
  2261. * Return any ns on the sched_clock that have not yet been accounted in
  2262. * @p in case that task is currently running.
  2263. *
  2264. * Called with task_rq_lock() held on @rq.
  2265. */
  2266. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2267. {
  2268. u64 ns = 0;
  2269. if (task_current(rq, p)) {
  2270. update_rq_clock(rq);
  2271. ns = rq->clock_task - p->se.exec_start;
  2272. if ((s64)ns < 0)
  2273. ns = 0;
  2274. }
  2275. return ns;
  2276. }
  2277. unsigned long long task_delta_exec(struct task_struct *p)
  2278. {
  2279. unsigned long flags;
  2280. struct rq *rq;
  2281. u64 ns = 0;
  2282. rq = task_rq_lock(p, &flags);
  2283. ns = do_task_delta_exec(p, rq);
  2284. task_rq_unlock(rq, p, &flags);
  2285. return ns;
  2286. }
  2287. /*
  2288. * Return accounted runtime for the task.
  2289. * In case the task is currently running, return the runtime plus current's
  2290. * pending runtime that have not been accounted yet.
  2291. */
  2292. unsigned long long task_sched_runtime(struct task_struct *p)
  2293. {
  2294. unsigned long flags;
  2295. struct rq *rq;
  2296. u64 ns = 0;
  2297. rq = task_rq_lock(p, &flags);
  2298. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2299. task_rq_unlock(rq, p, &flags);
  2300. return ns;
  2301. }
  2302. /*
  2303. * This function gets called by the timer code, with HZ frequency.
  2304. * We call it with interrupts disabled.
  2305. */
  2306. void scheduler_tick(void)
  2307. {
  2308. int cpu = smp_processor_id();
  2309. struct rq *rq = cpu_rq(cpu);
  2310. struct task_struct *curr = rq->curr;
  2311. sched_clock_tick();
  2312. raw_spin_lock(&rq->lock);
  2313. update_rq_clock(rq);
  2314. update_cpu_load_active(rq);
  2315. curr->sched_class->task_tick(rq, curr, 0);
  2316. raw_spin_unlock(&rq->lock);
  2317. perf_event_task_tick();
  2318. #ifdef CONFIG_SMP
  2319. rq->idle_balance = idle_cpu(cpu);
  2320. trigger_load_balance(rq, cpu);
  2321. #endif
  2322. }
  2323. notrace unsigned long get_parent_ip(unsigned long addr)
  2324. {
  2325. if (in_lock_functions(addr)) {
  2326. addr = CALLER_ADDR2;
  2327. if (in_lock_functions(addr))
  2328. addr = CALLER_ADDR3;
  2329. }
  2330. return addr;
  2331. }
  2332. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2333. defined(CONFIG_PREEMPT_TRACER))
  2334. void __kprobes add_preempt_count(int val)
  2335. {
  2336. #ifdef CONFIG_DEBUG_PREEMPT
  2337. /*
  2338. * Underflow?
  2339. */
  2340. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2341. return;
  2342. #endif
  2343. preempt_count() += val;
  2344. #ifdef CONFIG_DEBUG_PREEMPT
  2345. /*
  2346. * Spinlock count overflowing soon?
  2347. */
  2348. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2349. PREEMPT_MASK - 10);
  2350. #endif
  2351. if (preempt_count() == val)
  2352. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2353. }
  2354. EXPORT_SYMBOL(add_preempt_count);
  2355. void __kprobes sub_preempt_count(int val)
  2356. {
  2357. #ifdef CONFIG_DEBUG_PREEMPT
  2358. /*
  2359. * Underflow?
  2360. */
  2361. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2362. return;
  2363. /*
  2364. * Is the spinlock portion underflowing?
  2365. */
  2366. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2367. !(preempt_count() & PREEMPT_MASK)))
  2368. return;
  2369. #endif
  2370. if (preempt_count() == val)
  2371. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2372. preempt_count() -= val;
  2373. }
  2374. EXPORT_SYMBOL(sub_preempt_count);
  2375. #endif
  2376. /*
  2377. * Print scheduling while atomic bug:
  2378. */
  2379. static noinline void __schedule_bug(struct task_struct *prev)
  2380. {
  2381. if (oops_in_progress)
  2382. return;
  2383. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2384. prev->comm, prev->pid, preempt_count());
  2385. debug_show_held_locks(prev);
  2386. print_modules();
  2387. if (irqs_disabled())
  2388. print_irqtrace_events(prev);
  2389. dump_stack();
  2390. add_taint(TAINT_WARN);
  2391. }
  2392. /*
  2393. * Various schedule()-time debugging checks and statistics:
  2394. */
  2395. static inline void schedule_debug(struct task_struct *prev)
  2396. {
  2397. /*
  2398. * Test if we are atomic. Since do_exit() needs to call into
  2399. * schedule() atomically, we ignore that path for now.
  2400. * Otherwise, whine if we are scheduling when we should not be.
  2401. */
  2402. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2403. __schedule_bug(prev);
  2404. rcu_sleep_check();
  2405. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2406. schedstat_inc(this_rq(), sched_count);
  2407. }
  2408. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2409. {
  2410. if (prev->on_rq || rq->skip_clock_update < 0)
  2411. update_rq_clock(rq);
  2412. prev->sched_class->put_prev_task(rq, prev);
  2413. }
  2414. /*
  2415. * Pick up the highest-prio task:
  2416. */
  2417. static inline struct task_struct *
  2418. pick_next_task(struct rq *rq)
  2419. {
  2420. const struct sched_class *class;
  2421. struct task_struct *p;
  2422. /*
  2423. * Optimization: we know that if all tasks are in
  2424. * the fair class we can call that function directly:
  2425. */
  2426. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2427. p = fair_sched_class.pick_next_task(rq);
  2428. if (likely(p))
  2429. return p;
  2430. }
  2431. for_each_class(class) {
  2432. p = class->pick_next_task(rq);
  2433. if (p)
  2434. return p;
  2435. }
  2436. BUG(); /* the idle class will always have a runnable task */
  2437. }
  2438. /*
  2439. * __schedule() is the main scheduler function.
  2440. *
  2441. * The main means of driving the scheduler and thus entering this function are:
  2442. *
  2443. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2444. *
  2445. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2446. * paths. For example, see arch/x86/entry_64.S.
  2447. *
  2448. * To drive preemption between tasks, the scheduler sets the flag in timer
  2449. * interrupt handler scheduler_tick().
  2450. *
  2451. * 3. Wakeups don't really cause entry into schedule(). They add a
  2452. * task to the run-queue and that's it.
  2453. *
  2454. * Now, if the new task added to the run-queue preempts the current
  2455. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2456. * called on the nearest possible occasion:
  2457. *
  2458. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2459. *
  2460. * - in syscall or exception context, at the next outmost
  2461. * preempt_enable(). (this might be as soon as the wake_up()'s
  2462. * spin_unlock()!)
  2463. *
  2464. * - in IRQ context, return from interrupt-handler to
  2465. * preemptible context
  2466. *
  2467. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2468. * then at the next:
  2469. *
  2470. * - cond_resched() call
  2471. * - explicit schedule() call
  2472. * - return from syscall or exception to user-space
  2473. * - return from interrupt-handler to user-space
  2474. */
  2475. static void __sched __schedule(void)
  2476. {
  2477. struct task_struct *prev, *next;
  2478. unsigned long *switch_count;
  2479. struct rq *rq;
  2480. int cpu;
  2481. need_resched:
  2482. preempt_disable();
  2483. cpu = smp_processor_id();
  2484. rq = cpu_rq(cpu);
  2485. rcu_note_context_switch(cpu);
  2486. prev = rq->curr;
  2487. schedule_debug(prev);
  2488. if (sched_feat(HRTICK))
  2489. hrtick_clear(rq);
  2490. raw_spin_lock_irq(&rq->lock);
  2491. switch_count = &prev->nivcsw;
  2492. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2493. if (unlikely(signal_pending_state(prev->state, prev))) {
  2494. prev->state = TASK_RUNNING;
  2495. } else {
  2496. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2497. prev->on_rq = 0;
  2498. /*
  2499. * If a worker went to sleep, notify and ask workqueue
  2500. * whether it wants to wake up a task to maintain
  2501. * concurrency.
  2502. */
  2503. if (prev->flags & PF_WQ_WORKER) {
  2504. struct task_struct *to_wakeup;
  2505. to_wakeup = wq_worker_sleeping(prev, cpu);
  2506. if (to_wakeup)
  2507. try_to_wake_up_local(to_wakeup);
  2508. }
  2509. }
  2510. switch_count = &prev->nvcsw;
  2511. }
  2512. pre_schedule(rq, prev);
  2513. if (unlikely(!rq->nr_running))
  2514. idle_balance(cpu, rq);
  2515. put_prev_task(rq, prev);
  2516. next = pick_next_task(rq);
  2517. clear_tsk_need_resched(prev);
  2518. rq->skip_clock_update = 0;
  2519. if (likely(prev != next)) {
  2520. rq->nr_switches++;
  2521. rq->curr = next;
  2522. ++*switch_count;
  2523. context_switch(rq, prev, next); /* unlocks the rq */
  2524. /*
  2525. * The context switch have flipped the stack from under us
  2526. * and restored the local variables which were saved when
  2527. * this task called schedule() in the past. prev == current
  2528. * is still correct, but it can be moved to another cpu/rq.
  2529. */
  2530. cpu = smp_processor_id();
  2531. rq = cpu_rq(cpu);
  2532. } else
  2533. raw_spin_unlock_irq(&rq->lock);
  2534. post_schedule(rq);
  2535. sched_preempt_enable_no_resched();
  2536. if (need_resched())
  2537. goto need_resched;
  2538. }
  2539. static inline void sched_submit_work(struct task_struct *tsk)
  2540. {
  2541. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2542. return;
  2543. /*
  2544. * If we are going to sleep and we have plugged IO queued,
  2545. * make sure to submit it to avoid deadlocks.
  2546. */
  2547. if (blk_needs_flush_plug(tsk))
  2548. blk_schedule_flush_plug(tsk);
  2549. }
  2550. asmlinkage void __sched schedule(void)
  2551. {
  2552. struct task_struct *tsk = current;
  2553. sched_submit_work(tsk);
  2554. __schedule();
  2555. }
  2556. EXPORT_SYMBOL(schedule);
  2557. #ifdef CONFIG_CONTEXT_TRACKING
  2558. asmlinkage void __sched schedule_user(void)
  2559. {
  2560. /*
  2561. * If we come here after a random call to set_need_resched(),
  2562. * or we have been woken up remotely but the IPI has not yet arrived,
  2563. * we haven't yet exited the RCU idle mode. Do it here manually until
  2564. * we find a better solution.
  2565. */
  2566. user_exit();
  2567. schedule();
  2568. user_enter();
  2569. }
  2570. #endif
  2571. /**
  2572. * schedule_preempt_disabled - called with preemption disabled
  2573. *
  2574. * Returns with preemption disabled. Note: preempt_count must be 1
  2575. */
  2576. void __sched schedule_preempt_disabled(void)
  2577. {
  2578. sched_preempt_enable_no_resched();
  2579. schedule();
  2580. preempt_disable();
  2581. }
  2582. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2583. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2584. {
  2585. if (lock->owner != owner)
  2586. return false;
  2587. /*
  2588. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2589. * lock->owner still matches owner, if that fails, owner might
  2590. * point to free()d memory, if it still matches, the rcu_read_lock()
  2591. * ensures the memory stays valid.
  2592. */
  2593. barrier();
  2594. return owner->on_cpu;
  2595. }
  2596. /*
  2597. * Look out! "owner" is an entirely speculative pointer
  2598. * access and not reliable.
  2599. */
  2600. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2601. {
  2602. if (!sched_feat(OWNER_SPIN))
  2603. return 0;
  2604. rcu_read_lock();
  2605. while (owner_running(lock, owner)) {
  2606. if (need_resched())
  2607. break;
  2608. arch_mutex_cpu_relax();
  2609. }
  2610. rcu_read_unlock();
  2611. /*
  2612. * We break out the loop above on need_resched() and when the
  2613. * owner changed, which is a sign for heavy contention. Return
  2614. * success only when lock->owner is NULL.
  2615. */
  2616. return lock->owner == NULL;
  2617. }
  2618. #endif
  2619. #ifdef CONFIG_PREEMPT
  2620. /*
  2621. * this is the entry point to schedule() from in-kernel preemption
  2622. * off of preempt_enable. Kernel preemptions off return from interrupt
  2623. * occur there and call schedule directly.
  2624. */
  2625. asmlinkage void __sched notrace preempt_schedule(void)
  2626. {
  2627. struct thread_info *ti = current_thread_info();
  2628. /*
  2629. * If there is a non-zero preempt_count or interrupts are disabled,
  2630. * we do not want to preempt the current task. Just return..
  2631. */
  2632. if (likely(ti->preempt_count || irqs_disabled()))
  2633. return;
  2634. do {
  2635. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2636. __schedule();
  2637. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2638. /*
  2639. * Check again in case we missed a preemption opportunity
  2640. * between schedule and now.
  2641. */
  2642. barrier();
  2643. } while (need_resched());
  2644. }
  2645. EXPORT_SYMBOL(preempt_schedule);
  2646. /*
  2647. * this is the entry point to schedule() from kernel preemption
  2648. * off of irq context.
  2649. * Note, that this is called and return with irqs disabled. This will
  2650. * protect us against recursive calling from irq.
  2651. */
  2652. asmlinkage void __sched preempt_schedule_irq(void)
  2653. {
  2654. struct thread_info *ti = current_thread_info();
  2655. /* Catch callers which need to be fixed */
  2656. BUG_ON(ti->preempt_count || !irqs_disabled());
  2657. user_exit();
  2658. do {
  2659. add_preempt_count(PREEMPT_ACTIVE);
  2660. local_irq_enable();
  2661. __schedule();
  2662. local_irq_disable();
  2663. sub_preempt_count(PREEMPT_ACTIVE);
  2664. /*
  2665. * Check again in case we missed a preemption opportunity
  2666. * between schedule and now.
  2667. */
  2668. barrier();
  2669. } while (need_resched());
  2670. }
  2671. #endif /* CONFIG_PREEMPT */
  2672. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2673. void *key)
  2674. {
  2675. return try_to_wake_up(curr->private, mode, wake_flags);
  2676. }
  2677. EXPORT_SYMBOL(default_wake_function);
  2678. /*
  2679. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2680. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2681. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2682. *
  2683. * There are circumstances in which we can try to wake a task which has already
  2684. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2685. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2686. */
  2687. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2688. int nr_exclusive, int wake_flags, void *key)
  2689. {
  2690. wait_queue_t *curr, *next;
  2691. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2692. unsigned flags = curr->flags;
  2693. if (curr->func(curr, mode, wake_flags, key) &&
  2694. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2695. break;
  2696. }
  2697. }
  2698. /**
  2699. * __wake_up - wake up threads blocked on a waitqueue.
  2700. * @q: the waitqueue
  2701. * @mode: which threads
  2702. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2703. * @key: is directly passed to the wakeup function
  2704. *
  2705. * It may be assumed that this function implies a write memory barrier before
  2706. * changing the task state if and only if any tasks are woken up.
  2707. */
  2708. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2709. int nr_exclusive, void *key)
  2710. {
  2711. unsigned long flags;
  2712. spin_lock_irqsave(&q->lock, flags);
  2713. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2714. spin_unlock_irqrestore(&q->lock, flags);
  2715. }
  2716. EXPORT_SYMBOL(__wake_up);
  2717. /*
  2718. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2719. */
  2720. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2721. {
  2722. __wake_up_common(q, mode, nr, 0, NULL);
  2723. }
  2724. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2725. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2726. {
  2727. __wake_up_common(q, mode, 1, 0, key);
  2728. }
  2729. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2730. /**
  2731. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2732. * @q: the waitqueue
  2733. * @mode: which threads
  2734. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2735. * @key: opaque value to be passed to wakeup targets
  2736. *
  2737. * The sync wakeup differs that the waker knows that it will schedule
  2738. * away soon, so while the target thread will be woken up, it will not
  2739. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2740. * with each other. This can prevent needless bouncing between CPUs.
  2741. *
  2742. * On UP it can prevent extra preemption.
  2743. *
  2744. * It may be assumed that this function implies a write memory barrier before
  2745. * changing the task state if and only if any tasks are woken up.
  2746. */
  2747. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2748. int nr_exclusive, void *key)
  2749. {
  2750. unsigned long flags;
  2751. int wake_flags = WF_SYNC;
  2752. if (unlikely(!q))
  2753. return;
  2754. if (unlikely(!nr_exclusive))
  2755. wake_flags = 0;
  2756. spin_lock_irqsave(&q->lock, flags);
  2757. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2758. spin_unlock_irqrestore(&q->lock, flags);
  2759. }
  2760. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2761. /*
  2762. * __wake_up_sync - see __wake_up_sync_key()
  2763. */
  2764. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2765. {
  2766. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2767. }
  2768. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2769. /**
  2770. * complete: - signals a single thread waiting on this completion
  2771. * @x: holds the state of this particular completion
  2772. *
  2773. * This will wake up a single thread waiting on this completion. Threads will be
  2774. * awakened in the same order in which they were queued.
  2775. *
  2776. * See also complete_all(), wait_for_completion() and related routines.
  2777. *
  2778. * It may be assumed that this function implies a write memory barrier before
  2779. * changing the task state if and only if any tasks are woken up.
  2780. */
  2781. void complete(struct completion *x)
  2782. {
  2783. unsigned long flags;
  2784. spin_lock_irqsave(&x->wait.lock, flags);
  2785. x->done++;
  2786. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2787. spin_unlock_irqrestore(&x->wait.lock, flags);
  2788. }
  2789. EXPORT_SYMBOL(complete);
  2790. /**
  2791. * complete_all: - signals all threads waiting on this completion
  2792. * @x: holds the state of this particular completion
  2793. *
  2794. * This will wake up all threads waiting on this particular completion event.
  2795. *
  2796. * It may be assumed that this function implies a write memory barrier before
  2797. * changing the task state if and only if any tasks are woken up.
  2798. */
  2799. void complete_all(struct completion *x)
  2800. {
  2801. unsigned long flags;
  2802. spin_lock_irqsave(&x->wait.lock, flags);
  2803. x->done += UINT_MAX/2;
  2804. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2805. spin_unlock_irqrestore(&x->wait.lock, flags);
  2806. }
  2807. EXPORT_SYMBOL(complete_all);
  2808. static inline long __sched
  2809. do_wait_for_common(struct completion *x, long timeout, int state)
  2810. {
  2811. if (!x->done) {
  2812. DECLARE_WAITQUEUE(wait, current);
  2813. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2814. do {
  2815. if (signal_pending_state(state, current)) {
  2816. timeout = -ERESTARTSYS;
  2817. break;
  2818. }
  2819. __set_current_state(state);
  2820. spin_unlock_irq(&x->wait.lock);
  2821. timeout = schedule_timeout(timeout);
  2822. spin_lock_irq(&x->wait.lock);
  2823. } while (!x->done && timeout);
  2824. __remove_wait_queue(&x->wait, &wait);
  2825. if (!x->done)
  2826. return timeout;
  2827. }
  2828. x->done--;
  2829. return timeout ?: 1;
  2830. }
  2831. static long __sched
  2832. wait_for_common(struct completion *x, long timeout, int state)
  2833. {
  2834. might_sleep();
  2835. spin_lock_irq(&x->wait.lock);
  2836. timeout = do_wait_for_common(x, timeout, state);
  2837. spin_unlock_irq(&x->wait.lock);
  2838. return timeout;
  2839. }
  2840. /**
  2841. * wait_for_completion: - waits for completion of a task
  2842. * @x: holds the state of this particular completion
  2843. *
  2844. * This waits to be signaled for completion of a specific task. It is NOT
  2845. * interruptible and there is no timeout.
  2846. *
  2847. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2848. * and interrupt capability. Also see complete().
