setup.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973
  1. /*
  2. * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
  3. * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
  4. *
  5. * Description:
  6. * Architecture- / platform-specific boot-time initialization code for
  7. * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
  8. * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
  9. * <dan@net4x.com>.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #undef DEBUG
  17. #include <linux/config.h>
  18. #include <linux/init.h>
  19. #include <linux/threads.h>
  20. #include <linux/smp.h>
  21. #include <linux/param.h>
  22. #include <linux/string.h>
  23. #include <linux/initrd.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/kdev_t.h>
  26. #include <linux/major.h>
  27. #include <linux/root_dev.h>
  28. #include <linux/kernel.h>
  29. #include <asm/processor.h>
  30. #include <asm/machdep.h>
  31. #include <asm/page.h>
  32. #include <asm/mmu.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/cputable.h>
  36. #include <asm/sections.h>
  37. #include <asm/iommu.h>
  38. #include <asm/firmware.h>
  39. #include <asm/system.h>
  40. #include <asm/time.h>
  41. #include <asm/paca.h>
  42. #include <asm/cache.h>
  43. #include <asm/sections.h>
  44. #include <asm/abs_addr.h>
  45. #include <asm/iseries/hv_lp_config.h>
  46. #include <asm/iseries/hv_call_event.h>
  47. #include <asm/iseries/hv_call_xm.h>
  48. #include <asm/iseries/it_lp_queue.h>
  49. #include <asm/iseries/mf.h>
  50. #include <asm/iseries/hv_lp_event.h>
  51. #include <asm/iseries/lpar_map.h>
  52. #include <asm/udbg.h>
  53. #include "naca.h"
  54. #include "setup.h"
  55. #include "irq.h"
  56. #include "vpd_areas.h"
  57. #include "processor_vpd.h"
  58. #include "main_store.h"
  59. #include "call_sm.h"
  60. #include "call_hpt.h"
  61. #ifdef DEBUG
  62. #define DBG(fmt...) udbg_printf(fmt)
  63. #else
  64. #define DBG(fmt...)
  65. #endif
  66. /* Function Prototypes */
  67. static unsigned long build_iSeries_Memory_Map(void);
  68. static void iseries_shared_idle(void);
  69. static void iseries_dedicated_idle(void);
  70. #ifdef CONFIG_PCI
  71. extern void iSeries_pci_final_fixup(void);
  72. #else
  73. static void iSeries_pci_final_fixup(void) { }
  74. #endif
  75. /* Global Variables */
  76. int piranha_simulator;
  77. extern int rd_size; /* Defined in drivers/block/rd.c */
  78. extern unsigned long embedded_sysmap_start;
  79. extern unsigned long embedded_sysmap_end;
  80. extern unsigned long iSeries_recal_tb;
  81. extern unsigned long iSeries_recal_titan;
  82. static unsigned long cmd_mem_limit;
  83. struct MemoryBlock {
  84. unsigned long absStart;
  85. unsigned long absEnd;
  86. unsigned long logicalStart;
  87. unsigned long logicalEnd;
  88. };
  89. /*
  90. * Process the main store vpd to determine where the holes in memory are
  91. * and return the number of physical blocks and fill in the array of
  92. * block data.
  93. */
  94. static unsigned long iSeries_process_Condor_mainstore_vpd(
  95. struct MemoryBlock *mb_array, unsigned long max_entries)
  96. {
  97. unsigned long holeFirstChunk, holeSizeChunks;
  98. unsigned long numMemoryBlocks = 1;
  99. struct IoHriMainStoreSegment4 *msVpd =
  100. (struct IoHriMainStoreSegment4 *)xMsVpd;
  101. unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
  102. unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
  103. unsigned long holeSize = holeEnd - holeStart;
  104. printk("Mainstore_VPD: Condor\n");
  105. /*
  106. * Determine if absolute memory has any
  107. * holes so that we can interpret the
  108. * access map we get back from the hypervisor
  109. * correctly.