  2849. */
  2850. void __sched wait_for_completion(struct completion *x)
  2851. {
  2852. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2853. }
  2854. EXPORT_SYMBOL(wait_for_completion);
  2855. /**
  2856. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2857. * @x: holds the state of this particular completion
  2858. * @timeout: timeout value in jiffies
  2859. *
  2860. * This waits for either a completion of a specific task to be signaled or for a
  2861. * specified timeout to expire. The timeout is in jiffies. It is not
  2862. * interruptible.
  2863. *
  2864. * The return value is 0 if timed out, and positive (at least 1, or number of
  2865. * jiffies left till timeout) if completed.
  2866. */
  2867. unsigned long __sched
  2868. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2869. {
  2870. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2871. }
  2872. EXPORT_SYMBOL(wait_for_completion_timeout);
  2873. /**
  2874. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2875. * @x: holds the state of this particular completion
  2876. *
  2877. * This waits for completion of a specific task to be signaled. It is
  2878. * interruptible.
  2879. *
  2880. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2881. */
  2882. int __sched wait_for_completion_interruptible(struct completion *x)
  2883. {
  2884. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2885. if (t == -ERESTARTSYS)
  2886. return t;
  2887. return 0;
  2888. }
  2889. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2890. /**
  2891. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2892. * @x: holds the state of this particular completion
  2893. * @timeout: timeout value in jiffies
  2894. *
  2895. * This waits for either a completion of a specific task to be signaled or for a
  2896. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2897. *
  2898. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2899. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2900. */
  2901. long __sched
  2902. wait_for_completion_interruptible_timeout(struct completion *x,
  2903. unsigned long timeout)
  2904. {
  2905. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2906. }
  2907. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2908. /**
  2909. * wait_for_completion_killable: - waits for completion of a task (killable)
  2910. * @x: holds the state of this particular completion
  2911. *
  2912. * This waits to be signaled for completion of a specific task. It can be
  2913. * interrupted by a kill signal.
  2914. *
  2915. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2916. */
  2917. int __sched wait_for_completion_killable(struct completion *x)
  2918. {
  2919. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2920. if (t == -ERESTARTSYS)
  2921. return t;
  2922. return 0;
  2923. }
  2924. EXPORT_SYMBOL(wait_for_completion_killable);
  2925. /**
  2926. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2927. * @x: holds the state of this particular completion
  2928. * @timeout: timeout value in jiffies
  2929. *
  2930. * This waits for either a completion of a specific task to be
  2931. * signaled or for a specified timeout to expire. It can be
  2932. * interrupted by a kill signal. The timeout is in jiffies.
  2933. *
  2934. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2935. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2936. */
  2937. long __sched
  2938. wait_for_completion_killable_timeout(struct completion *x,
  2939. unsigned long timeout)
  2940. {
  2941. return wait_for_common(x, timeout, TASK_KILLABLE);
  2942. }
  2943. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2944. /**
  2945. * try_wait_for_completion - try to decrement a completion without blocking
  2946. * @x: completion structure
  2947. *
  2948. * Returns: 0 if a decrement cannot be done without blocking
  2949. * 1 if a decrement succeeded.
  2950. *
  2951. * If a completion is being used as a counting completion,
  2952. * attempt to decrement the counter without blocking. This
  2953. * enables us to avoid waiting if the resource the completion
  2954. * is protecting is not available.
  2955. */
  2956. bool try_wait_for_completion(struct completion *x)
  2957. {
  2958. unsigned long flags;
  2959. int ret = 1;
  2960. spin_lock_irqsave(&x->wait.lock, flags);
  2961. if (!x->done)
  2962. ret = 0;
  2963. else
  2964. x->done--;
  2965. spin_unlock_irqrestore(&x->wait.lock, flags);
  2966. return ret;
  2967. }
  2968. EXPORT_SYMBOL(try_wait_for_completion);
  2969. /**
  2970. * completion_done - Test to see if a completion has any waiters
  2971. * @x: completion structure
  2972. *
  2973. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2974. * 1 if there are no waiters.
  2975. *
  2976. */
  2977. bool completion_done(struct completion *x)
  2978. {
  2979. unsigned long flags;
  2980. int ret = 1;
  2981. spin_lock_irqsave(&x->wait.lock, flags);
  2982. if (!x->done)
  2983. ret = 0;
  2984. spin_unlock_irqrestore(&x->wait.lock, flags);
  2985. return ret;
  2986. }
  2987. EXPORT_SYMBOL(completion_done);
  2988. static long __sched
  2989. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2990. {
  2991. unsigned long flags;
  2992. wait_queue_t wait;
  2993. init_waitqueue_entry(&wait, current);
  2994. __set_current_state(state);
  2995. spin_lock_irqsave(&q->lock, flags);
  2996. __add_wait_queue(q, &wait);
  2997. spin_unlock(&q->lock);
  2998. timeout = schedule_timeout(timeout);
  2999. spin_lock_irq(&q->lock);
  3000. __remove_wait_queue(q, &wait);
  3001. spin_unlock_irqrestore(&q->lock, flags);
  3002. return timeout;
  3003. }
  3004. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3005. {
  3006. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3007. }
  3008. EXPORT_SYMBOL(interruptible_sleep_on);
  3009. long __sched
  3010. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3011. {
  3012. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3013. }
  3014. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3015. void __sched sleep_on(wait_queue_head_t *q)
  3016. {
  3017. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3018. }
  3019. EXPORT_SYMBOL(sleep_on);
  3020. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3021. {
  3022. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3023. }
  3024. EXPORT_SYMBOL(sleep_on_timeout);
  3025. #ifdef CONFIG_RT_MUTEXES
  3026. /*
  3027. * rt_mutex_setprio - set the current priority of a task
  3028. * @p: task
  3029. * @prio: prio value (kernel-internal form)
  3030. *
  3031. * This function changes the 'effective' priority of a task. It does
  3032. * not touch ->normal_prio like __setscheduler().
  3033. *
  3034. * Used by the rt_mutex code to implement priority inheritance logic.
  3035. */
  3036. void rt_mutex_setprio(struct task_struct *p, int prio)
  3037. {
  3038. int oldprio, on_rq, running;
  3039. struct rq *rq;
  3040. const struct sched_class *prev_class;
  3041. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3042. rq = __task_rq_lock(p);
  3043. /*
  3044. * Idle task boosting is a nono in general. There is one
  3045. * exception, when PREEMPT_RT and NOHZ is active:
  3046. *
  3047. * The idle task calls get_next_timer_interrupt() and holds
  3048. * the timer wheel base->lock on the CPU and another CPU wants
  3049. * to access the timer (probably to cancel it). We can safely
  3050. * ignore the boosting request, as the idle CPU runs this code
  3051. * with interrupts disabled and will complete the lock
  3052. * protected section without being interrupted. So there is no
  3053. * real need to boost.
  3054. */
  3055. if (unlikely(p == rq->idle)) {
  3056. WARN_ON(p != rq->curr);
  3057. WARN_ON(p->pi_blocked_on);
  3058. goto out_unlock;
  3059. }
  3060. trace_sched_pi_setprio(p, prio);
  3061. oldprio = p->prio;
  3062. prev_class = p->sched_class;
  3063. on_rq = p->on_rq;
  3064. running = task_current(rq, p);
  3065. if (on_rq)
  3066. dequeue_task(rq, p, 0);
  3067. if (running)
  3068. p->sched_class->put_prev_task(rq, p);
  3069. if (rt_prio(prio))
  3070. p->sched_class = &rt_sched_class;
  3071. else
  3072. p->sched_class = &fair_sched_class;
  3073. p->prio = prio;
  3074. if (running)
  3075. p->sched_class->set_curr_task(rq);
  3076. if (on_rq)
  3077. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3078. check_class_changed(rq, p, prev_class, oldprio);
  3079. out_unlock:
  3080. __task_rq_unlock(rq);
  3081. }
  3082. #endif
  3083. void set_user_nice(struct task_struct *p, long nice)
  3084. {
  3085. int old_prio, delta, on_rq;
  3086. unsigned long flags;
  3087. struct rq *rq;
  3088. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3089. return;
  3090. /*
  3091. * We have to be careful, if called from sys_setpriority(),
  3092. * the task might be in the middle of scheduling on another CPU.
  3093. */
  3094. rq = task_rq_lock(p, &flags);
  3095. /*
  3096. * The RT priorities are set via sched_setscheduler(), but we still
  3097. * allow the 'normal' nice value to be set - but as expected
  3098. * it wont have any effect on scheduling until the task is
  3099. * SCHED_FIFO/SCHED_RR:
  3100. */
  3101. if (task_has_rt_policy(p)) {
  3102. p->static_prio = NICE_TO_PRIO(nice);
  3103. goto out_unlock;
  3104. }
  3105. on_rq = p->on_rq;
  3106. if (on_rq)
  3107. dequeue_task(rq, p, 0);
  3108. p->static_prio = NICE_TO_PRIO(nice);
  3109. set_load_weight(p);
  3110. old_prio = p->prio;
  3111. p->prio = effective_prio(p);
  3112. delta = p->prio - old_prio;
  3113. if (on_rq) {
  3114. enqueue_task(rq, p, 0);
  3115. /*
  3116. * If the task increased its priority or is running and
  3117. * lowered its priority, then reschedule its CPU:
  3118. */
  3119. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3120. resched_task(rq->curr);
  3121. }
  3122. out_unlock:
  3123. task_rq_unlock(rq, p, &flags);
  3124. }
  3125. EXPORT_SYMBOL(set_user_nice);
  3126. /*
  3127. * can_nice - check if a task can reduce its nice value
  3128. * @p: task
  3129. * @nice: nice value
  3130. */
  3131. int can_nice(const struct task_struct *p, const int nice)
  3132. {
  3133. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3134. int nice_rlim = 20 - nice;
  3135. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3136. capable(CAP_SYS_NICE));
  3137. }
  3138. #ifdef __ARCH_WANT_SYS_NICE
  3139. /*
  3140. * sys_nice - change the priority of the current process.
  3141. * @increment: priority increment
  3142. *
  3143. * sys_setpriority is a more generic, but much slower function that
  3144. * does similar things.
  3145. */
  3146. SYSCALL_DEFINE1(nice, int, increment)
  3147. {
  3148. long nice, retval;
  3149. /*
  3150. * Setpriority might change our priority at the same moment.
  3151. * We don't have to worry. Conceptually one call occurs first
  3152. * and we have a single winner.
  3153. */
  3154. if (increment < -40)
  3155. increment = -40;
  3156. if (increment > 40)
  3157. increment = 40;
  3158. nice = TASK_NICE(current) + increment;
  3159. if (nice < -20)
  3160. nice = -20;
  3161. if (nice > 19)
  3162. nice = 19;
  3163. if (increment < 0 && !can_nice(current, nice))
  3164. return -EPERM;
  3165. retval = security_task_setnice(current, nice);
  3166. if (retval)
  3167. return retval;
  3168. set_user_nice(current, nice);
  3169. return 0;
  3170. }
  3171. #endif
  3172. /**
  3173. * task_prio - return the priority value of a given task.
  3174. * @p: the task in question.
  3175. *
  3176. * This is the priority value as seen by users in /proc.
  3177. * RT tasks are offset by -200. Normal tasks are centered
  3178. * around 0, value goes from -16 to +15.
  3179. */
  3180. int task_prio(const struct task_struct *p)
  3181. {
  3182. return p->prio - MAX_RT_PRIO;
  3183. }
  3184. /**
  3185. * task_nice - return the nice value of a given task.
  3186. * @p: the task in question.
  3187. */
  3188. int task_nice(const struct task_struct *p)
  3189. {
  3190. return TASK_NICE(p);
  3191. }
  3192. EXPORT_SYMBOL(task_nice);
  3193. /**
  3194. * idle_cpu - is a given cpu idle currently?
  3195. * @cpu: the processor in question.
  3196. */
  3197. int idle_cpu(int cpu)
  3198. {
  3199. struct rq *rq = cpu_rq(cpu);
  3200. if (rq->curr != rq->idle)
  3201. return 0;
  3202. if (rq->nr_running)
  3203. return 0;
  3204. #ifdef CONFIG_SMP
  3205. if (!llist_empty(&rq->wake_list))
  3206. return 0;
  3207. #endif
  3208. return 1;
  3209. }
  3210. /**
  3211. * idle_task - return the idle task for a given cpu.
  3212. * @cpu: the processor in question.
  3213. */
  3214. struct task_struct *idle_task(int cpu)
  3215. {
  3216. return cpu_rq(cpu)->idle;
  3217. }
  3218. /**
  3219. * find_process_by_pid - find a process with a matching PID value.
  3220. * @pid: the pid in question.
  3221. */
  3222. static struct task_struct *find_process_by_pid(pid_t pid)
  3223. {
  3224. return pid ? find_task_by_vpid(pid) : current;
  3225. }
  3226. /* Actually do priority change: must hold rq lock. */
  3227. static void
  3228. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3229. {
  3230. p->policy = policy;
  3231. p->rt_priority = prio;
  3232. p->normal_prio = normal_prio(p);
  3233. /* we are holding p->pi_lock already */
  3234. p->prio = rt_mutex_getprio(p);
  3235. if (rt_prio(p->prio))
  3236. p->sched_class = &rt_sched_class;
  3237. else
  3238. p->sched_class = &fair_sched_class;
  3239. set_load_weight(p);
  3240. }
  3241. /*
  3242. * check the target process has a UID that matches the current process's
  3243. */
  3244. static bool check_same_owner(struct task_struct *p)
  3245. {
  3246. const struct cred *cred = current_cred(), *pcred;
  3247. bool match;
  3248. rcu_read_lock();
  3249. pcred = __task_cred(p);
  3250. match = (uid_eq(cred->euid, pcred->euid) ||
  3251. uid_eq(cred->euid, pcred->uid));
  3252. rcu_read_unlock();
  3253. return match;
  3254. }
  3255. static int __sched_setscheduler(struct task_struct *p, int policy,
  3256. const struct sched_param *param, bool user)
  3257. {
  3258. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3259. unsigned long flags;
  3260. const struct sched_class *prev_class;
  3261. struct rq *rq;
  3262. int reset_on_fork;
  3263. /* may grab non-irq protected spin_locks */
  3264. BUG_ON(in_interrupt());
  3265. recheck:
  3266. /* double check policy once rq lock held */
  3267. if (policy < 0) {
  3268. reset_on_fork = p->sched_reset_on_fork;
  3269. policy = oldpolicy = p->policy;
  3270. } else {
  3271. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3272. policy &= ~SCHED_RESET_ON_FORK;
  3273. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3274. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3275. policy != SCHED_IDLE)
  3276. return -EINVAL;
  3277. }
  3278. /*
  3279. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3280. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3281. * SCHED_BATCH and SCHED_IDLE is 0.
  3282. */
  3283. if (param->sched_priority < 0 ||
  3284. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3285. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3286. return -EINVAL;
  3287. if (rt_policy(policy) != (param->sched_priority != 0))
  3288. return -EINVAL;
  3289. /*
  3290. * Allow unprivileged RT tasks to decrease priority:
  3291. */
  3292. if (user && !capable(CAP_SYS_NICE)) {
  3293. if (rt_policy(policy)) {
  3294. unsigned long rlim_rtprio =
  3295. task_rlimit(p, RLIMIT_RTPRIO);
  3296. /* can't set/change the rt policy */
  3297. if (policy != p->policy && !rlim_rtprio)
  3298. return -EPERM;
  3299. /* can't increase priority */
  3300. if (param->sched_priority > p->rt_priority &&
  3301. param->sched_priority > rlim_rtprio)
  3302. return -EPERM;
  3303. }
  3304. /*
  3305. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3306. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3307. */
  3308. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3309. if (!can_nice(p, TASK_NICE(p)))
  3310. return -EPERM;
  3311. }
  3312. /* can't change other user's priorities */
  3313. if (!check_same_owner(p))
  3314. return -EPERM;
  3315. /* Normal users shall not reset the sched_reset_on_fork flag */
  3316. if (p->sched_reset_on_fork && !reset_on_fork)
  3317. return -EPERM;
  3318. }
  3319. if (user) {
  3320. retval = security_task_setscheduler(p);
  3321. if (retval)
  3322. return retval;
  3323. }
  3324. /*
  3325. * make sure no PI-waiters arrive (or leave) while we are
  3326. * changing the priority of the task:
  3327. *
  3328. * To be able to change p->policy safely, the appropriate
  3329. * runqueue lock must be held.
  3330. */
  3331. rq = task_rq_lock(p, &flags);
  3332. /*
  3333. * Changing the policy of the stop threads its a very bad idea
  3334. */
  3335. if (p == rq->stop) {
  3336. task_rq_unlock(rq, p, &flags);
  3337. return -EINVAL;
  3338. }
  3339. /*
  3340. * If not changing anything there's no need to proceed further:
  3341. */
  3342. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3343. param->sched_priority == p->rt_priority))) {
  3344. task_rq_unlock(rq, p, &flags);
  3345. return 0;
  3346. }
  3347. #ifdef CONFIG_RT_GROUP_SCHED
  3348. if (user) {
  3349. /*
  3350. * Do not allow realtime tasks into groups that have no runtime
  3351. * assigned.
  3352. */
  3353. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3354. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3355. !task_group_is_autogroup(task_group(p))) {
  3356. task_rq_unlock(rq, p, &flags);
  3357. return -EPERM;
  3358. }
  3359. }
  3360. #endif
  3361. /* recheck policy now with rq lock held */
  3362. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3363. policy = oldpolicy = -1;
  3364. task_rq_unlock(rq, p, &flags);
  3365. goto recheck;
  3366. }
  3367. on_rq = p->on_rq;
  3368. running = task_current(rq, p);
  3369. if (on_rq)
  3370. dequeue_task(rq, p, 0);
  3371. if (running)
  3372. p->sched_class->put_prev_task(rq, p);
  3373. p->sched_reset_on_fork = reset_on_fork;
  3374. oldprio = p->prio;
  3375. prev_class = p->sched_class;
  3376. __setscheduler(rq, p, policy, param->sched_priority);
  3377. if (running)
  3378. p->sched_class->set_curr_task(rq);
  3379. if (on_rq)
  3380. enqueue_task(rq, p, 0);
  3381. check_class_changed(rq, p, prev_class, oldprio);
  3382. task_rq_unlock(rq, p, &flags);
  3383. rt_mutex_adjust_pi(p);
  3384. return 0;
  3385. }
  3386. /**
  3387. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3388. * @p: the task in question.
  3389. * @policy: new policy.
  3390. * @param: structure containing the new RT priority.
  3391. *
  3392. * NOTE that the task may be already dead.
  3393. */
  3394. int sched_setscheduler(struct task_struct *p, int policy,
  3395. const struct sched_param *param)
  3396. {
  3397. return __sched_setscheduler(p, policy, param, true);
  3398. }
  3399. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3400. /**
  3401. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3402. * @p: the task in question.
  3403. * @policy: new policy.
  3404. * @param: structure containing the new RT priority.
  3405. *
  3406. * Just like sched_setscheduler, only don't bother checking if the
  3407. * current context has permission. For example, this is needed in
  3408. * stop_machine(): we create temporary high priority worker threads,
  3409. * but our caller might not have that capability.
  3410. */
  3411. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3412. const struct sched_param *param)
  3413. {
  3414. return __sched_setscheduler(p, policy, param, false);
  3415. }
  3416. static int
  3417. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3418. {
  3419. struct sched_param lparam;
  3420. struct task_struct *p;
  3421. int retval;
  3422. if (!param || pid < 0)
  3423. return -EINVAL;
  3424. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3425. return -EFAULT;
  3426. rcu_read_lock();
  3427. retval = -ESRCH;
  3428. p = find_process_by_pid(pid);
  3429. if (p != NULL)
  3430. retval = sched_setscheduler(p, policy, &lparam);
  3431. rcu_read_unlock();
  3432. return retval;
  3433. }
  3434. /**
  3435. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3436. * @pid: the pid in question.
  3437. * @policy: new policy.
  3438. * @param: structure containing the new RT priority.
  3439. */
  3440. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3441. struct sched_param __user *, param)
  3442. {
  3443. /* negative values for policy are not valid */
  3444. if (policy < 0)
  3445. return -EINVAL;
  3446. return do_sched_setscheduler(pid, policy, param);
  3447. }
  3448. /**
  3449. * sys_sched_setparam - set/change the RT priority of a thread
  3450. * @pid: the pid in question.
  3451. * @param: structure containing the new RT priority.
  3452. */
  3453. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3454. {
  3455. return do_sched_setscheduler(pid, -1, param);
  3456. }
  3457. /**
  3458. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3459. * @pid: the pid in question.
  3460. */
  3461. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3462. {
  3463. struct task_struct *p;
  3464. int retval;
  3465. if (pid < 0)
  3466. return -EINVAL;
  3467. retval = -ESRCH;
  3468. rcu_read_lock();
  3469. p = find_process_by_pid(pid);
  3470. if (p) {
  3471. retval = security_task_getscheduler(p);
  3472. if (!retval)
  3473. retval = p->policy
  3474. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3475. }
  3476. rcu_read_unlock();
  3477. return retval;
  3478. }
  3479. /**
  3480. * sys_sched_getparam - get the RT priority of a thread
  3481. * @pid: the pid in question.
  3482. * @param: structure containing the RT priority.
  3483. */
  3484. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3485. {
  3486. struct sched_param lp;
  3487. struct task_struct *p;
  3488. int retval;
  3489. if (!param || pid < 0)
  3490. return -EINVAL;
  3491. rcu_read_lock();
  3492. p = find_process_by_pid(pid);
  3493. retval = -ESRCH;
  3494. if (!p)
  3495. goto out_unlock;
  3496. retval = security_task_getscheduler(p);
  3497. if (retval)
  3498. goto out_unlock;
  3499. lp.sched_priority = p->rt_priority;
  3500. rcu_read_unlock();
  3501. /*
  3502. * This one might sleep, we cannot do it with a spinlock held ...
  3503. */
  3504. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3505. return retval;
  3506. out_unlock:
  3507. rcu_read_unlock();
  3508. return retval;
  3509. }
  3510. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3511. {
  3512. cpumask_var_t cpus_allowed, new_mask;
  3513. struct task_struct *p;
  3514. int retval;
  3515. get_online_cpus();
  3516. rcu_read_lock();
  3517. p = find_process_by_pid(pid);
  3518. if (!p) {
  3519. rcu_read_unlock();
  3520. put_online_cpus();
  3521. return -ESRCH;
  3522. }
  3523. /* Prevent p going away */
  3524. get_task_struct(p);
  3525. rcu_read_unlock();
  3526. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3527. retval = -ENOMEM;
  3528. goto out_put_task;
  3529. }
  3530. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3531. retval = -ENOMEM;
  3532. goto out_free_cpus_allowed;
  3533. }
  3534. retval = -EPERM;
  3535. if (!check_same_owner(p)) {
  3536. rcu_read_lock();
  3537. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3538. rcu_read_unlock();
  3539. goto out_unlock;
  3540. }
  3541. rcu_read_unlock();
  3542. }
  3543. retval = security_task_setscheduler(p);
  3544. if (retval)
  3545. goto out_unlock;
  3546. cpuset_cpus_allowed(p, cpus_allowed);
  3547. cpumask_and(new_mask, in_mask, cpus_allowed);
  3548. again:
  3549. retval = set_cpus_allowed_ptr(p, new_mask);
  3550. if (!retval) {
  3551. cpuset_cpus_allowed(p, cpus_allowed);
  3552. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3553. /*
  3554. * We must have raced with a concurrent cpuset
  3555. * update. Just reset the cpus_allowed to the
  3556. * cpuset's cpus_allowed
  3557. */
  3558. cpumask_copy(new_mask, cpus_allowed);
  3559. goto again;
  3560. }
  3561. }
  3562. out_unlock:
  3563. free_cpumask_var(new_mask);
  3564. out_free_cpus_allowed:
  3565. free_cpumask_var(cpus_allowed);
  3566. out_put_task:
  3567. put_task_struct(p);
  3568. put_online_cpus();
  3569. return retval;
  3570. }
  3571. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3572. struct cpumask *new_mask)
  3573. {
  3574. if (len < cpumask_size())
  3575. cpumask_clear(new_mask);
  3576. else if (len > cpumask_size())
  3577. len = cpumask_size();
  3578. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3579. }
  3580. /**
  3581. * sys_sched_setaffinity - set the cpu affinity of a process
  3582. * @pid: pid of the process
  3583. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3584. * @user_mask_ptr: user-space pointer to the new cpu mask
  3585. */
  3586. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3587. unsigned long __user *, user_mask_ptr)
  3588. {
  3589. cpumask_var_t new_mask;
  3590. int retval;
  3591. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3592. return -ENOMEM;
  3593. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3594. if (retval == 0)
  3595. retval = sched_setaffinity(pid, new_mask);
  3596. free_cpumask_var(new_mask);
  3597. return retval;
  3598. }
  3599. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3600. {
  3601. struct task_struct *p;
  3602. unsigned long flags;
  3603. int retval;
  3604. get_online_cpus();
  3605. rcu_read_lock();
  3606. retval = -ESRCH;
  3607. p = find_process_by_pid(pid);
  3608. if (!p)
  3609. goto out_unlock;
  3610. retval = security_task_getscheduler(p);
  3611. if (retval)
  3612. goto out_unlock;
  3613. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3614. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3615. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3616. out_unlock:
  3617. rcu_read_unlock();
  3618. put_online_cpus();
  3619. return retval;
  3620. }
  3621. /**
  3622. * sys_sched_getaffinity - get the cpu affinity of a process
  3623. * @pid: pid of the process
  3624. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3625. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3626. */
  3627. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3628. unsigned long __user *, user_mask_ptr)
  3629. {
  3630. int ret;
  3631. cpumask_var_t mask;
  3632. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3633. return -EINVAL;
  3634. if (len & (sizeof(unsigned long)-1))
  3635. return -EINVAL;
  3636. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3637. return -ENOMEM;
  3638. ret = sched_getaffinity(pid, mask);
  3639. if (ret == 0) {
  3640. size_t retlen = min_t(size_t, len, cpumask_size());
  3641. if (copy_to_user(user_mask_ptr, mask, retlen))
  3642. ret = -EFAULT;
  3643. else
  3644. ret = retlen;
  3645. }
  3646. free_cpumask_var(mask);
  3647. return ret;
  3648. }
  3649. /**
  3650. * sys_sched_yield - yield the current processor to other threads.
  3651. *
  3652. * This function yields the current CPU to other tasks. If there are no
  3653. * other threads running on this CPU then this function will return.
  3654. */
  3655. SYSCALL_DEFINE0(sched_yield)
  3656. {
  3657. struct rq *rq = this_rq_lock();
  3658. schedstat_inc(rq, yld_count);
  3659. current->sched_class->yield_task(rq);
  3660. /*
  3661. * Since we are going to call schedule() anyway, there's
  3662. * no need to preempt or enable interrupts:
  3663. */
  3664. __release(rq->lock);
  3665. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3666. do_raw_spin_unlock(&rq->lock);
  3667. sched_preempt_enable_no_resched();
  3668. schedule();
  3669. return 0;
  3670. }
  3671. static inline int should_resched(void)
  3672. {
  3673. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3674. }
  3675. static void __cond_resched(void)
  3676. {
  3677. add_preempt_count(PREEMPT_ACTIVE);
  3678. __schedule();
  3679. sub_preempt_count(PREEMPT_ACTIVE);
  3680. }
  3681. int __sched _cond_resched(void)
  3682. {
  3683. if (should_resched()) {
  3684. __cond_resched();
  3685. return 1;
  3686. }
  3687. return 0;
  3688. }
  3689. EXPORT_SYMBOL(_cond_resched);
  3690. /*
  3691. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3692. * call schedule, and on return reacquire the lock.
  3693. *
  3694. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3695. * operations here to prevent schedule() from being called twice (once via
  3696. * spin_unlock(), once by hand).
  3697. */
  3698. int __cond_resched_lock(spinlock_t *lock)
  3699. {
  3700. int resched = should_resched();
  3701. int ret = 0;
  3702. lockdep_assert_held(lock);
  3703. if (spin_needbreak(lock) || resched) {
  3704. spin_unlock(lock);
  3705. if (resched)
  3706. __cond_resched();
  3707. else
  3708. cpu_relax();
  3709. ret = 1;
  3710. spin_lock(lock);
  3711. }
  3712. return ret;
  3713. }
  3714. EXPORT_SYMBOL(__cond_resched_lock);
  3715. int __sched __cond_resched_softirq(void)
  3716. {
  3717. BUG_ON(!in_softirq());
  3718. if (should_resched()) {
  3719. local_bh_enable();
  3720. __cond_resched();
  3721. local_bh_disable();
  3722. return 1;
  3723. }
  3724. return 0;
  3725. }
  3726. EXPORT_SYMBOL(__cond_resched_softirq);
  3727. /**
  3728. * yield - yield the current processor to other threads.
  3729. *
  3730. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3731. *
  3732. * The scheduler is at all times free to pick the calling task as the most
  3733. * eligible task to run, if removing the yield() call from your code breaks
  3734. * it, its already broken.
  3735. *
  3736. * Typical broken usage is:
  3737. *
  3738. * while (!event)
  3739. * yield();
  3740. *
  3741. * where one assumes that yield() will let 'the other' process run that will
  3742. * make event true. If the current task is a SCHED_FIFO task that will never
  3743. * happen. Never use yield() as a progress guarantee!!
  3744. *
  3745. * If you want to use yield() to wait for something, use wait_event().
  3746. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3747. * If you still want to use yield(), do not!
  3748. */
  3749. void __sched yield(void)
  3750. {
  3751. set_current_state(TASK_RUNNING);
  3752. sys_sched_yield();
  3753. }
  3754. EXPORT_SYMBOL(yield);
  3755. /**
  3756. * yield_to - yield the current processor to another thread in
  3757. * your thread group, or accelerate that thread toward the
  3758. * processor it's on.
  3759. * @p: target task
  3760. * @preempt: whether task preemption is allowed or not
  3761. *
  3762. * It's the caller's job to ensure that the target task struct
  3763. * can't go away on us before we can do any checks.
  3764. *
  3765. * Returns true if we indeed boosted the target task.
  3766. */
  3767. bool __sched yield_to(struct task_struct *p, bool preempt)
  3768. {
  3769. struct task_struct *curr = current;
  3770. struct rq *rq, *p_rq;
  3771. unsigned long flags;
  3772. int yielded = 0;
  3773. local_irq_save(flags);
  3774. rq = this_rq();
  3775. again:
  3776. p_rq = task_rq(p);
  3777. double_rq_lock(rq, p_rq);
  3778. while (task_rq(p) != p_rq) {
  3779. double_rq_unlock(rq, p_rq);
  3780. goto again;
  3781. }
  3782. if (!curr->sched_class->yield_to_task)
  3783. goto out;
  3784. if (curr->sched_class != p->sched_class)
  3785. goto out;
  3786. if (task_running(p_rq, p) || p->state)
  3787. goto out;
  3788. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3789. if (yielded) {
  3790. schedstat_inc(rq, yld_count);
  3791. /*
  3792. * Make p's CPU reschedule; pick_next_entity takes care of
  3793. * fairness.
  3794. */
  3795. if (preempt && rq != p_rq)
  3796. resched_task(p_rq->curr);
  3797. }
  3798. out:
  3799. double_rq_unlock(rq, p_rq);
  3800. local_irq_restore(flags);
  3801. if (yielded)
  3802. schedule();
  3803. return yielded;
  3804. }
  3805. EXPORT_SYMBOL_GPL(yield_to);
  3806. /*
  3807. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3808. * that process accounting knows that this is a task in IO wait state.
  3809. */
  3810. void __sched io_schedule(void)
  3811. {
  3812. struct rq *rq = raw_rq();
  3813. delayacct_blkio_start();
  3814. atomic_inc(&rq->nr_iowait);
  3815. blk_flush_plug(current);
  3816. current->in_iowait = 1;
  3817. schedule();
  3818. current->in_iowait = 0;
  3819. atomic_dec(&rq->nr_iowait);
  3820. delayacct_blkio_end();
  3821. }
  3822. EXPORT_SYMBOL(io_schedule);
  3823. long __sched io_schedule_timeout(long timeout)
  3824. {
  3825. struct rq *rq = raw_rq();
  3826. long ret;
  3827. delayacct_blkio_start();
  3828. atomic_inc(&rq->nr_iowait);
  3829. blk_flush_plug(current);
  3830. current->in_iowait = 1;
  3831. ret = schedule_timeout(timeout);
  3832. current->in_iowait = 0;
  3833. atomic_dec(&rq->nr_iowait);
  3834. delayacct_blkio_end();
  3835. return ret;
  3836. }
  3837. /**
  3838. * sys_sched_get_priority_max - return maximum RT priority.
  3839. * @policy: scheduling class.
  3840. *
  3841. * this syscall returns the maximum rt_priority that can be used
  3842. * by a given scheduling class.
  3843. */
  3844. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3845. {
  3846. int ret = -EINVAL;
  3847. switch (policy) {
  3848. case SCHED_FIFO:
  3849. case SCHED_RR:
  3850. ret = MAX_USER_RT_PRIO-1;
  3851. break;
  3852. case SCHED_NORMAL:
  3853. case SCHED_BATCH:
  3854. case SCHED_IDLE:
  3855. ret = 0;
  3856. break;
  3857. }
  3858. return ret;
  3859. }
  3860. /**
  3861. * sys_sched_get_priority_min - return minimum RT priority.
  3862. * @policy: scheduling class.
  3863. *
  3864. * this syscall returns the minimum rt_priority that can be used
  3865. * by a given scheduling class.
  3866. */
  3867. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3868. {
  3869. int ret = -EINVAL;
  3870. switch (policy) {
  3871. case SCHED_FIFO:
  3872. case SCHED_RR:
  3873. ret = 1;
  3874. break;
  3875. case SCHED_NORMAL:
  3876. case SCHED_BATCH:
  3877. case SCHED_IDLE:
  3878. ret = 0;
  3879. }
  3880. return ret;
  3881. }
  3882. /**
  3883. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3884. * @pid: pid of the process.
  3885. * @interval: userspace pointer to the timeslice value.
  3886. *
  3887. * this syscall writes the default timeslice value of a given process
  3888. * into the user-space timespec buffer. A value of '0' means infinity.
  3889. */
  3890. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3891. struct timespec __user *, interval)
  3892. {
  3893. struct task_struct *p;
  3894. unsigned int time_slice;
  3895. unsigned long flags;
  3896. struct rq *rq;
  3897. int retval;
  3898. struct timespec t;
  3899. if (pid < 0)
  3900. return -EINVAL;
  3901. retval = -ESRCH;
  3902. rcu_read_lock();
  3903. p = find_process_by_pid(pid);
  3904. if (!p)
  3905. goto out_unlock;
  3906. retval = security_task_getscheduler(p);
  3907. if (retval)
  3908. goto out_unlock;
  3909. rq = task_rq_lock(p, &flags);
  3910. time_slice = p->sched_class->get_rr_interval(rq, p);
  3911. task_rq_unlock(rq, p, &flags);
  3912. rcu_read_unlock();
  3913. jiffies_to_timespec(time_slice, &t);
  3914. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3915. return retval;
  3916. out_unlock:
  3917. rcu_read_unlock();
  3918. return retval;
  3919. }
  3920. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3921. void sched_show_task(struct task_struct *p)
  3922. {
  3923. unsigned long free = 0;
  3924. int ppid;
  3925. unsigned state;
  3926. state = p->state ? __ffs(p->state) + 1 : 0;
  3927. printk(KERN_INFO "%-15.15s %c", p->comm,
  3928. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3929. #if BITS_PER_LONG == 32
  3930. if (state == TASK_RUNNING)
  3931. printk(KERN_CONT " running ");
  3932. else
  3933. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3934. #else
  3935. if (state == TASK_RUNNING)
  3936. printk(KERN_CONT " running task ");
  3937. else
  3938. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3939. #endif
  3940. #ifdef CONFIG_DEBUG_STACK_USAGE
  3941. free = stack_not_used(p);
  3942. #endif
  3943. rcu_read_lock();
  3944. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3945. rcu_read_unlock();
  3946. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3947. task_pid_nr(p), ppid,
  3948. (unsigned long)task_thread_info(p)->flags);
  3949. show_stack(p, NULL);
  3950. }
  3951. void show_state_filter(unsigned long state_filter)
  3952. {
  3953. struct task_struct *g, *p;
  3954. #if BITS_PER_LONG == 32
  3955. printk(KERN_INFO
  3956. " task PC stack pid father\n");
  3957. #else
  3958. printk(KERN_INFO
  3959. " task PC stack pid father\n");
  3960. #endif
  3961. rcu_read_lock();
  3962. do_each_thread(g, p) {
  3963. /*
  3964. * reset the NMI-timeout, listing all files on a slow
  3965. * console might take a lot of time:
  3966. */
  3967. touch_nmi_watchdog();
  3968. if (!state_filter || (p->state & state_filter))
  3969. sched_show_task(p);
  3970. } while_each_thread(g, p);
  3971. touch_all_softlockup_watchdogs();
  3972. #ifdef CONFIG_SCHED_DEBUG
  3973. sysrq_sched_debug_show();
  3974. #endif
  3975. rcu_read_unlock();
  3976. /*
  3977. * Only show locks if all tasks are dumped:
  3978. */
  3979. if (!state_filter)
  3980. debug_show_all_locks();
  3981. }
  3982. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3983. {
  3984. idle->sched_class = &idle_sched_class;
  3985. }
  3986. /**
  3987. * init_idle - set up an idle thread for a given CPU
  3988. * @idle: task in question
  3989. * @cpu: cpu the idle task belongs to
  3990. *
  3991. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3992. * flag, to make booting more robust.
  3993. */
  3994. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3995. {
  3996. struct rq *rq = cpu_rq(cpu);
  3997. unsigned long flags;
  3998. raw_spin_lock_irqsave(&rq->lock, flags);
  3999. __sched_fork(idle);
  4000. idle->state = TASK_RUNNING;
  4001. idle->se.exec_start = sched_clock();
  4002. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4003. /*
  4004. * We're having a chicken and egg problem, even though we are
  4005. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4006. * lockdep check in task_group() will fail.
  4007. *
  4008. * Similar case to sched_fork(). / Alternatively we could
  4009. * use task_rq_lock() here and obtain the other rq->lock.
  4010. *
  4011. * Silence PROVE_RCU
  4012. */
  4013. rcu_read_lock();
  4014. __set_task_cpu(idle, cpu);
  4015. rcu_read_unlock();
  4016. rq->curr = rq->idle = idle;
  4017. #if defined(CONFIG_SMP)
  4018. idle->on_cpu = 1;
  4019. #endif
  4020. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4021. /* Set the preempt count _outside_ the spinlocks! */
  4022. task_thread_info(idle)->preempt_count = 0;
  4023. /*
  4024. * The idle tasks have their own, simple scheduling class:
  4025. */
  4026. idle->sched_class = &idle_sched_class;
  4027. ftrace_graph_init_idle_task(idle, cpu);
  4028. vtime_init_idle(idle);
  4029. #if defined(CONFIG_SMP)
  4030. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4031. #endif
  4032. }
  4033. #ifdef CONFIG_SMP
  4034. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4035. {
  4036. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4037. p->sched_class->set_cpus_allowed(p, new_mask);
  4038. cpumask_copy(&p->cpus_allowed, new_mask);
  4039. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4040. }
  4041. /*
  4042. * This is how migration works:
  4043. *
  4044. * 1) we invoke migration_cpu_stop() on the target CPU using
  4045. * stop_one_cpu().
  4046. * 2) stopper starts to run (implicitly forcing the migrated thread
  4047. * off the CPU)
  4048. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4049. * 4) if it's in the wrong runqueue then the migration thread removes
  4050. * it and puts it into the right queue.
  4051. * 5) stopper completes and stop_one_cpu() returns and the migration
  4052. * is done.