  110. */
  111. mb_array[0].logicalStart = 0;
  112. mb_array[0].logicalEnd = 0x100000000;
  113. mb_array[0].absStart = 0;
  114. mb_array[0].absEnd = 0x100000000;
  115. if (holeSize) {
  116. numMemoryBlocks = 2;
  117. holeStart = holeStart & 0x000fffffffffffff;
  118. holeStart = addr_to_chunk(holeStart);
  119. holeFirstChunk = holeStart;
  120. holeSize = addr_to_chunk(holeSize);
  121. holeSizeChunks = holeSize;
  122. printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
  123. holeFirstChunk, holeSizeChunks );
  124. mb_array[0].logicalEnd = holeFirstChunk;
  125. mb_array[0].absEnd = holeFirstChunk;
  126. mb_array[1].logicalStart = holeFirstChunk;
  127. mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
  128. mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
  129. mb_array[1].absEnd = 0x100000000;
  130. }
  131. return numMemoryBlocks;
  132. }
  133. #define MaxSegmentAreas 32
  134. #define MaxSegmentAdrRangeBlocks 128
  135. #define MaxAreaRangeBlocks 4
  136. static unsigned long iSeries_process_Regatta_mainstore_vpd(
  137. struct MemoryBlock *mb_array, unsigned long max_entries)
  138. {
  139. struct IoHriMainStoreSegment5 *msVpdP =
  140. (struct IoHriMainStoreSegment5 *)xMsVpd;
  141. unsigned long numSegmentBlocks = 0;
  142. u32 existsBits = msVpdP->msAreaExists;
  143. unsigned long area_num;
  144. printk("Mainstore_VPD: Regatta\n");
  145. for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
  146. unsigned long numAreaBlocks;
  147. struct IoHriMainStoreArea4 *currentArea;
  148. if (existsBits & 0x80000000) {
  149. unsigned long block_num;
  150. currentArea = &msVpdP->msAreaArray[area_num];
  151. numAreaBlocks = currentArea->numAdrRangeBlocks;
  152. printk("ms_vpd: processing area %2ld blocks=%ld",
  153. area_num, numAreaBlocks);
  154. for (block_num = 0; block_num < numAreaBlocks;
  155. ++block_num ) {
  156. /* Process an address range block */
  157. struct MemoryBlock tempBlock;
  158. unsigned long i;
  159. tempBlock.absStart =
  160. (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
  161. tempBlock.absEnd =
  162. (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
  163. tempBlock.logicalStart = 0;
  164. tempBlock.logicalEnd = 0;
  165. printk("\n block %ld absStart=%016lx absEnd=%016lx",
  166. block_num, tempBlock.absStart,
  167. tempBlock.absEnd);
  168. for (i = 0; i < numSegmentBlocks; ++i) {
  169. if (mb_array[i].absStart ==
  170. tempBlock.absStart)
  171. break;
  172. }
  173. if (i == numSegmentBlocks) {
  174. if (numSegmentBlocks == max_entries)
  175. panic("iSeries_process_mainstore_vpd: too many memory blocks");
  176. mb_array[numSegmentBlocks] = tempBlock;
  177. ++numSegmentBlocks;
  178. } else
  179. printk(" (duplicate)");
  180. }
  181. printk("\n");
  182. }
  183. existsBits <<= 1;
  184. }
  185. /* Now sort the blocks found into ascending sequence */
  186. if (numSegmentBlocks > 1) {
  187. unsigned long m, n;
  188. for (m = 0; m < numSegmentBlocks - 1; ++m) {
  189. for (n = numSegmentBlocks - 1; m < n; --n) {
  190. if (mb_array[n].absStart <
  191. mb_array[n-1].absStart) {
  192. struct MemoryBlock tempBlock;
  193. tempBlock = mb_array[n];
  194. mb_array[n] = mb_array[n-1];
  195. mb_array[n-1] = tempBlock;
  196. }
  197. }
  198. }
  199. }
  200. /*
  201. * Assign "logical" addresses to each block. These
  202. * addresses correspond to the hypervisor "bitmap" space.
  203. * Convert all addresses into units of 256K chunks.