  4053. */
  4054. /*
  4055. * Change a given task's CPU affinity. Migrate the thread to a
  4056. * proper CPU and schedule it away if the CPU it's executing on
  4057. * is removed from the allowed bitmask.
  4058. *
  4059. * NOTE: the caller must have a valid reference to the task, the
  4060. * task must not exit() & deallocate itself prematurely. The
  4061. * call is not atomic; no spinlocks may be held.
  4062. */
  4063. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4064. {
  4065. unsigned long flags;
  4066. struct rq *rq;
  4067. unsigned int dest_cpu;
  4068. int ret = 0;
  4069. rq = task_rq_lock(p, &flags);
  4070. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4071. goto out;
  4072. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4073. ret = -EINVAL;
  4074. goto out;
  4075. }
  4076. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4077. ret = -EINVAL;
  4078. goto out;
  4079. }
  4080. do_set_cpus_allowed(p, new_mask);
  4081. /* Can the task run on the task's current CPU? If so, we're done */
  4082. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4083. goto out;
  4084. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4085. if (p->on_rq) {
  4086. struct migration_arg arg = { p, dest_cpu };
  4087. /* Need help from migration thread: drop lock and wait. */
  4088. task_rq_unlock(rq, p, &flags);
  4089. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4090. tlb_migrate_finish(p->mm);
  4091. return 0;
  4092. }
  4093. out:
  4094. task_rq_unlock(rq, p, &flags);
  4095. return ret;
  4096. }
  4097. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4098. /*
  4099. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4100. * this because either it can't run here any more (set_cpus_allowed()
  4101. * away from this CPU, or CPU going down), or because we're
  4102. * attempting to rebalance this task on exec (sched_exec).
  4103. *
  4104. * So we race with normal scheduler movements, but that's OK, as long
  4105. * as the task is no longer on this CPU.
  4106. *
  4107. * Returns non-zero if task was successfully migrated.
  4108. */
  4109. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4110. {
  4111. struct rq *rq_dest, *rq_src;
  4112. int ret = 0;
  4113. if (unlikely(!cpu_active(dest_cpu)))
  4114. return ret;
  4115. rq_src = cpu_rq(src_cpu);
  4116. rq_dest = cpu_rq(dest_cpu);
  4117. raw_spin_lock(&p->pi_lock);
  4118. double_rq_lock(rq_src, rq_dest);
  4119. /* Already moved. */
  4120. if (task_cpu(p) != src_cpu)
  4121. goto done;
  4122. /* Affinity changed (again). */
  4123. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4124. goto fail;
  4125. /*
  4126. * If we're not on a rq, the next wake-up will ensure we're
  4127. * placed properly.
  4128. */
  4129. if (p->on_rq) {
  4130. dequeue_task(rq_src, p, 0);
  4131. set_task_cpu(p, dest_cpu);
  4132. enqueue_task(rq_dest, p, 0);
  4133. check_preempt_curr(rq_dest, p, 0);
  4134. }
  4135. done:
  4136. ret = 1;
  4137. fail:
  4138. double_rq_unlock(rq_src, rq_dest);
  4139. raw_spin_unlock(&p->pi_lock);
  4140. return ret;
  4141. }
  4142. /*
  4143. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4144. * and performs thread migration by bumping thread off CPU then
  4145. * 'pushing' onto another runqueue.
  4146. */
  4147. static int migration_cpu_stop(void *data)
  4148. {
  4149. struct migration_arg *arg = data;
  4150. /*
  4151. * The original target cpu might have gone down and we might
  4152. * be on another cpu but it doesn't matter.
  4153. */
  4154. local_irq_disable();
  4155. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4156. local_irq_enable();
  4157. return 0;
  4158. }
  4159. #ifdef CONFIG_HOTPLUG_CPU
  4160. /*
  4161. * Ensures that the idle task is using init_mm right before its cpu goes
  4162. * offline.
  4163. */
  4164. void idle_task_exit(void)
  4165. {
  4166. struct mm_struct *mm = current->active_mm;
  4167. BUG_ON(cpu_online(smp_processor_id()));
  4168. if (mm != &init_mm)
  4169. switch_mm(mm, &init_mm, current);
  4170. mmdrop(mm);
  4171. }
  4172. /*
  4173. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4174. * we might have. Assumes we're called after migrate_tasks() so that the
  4175. * nr_active count is stable.
  4176. *
  4177. * Also see the comment "Global load-average calculations".
  4178. */
  4179. static void calc_load_migrate(struct rq *rq)
  4180. {
  4181. long delta = calc_load_fold_active(rq);
  4182. if (delta)
  4183. atomic_long_add(delta, &calc_load_tasks);
  4184. }
  4185. /*
  4186. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4187. * try_to_wake_up()->select_task_rq().
  4188. *
  4189. * Called with rq->lock held even though we'er in stop_machine() and
  4190. * there's no concurrency possible, we hold the required locks anyway
  4191. * because of lock validation efforts.
  4192. */
  4193. static void migrate_tasks(unsigned int dead_cpu)
  4194. {
  4195. struct rq *rq = cpu_rq(dead_cpu);
  4196. struct task_struct *next, *stop = rq->stop;
  4197. int dest_cpu;
  4198. /*
  4199. * Fudge the rq selection such that the below task selection loop
  4200. * doesn't get stuck on the currently eligible stop task.
  4201. *
  4202. * We're currently inside stop_machine() and the rq is either stuck
  4203. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4204. * either way we should never end up calling schedule() until we're
  4205. * done here.
  4206. */
  4207. rq->stop = NULL;
  4208. for ( ; ; ) {
  4209. /*
  4210. * There's this thread running, bail when that's the only
  4211. * remaining thread.
  4212. */
  4213. if (rq->nr_running == 1)
  4214. break;
  4215. next = pick_next_task(rq);
  4216. BUG_ON(!next);
  4217. next->sched_class->put_prev_task(rq, next);
  4218. /* Find suitable destination for @next, with force if needed. */
  4219. dest_cpu = select_fallback_rq(dead_cpu, next);
  4220. raw_spin_unlock(&rq->lock);
  4221. __migrate_task(next, dead_cpu, dest_cpu);
  4222. raw_spin_lock(&rq->lock);
  4223. }
  4224. rq->stop = stop;
  4225. }
  4226. #endif /* CONFIG_HOTPLUG_CPU */
  4227. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4228. static struct ctl_table sd_ctl_dir[] = {
  4229. {
  4230. .procname = "sched_domain",
  4231. .mode = 0555,
  4232. },
  4233. {}
  4234. };
  4235. static struct ctl_table sd_ctl_root[] = {
  4236. {
  4237. .procname = "kernel",
  4238. .mode = 0555,
  4239. .child = sd_ctl_dir,
  4240. },
  4241. {}
  4242. };
  4243. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4244. {
  4245. struct ctl_table *entry =
  4246. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4247. return entry;
  4248. }
  4249. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4250. {
  4251. struct ctl_table *entry;
  4252. /*
  4253. * In the intermediate directories, both the child directory and
  4254. * procname are dynamically allocated and could fail but the mode
  4255. * will always be set. In the lowest directory the names are
  4256. * static strings and all have proc handlers.
  4257. */
  4258. for (entry = *tablep; entry->mode; entry++) {
  4259. if (entry->child)
  4260. sd_free_ctl_entry(&entry->child);
  4261. if (entry->proc_handler == NULL)
  4262. kfree(entry->procname);
  4263. }
  4264. kfree(*tablep);
  4265. *tablep = NULL;
  4266. }
  4267. static int min_load_idx = 0;
  4268. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4269. static void
  4270. set_table_entry(struct ctl_table *entry,
  4271. const char *procname, void *data, int maxlen,
  4272. umode_t mode, proc_handler *proc_handler,
  4273. bool load_idx)
  4274. {
  4275. entry->procname = procname;
  4276. entry->data = data;
  4277. entry->maxlen = maxlen;
  4278. entry->mode = mode;
  4279. entry->proc_handler = proc_handler;
  4280. if (load_idx) {
  4281. entry->extra1 = &min_load_idx;
  4282. entry->extra2 = &max_load_idx;
  4283. }
  4284. }
  4285. static struct ctl_table *
  4286. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4287. {
  4288. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4289. if (table == NULL)
  4290. return NULL;
  4291. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4292. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4293. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4294. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4295. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4296. sizeof(int), 0644, proc_dointvec_minmax, true);
  4297. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4298. sizeof(int), 0644, proc_dointvec_minmax, true);
  4299. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4300. sizeof(int), 0644, proc_dointvec_minmax, true);
  4301. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4302. sizeof(int), 0644, proc_dointvec_minmax, true);
  4303. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4304. sizeof(int), 0644, proc_dointvec_minmax, true);
  4305. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4306. sizeof(int), 0644, proc_dointvec_minmax, false);
  4307. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4308. sizeof(int), 0644, proc_dointvec_minmax, false);
  4309. set_table_entry(&table[9], "cache_nice_tries",
  4310. &sd->cache_nice_tries,
  4311. sizeof(int), 0644, proc_dointvec_minmax, false);
  4312. set_table_entry(&table[10], "flags", &sd->flags,
  4313. sizeof(int), 0644, proc_dointvec_minmax, false);
  4314. set_table_entry(&table[11], "name", sd->name,
  4315. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4316. /* &table[12] is terminator */
  4317. return table;
  4318. }
  4319. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4320. {
  4321. struct ctl_table *entry, *table;
  4322. struct sched_domain *sd;
  4323. int domain_num = 0, i;
  4324. char buf[32];
  4325. for_each_domain(cpu, sd)
  4326. domain_num++;
  4327. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4328. if (table == NULL)
  4329. return NULL;
  4330. i = 0;
  4331. for_each_domain(cpu, sd) {
  4332. snprintf(buf, 32, "domain%d", i);
  4333. entry->procname = kstrdup(buf, GFP_KERNEL);
  4334. entry->mode = 0555;
  4335. entry->child = sd_alloc_ctl_domain_table(sd);
  4336. entry++;
  4337. i++;
  4338. }
  4339. return table;
  4340. }
  4341. static struct ctl_table_header *sd_sysctl_header;
  4342. static void register_sched_domain_sysctl(void)
  4343. {
  4344. int i, cpu_num = num_possible_cpus();
  4345. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4346. char buf[32];
  4347. WARN_ON(sd_ctl_dir[0].child);
  4348. sd_ctl_dir[0].child = entry;
  4349. if (entry == NULL)
  4350. return;
  4351. for_each_possible_cpu(i) {
  4352. snprintf(buf, 32, "cpu%d", i);
  4353. entry->procname = kstrdup(buf, GFP_KERNEL);
  4354. entry->mode = 0555;
  4355. entry->child = sd_alloc_ctl_cpu_table(i);
  4356. entry++;
  4357. }
  4358. WARN_ON(sd_sysctl_header);
  4359. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4360. }
  4361. /* may be called multiple times per register */
  4362. static void unregister_sched_domain_sysctl(void)
  4363. {
  4364. if (sd_sysctl_header)
  4365. unregister_sysctl_table(sd_sysctl_header);
  4366. sd_sysctl_header = NULL;
  4367. if (sd_ctl_dir[0].child)
  4368. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4369. }
  4370. #else
  4371. static void register_sched_domain_sysctl(void)
  4372. {
  4373. }
  4374. static void unregister_sched_domain_sysctl(void)
  4375. {
  4376. }
  4377. #endif
  4378. static void set_rq_online(struct rq *rq)
  4379. {
  4380. if (!rq->online) {
  4381. const struct sched_class *class;
  4382. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4383. rq->online = 1;
  4384. for_each_class(class) {
  4385. if (class->rq_online)
  4386. class->rq_online(rq);
  4387. }
  4388. }
  4389. }
  4390. static void set_rq_offline(struct rq *rq)
  4391. {
  4392. if (rq->online) {
  4393. const struct sched_class *class;
  4394. for_each_class(class) {
  4395. if (class->rq_offline)
  4396. class->rq_offline(rq);
  4397. }
  4398. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4399. rq->online = 0;
  4400. }
  4401. }
  4402. /*
  4403. * migration_call - callback that gets triggered when a CPU is added.
  4404. * Here we can start up the necessary migration thread for the new CPU.
  4405. */
  4406. static int __cpuinit
  4407. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4408. {
  4409. int cpu = (long)hcpu;
  4410. unsigned long flags;
  4411. struct rq *rq = cpu_rq(cpu);
  4412. switch (action & ~CPU_TASKS_FROZEN) {
  4413. case CPU_UP_PREPARE:
  4414. rq->calc_load_update = calc_load_update;
  4415. break;
  4416. case CPU_ONLINE:
  4417. /* Update our root-domain */
  4418. raw_spin_lock_irqsave(&rq->lock, flags);
  4419. if (rq->rd) {
  4420. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4421. set_rq_online(rq);
  4422. }
  4423. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4424. break;
  4425. #ifdef CONFIG_HOTPLUG_CPU
  4426. case CPU_DYING:
  4427. sched_ttwu_pending();
  4428. /* Update our root-domain */
  4429. raw_spin_lock_irqsave(&rq->lock, flags);
  4430. if (rq->rd) {
  4431. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4432. set_rq_offline(rq);
  4433. }
  4434. migrate_tasks(cpu);
  4435. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4436. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4437. break;
  4438. case CPU_DEAD:
  4439. calc_load_migrate(rq);
  4440. break;
  4441. #endif
  4442. }
  4443. update_max_interval();
  4444. return NOTIFY_OK;
  4445. }
  4446. /*
  4447. * Register at high priority so that task migration (migrate_all_tasks)
  4448. * happens before everything else. This has to be lower priority than
  4449. * the notifier in the perf_event subsystem, though.
  4450. */
  4451. static struct notifier_block __cpuinitdata migration_notifier = {
  4452. .notifier_call = migration_call,
  4453. .priority = CPU_PRI_MIGRATION,
  4454. };
  4455. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4456. unsigned long action, void *hcpu)
  4457. {
  4458. switch (action & ~CPU_TASKS_FROZEN) {
  4459. case CPU_STARTING:
  4460. case CPU_DOWN_FAILED:
  4461. set_cpu_active((long)hcpu, true);
  4462. return NOTIFY_OK;
  4463. default:
  4464. return NOTIFY_DONE;
  4465. }
  4466. }
  4467. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4468. unsigned long action, void *hcpu)
  4469. {
  4470. switch (action & ~CPU_TASKS_FROZEN) {
  4471. case CPU_DOWN_PREPARE:
  4472. set_cpu_active((long)hcpu, false);
  4473. return NOTIFY_OK;
  4474. default:
  4475. return NOTIFY_DONE;
  4476. }
  4477. }
  4478. static int __init migration_init(void)
  4479. {
  4480. void *cpu = (void *)(long)smp_processor_id();
  4481. int err;
  4482. /* Initialize migration for the boot CPU */
  4483. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4484. BUG_ON(err == NOTIFY_BAD);
  4485. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4486. register_cpu_notifier(&migration_notifier);
  4487. /* Register cpu active notifiers */
  4488. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4489. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4490. return 0;
  4491. }
  4492. early_initcall(migration_init);
  4493. #endif
  4494. #ifdef CONFIG_SMP
  4495. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4496. #ifdef CONFIG_SCHED_DEBUG
  4497. static __read_mostly int sched_debug_enabled;
  4498. static int __init sched_debug_setup(char *str)
  4499. {
  4500. sched_debug_enabled = 1;
  4501. return 0;
  4502. }
  4503. early_param("sched_debug", sched_debug_setup);
  4504. static inline bool sched_debug(void)
  4505. {
  4506. return sched_debug_enabled;
  4507. }
  4508. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4509. struct cpumask *groupmask)
  4510. {
  4511. struct sched_group *group = sd->groups;
  4512. char str[256];
  4513. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4514. cpumask_clear(groupmask);
  4515. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4516. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4517. printk("does not load-balance\n");
  4518. if (sd->parent)
  4519. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4520. " has parent");
  4521. return -1;
  4522. }
  4523. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4524. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4525. printk(KERN_ERR "ERROR: domain->span does not contain "
  4526. "CPU%d\n", cpu);
  4527. }
  4528. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4529. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4530. " CPU%d\n", cpu);
  4531. }
  4532. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4533. do {
  4534. if (!group) {
  4535. printk("\n");
  4536. printk(KERN_ERR "ERROR: group is NULL\n");
  4537. break;
  4538. }
  4539. /*
  4540. * Even though we initialize ->power to something semi-sane,
  4541. * we leave power_orig unset. This allows us to detect if
  4542. * domain iteration is still funny without causing /0 traps.
  4543. */
  4544. if (!group->sgp->power_orig) {
  4545. printk(KERN_CONT "\n");
  4546. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4547. "set\n");
  4548. break;
  4549. }
  4550. if (!cpumask_weight(sched_group_cpus(group))) {
  4551. printk(KERN_CONT "\n");
  4552. printk(KERN_ERR "ERROR: empty group\n");
  4553. break;
  4554. }
  4555. if (!(sd->flags & SD_OVERLAP) &&
  4556. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4557. printk(KERN_CONT "\n");
  4558. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4559. break;
  4560. }
  4561. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4562. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4563. printk(KERN_CONT " %s", str);
  4564. if (group->sgp->power != SCHED_POWER_SCALE) {
  4565. printk(KERN_CONT " (cpu_power = %d)",
  4566. group->sgp->power);
  4567. }
  4568. group = group->next;
  4569. } while (group != sd->groups);
  4570. printk(KERN_CONT "\n");
  4571. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4572. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4573. if (sd->parent &&
  4574. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4575. printk(KERN_ERR "ERROR: parent span is not a superset "
  4576. "of domain->span\n");
  4577. return 0;
  4578. }
  4579. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4580. {
  4581. int level = 0;
  4582. if (!sched_debug_enabled)
  4583. return;
  4584. if (!sd) {
  4585. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4586. return;
  4587. }
  4588. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4589. for (;;) {
  4590. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4591. break;
  4592. level++;
  4593. sd = sd->parent;
  4594. if (!sd)
  4595. break;
  4596. }
  4597. }
  4598. #else /* !CONFIG_SCHED_DEBUG */
  4599. # define sched_domain_debug(sd, cpu) do { } while (0)
  4600. static inline bool sched_debug(void)
  4601. {
  4602. return false;
  4603. }
  4604. #endif /* CONFIG_SCHED_DEBUG */
  4605. static int sd_degenerate(struct sched_domain *sd)
  4606. {
  4607. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4608. return 1;
  4609. /* Following flags need at least 2 groups */
  4610. if (sd->flags & (SD_LOAD_BALANCE |
  4611. SD_BALANCE_NEWIDLE |
  4612. SD_BALANCE_FORK |
  4613. SD_BALANCE_EXEC |
  4614. SD_SHARE_CPUPOWER |
  4615. SD_SHARE_PKG_RESOURCES)) {
  4616. if (sd->groups != sd->groups->next)
  4617. return 0;
  4618. }
  4619. /* Following flags don't use groups */
  4620. if (sd->flags & (SD_WAKE_AFFINE))
  4621. return 0;
  4622. return 1;
  4623. }
  4624. static int
  4625. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4626. {
  4627. unsigned long cflags = sd->flags, pflags = parent->flags;
  4628. if (sd_degenerate(parent))
  4629. return 1;
  4630. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4631. return 0;
  4632. /* Flags needing groups don't count if only 1 group in parent */
  4633. if (parent->groups == parent->groups->next) {
  4634. pflags &= ~(SD_LOAD_BALANCE |
  4635. SD_BALANCE_NEWIDLE |
  4636. SD_BALANCE_FORK |
  4637. SD_BALANCE_EXEC |
  4638. SD_SHARE_CPUPOWER |
  4639. SD_SHARE_PKG_RESOURCES);
  4640. if (nr_node_ids == 1)
  4641. pflags &= ~SD_SERIALIZE;
  4642. }
  4643. if (~cflags & pflags)
  4644. return 0;
  4645. return 1;
  4646. }
  4647. static void free_rootdomain(struct rcu_head *rcu)
  4648. {
  4649. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4650. cpupri_cleanup(&rd->cpupri);
  4651. free_cpumask_var(rd->rto_mask);
  4652. free_cpumask_var(rd->online);
  4653. free_cpumask_var(rd->span);
  4654. kfree(rd);
  4655. }
  4656. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4657. {
  4658. struct root_domain *old_rd = NULL;
  4659. unsigned long flags;
  4660. raw_spin_lock_irqsave(&rq->lock, flags);
  4661. if (rq->rd) {
  4662. old_rd = rq->rd;
  4663. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4664. set_rq_offline(rq);
  4665. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4666. /*
  4667. * If we dont want to free the old_rt yet then
  4668. * set old_rd to NULL to skip the freeing later
  4669. * in this function:
  4670. */
  4671. if (!atomic_dec_and_test(&old_rd->refcount))
  4672. old_rd = NULL;
  4673. }
  4674. atomic_inc(&rd->refcount);
  4675. rq->rd = rd;
  4676. cpumask_set_cpu(rq->cpu, rd->span);
  4677. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4678. set_rq_online(rq);
  4679. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4680. if (old_rd)
  4681. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4682. }
  4683. static int init_rootdomain(struct root_domain *rd)
  4684. {
  4685. memset(rd, 0, sizeof(*rd));
  4686. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4687. goto out;
  4688. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4689. goto free_span;
  4690. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4691. goto free_online;
  4692. if (cpupri_init(&rd->cpupri) != 0)
  4693. goto free_rto_mask;
  4694. return 0;
  4695. free_rto_mask:
  4696. free_cpumask_var(rd->rto_mask);
  4697. free_online:
  4698. free_cpumask_var(rd->online);
  4699. free_span:
  4700. free_cpumask_var(rd->span);
  4701. out:
  4702. return -ENOMEM;
  4703. }
  4704. /*
  4705. * By default the system creates a single root-domain with all cpus as
  4706. * members (mimicking the global state we have today).
  4707. */
  4708. struct root_domain def_root_domain;
  4709. static void init_defrootdomain(void)
  4710. {
  4711. init_rootdomain(&def_root_domain);
  4712. atomic_set(&def_root_domain.refcount, 1);
  4713. }
  4714. static struct root_domain *alloc_rootdomain(void)
  4715. {
  4716. struct root_domain *rd;
  4717. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4718. if (!rd)
  4719. return NULL;
  4720. if (init_rootdomain(rd) != 0) {
  4721. kfree(rd);
  4722. return NULL;
  4723. }
  4724. return rd;
  4725. }
  4726. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4727. {
  4728. struct sched_group *tmp, *first;
  4729. if (!sg)
  4730. return;
  4731. first = sg;
  4732. do {
  4733. tmp = sg->next;
  4734. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4735. kfree(sg->sgp);
  4736. kfree(sg);
  4737. sg = tmp;
  4738. } while (sg != first);
  4739. }
  4740. static void free_sched_domain(struct rcu_head *rcu)
  4741. {
  4742. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4743. /*
  4744. * If its an overlapping domain it has private groups, iterate and
  4745. * nuke them all.
  4746. */
  4747. if (sd->flags & SD_OVERLAP) {
  4748. free_sched_groups(sd->groups, 1);
  4749. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4750. kfree(sd->groups->sgp);
  4751. kfree(sd->groups);
  4752. }
  4753. kfree(sd);
  4754. }
  4755. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4756. {
  4757. call_rcu(&sd->rcu, free_sched_domain);
  4758. }
  4759. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4760. {
  4761. for (; sd; sd = sd->parent)
  4762. destroy_sched_domain(sd, cpu);
  4763. }
  4764. /*
  4765. * Keep a special pointer to the highest sched_domain that has
  4766. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4767. * allows us to avoid some pointer chasing select_idle_sibling().
  4768. *
  4769. * Also keep a unique ID per domain (we use the first cpu number in
  4770. * the cpumask of the domain), this allows us to quickly tell if
  4771. * two cpus are in the same cache domain, see cpus_share_cache().
  4772. */
  4773. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4774. DEFINE_PER_CPU(int, sd_llc_id);
  4775. static void update_top_cache_domain(int cpu)
  4776. {
  4777. struct sched_domain *sd;
  4778. int id = cpu;
  4779. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4780. if (sd)
  4781. id = cpumask_first(sched_domain_span(sd));
  4782. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4783. per_cpu(sd_llc_id, cpu) = id;
  4784. }
  4785. /*
  4786. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4787. * hold the hotplug lock.
  4788. */
  4789. static void
  4790. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4791. {
  4792. struct rq *rq = cpu_rq(cpu);
  4793. struct sched_domain *tmp;
  4794. /* Remove the sched domains which do not contribute to scheduling. */
  4795. for (tmp = sd; tmp; ) {
  4796. struct sched_domain *parent = tmp->parent;
  4797. if (!parent)
  4798. break;
  4799. if (sd_parent_degenerate(tmp, parent)) {
  4800. tmp->parent = parent->parent;
  4801. if (parent->parent)
  4802. parent->parent->child = tmp;
  4803. destroy_sched_domain(parent, cpu);
  4804. } else
  4805. tmp = tmp->parent;
  4806. }
  4807. if (sd && sd_degenerate(sd)) {
  4808. tmp = sd;
  4809. sd = sd->parent;
  4810. destroy_sched_domain(tmp, cpu);
  4811. if (sd)
  4812. sd->child = NULL;
  4813. }
  4814. sched_domain_debug(sd, cpu);
  4815. rq_attach_root(rq, rd);
  4816. tmp = rq->sd;
  4817. rcu_assign_pointer(rq->sd, sd);
  4818. destroy_sched_domains(tmp, cpu);
  4819. update_top_cache_domain(cpu);
  4820. }
  4821. /* cpus with isolated domains */
  4822. static cpumask_var_t cpu_isolated_map;
  4823. /* Setup the mask of cpus configured for isolated domains */
  4824. static int __init isolated_cpu_setup(char *str)
  4825. {
  4826. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4827. cpulist_parse(str, cpu_isolated_map);
  4828. return 1;
  4829. }
  4830. __setup("isolcpus=", isolated_cpu_setup);
  4831. static const struct cpumask *cpu_cpu_mask(int cpu)
  4832. {
  4833. return cpumask_of_node(cpu_to_node(cpu));
  4834. }
  4835. struct sd_data {
  4836. struct sched_domain **__percpu sd;
  4837. struct sched_group **__percpu sg;
  4838. struct sched_group_power **__percpu sgp;
  4839. };
  4840. struct s_data {
  4841. struct sched_domain ** __percpu sd;
  4842. struct root_domain *rd;
  4843. };
  4844. enum s_alloc {
  4845. sa_rootdomain,
  4846. sa_sd,
  4847. sa_sd_storage,
  4848. sa_none,
  4849. };
  4850. struct sched_domain_topology_level;
  4851. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4852. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4853. #define SDTL_OVERLAP 0x01
  4854. struct sched_domain_topology_level {
  4855. sched_domain_init_f init;
  4856. sched_domain_mask_f mask;
  4857. int flags;
  4858. int numa_level;
  4859. struct sd_data data;
  4860. };
  4861. /*
  4862. * Build an iteration mask that can exclude certain CPUs from the upwards
  4863. * domain traversal.
  4864. *
  4865. * Asymmetric node setups can result in situations where the domain tree is of
  4866. * unequal depth, make sure to skip domains that already cover the entire
  4867. * range.
  4868. *
  4869. * In that case build_sched_domains() will have terminated the iteration early
  4870. * and our sibling sd spans will be empty. Domains should always include the
  4871. * cpu they're built on, so check that.
  4872. *
  4873. */
  4874. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4875. {
  4876. const struct cpumask *span = sched_domain_span(sd);
  4877. struct sd_data *sdd = sd->private;
  4878. struct sched_domain *sibling;
  4879. int i;
  4880. for_each_cpu(i, span) {
  4881. sibling = *per_cpu_ptr(sdd->sd, i);
  4882. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4883. continue;
  4884. cpumask_set_cpu(i, sched_group_mask(sg));
  4885. }
  4886. }
  4887. /*
  4888. * Return the canonical balance cpu for this group, this is the first cpu
  4889. * of this group that's also in the iteration mask.
  4890. */
  4891. int group_balance_cpu(struct sched_group *sg)
  4892. {
  4893. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4894. }
  4895. static int
  4896. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4897. {
  4898. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4899. const struct cpumask *span = sched_domain_span(sd);
  4900. struct cpumask *covered = sched_domains_tmpmask;
  4901. struct sd_data *sdd = sd->private;
  4902. struct sched_domain *child;
  4903. int i;
  4904. cpumask_clear(covered);
  4905. for_each_cpu(i, span) {
  4906. struct cpumask *sg_span;
  4907. if (cpumask_test_cpu(i, covered))
  4908. continue;
  4909. child = *per_cpu_ptr(sdd->sd, i);
  4910. /* See the comment near build_group_mask(). */
  4911. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4912. continue;
  4913. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4914. GFP_KERNEL, cpu_to_node(cpu));
  4915. if (!sg)
  4916. goto fail;
  4917. sg_span = sched_group_cpus(sg);
  4918. if (child->child) {
  4919. child = child->child;
  4920. cpumask_copy(sg_span, sched_domain_span(child));
  4921. } else
  4922. cpumask_set_cpu(i, sg_span);
  4923. cpumask_or(covered, covered, sg_span);
  4924. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4925. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4926. build_group_mask(sd, sg);
  4927. /*
  4928. * Initialize sgp->power such that even if we mess up the
  4929. * domains and no possible iteration will get us here, we won't
  4930. * die on a /0 trap.
  4931. */
  4932. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4933. /*
  4934. * Make sure the first group of this domain contains the
  4935. * canonical balance cpu. Otherwise the sched_domain iteration
  4936. * breaks. See update_sg_lb_stats().
  4937. */
  4938. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4939. group_balance_cpu(sg) == cpu)
  4940. groups = sg;
  4941. if (!first)
  4942. first = sg;
  4943. if (last)
  4944. last->next = sg;
  4945. last = sg;
  4946. last->next = first;
  4947. }
  4948. sd->groups = groups;
  4949. return 0;
  4950. fail:
  4951. free_sched_groups(first, 0);
  4952. return -ENOMEM;
  4953. }
  4954. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4955. {
  4956. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4957. struct sched_domain *child = sd->child;
  4958. if (child)
  4959. cpu = cpumask_first(sched_domain_span(child));
  4960. if (sg) {
  4961. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4962. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4963. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4964. }
  4965. return cpu;
  4966. }
  4967. /*
  4968. * build_sched_groups will build a circular linked list of the groups
  4969. * covered by the given span, and will set each group's ->cpumask correctly,
  4970. * and ->cpu_power to 0.
  4971. *
  4972. * Assumes the sched_domain tree is fully constructed
  4973. */
  4974. static int
  4975. build_sched_groups(struct sched_domain *sd, int cpu)
  4976. {
  4977. struct sched_group *first = NULL, *last = NULL;
  4978. struct sd_data *sdd = sd->private;
  4979. const struct cpumask *span = sched_domain_span(sd);
  4980. struct cpumask *covered;
  4981. int i;
  4982. get_group(cpu, sdd, &sd->groups);
  4983. atomic_inc(&sd->groups->ref);
  4984. if (cpu != cpumask_first(sched_domain_span(sd)))
  4985. return 0;
  4986. lockdep_assert_held(&sched_domains_mutex);
  4987. covered = sched_domains_tmpmask;
  4988. cpumask_clear(covered);
  4989. for_each_cpu(i, span) {
  4990. struct sched_group *sg;
  4991. int group = get_group(i, sdd, &sg);
  4992. int j;
  4993. if (cpumask_test_cpu(i, covered))
  4994. continue;
  4995. cpumask_clear(sched_group_cpus(sg));
  4996. sg->sgp->power = 0;
  4997. cpumask_setall(sched_group_mask(sg));
  4998. for_each_cpu(j, span) {
  4999. if (get_group(j, sdd, NULL) != group)
  5000. continue;
  5001. cpumask_set_cpu(j, covered);
  5002. cpumask_set_cpu(j, sched_group_cpus(sg));
  5003. }
  5004. if (!first)
  5005. first = sg;
  5006. if (last)
  5007. last->next = sg;
  5008. last = sg;
  5009. }
  5010. last->next = first;
  5011. return 0;
  5012. }
  5013. /*
  5014. * Initialize sched groups cpu_power.
  5015. *
  5016. * cpu_power indicates the capacity of sched group, which is used while
  5017. * distributing the load between different sched groups in a sched domain.
  5018. * Typically cpu_power for all the groups in a sched domain will be same unless
  5019. * there are asymmetries in the topology. If there are asymmetries, group
  5020. * having more cpu_power will pickup more load compared to the group having
  5021. * less cpu_power.
  5022. */
  5023. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5024. {
  5025. struct sched_group *sg = sd->groups;
  5026. WARN_ON(!sd || !sg);
  5027. do {
  5028. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5029. sg = sg->next;
  5030. } while (sg != sd->groups);
  5031. if (cpu != group_balance_cpu(sg))
  5032. return;
  5033. update_group_power(sd, cpu);
  5034. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5035. }
  5036. int __weak arch_sd_sibling_asym_packing(void)
  5037. {
  5038. return 0*SD_ASYM_PACKING;
  5039. }
  5040. /*
  5041. * Initializers for schedule domains
  5042. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5043. */
  5044. #ifdef CONFIG_SCHED_DEBUG
  5045. # define SD_INIT_NAME(sd, type) sd->name = #type
  5046. #else
  5047. # define SD_INIT_NAME(sd, type) do { } while (0)
  5048. #endif
  5049. #define SD_INIT_FUNC(type) \
  5050. static noinline struct sched_domain * \
  5051. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5052. { \
  5053. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5054. *sd = SD_##type##_INIT; \
  5055. SD_INIT_NAME(sd, type); \
  5056. sd->private = &tl->data; \
  5057. return sd; \
  5058. }
  5059. SD_INIT_FUNC(CPU)
  5060. #ifdef CONFIG_SCHED_SMT
  5061. SD_INIT_FUNC(SIBLING)
  5062. #endif
  5063. #ifdef CONFIG_SCHED_MC
  5064. SD_INIT_FUNC(MC)
  5065. #endif
  5066. #ifdef CONFIG_SCHED_BOOK
  5067. SD_INIT_FUNC(BOOK)
  5068. #endif
  5069. static int default_relax_domain_level = -1;
  5070. int sched_domain_level_max;
  5071. static int __init setup_relax_domain_level(char *str)
  5072. {
  5073. if (kstrtoint(str, 0, &default_relax_domain_level))
  5074. pr_warn("Unable to set relax_domain_level\n");
  5075. return 1;
  5076. }
  5077. __setup("relax_domain_level=", setup_relax_domain_level);
  5078. static void set_domain_attribute(struct sched_domain *sd,
  5079. struct sched_domain_attr *attr)
  5080. {
  5081. int request;
  5082. if (!attr || attr->relax_domain_level < 0) {
  5083. if (default_relax_domain_level < 0)
  5084. return;
  5085. else
  5086. request = default_relax_domain_level;
  5087. } else
  5088. request = attr->relax_domain_level;
  5089. if (request < sd->level) {
  5090. /* turn off idle balance on this domain */
  5091. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5092. } else {
  5093. /* turn on idle balance on this domain */
  5094. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5095. }
  5096. }
  5097. static void __sdt_free(const struct cpumask *cpu_map);
  5098. static int __sdt_alloc(const struct cpumask *cpu_map);
  5099. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5100. const struct cpumask *cpu_map)
  5101. {
  5102. switch (what) {
  5103. case sa_rootdomain:
  5104. if (!atomic_read(&d->rd->refcount))
  5105. free_rootdomain(&d->rd->rcu); /* fall through */
  5106. case sa_sd:
  5107. free_percpu(d->sd); /* fall through */
  5108. case sa_sd_storage:
  5109. __sdt_free(cpu_map); /* fall through */
  5110. case sa_none:
  5111. break;
  5112. }
  5113. }
  5114. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5115. const struct cpumask *cpu_map)
  5116. {
  5117. memset(d, 0, sizeof(*d));
  5118. if (__sdt_alloc(cpu_map))
  5119. return sa_sd_storage;
  5120. d->sd = alloc_percpu(struct sched_domain *);
  5121. if (!d->sd)
  5122. return sa_sd_storage;
  5123. d->rd = alloc_rootdomain();
  5124. if (!d->rd)
  5125. return sa_sd;
  5126. return sa_rootdomain;
  5127. }
  5128. /*
  5129. * NULL the sd_data elements we've used to build the sched_domain and
  5130. * sched_group structure so that the subsequent __free_domain_allocs()
  5131. * will not free the data we're using.
  5132. */
  5133. static void claim_allocations(int cpu, struct sched_domain *sd)
  5134. {
  5135. struct sd_data *sdd = sd->private;
  5136. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5137. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5138. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5139. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5140. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5141. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5142. }
  5143. #ifdef CONFIG_SCHED_SMT
  5144. static const struct cpumask *cpu_smt_mask(int cpu)
  5145. {
  5146. return topology_thread_cpumask(cpu);
  5147. }
  5148. #endif
  5149. /*
  5150. * Topology list, bottom-up.
  5151. */
  5152. static struct sched_domain_topology_level default_topology[] = {
  5153. #ifdef CONFIG_SCHED_SMT
  5154. { sd_init_SIBLING, cpu_smt_mask, },
  5155. #endif
  5156. #ifdef CONFIG_SCHED_MC
  5157. { sd_init_MC, cpu_coregroup_mask, },
  5158. #endif
  5159. #ifdef CONFIG_SCHED_BOOK
  5160. { sd_init_BOOK, cpu_book_mask, },
  5161. #endif
  5162. { sd_init_CPU, cpu_cpu_mask, },
  5163. { NULL, },
  5164. };
  5165. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5166. #ifdef CONFIG_NUMA
  5167. static int sched_domains_numa_levels;
  5168. static int *sched_domains_numa_distance;
  5169. static struct cpumask ***sched_domains_numa_masks;
  5170. static int sched_domains_curr_level;
  5171. static inline int sd_local_flags(int level)
  5172. {
  5173. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5174. return 0;
  5175. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5176. }
  5177. static struct sched_domain *
  5178. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5179. {
  5180. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5181. int level = tl->numa_level;
  5182. int sd_weight = cpumask_weight(
  5183. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5184. *sd = (struct sched_domain){
  5185. .min_interval = sd_weight,
  5186. .max_interval = 2*sd_weight,
  5187. .busy_factor = 32,
  5188. .imbalance_pct = 125,
  5189. .cache_nice_tries = 2,
  5190. .busy_idx = 3,
  5191. .idle_idx = 2,
  5192. .newidle_idx = 0,
  5193. .wake_idx = 0,
  5194. .forkexec_idx = 0,
  5195. .flags = 1*SD_LOAD_BALANCE
  5196. | 1*SD_BALANCE_NEWIDLE
  5197. | 0*SD_BALANCE_EXEC
  5198. | 0*SD_BALANCE_FORK
  5199. | 0*SD_BALANCE_WAKE
  5200. | 0*SD_WAKE_AFFINE
  5201. | 0*SD_SHARE_CPUPOWER
  5202. | 0*SD_SHARE_PKG_RESOURCES
  5203. | 1*SD_SERIALIZE
  5204. | 0*SD_PREFER_SIBLING
  5205. | sd_local_flags(level)
  5206. ,
  5207. .last_balance = jiffies,
  5208. .balance_interval = sd_weight,
  5209. };
  5210. SD_INIT_NAME(sd, NUMA);
  5211. sd->private = &tl->data;
  5212. /*
  5213. * Ugly hack to pass state to sd_numa_mask()...