  204. */
  205. {
  206. unsigned long i, nextBitmapAddress;
  207. printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
  208. nextBitmapAddress = 0;
  209. for (i = 0; i < numSegmentBlocks; ++i) {
  210. unsigned long length = mb_array[i].absEnd -
  211. mb_array[i].absStart;
  212. mb_array[i].logicalStart = nextBitmapAddress;
  213. mb_array[i].logicalEnd = nextBitmapAddress + length;
  214. nextBitmapAddress += length;
  215. printk(" Bitmap range: %016lx - %016lx\n"
  216. " Absolute range: %016lx - %016lx\n",
  217. mb_array[i].logicalStart,
  218. mb_array[i].logicalEnd,
  219. mb_array[i].absStart, mb_array[i].absEnd);
  220. mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
  221. 0x000fffffffffffff);
  222. mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
  223. 0x000fffffffffffff);
  224. mb_array[i].logicalStart =
  225. addr_to_chunk(mb_array[i].logicalStart);
  226. mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
  227. }
  228. }
  229. return numSegmentBlocks;
  230. }
  231. static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
  232. unsigned long max_entries)
  233. {
  234. unsigned long i;
  235. unsigned long mem_blocks = 0;
  236. if (cpu_has_feature(CPU_FTR_SLB))
  237. mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
  238. max_entries);
  239. else
  240. mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
  241. max_entries);
  242. printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
  243. for (i = 0; i < mem_blocks; ++i) {
  244. printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
  245. " abs chunks %016lx - %016lx\n",
  246. i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
  247. mb_array[i].absStart, mb_array[i].absEnd);
  248. }
  249. return mem_blocks;
  250. }
  251. static void __init iSeries_get_cmdline(void)
  252. {
  253. char *p, *q;
  254. /* copy the command line parameter from the primary VSP */
  255. HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
  256. HvLpDma_Direction_RemoteToLocal);
  257. p = cmd_line;
  258. q = cmd_line + 255;
  259. while(p < q) {
  260. if (!*p || *p == '\n')
  261. break;
  262. ++p;
  263. }
  264. *p = 0;
  265. }
  266. static void __init iSeries_init_early(void)
  267. {
  268. DBG(" -> iSeries_init_early()\n");
  269. ppc64_interrupt_controller = IC_ISERIES;
  270. #if defined(CONFIG_BLK_DEV_INITRD)
  271. /*
  272. * If the init RAM disk has been configured and there is
  273. * a non-zero starting address for it, set it up
  274. */
  275. if (naca.xRamDisk) {
  276. initrd_start = (unsigned long)__va(naca.xRamDisk);
  277. initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
  278. initrd_below_start_ok = 1; // ramdisk in kernel space
  279. ROOT_DEV = Root_RAM0;
  280. if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
  281. rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
  282. } else
  283. #endif /* CONFIG_BLK_DEV_INITRD */
  284. {
  285. /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
  286. }
  287. iSeries_recal_tb = get_tb();
  288. iSeries_recal_titan = HvCallXm_loadTod();
  289. /*
  290. * Initialize the hash table management pointers
  291. */
  292. hpte_init_iSeries();
  293. /*
  294. * Initialize the DMA/TCE management
  295. */
  296. iommu_init_early_iSeries();
  297. /* Initialize machine-dependency vectors */
  298. #ifdef CONFIG_SMP
  299. smp_init_iSeries();
  300. #endif
  301. if (itLpNaca.xPirEnvironMode == 0)
  302. piranha_simulator = 1;
  303. /* Associate Lp Event Queue 0 with processor 0 */
  304. HvCallEvent_setLpEventQueueInterruptProc(0, 0);
  305. mf_init();
  306. /* If we were passed an initrd, set the ROOT_DEV properly if the values
  307. * look sensible. If not, clear initrd reference.
  308. */
  309. #ifdef CONFIG_BLK_DEV_INITRD
  310. if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
  311. initrd_end > initrd_start)
  312. ROOT_DEV = Root_RAM0;
  313. else
  314. initrd_start = initrd_end = 0;
  315. #endif /* CONFIG_BLK_DEV_INITRD */
  316. DBG(" <- iSeries_init_early()\n");
  317. }
  318. struct mschunks_map mschunks_map = {
  319. /* XXX We don't use these, but Piranha might need them. */
  320. .chunk_size = MSCHUNKS_CHUNK_SIZE,
  321. .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
  322. .chunk_mask = MSCHUNKS_OFFSET_MASK,
  323. };
  324. EXPORT_SYMBOL(mschunks_map);
  325. void mschunks_alloc(unsigned long num_chunks)
  326. {
  327. klimit = _ALIGN(klimit, sizeof(u32));
  328. mschunks_map.mapping = (u32 *)klimit;
  329. klimit += num_chunks * sizeof(u32);
  330. mschunks_map.num_chunks = num_chunks;
  331. }
  332. /*
  333. * The iSeries may have very large memories ( > 128 GB ) and a partition
  334. * may get memory in "chunks" that may be anywhere in the 2**52 real
  335. * address space. The chunks are 256K in size. To map this to the
  336. * memory model Linux expects, the AS/400 specific code builds a
  337. * translation table to translate what Linux thinks are "physical"
  338. * addresses to the actual real addresses. This allows us to make
  339. * it appear to Linux that we have contiguous memory starting at
  340. * physical address zero while in fact this could be far from the truth.
  341. * To avoid confusion, I'll let the words physical and/or real address
  342. * apply to the Linux addresses while I'll use "absolute address" to
  343. * refer to the actual hardware real address.