  5214. */
  5215. sched_domains_curr_level = tl->numa_level;
  5216. return sd;
  5217. }
  5218. static const struct cpumask *sd_numa_mask(int cpu)
  5219. {
  5220. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5221. }
  5222. static void sched_numa_warn(const char *str)
  5223. {
  5224. static int done = false;
  5225. int i,j;
  5226. if (done)
  5227. return;
  5228. done = true;
  5229. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5230. for (i = 0; i < nr_node_ids; i++) {
  5231. printk(KERN_WARNING " ");
  5232. for (j = 0; j < nr_node_ids; j++)
  5233. printk(KERN_CONT "%02d ", node_distance(i,j));
  5234. printk(KERN_CONT "\n");
  5235. }
  5236. printk(KERN_WARNING "\n");
  5237. }
  5238. static bool find_numa_distance(int distance)
  5239. {
  5240. int i;
  5241. if (distance == node_distance(0, 0))
  5242. return true;
  5243. for (i = 0; i < sched_domains_numa_levels; i++) {
  5244. if (sched_domains_numa_distance[i] == distance)
  5245. return true;
  5246. }
  5247. return false;
  5248. }
  5249. static void sched_init_numa(void)
  5250. {
  5251. int next_distance, curr_distance = node_distance(0, 0);
  5252. struct sched_domain_topology_level *tl;
  5253. int level = 0;
  5254. int i, j, k;
  5255. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5256. if (!sched_domains_numa_distance)
  5257. return;
  5258. /*
  5259. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5260. * unique distances in the node_distance() table.
  5261. *
  5262. * Assumes node_distance(0,j) includes all distances in
  5263. * node_distance(i,j) in order to avoid cubic time.
  5264. */
  5265. next_distance = curr_distance;
  5266. for (i = 0; i < nr_node_ids; i++) {
  5267. for (j = 0; j < nr_node_ids; j++) {
  5268. for (k = 0; k < nr_node_ids; k++) {
  5269. int distance = node_distance(i, k);
  5270. if (distance > curr_distance &&
  5271. (distance < next_distance ||
  5272. next_distance == curr_distance))
  5273. next_distance = distance;
  5274. /*
  5275. * While not a strong assumption it would be nice to know
  5276. * about cases where if node A is connected to B, B is not
  5277. * equally connected to A.
  5278. */
  5279. if (sched_debug() && node_distance(k, i) != distance)
  5280. sched_numa_warn("Node-distance not symmetric");
  5281. if (sched_debug() && i && !find_numa_distance(distance))
  5282. sched_numa_warn("Node-0 not representative");
  5283. }
  5284. if (next_distance != curr_distance) {
  5285. sched_domains_numa_distance[level++] = next_distance;
  5286. sched_domains_numa_levels = level;
  5287. curr_distance = next_distance;
  5288. } else break;
  5289. }
  5290. /*
  5291. * In case of sched_debug() we verify the above assumption.
  5292. */
  5293. if (!sched_debug())
  5294. break;
  5295. }
  5296. /*
  5297. * 'level' contains the number of unique distances, excluding the
  5298. * identity distance node_distance(i,i).
  5299. *
  5300. * The sched_domains_nume_distance[] array includes the actual distance
  5301. * numbers.
  5302. */
  5303. /*
  5304. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5305. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5306. * the array will contain less then 'level' members. This could be
  5307. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5308. * in other functions.
  5309. *
  5310. * We reset it to 'level' at the end of this function.
  5311. */
  5312. sched_domains_numa_levels = 0;
  5313. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5314. if (!sched_domains_numa_masks)
  5315. return;
  5316. /*
  5317. * Now for each level, construct a mask per node which contains all
  5318. * cpus of nodes that are that many hops away from us.
  5319. */
  5320. for (i = 0; i < level; i++) {
  5321. sched_domains_numa_masks[i] =
  5322. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5323. if (!sched_domains_numa_masks[i])
  5324. return;
  5325. for (j = 0; j < nr_node_ids; j++) {
  5326. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5327. if (!mask)
  5328. return;
  5329. sched_domains_numa_masks[i][j] = mask;
  5330. for (k = 0; k < nr_node_ids; k++) {
  5331. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5332. continue;
  5333. cpumask_or(mask, mask, cpumask_of_node(k));
  5334. }
  5335. }
  5336. }
  5337. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5338. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5339. if (!tl)
  5340. return;
  5341. /*
  5342. * Copy the default topology bits..
  5343. */
  5344. for (i = 0; default_topology[i].init; i++)
  5345. tl[i] = default_topology[i];
  5346. /*
  5347. * .. and append 'j' levels of NUMA goodness.
  5348. */
  5349. for (j = 0; j < level; i++, j++) {
  5350. tl[i] = (struct sched_domain_topology_level){
  5351. .init = sd_numa_init,
  5352. .mask = sd_numa_mask,
  5353. .flags = SDTL_OVERLAP,
  5354. .numa_level = j,
  5355. };
  5356. }
  5357. sched_domain_topology = tl;
  5358. sched_domains_numa_levels = level;
  5359. }
  5360. static void sched_domains_numa_masks_set(int cpu)
  5361. {
  5362. int i, j;
  5363. int node = cpu_to_node(cpu);
  5364. for (i = 0; i < sched_domains_numa_levels; i++) {
  5365. for (j = 0; j < nr_node_ids; j++) {
  5366. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5367. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5368. }
  5369. }
  5370. }
  5371. static void sched_domains_numa_masks_clear(int cpu)
  5372. {
  5373. int i, j;
  5374. for (i = 0; i < sched_domains_numa_levels; i++) {
  5375. for (j = 0; j < nr_node_ids; j++)
  5376. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5377. }
  5378. }
  5379. /*
  5380. * Update sched_domains_numa_masks[level][node] array when new cpus
  5381. * are onlined.
  5382. */
  5383. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5384. unsigned long action,
  5385. void *hcpu)
  5386. {
  5387. int cpu = (long)hcpu;
  5388. switch (action & ~CPU_TASKS_FROZEN) {
  5389. case CPU_ONLINE:
  5390. sched_domains_numa_masks_set(cpu);
  5391. break;
  5392. case CPU_DEAD:
  5393. sched_domains_numa_masks_clear(cpu);
  5394. break;
  5395. default:
  5396. return NOTIFY_DONE;
  5397. }
  5398. return NOTIFY_OK;
  5399. }
  5400. #else
  5401. static inline void sched_init_numa(void)
  5402. {
  5403. }
  5404. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5405. unsigned long action,
  5406. void *hcpu)
  5407. {
  5408. return 0;
  5409. }
  5410. #endif /* CONFIG_NUMA */
  5411. static int __sdt_alloc(const struct cpumask *cpu_map)
  5412. {
  5413. struct sched_domain_topology_level *tl;
  5414. int j;
  5415. for (tl = sched_domain_topology; tl->init; tl++) {
  5416. struct sd_data *sdd = &tl->data;
  5417. sdd->sd = alloc_percpu(struct sched_domain *);
  5418. if (!sdd->sd)
  5419. return -ENOMEM;
  5420. sdd->sg = alloc_percpu(struct sched_group *);
  5421. if (!sdd->sg)
  5422. return -ENOMEM;
  5423. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5424. if (!sdd->sgp)
  5425. return -ENOMEM;
  5426. for_each_cpu(j, cpu_map) {
  5427. struct sched_domain *sd;
  5428. struct sched_group *sg;
  5429. struct sched_group_power *sgp;
  5430. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5431. GFP_KERNEL, cpu_to_node(j));
  5432. if (!sd)
  5433. return -ENOMEM;
  5434. *per_cpu_ptr(sdd->sd, j) = sd;
  5435. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5436. GFP_KERNEL, cpu_to_node(j));
  5437. if (!sg)
  5438. return -ENOMEM;
  5439. sg->next = sg;
  5440. *per_cpu_ptr(sdd->sg, j) = sg;
  5441. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5442. GFP_KERNEL, cpu_to_node(j));
  5443. if (!sgp)
  5444. return -ENOMEM;
  5445. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5446. }
  5447. }
  5448. return 0;
  5449. }
  5450. static void __sdt_free(const struct cpumask *cpu_map)
  5451. {
  5452. struct sched_domain_topology_level *tl;
  5453. int j;
  5454. for (tl = sched_domain_topology; tl->init; tl++) {
  5455. struct sd_data *sdd = &tl->data;
  5456. for_each_cpu(j, cpu_map) {
  5457. struct sched_domain *sd;
  5458. if (sdd->sd) {
  5459. sd = *per_cpu_ptr(sdd->sd, j);
  5460. if (sd && (sd->flags & SD_OVERLAP))
  5461. free_sched_groups(sd->groups, 0);
  5462. kfree(*per_cpu_ptr(sdd->sd, j));
  5463. }
  5464. if (sdd->sg)
  5465. kfree(*per_cpu_ptr(sdd->sg, j));
  5466. if (sdd->sgp)
  5467. kfree(*per_cpu_ptr(sdd->sgp, j));
  5468. }
  5469. free_percpu(sdd->sd);
  5470. sdd->sd = NULL;
  5471. free_percpu(sdd->sg);
  5472. sdd->sg = NULL;
  5473. free_percpu(sdd->sgp);
  5474. sdd->sgp = NULL;
  5475. }
  5476. }
  5477. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5478. struct s_data *d, const struct cpumask *cpu_map,
  5479. struct sched_domain_attr *attr, struct sched_domain *child,
  5480. int cpu)
  5481. {
  5482. struct sched_domain *sd = tl->init(tl, cpu);
  5483. if (!sd)
  5484. return child;
  5485. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5486. if (child) {
  5487. sd->level = child->level + 1;
  5488. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5489. child->parent = sd;
  5490. }
  5491. sd->child = child;
  5492. set_domain_attribute(sd, attr);
  5493. return sd;
  5494. }
  5495. /*
  5496. * Build sched domains for a given set of cpus and attach the sched domains
  5497. * to the individual cpus
  5498. */
  5499. static int build_sched_domains(const struct cpumask *cpu_map,
  5500. struct sched_domain_attr *attr)
  5501. {
  5502. enum s_alloc alloc_state = sa_none;
  5503. struct sched_domain *sd;
  5504. struct s_data d;
  5505. int i, ret = -ENOMEM;
  5506. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5507. if (alloc_state != sa_rootdomain)
  5508. goto error;
  5509. /* Set up domains for cpus specified by the cpu_map. */
  5510. for_each_cpu(i, cpu_map) {
  5511. struct sched_domain_topology_level *tl;
  5512. sd = NULL;
  5513. for (tl = sched_domain_topology; tl->init; tl++) {
  5514. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5515. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5516. sd->flags |= SD_OVERLAP;
  5517. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5518. break;
  5519. }
  5520. while (sd->child)
  5521. sd = sd->child;
  5522. *per_cpu_ptr(d.sd, i) = sd;
  5523. }
  5524. /* Build the groups for the domains */
  5525. for_each_cpu(i, cpu_map) {
  5526. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5527. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5528. if (sd->flags & SD_OVERLAP) {
  5529. if (build_overlap_sched_groups(sd, i))
  5530. goto error;
  5531. } else {
  5532. if (build_sched_groups(sd, i))
  5533. goto error;
  5534. }
  5535. }
  5536. }
  5537. /* Calculate CPU power for physical packages and nodes */
  5538. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5539. if (!cpumask_test_cpu(i, cpu_map))
  5540. continue;
  5541. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5542. claim_allocations(i, sd);
  5543. init_sched_groups_power(i, sd);
  5544. }
  5545. }
  5546. /* Attach the domains */
  5547. rcu_read_lock();
  5548. for_each_cpu(i, cpu_map) {
  5549. sd = *per_cpu_ptr(d.sd, i);
  5550. cpu_attach_domain(sd, d.rd, i);
  5551. }
  5552. rcu_read_unlock();
  5553. ret = 0;
  5554. error:
  5555. __free_domain_allocs(&d, alloc_state, cpu_map);
  5556. return ret;
  5557. }
  5558. static cpumask_var_t *doms_cur; /* current sched domains */
  5559. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5560. static struct sched_domain_attr *dattr_cur;
  5561. /* attribues of custom domains in 'doms_cur' */
  5562. /*
  5563. * Special case: If a kmalloc of a doms_cur partition (array of
  5564. * cpumask) fails, then fallback to a single sched domain,
  5565. * as determined by the single cpumask fallback_doms.
  5566. */
  5567. static cpumask_var_t fallback_doms;
  5568. /*
  5569. * arch_update_cpu_topology lets virtualized architectures update the
  5570. * cpu core maps. It is supposed to return 1 if the topology changed
  5571. * or 0 if it stayed the same.
  5572. */
  5573. int __attribute__((weak)) arch_update_cpu_topology(void)
  5574. {
  5575. return 0;
  5576. }
  5577. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5578. {
  5579. int i;
  5580. cpumask_var_t *doms;
  5581. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5582. if (!doms)
  5583. return NULL;
  5584. for (i = 0; i < ndoms; i++) {
  5585. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5586. free_sched_domains(doms, i);
  5587. return NULL;
  5588. }
  5589. }
  5590. return doms;
  5591. }
  5592. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5593. {
  5594. unsigned int i;
  5595. for (i = 0; i < ndoms; i++)
  5596. free_cpumask_var(doms[i]);
  5597. kfree(doms);
  5598. }
  5599. /*
  5600. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5601. * For now this just excludes isolated cpus, but could be used to
  5602. * exclude other special cases in the future.
  5603. */
  5604. static int init_sched_domains(const struct cpumask *cpu_map)
  5605. {
  5606. int err;
  5607. arch_update_cpu_topology();
  5608. ndoms_cur = 1;
  5609. doms_cur = alloc_sched_domains(ndoms_cur);
  5610. if (!doms_cur)
  5611. doms_cur = &fallback_doms;
  5612. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5613. err = build_sched_domains(doms_cur[0], NULL);
  5614. register_sched_domain_sysctl();
  5615. return err;
  5616. }
  5617. /*
  5618. * Detach sched domains from a group of cpus specified in cpu_map
  5619. * These cpus will now be attached to the NULL domain
  5620. */
  5621. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5622. {
  5623. int i;
  5624. rcu_read_lock();
  5625. for_each_cpu(i, cpu_map)
  5626. cpu_attach_domain(NULL, &def_root_domain, i);
  5627. rcu_read_unlock();
  5628. }
  5629. /* handle null as "default" */
  5630. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5631. struct sched_domain_attr *new, int idx_new)
  5632. {
  5633. struct sched_domain_attr tmp;
  5634. /* fast path */
  5635. if (!new && !cur)
  5636. return 1;
  5637. tmp = SD_ATTR_INIT;
  5638. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5639. new ? (new + idx_new) : &tmp,
  5640. sizeof(struct sched_domain_attr));
  5641. }
  5642. /*
  5643. * Partition sched domains as specified by the 'ndoms_new'
  5644. * cpumasks in the array doms_new[] of cpumasks. This compares
  5645. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5646. * It destroys each deleted domain and builds each new domain.
  5647. *
  5648. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5649. * The masks don't intersect (don't overlap.) We should setup one
  5650. * sched domain for each mask. CPUs not in any of the cpumasks will
  5651. * not be load balanced. If the same cpumask appears both in the
  5652. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5653. * it as it is.
  5654. *
  5655. * The passed in 'doms_new' should be allocated using
  5656. * alloc_sched_domains. This routine takes ownership of it and will
  5657. * free_sched_domains it when done with it. If the caller failed the
  5658. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5659. * and partition_sched_domains() will fallback to the single partition
  5660. * 'fallback_doms', it also forces the domains to be rebuilt.
  5661. *
  5662. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5663. * ndoms_new == 0 is a special case for destroying existing domains,
  5664. * and it will not create the default domain.
  5665. *
  5666. * Call with hotplug lock held
  5667. */
  5668. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5669. struct sched_domain_attr *dattr_new)
  5670. {
  5671. int i, j, n;
  5672. int new_topology;
  5673. mutex_lock(&sched_domains_mutex);
  5674. /* always unregister in case we don't destroy any domains */
  5675. unregister_sched_domain_sysctl();
  5676. /* Let architecture update cpu core mappings. */
  5677. new_topology = arch_update_cpu_topology();
  5678. n = doms_new ? ndoms_new : 0;
  5679. /* Destroy deleted domains */
  5680. for (i = 0; i < ndoms_cur; i++) {
  5681. for (j = 0; j < n && !new_topology; j++) {
  5682. if (cpumask_equal(doms_cur[i], doms_new[j])
  5683. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5684. goto match1;
  5685. }
  5686. /* no match - a current sched domain not in new doms_new[] */
  5687. detach_destroy_domains(doms_cur[i]);
  5688. match1:
  5689. ;
  5690. }
  5691. if (doms_new == NULL) {
  5692. ndoms_cur = 0;
  5693. doms_new = &fallback_doms;
  5694. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5695. WARN_ON_ONCE(dattr_new);
  5696. }
  5697. /* Build new domains */
  5698. for (i = 0; i < ndoms_new; i++) {
  5699. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5700. if (cpumask_equal(doms_new[i], doms_cur[j])
  5701. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5702. goto match2;
  5703. }
  5704. /* no match - add a new doms_new */
  5705. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5706. match2:
  5707. ;
  5708. }
  5709. /* Remember the new sched domains */
  5710. if (doms_cur != &fallback_doms)
  5711. free_sched_domains(doms_cur, ndoms_cur);
  5712. kfree(dattr_cur); /* kfree(NULL) is safe */
  5713. doms_cur = doms_new;
  5714. dattr_cur = dattr_new;
  5715. ndoms_cur = ndoms_new;
  5716. register_sched_domain_sysctl();
  5717. mutex_unlock(&sched_domains_mutex);
  5718. }
  5719. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5720. /*
  5721. * Update cpusets according to cpu_active mask. If cpusets are
  5722. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5723. * around partition_sched_domains().
  5724. *
  5725. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5726. * want to restore it back to its original state upon resume anyway.
  5727. */
  5728. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5729. void *hcpu)
  5730. {
  5731. switch (action) {
  5732. case CPU_ONLINE_FROZEN:
  5733. case CPU_DOWN_FAILED_FROZEN:
  5734. /*
  5735. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5736. * resume sequence. As long as this is not the last online
  5737. * operation in the resume sequence, just build a single sched
  5738. * domain, ignoring cpusets.
  5739. */
  5740. num_cpus_frozen--;
  5741. if (likely(num_cpus_frozen)) {
  5742. partition_sched_domains(1, NULL, NULL);
  5743. break;
  5744. }
  5745. /*
  5746. * This is the last CPU online operation. So fall through and
  5747. * restore the original sched domains by considering the
  5748. * cpuset configurations.
  5749. */
  5750. case CPU_ONLINE:
  5751. case CPU_DOWN_FAILED:
  5752. cpuset_update_active_cpus(true);
  5753. break;
  5754. default:
  5755. return NOTIFY_DONE;
  5756. }
  5757. return NOTIFY_OK;
  5758. }
  5759. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5760. void *hcpu)
  5761. {
  5762. switch (action) {
  5763. case CPU_DOWN_PREPARE:
  5764. cpuset_update_active_cpus(false);
  5765. break;
  5766. case CPU_DOWN_PREPARE_FROZEN:
  5767. num_cpus_frozen++;
  5768. partition_sched_domains(1, NULL, NULL);
  5769. break;
  5770. default:
  5771. return NOTIFY_DONE;
  5772. }
  5773. return NOTIFY_OK;
  5774. }
  5775. void __init sched_init_smp(void)
  5776. {
  5777. cpumask_var_t non_isolated_cpus;
  5778. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5779. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5780. sched_init_numa();
  5781. get_online_cpus();
  5782. mutex_lock(&sched_domains_mutex);
  5783. init_sched_domains(cpu_active_mask);
  5784. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5785. if (cpumask_empty(non_isolated_cpus))
  5786. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5787. mutex_unlock(&sched_domains_mutex);
  5788. put_online_cpus();
  5789. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5790. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5791. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5792. /* RT runtime code needs to handle some hotplug events */
  5793. hotcpu_notifier(update_runtime, 0);
  5794. init_hrtick();
  5795. /* Move init over to a non-isolated CPU */
  5796. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5797. BUG();
  5798. sched_init_granularity();
  5799. free_cpumask_var(non_isolated_cpus);
  5800. init_sched_rt_class();
  5801. }
  5802. #else
  5803. void __init sched_init_smp(void)
  5804. {
  5805. sched_init_granularity();
  5806. }
  5807. #endif /* CONFIG_SMP */
  5808. const_debug unsigned int sysctl_timer_migration = 1;
  5809. int in_sched_functions(unsigned long addr)
  5810. {
  5811. return in_lock_functions(addr) ||
  5812. (addr >= (unsigned long)__sched_text_start
  5813. && addr < (unsigned long)__sched_text_end);
  5814. }
  5815. #ifdef CONFIG_CGROUP_SCHED
  5816. struct task_group root_task_group;
  5817. LIST_HEAD(task_groups);
  5818. #endif
  5819. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5820. void __init sched_init(void)
  5821. {
  5822. int i, j;
  5823. unsigned long alloc_size = 0, ptr;
  5824. #ifdef CONFIG_FAIR_GROUP_SCHED
  5825. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5826. #endif
  5827. #ifdef CONFIG_RT_GROUP_SCHED
  5828. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5829. #endif
  5830. #ifdef CONFIG_CPUMASK_OFFSTACK
  5831. alloc_size += num_possible_cpus() * cpumask_size();
  5832. #endif
  5833. if (alloc_size) {
  5834. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5835. #ifdef CONFIG_FAIR_GROUP_SCHED
  5836. root_task_group.se = (struct sched_entity **)ptr;
  5837. ptr += nr_cpu_ids * sizeof(void **);
  5838. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5839. ptr += nr_cpu_ids * sizeof(void **);
  5840. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5841. #ifdef CONFIG_RT_GROUP_SCHED
  5842. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5843. ptr += nr_cpu_ids * sizeof(void **);
  5844. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5845. ptr += nr_cpu_ids * sizeof(void **);
  5846. #endif /* CONFIG_RT_GROUP_SCHED */
  5847. #ifdef CONFIG_CPUMASK_OFFSTACK
  5848. for_each_possible_cpu(i) {
  5849. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5850. ptr += cpumask_size();
  5851. }
  5852. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5853. }
  5854. #ifdef CONFIG_SMP
  5855. init_defrootdomain();
  5856. #endif
  5857. init_rt_bandwidth(&def_rt_bandwidth,
  5858. global_rt_period(), global_rt_runtime());
  5859. #ifdef CONFIG_RT_GROUP_SCHED
  5860. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5861. global_rt_period(), global_rt_runtime());
  5862. #endif /* CONFIG_RT_GROUP_SCHED */
  5863. #ifdef CONFIG_CGROUP_SCHED
  5864. list_add(&root_task_group.list, &task_groups);
  5865. INIT_LIST_HEAD(&root_task_group.children);
  5866. INIT_LIST_HEAD(&root_task_group.siblings);
  5867. autogroup_init(&init_task);
  5868. #endif /* CONFIG_CGROUP_SCHED */
  5869. #ifdef CONFIG_CGROUP_CPUACCT
  5870. root_cpuacct.cpustat = &kernel_cpustat;
  5871. root_cpuacct.cpuusage = alloc_percpu(u64);
  5872. /* Too early, not expected to fail */
  5873. BUG_ON(!root_cpuacct.cpuusage);
  5874. #endif
  5875. for_each_possible_cpu(i) {
  5876. struct rq *rq;
  5877. rq = cpu_rq(i);
  5878. raw_spin_lock_init(&rq->lock);
  5879. rq->nr_running = 0;
  5880. rq->calc_load_active = 0;
  5881. rq->calc_load_update = jiffies + LOAD_FREQ;
  5882. init_cfs_rq(&rq->cfs);
  5883. init_rt_rq(&rq->rt, rq);
  5884. #ifdef CONFIG_FAIR_GROUP_SCHED
  5885. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5886. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5887. /*
  5888. * How much cpu bandwidth does root_task_group get?
  5889. *
  5890. * In case of task-groups formed thr' the cgroup filesystem, it
  5891. * gets 100% of the cpu resources in the system. This overall
  5892. * system cpu resource is divided among the tasks of
  5893. * root_task_group and its child task-groups in a fair manner,
  5894. * based on each entity's (task or task-group's) weight
  5895. * (se->load.weight).
  5896. *
  5897. * In other words, if root_task_group has 10 tasks of weight
  5898. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5899. * then A0's share of the cpu resource is:
  5900. *
  5901. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5902. *
  5903. * We achieve this by letting root_task_group's tasks sit
  5904. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5905. */
  5906. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5907. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5908. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5909. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5910. #ifdef CONFIG_RT_GROUP_SCHED
  5911. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5912. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5913. #endif
  5914. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5915. rq->cpu_load[j] = 0;
  5916. rq->last_load_update_tick = jiffies;
  5917. #ifdef CONFIG_SMP
  5918. rq->sd = NULL;
  5919. rq->rd = NULL;
  5920. rq->cpu_power = SCHED_POWER_SCALE;
  5921. rq->post_schedule = 0;
  5922. rq->active_balance = 0;
  5923. rq->next_balance = jiffies;
  5924. rq->push_cpu = 0;
  5925. rq->cpu = i;
  5926. rq->online = 0;
  5927. rq->idle_stamp = 0;
  5928. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5929. INIT_LIST_HEAD(&rq->cfs_tasks);
  5930. rq_attach_root(rq, &def_root_domain);
  5931. #ifdef CONFIG_NO_HZ
  5932. rq->nohz_flags = 0;
  5933. #endif
  5934. #endif
  5935. init_rq_hrtick(rq);
  5936. atomic_set(&rq->nr_iowait, 0);
  5937. }
  5938. set_load_weight(&init_task);
  5939. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5940. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5941. #endif
  5942. #ifdef CONFIG_RT_MUTEXES
  5943. plist_head_init(&init_task.pi_waiters);
  5944. #endif
  5945. /*
  5946. * The boot idle thread does lazy MMU switching as well:
  5947. */
  5948. atomic_inc(&init_mm.mm_count);
  5949. enter_lazy_tlb(&init_mm, current);
  5950. /*
  5951. * Make us the idle thread. Technically, schedule() should not be
  5952. * called from this thread, however somewhere below it might be,
  5953. * but because we are the idle thread, we just pick up running again
  5954. * when this runqueue becomes "idle".
  5955. */
  5956. init_idle(current, smp_processor_id());
  5957. calc_load_update = jiffies + LOAD_FREQ;
  5958. /*
  5959. * During early bootup we pretend to be a normal task:
  5960. */
  5961. current->sched_class = &fair_sched_class;
  5962. #ifdef CONFIG_SMP
  5963. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5964. /* May be allocated at isolcpus cmdline parse time */
  5965. if (cpu_isolated_map == NULL)
  5966. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5967. idle_thread_set_boot_cpu();
  5968. #endif
  5969. init_sched_fair_class();
  5970. scheduler_running = 1;
  5971. }
  5972. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5973. static inline int preempt_count_equals(int preempt_offset)
  5974. {
  5975. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5976. return (nested == preempt_offset);
  5977. }
  5978. void __might_sleep(const char *file, int line, int preempt_offset)
  5979. {
  5980. static unsigned long prev_jiffy; /* ratelimiting */
  5981. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5982. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5983. system_state != SYSTEM_RUNNING || oops_in_progress)
  5984. return;
  5985. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5986. return;
  5987. prev_jiffy = jiffies;
  5988. printk(KERN_ERR
  5989. "BUG: sleeping function called from invalid context at %s:%d\n",
  5990. file, line);
  5991. printk(KERN_ERR
  5992. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5993. in_atomic(), irqs_disabled(),
  5994. current->pid, current->comm);
  5995. debug_show_held_locks(current);
  5996. if (irqs_disabled())
  5997. print_irqtrace_events(current);
  5998. dump_stack();
  5999. }
  6000. EXPORT_SYMBOL(__might_sleep);
  6001. #endif
  6002. #ifdef CONFIG_MAGIC_SYSRQ
  6003. static void normalize_task(struct rq *rq, struct task_struct *p)
  6004. {
  6005. const struct sched_class *prev_class = p->sched_class;
  6006. int old_prio = p->prio;
  6007. int on_rq;
  6008. on_rq = p->on_rq;
  6009. if (on_rq)
  6010. dequeue_task(rq, p, 0);
  6011. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6012. if (on_rq) {
  6013. enqueue_task(rq, p, 0);
  6014. resched_task(rq->curr);
  6015. }
  6016. check_class_changed(rq, p, prev_class, old_prio);
  6017. }
  6018. void normalize_rt_tasks(void)
  6019. {
  6020. struct task_struct *g, *p;
  6021. unsigned long flags;
  6022. struct rq *rq;
  6023. read_lock_irqsave(&tasklist_lock, flags);
  6024. do_each_thread(g, p) {
  6025. /*
  6026. * Only normalize user tasks:
  6027. */
  6028. if (!p->mm)
  6029. continue;
  6030. p->se.exec_start = 0;
  6031. #ifdef CONFIG_SCHEDSTATS
  6032. p->se.statistics.wait_start = 0;
  6033. p->se.statistics.sleep_start = 0;
  6034. p->se.statistics.block_start = 0;
  6035. #endif
  6036. if (!rt_task(p)) {
  6037. /*
  6038. * Renice negative nice level userspace
  6039. * tasks back to 0:
  6040. */
  6041. if (TASK_NICE(p) < 0 && p->mm)
  6042. set_user_nice(p, 0);
  6043. continue;
  6044. }
  6045. raw_spin_lock(&p->pi_lock);
  6046. rq = __task_rq_lock(p);
  6047. normalize_task(rq, p);
  6048. __task_rq_unlock(rq);
  6049. raw_spin_unlock(&p->pi_lock);
  6050. } while_each_thread(g, p);
  6051. read_unlock_irqrestore(&tasklist_lock, flags);
  6052. }
  6053. #endif /* CONFIG_MAGIC_SYSRQ */
  6054. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6055. /*
  6056. * These functions are only useful for the IA64 MCA handling, or kdb.
  6057. *
  6058. * They can only be called when the whole system has been
  6059. * stopped - every CPU needs to be quiescent, and no scheduling
  6060. * activity can take place. Using them for anything else would
  6061. * be a serious bug, and as a result, they aren't even visible
  6062. * under any other configuration.
  6063. */
  6064. /**
  6065. * curr_task - return the current task for a given cpu.
  6066. * @cpu: the processor in question.
  6067. *
  6068. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6069. */
  6070. struct task_struct *curr_task(int cpu)
  6071. {
  6072. return cpu_curr(cpu);
  6073. }
  6074. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6075. #ifdef CONFIG_IA64
  6076. /**
  6077. * set_curr_task - set the current task for a given cpu.
  6078. * @cpu: the processor in question.
  6079. * @p: the task pointer to set.
  6080. *
  6081. * Description: This function must only be used when non-maskable interrupts
  6082. * are serviced on a separate stack. It allows the architecture to switch the
  6083. * notion of the current task on a cpu in a non-blocking manner. This function
  6084. * must be called with all CPU's synchronized, and interrupts disabled, the
  6085. * and caller must save the original value of the current task (see
  6086. * curr_task() above) and restore that value before reenabling interrupts and
  6087. * re-starting the system.
  6088. *
  6089. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6090. */
  6091. void set_curr_task(int cpu, struct task_struct *p)
  6092. {
  6093. cpu_curr(cpu) = p;
  6094. }
  6095. #endif
  6096. #ifdef CONFIG_CGROUP_SCHED
  6097. /* task_group_lock serializes the addition/removal of task groups */
  6098. static DEFINE_SPINLOCK(task_group_lock);
  6099. static void free_sched_group(struct task_group *tg)
  6100. {
  6101. free_fair_sched_group(tg);
  6102. free_rt_sched_group(tg);
  6103. autogroup_free(tg);
  6104. kfree(tg);
  6105. }
  6106. /* allocate runqueue etc for a new task group */
  6107. struct task_group *sched_create_group(struct task_group *parent)
  6108. {
  6109. struct task_group *tg;
  6110. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6111. if (!tg)
  6112. return ERR_PTR(-ENOMEM);
  6113. if (!alloc_fair_sched_group(tg, parent))
  6114. goto err;
  6115. if (!alloc_rt_sched_group(tg, parent))
  6116. goto err;
  6117. return tg;
  6118. err:
  6119. free_sched_group(tg);
  6120. return ERR_PTR(-ENOMEM);
  6121. }
  6122. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6123. {
  6124. unsigned long flags;
  6125. spin_lock_irqsave(&task_group_lock, flags);
  6126. list_add_rcu(&tg->list, &task_groups);
  6127. WARN_ON(!parent); /* root should already exist */
  6128. tg->parent = parent;
  6129. INIT_LIST_HEAD(&tg->children);
  6130. list_add_rcu(&tg->siblings, &parent->children);
  6131. spin_unlock_irqrestore(&task_group_lock, flags);
  6132. }
  6133. /* rcu callback to free various structures associated with a task group */
  6134. static void free_sched_group_rcu(struct rcu_head *rhp)
  6135. {
  6136. /* now it should be safe to free those cfs_rqs */
  6137. free_sched_group(container_of(rhp, struct task_group, rcu));
  6138. }
  6139. /* Destroy runqueue etc associated with a task group */
  6140. void sched_destroy_group(struct task_group *tg)
  6141. {
  6142. /* wait for possible concurrent references to cfs_rqs complete */
  6143. call_rcu(&tg->rcu, free_sched_group_rcu);
  6144. }
  6145. void sched_offline_group(struct task_group *tg)
  6146. {
  6147. unsigned long flags;
  6148. int i;
  6149. /* end participation in shares distribution */
  6150. for_each_possible_cpu(i)
  6151. unregister_fair_sched_group(tg, i);
  6152. spin_lock_irqsave(&task_group_lock, flags);
  6153. list_del_rcu(&tg->list);
  6154. list_del_rcu(&tg->siblings);
  6155. spin_unlock_irqrestore(&task_group_lock, flags);
  6156. }
  6157. /* change task's runqueue when it moves between groups.
  6158. * The caller of this function should have put the task in its new group
  6159. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6160. * reflect its new group.
  6161. */
  6162. void sched_move_task(struct task_struct *tsk)
  6163. {
  6164. struct task_group *tg;
  6165. int on_rq, running;
  6166. unsigned long flags;
  6167. struct rq *rq;
  6168. rq = task_rq_lock(tsk, &flags);
  6169. running = task_current(rq, tsk);
  6170. on_rq = tsk->on_rq;
  6171. if (on_rq)
  6172. dequeue_task(rq, tsk, 0);
  6173. if (unlikely(running))
  6174. tsk->sched_class->put_prev_task(rq, tsk);
  6175. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6176. lockdep_is_held(&tsk->sighand->siglock)),
  6177. struct task_group, css);
  6178. tg = autogroup_task_group(tsk, tg);
  6179. tsk->sched_task_group = tg;
  6180. #ifdef CONFIG_FAIR_GROUP_SCHED
  6181. if (tsk->sched_class->task_move_group)
  6182. tsk->sched_class->task_move_group(tsk, on_rq);
  6183. else
  6184. #endif
  6185. set_task_rq(tsk, task_cpu(tsk));
  6186. if (unlikely(running))
  6187. tsk->sched_class->set_curr_task(rq);
  6188. if (on_rq)
  6189. enqueue_task(rq, tsk, 0);
  6190. task_rq_unlock(rq, tsk, &flags);
  6191. }
  6192. #endif /* CONFIG_CGROUP_SCHED */
  6193. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6194. static unsigned long to_ratio(u64 period, u64 runtime)
  6195. {
  6196. if (runtime == RUNTIME_INF)
  6197. return 1ULL << 20;
  6198. return div64_u64(runtime << 20, period);
  6199. }
  6200. #endif
  6201. #ifdef CONFIG_RT_GROUP_SCHED
  6202. /*
  6203. * Ensure that the real time constraints are schedulable.
  6204. */
  6205. static DEFINE_MUTEX(rt_constraints_mutex);
  6206. /* Must be called with tasklist_lock held */
  6207. static inline int tg_has_rt_tasks(struct task_group *tg)
  6208. {
  6209. struct task_struct *g, *p;
  6210. do_each_thread(g, p) {
  6211. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6212. return 1;
  6213. } while_each_thread(g, p);
  6214. return 0;
  6215. }
  6216. struct rt_schedulable_data {
  6217. struct task_group *tg;
  6218. u64 rt_period;
  6219. u64 rt_runtime;
  6220. };
  6221. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6222. {
  6223. struct rt_schedulable_data *d = data;
  6224. struct task_group *child;
  6225. unsigned long total, sum = 0;
  6226. u64 period, runtime;
  6227. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6228. runtime = tg->rt_bandwidth.rt_runtime;
  6229. if (tg == d->tg) {
  6230. period = d->rt_period;
  6231. runtime = d->rt_runtime;
  6232. }
  6233. /*
  6234. * Cannot have more runtime than the period.
  6235. */
  6236. if (runtime > period && runtime != RUNTIME_INF)
  6237. return -EINVAL;
  6238. /*
  6239. * Ensure we don't starve existing RT tasks.
  6240. */
  6241. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6242. return -EBUSY;
  6243. total = to_ratio(period, runtime);
  6244. /*
  6245. * Nobody can have more than the global setting allows.
  6246. */
  6247. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6248. return -EINVAL;
  6249. /*
  6250. * The sum of our children's runtime should not exceed our own.
  6251. */
  6252. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6253. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6254. runtime = child->rt_bandwidth.rt_runtime;
  6255. if (child == d->tg) {
  6256. period = d->rt_period;
  6257. runtime = d->rt_runtime;
  6258. }
  6259. sum += to_ratio(period, runtime);
  6260. }
  6261. if (sum > total)
  6262. return -EINVAL;
  6263. return 0;
  6264. }
  6265. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6266. {
  6267. int ret;
  6268. struct rt_schedulable_data data = {
  6269. .tg = tg,
  6270. .rt_period = period,
  6271. .rt_runtime = runtime,
  6272. };
  6273. rcu_read_lock();
  6274. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6275. rcu_read_unlock();
  6276. return ret;
  6277. }
  6278. static int tg_set_rt_bandwidth(struct task_group *tg,
  6279. u64 rt_period, u64 rt_runtime)
  6280. {
  6281. int i, err = 0;
  6282. mutex_lock(&rt_constraints_mutex);
  6283. read_lock(&tasklist_lock);
  6284. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6285. if (err)
  6286. goto unlock;
  6287. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6288. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6289. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6290. for_each_possible_cpu(i) {
  6291. struct rt_rq *rt_rq = tg->rt_rq[i];
  6292. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6293. rt_rq->rt_runtime = rt_runtime;
  6294. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6295. }
  6296. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6297. unlock:
  6298. read_unlock(&tasklist_lock);
  6299. mutex_unlock(&rt_constraints_mutex);
  6300. return err;
  6301. }
  6302. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6303. {
  6304. u64 rt_runtime, rt_period;
  6305. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6306. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6307. if (rt_runtime_us < 0)
  6308. rt_runtime = RUNTIME_INF;
  6309. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6310. }
  6311. long sched_group_rt_runtime(struct task_group *tg)
  6312. {
  6313. u64 rt_runtime_us;
  6314. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6315. return -1;
  6316. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6317. do_div(rt_runtime_us, NSEC_PER_USEC);
  6318. return rt_runtime_us;
  6319. }
  6320. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6321. {
  6322. u64 rt_runtime, rt_period;
  6323. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6324. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6325. if (rt_period == 0)
  6326. return -EINVAL;
  6327. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6328. }
  6329. long sched_group_rt_period(struct task_group *tg)
  6330. {
  6331. u64 rt_period_us;
  6332. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6333. do_div(rt_period_us, NSEC_PER_USEC);
  6334. return rt_period_us;
  6335. }
  6336. static int sched_rt_global_constraints(void)
  6337. {
  6338. u64 runtime, period;
  6339. int ret = 0;
  6340. if (sysctl_sched_rt_period <= 0)
  6341. return -EINVAL;
  6342. runtime = global_rt_runtime();
  6343. period = global_rt_period();
  6344. /*
  6345. * Sanity check on the sysctl variables.
  6346. */
  6347. if (runtime > period && runtime != RUNTIME_INF)
  6348. return -EINVAL;
  6349. mutex_lock(&rt_constraints_mutex);
  6350. read_lock(&tasklist_lock);
  6351. ret = __rt_schedulable(NULL, 0, 0);
  6352. read_unlock(&tasklist_lock);
  6353. mutex_unlock(&rt_constraints_mutex);
  6354. return ret;
  6355. }
  6356. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6357. {
  6358. /* Don't accept realtime tasks when there is no way for them to run */
  6359. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6360. return 0;
  6361. return 1;
  6362. }
  6363. #else /* !CONFIG_RT_GROUP_SCHED */
  6364. static int sched_rt_global_constraints(void)
  6365. {
  6366. unsigned long flags;
  6367. int i;
  6368. if (sysctl_sched_rt_period <= 0)
  6369. return -EINVAL;
  6370. /*
  6371. * There's always some RT tasks in the root group
  6372. * -- migration, kstopmachine etc..
  6373. */
  6374. if (sysctl_sched_rt_runtime == 0)
  6375. return -EBUSY;
  6376. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6377. for_each_possible_cpu(i) {
  6378. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6379. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6380. rt_rq->rt_runtime = global_rt_runtime();
  6381. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6382. }
  6383. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6384. return 0;
  6385. }
  6386. #endif /* CONFIG_RT_GROUP_SCHED */
  6387. int sched_rr_handler(struct ctl_table *table, int write,
  6388. void __user *buffer, size_t *lenp,
  6389. loff_t *ppos)
  6390. {
  6391. int ret;
  6392. static DEFINE_MUTEX(mutex);
  6393. mutex_lock(&mutex);
  6394. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6395. /* make sure that internally we keep jiffies */
  6396. /* also, writing zero resets timeslice to default */
  6397. if (!ret && write) {
  6398. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6399. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6400. }
  6401. mutex_unlock(&mutex);
  6402. return ret;
  6403. }
  6404. int sched_rt_handler(struct ctl_table *table, int write,
  6405. void __user *buffer, size_t *lenp,
  6406. loff_t *ppos)
  6407. {
  6408. int ret;
  6409. int old_period, old_runtime;
  6410. static DEFINE_MUTEX(mutex);
  6411. mutex_lock(&mutex);
  6412. old_period = sysctl_sched_rt_period;
  6413. old_runtime = sysctl_sched_rt_runtime;
  6414. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6415. if (!ret && write) {
  6416. ret = sched_rt_global_constraints();
  6417. if (ret) {
  6418. sysctl_sched_rt_period = old_period;
  6419. sysctl_sched_rt_runtime = old_runtime;
  6420. } else {
  6421. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6422. def_rt_bandwidth.rt_period =
  6423. ns_to_ktime(global_rt_period());
  6424. }
  6425. }
  6426. mutex_unlock(&mutex);
  6427. return ret;
  6428. }
  6429. #ifdef CONFIG_CGROUP_SCHED
  6430. /* return corresponding task_group object of a cgroup */
  6431. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6432. {
  6433. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6434. struct task_group, css);
  6435. }
  6436. static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
  6437. {
  6438. struct task_group *tg, *parent;
  6439. if (!cgrp->parent) {
  6440. /* This is early initialization for the top cgroup */
  6441. return &root_task_group.css;
  6442. }
  6443. parent = cgroup_tg(cgrp->parent);
  6444. tg = sched_create_group(parent);
  6445. if (IS_ERR(tg))
  6446. return ERR_PTR(-ENOMEM);
  6447. return &tg->css;
  6448. }
  6449. static int cpu_cgroup_css_online(struct cgroup *cgrp)
  6450. {
  6451. struct task_group *tg = cgroup_tg(cgrp);
  6452. struct task_group *parent;
  6453. if (!cgrp->parent)
  6454. return 0;
  6455. parent = cgroup_tg(cgrp->parent);
  6456. sched_online_group(tg, parent);
  6457. return 0;
  6458. }
  6459. static void cpu_cgroup_css_free(struct cgroup *cgrp)
  6460. {
  6461. struct task_group *tg = cgroup_tg(cgrp);
  6462. sched_destroy_group(tg);
  6463. }
  6464. static void cpu_cgroup_css_offline(struct cgroup *cgrp)
  6465. {
  6466. struct task_group *tg = cgroup_tg(cgrp);
  6467. sched_offline_group(tg);
  6468. }
  6469. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6470. struct cgroup_taskset *tset)
  6471. {
  6472. struct task_struct *task;
  6473. cgroup_taskset_for_each(task, cgrp, tset) {
  6474. #ifdef CONFIG_RT_GROUP_SCHED
  6475. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6476. return -EINVAL;
  6477. #else
  6478. /* We don't support RT-tasks being in separate groups */
  6479. if (task->sched_class != &fair_sched_class)
  6480. return -EINVAL;
  6481. #endif
  6482. }
  6483. return 0;
  6484. }
  6485. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6486. struct cgroup_taskset *tset)
  6487. {
  6488. struct task_struct *task;
  6489. cgroup_taskset_for_each(task, cgrp, tset)
  6490. sched_move_task(task);
  6491. }
  6492. static void
  6493. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6494. struct task_struct *task)
  6495. {
  6496. /*
  6497. * cgroup_exit() is called in the copy_process() failure path.
  6498. * Ignore this case since the task hasn't ran yet, this avoids
  6499. * trying to poke a half freed task state from generic code.
  6500. */
  6501. if (!(task->flags & PF_EXITING))
  6502. return;
  6503. sched_move_task(task);
  6504. }
  6505. #ifdef CONFIG_FAIR_GROUP_SCHED
  6506. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6507. u64 shareval)
  6508. {
  6509. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6510. }
  6511. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6512. {
  6513. struct task_group *tg = cgroup_tg(cgrp);
  6514. return (u64) scale_load_down(tg->shares);
  6515. }
  6516. #ifdef CONFIG_CFS_BANDWIDTH
  6517. static DEFINE_MUTEX(cfs_constraints_mutex);
  6518. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6519. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6520. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6521. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6522. {
  6523. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6524. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6525. if (tg == &root_task_group)
  6526. return -EINVAL;
  6527. /*
  6528. * Ensure we have at some amount of bandwidth every period. This is
  6529. * to prevent reaching a state of large arrears when throttled via
  6530. * entity_tick() resulting in prolonged exit starvation.
  6531. */
  6532. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6533. return -EINVAL;
  6534. /*
  6535. * Likewise, bound things on the otherside by preventing insane quota
  6536. * periods. This also allows us to normalize in computing quota
  6537. * feasibility.
  6538. */
  6539. if (period > max_cfs_quota_period)
  6540. return -EINVAL;
  6541. mutex_lock(&cfs_constraints_mutex);
  6542. ret = __cfs_schedulable(tg, period, quota);
  6543. if (ret)
  6544. goto out_unlock;
  6545. runtime_enabled = quota != RUNTIME_INF;
  6546. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6547. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6548. raw_spin_lock_irq(&cfs_b->lock);
  6549. cfs_b->period = ns_to_ktime(period);
  6550. cfs_b->quota = quota;
  6551. __refill_cfs_bandwidth_runtime(cfs_b);
  6552. /* restart the period timer (if active) to handle new period expiry */
  6553. if (runtime_enabled && cfs_b->timer_active) {
  6554. /* force a reprogram */
  6555. cfs_b->timer_active = 0;
  6556. __start_cfs_bandwidth(cfs_b);
  6557. }
  6558. raw_spin_unlock_irq(&cfs_b->lock);
  6559. for_each_possible_cpu(i) {
  6560. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6561. struct rq *rq = cfs_rq->rq;
  6562. raw_spin_lock_irq(&rq->lock);
  6563. cfs_rq->runtime_enabled = runtime_enabled;
  6564. cfs_rq->runtime_remaining = 0;
  6565. if (cfs_rq->throttled)
  6566. unthrottle_cfs_rq(cfs_rq);
  6567. raw_spin_unlock_irq(&rq->lock);
  6568. }
  6569. out_unlock:
  6570. mutex_unlock(&cfs_constraints_mutex);
  6571. return ret;
  6572. }
  6573. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6574. {
  6575. u64 quota, period;
  6576. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6577. if (cfs_quota_us < 0)
  6578. quota = RUNTIME_INF;
  6579. else
  6580. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6581. return tg_set_cfs_bandwidth(tg, period, quota);
  6582. }
  6583. long tg_get_cfs_quota(struct task_group *tg)
  6584. {
  6585. u64 quota_us;
  6586. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6587. return -1;
  6588. quota_us = tg->cfs_bandwidth.quota;
  6589. do_div(quota_us, NSEC_PER_USEC);
  6590. return quota_us;
  6591. }
  6592. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6593. {
  6594. u64 quota, period;
  6595. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6596. quota = tg->cfs_bandwidth.quota;
  6597. return tg_set_cfs_bandwidth(tg, period, quota);
  6598. }
  6599. long tg_get_cfs_period(struct task_group *tg)
  6600. {
  6601. u64 cfs_period_us;
  6602. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6603. do_div(cfs_period_us, NSEC_PER_USEC);
  6604. return cfs_period_us;
  6605. }
  6606. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6607. {
  6608. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6609. }
  6610. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6611. s64 cfs_quota_us)
  6612. {
  6613. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6614. }
  6615. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6616. {
  6617. return tg_get_cfs_period(cgroup_tg(cgrp));
  6618. }
  6619. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6620. u64 cfs_period_us)
  6621. {
  6622. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6623. }
  6624. struct cfs_schedulable_data {
  6625. struct task_group *tg;
  6626. u64 period, quota;
  6627. };
  6628. /*
  6629. * normalize group quota/period to be quota/max_period
  6630. * note: units are usecs
  6631. */
  6632. static u64 normalize_cfs_quota(struct task_group *tg,
  6633. struct cfs_schedulable_data *d)
  6634. {
  6635. u64 quota, period;
  6636. if (tg == d->tg) {
  6637. period = d->period;
  6638. quota = d->quota;
  6639. } else {
  6640. period = tg_get_cfs_period(tg);
  6641. quota = tg_get_cfs_quota(tg);
  6642. }
  6643. /* note: these should typically be equivalent */
  6644. if (quota == RUNTIME_INF || quota == -1)
  6645. return RUNTIME_INF;
  6646. return to_ratio(period, quota);
  6647. }
  6648. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6649. {
  6650. struct cfs_schedulable_data *d = data;
  6651. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6652. s64 quota = 0, parent_quota = -1;
  6653. if (!tg->parent) {
  6654. quota = RUNTIME_INF;
  6655. } else {
  6656. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6657. quota = normalize_cfs_quota(tg, d);
  6658. parent_quota = parent_b->hierarchal_quota;
  6659. /*
  6660. * ensure max(child_quota) <= parent_quota, inherit when no
  6661. * limit is set
  6662. */
  6663. if (quota == RUNTIME_INF)
  6664. quota = parent_quota;
  6665. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6666. return -EINVAL;
  6667. }
  6668. cfs_b->hierarchal_quota = quota;
  6669. return 0;
  6670. }
  6671. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6672. {
  6673. int ret;
  6674. struct cfs_schedulable_data data = {
  6675. .tg = tg,
  6676. .period = period,
  6677. .quota = quota,
  6678. };
  6679. if (quota != RUNTIME_INF) {
  6680. do_div(data.period, NSEC_PER_USEC);
  6681. do_div(data.quota, NSEC_PER_USEC);
  6682. }
  6683. rcu_read_lock();
  6684. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6685. rcu_read_unlock();
  6686. return ret;
  6687. }
  6688. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6689. struct cgroup_map_cb *cb)
  6690. {
  6691. struct task_group *tg = cgroup_tg(cgrp);
  6692. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6693. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6694. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6695. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6696. return 0;
  6697. }
  6698. #endif /* CONFIG_CFS_BANDWIDTH */
  6699. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6700. #ifdef CONFIG_RT_GROUP_SCHED
  6701. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6702. s64 val)
  6703. {
  6704. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6705. }
  6706. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6707. {
  6708. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6709. }
  6710. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6711. u64 rt_period_us)
  6712. {
  6713. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6714. }
  6715. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6716. {
  6717. return sched_group_rt_period(cgroup_tg(cgrp));
  6718. }
  6719. #endif /* CONFIG_RT_GROUP_SCHED */
  6720. static struct cftype cpu_files[] = {
  6721. #ifdef CONFIG_FAIR_GROUP_SCHED
  6722. {
  6723. .name = "shares",
  6724. .read_u64 = cpu_shares_read_u64,
  6725. .write_u64 = cpu_shares_write_u64,
  6726. },
  6727. #endif
  6728. #ifdef CONFIG_CFS_BANDWIDTH
  6729. {
  6730. .name = "cfs_quota_us",
  6731. .read_s64 = cpu_cfs_quota_read_s64,
  6732. .write_s64 = cpu_cfs_quota_write_s64,
  6733. },
  6734. {
  6735. .name = "cfs_period_us",
  6736. .read_u64 = cpu_cfs_period_read_u64,
  6737. .write_u64 = cpu_cfs_period_write_u64,
  6738. },
  6739. {
  6740. .name = "stat",
  6741. .read_map = cpu_stats_show,
  6742. },
  6743. #endif
  6744. #ifdef CONFIG_RT_GROUP_SCHED
  6745. {
  6746. .name = "rt_runtime_us",
  6747. .read_s64 = cpu_rt_runtime_read,
  6748. .write_s64 = cpu_rt_runtime_write,
  6749. },
  6750. {
  6751. .name = "rt_period_us",
  6752. .read_u64 = cpu_rt_period_read_uint,
  6753. .write_u64 = cpu_rt_period_write_uint,
  6754. },
  6755. #endif
  6756. { } /* terminate */
  6757. };
  6758. struct cgroup_subsys cpu_cgroup_subsys = {
  6759. .name = "cpu",
  6760. .css_alloc = cpu_cgroup_css_alloc,
  6761. .css_free = cpu_cgroup_css_free,
  6762. .css_online = cpu_cgroup_css_online,
  6763. .css_offline = cpu_cgroup_css_offline,
  6764. .can_attach = cpu_cgroup_can_attach,
  6765. .attach = cpu_cgroup_attach,
  6766. .exit = cpu_cgroup_exit,
  6767. .subsys_id = cpu_cgroup_subsys_id,
  6768. .base_cftypes = cpu_files,
  6769. .early_init = 1,
  6770. };
  6771. #endif /* CONFIG_CGROUP_SCHED */
  6772. #ifdef CONFIG_CGROUP_CPUACCT
  6773. /*
  6774. * CPU accounting code for task groups.
  6775. *
  6776. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6777. * (balbir@in.ibm.com).
  6778. */
  6779. struct cpuacct root_cpuacct;
  6780. /* create a new cpu accounting group */
  6781. static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
  6782. {
  6783. struct cpuacct *ca;
  6784. if (!cgrp->parent)
  6785. return &root_cpuacct.css;
  6786. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6787. if (!ca)
  6788. goto out;
  6789. ca->cpuusage = alloc_percpu(u64);
  6790. if (!ca->cpuusage)
  6791. goto out_free_ca;
  6792. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6793. if (!ca->cpustat)
  6794. goto out_free_cpuusage;
  6795. return &ca->css;
  6796. out_free_cpuusage:
  6797. free_percpu(ca->cpuusage);
  6798. out_free_ca:
  6799. kfree(ca);
  6800. out:
  6801. return ERR_PTR(-ENOMEM);
  6802. }
  6803. /* destroy an existing cpu accounting group */
  6804. static void cpuacct_css_free(struct cgroup *cgrp)
  6805. {
  6806. struct cpuacct *ca = cgroup_ca(cgrp);
  6807. free_percpu(ca->cpustat);
  6808. free_percpu(ca->cpuusage);
  6809. kfree(ca);
  6810. }
  6811. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6812. {
  6813. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6814. u64 data;
  6815. #ifndef CONFIG_64BIT
  6816. /*
  6817. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6818. */
  6819. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6820. data = *cpuusage;
  6821. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6822. #else
  6823. data = *cpuusage;
  6824. #endif
  6825. return data;
  6826. }
  6827. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6828. {
  6829. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6830. #ifndef CONFIG_64BIT
  6831. /*
  6832. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6833. */
  6834. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6835. *cpuusage = val;
  6836. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6837. #else
  6838. *cpuusage = val;
  6839. #endif
  6840. }
  6841. /* return total cpu usage (in nanoseconds) of a group */
  6842. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6843. {
  6844. struct cpuacct *ca = cgroup_ca(cgrp);
  6845. u64 totalcpuusage = 0;
  6846. int i;
  6847. for_each_present_cpu(i)
  6848. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6849. return totalcpuusage;
  6850. }
  6851. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6852. u64 reset)
  6853. {
  6854. struct cpuacct *ca = cgroup_ca(cgrp);
  6855. int err = 0;
  6856. int i;
  6857. if (reset) {
  6858. err = -EINVAL;
  6859. goto out;
  6860. }
  6861. for_each_present_cpu(i)
  6862. cpuacct_cpuusage_write(ca, i, 0);
  6863. out:
  6864. return err;
  6865. }
  6866. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6867. struct seq_file *m)
  6868. {
  6869. struct cpuacct *ca = cgroup_ca(cgroup);
  6870. u64 percpu;
  6871. int i;
  6872. for_each_present_cpu(i) {
  6873. percpu = cpuacct_cpuusage_read(ca, i);
  6874. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6875. }
  6876. seq_printf(m, "\n");
  6877. return 0;
  6878. }
  6879. static const char *cpuacct_stat_desc[] = {
  6880. [CPUACCT_STAT_USER] = "user",
  6881. [CPUACCT_STAT_SYSTEM] = "system",
  6882. };
  6883. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6884. struct cgroup_map_cb *cb)
  6885. {
  6886. struct cpuacct *ca = cgroup_ca(cgrp);
  6887. int cpu;
  6888. s64 val = 0;
  6889. for_each_online_cpu(cpu) {
  6890. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6891. val += kcpustat->cpustat[CPUTIME_USER];
  6892. val += kcpustat->cpustat[CPUTIME_NICE];
  6893. }
  6894. val = cputime64_to_clock_t(val);
  6895. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6896. val = 0;
  6897. for_each_online_cpu(cpu) {
  6898. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6899. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6900. val += kcpustat->cpustat[CPUTIME_IRQ];
  6901. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6902. }
  6903. val = cputime64_to_clock_t(val);
  6904. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6905. return 0;
  6906. }
  6907. static struct cftype files[] = {
  6908. {
  6909. .name = "usage",
  6910. .read_u64 = cpuusage_read,
  6911. .write_u64 = cpuusage_write,
  6912. },
  6913. {
  6914. .name = "usage_percpu",
  6915. .read_seq_string = cpuacct_percpu_seq_read,
  6916. },
  6917. {
  6918. .name = "stat",
  6919. .read_map = cpuacct_stats_show,
  6920. },
  6921. { } /* terminate */
  6922. };
  6923. /*
  6924. * charge this task's execution time to its accounting group.
  6925. *
  6926. * called with rq->lock held.
  6927. */
  6928. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6929. {
  6930. struct cpuacct *ca;
  6931. int cpu;
  6932. if (unlikely(!cpuacct_subsys.active))
  6933. return;
  6934. cpu = task_cpu(tsk);
  6935. rcu_read_lock();
  6936. ca = task_ca(tsk);
  6937. for (; ca; ca = parent_ca(ca)) {
  6938. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6939. *cpuusage += cputime;
  6940. }
  6941. rcu_read_unlock();
  6942. }
  6943. struct cgroup_subsys cpuacct_subsys = {
  6944. .name = "cpuacct",
  6945. .css_alloc = cpuacct_css_alloc,
  6946. .css_free = cpuacct_css_free,
  6947. .subsys_id = cpuacct_subsys_id,
  6948. .base_cftypes = files,
  6949. };
  6950. #endif /* CONFIG_CGROUP_CPUACCT */
  6951. void dump_cpu_task(int cpu)
  6952. {
  6953. pr_info("Task dump for CPU %d:\n", cpu);
  6954. sched_show_task(cpu_curr(cpu));
  6955. }