  344. *
  345. * build_iSeries_Memory_Map gets information from the Hypervisor and
  346. * looks at the Main Store VPD to determine the absolute addresses
  347. * of the memory that has been assigned to our partition and builds
  348. * a table used to translate Linux's physical addresses to these
  349. * absolute addresses. Absolute addresses are needed when
  350. * communicating with the hypervisor (e.g. to build HPT entries)
  351. *
  352. * Returns the physical memory size
  353. */
  354. static unsigned long __init build_iSeries_Memory_Map(void)
  355. {
  356. u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
  357. u32 nextPhysChunk;
  358. u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
  359. u32 totalChunks,moreChunks;
  360. u32 currChunk, thisChunk, absChunk;
  361. u32 currDword;
  362. u32 chunkBit;
  363. u64 map;
  364. struct MemoryBlock mb[32];
  365. unsigned long numMemoryBlocks, curBlock;
  366. /* Chunk size on iSeries is 256K bytes */
  367. totalChunks = (u32)HvLpConfig_getMsChunks();
  368. mschunks_alloc(totalChunks);
  369. /*
  370. * Get absolute address of our load area
  371. * and map it to physical address 0
  372. * This guarantees that the loadarea ends up at physical 0
  373. * otherwise, it might not be returned by PLIC as the first
  374. * chunks
  375. */
  376. loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
  377. loadAreaSize = itLpNaca.xLoadAreaChunks;
  378. /*
  379. * Only add the pages already mapped here.
  380. * Otherwise we might add the hpt pages
  381. * The rest of the pages of the load area
  382. * aren't in the HPT yet and can still
  383. * be assigned an arbitrary physical address
  384. */
  385. if ((loadAreaSize * 64) > HvPagesToMap)
  386. loadAreaSize = HvPagesToMap / 64;
  387. loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
  388. /*
  389. * TODO Do we need to do something if the HPT is in the 64MB load area?
  390. * This would be required if the itLpNaca.xLoadAreaChunks includes
  391. * the HPT size
  392. */
  393. printk("Mapping load area - physical addr = 0000000000000000\n"
  394. " absolute addr = %016lx\n",
  395. chunk_to_addr(loadAreaFirstChunk));
  396. printk("Load area size %dK\n", loadAreaSize * 256);
  397. for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
  398. mschunks_map.mapping[nextPhysChunk] =
  399. loadAreaFirstChunk + nextPhysChunk;
  400. /*
  401. * Get absolute address of our HPT and remember it so
  402. * we won't map it to any physical address
  403. */
  404. hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
  405. hptSizePages = (u32)HvCallHpt_getHptPages();
  406. hptSizeChunks = hptSizePages >>
  407. (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
  408. hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
  409. printk("HPT absolute addr = %016lx, size = %dK\n",
  410. chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
  411. /*
  412. * Determine if absolute memory has any
  413. * holes so that we can interpret the
  414. * access map we get back from the hypervisor
  415. * correctly.
  416. */
  417. numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
  418. /*
  419. * Process the main store access map from the hypervisor
  420. * to build up our physical -> absolute translation table
  421. */
  422. curBlock = 0;
  423. currChunk = 0;
  424. currDword = 0;
  425. moreChunks = totalChunks;
  426. while (moreChunks) {
  427. map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
  428. currDword);
  429. thisChunk = currChunk;
  430. while (map) {
  431. chunkBit = map >> 63;
  432. map <<= 1;
  433. if (chunkBit) {
  434. --moreChunks;
  435. while (thisChunk >= mb[curBlock].logicalEnd) {
  436. ++curBlock;
  437. if (curBlock >= numMemoryBlocks)
  438. panic("out of memory blocks");
  439. }
  440. if (thisChunk < mb[curBlock].logicalStart)
  441. panic("memory block error");
  442. absChunk = mb[curBlock].absStart +
  443. (thisChunk - mb[curBlock].logicalStart);
  444. if (((absChunk < hptFirstChunk) ||
  445. (absChunk > hptLastChunk)) &&
  446. ((absChunk < loadAreaFirstChunk) ||
  447. (absChunk > loadAreaLastChunk))) {
  448. mschunks_map.mapping[nextPhysChunk] =
  449. absChunk;
  450. ++nextPhysChunk;
  451. }
  452. }
  453. ++thisChunk;
  454. }
  455. ++currDword;
  456. currChunk += 64;
  457. }
  458. /*
  459. * main store size (in chunks) is
  460. * totalChunks - hptSizeChunks
  461. * which should be equal to
  462. * nextPhysChunk
  463. */
  464. return chunk_to_addr(nextPhysChunk);
  465. }
  466. /*
  467. * Document me.
  468. */
  469. static void __init iSeries_setup_arch(void)
  470. {
  471. if (get_lppaca()->shared_proc) {
  472. ppc_md.idle_loop = iseries_shared_idle;
  473. printk(KERN_INFO "Using shared processor idle loop\n");
  474. } else {
  475. ppc_md.idle_loop = iseries_dedicated_idle;
  476. printk(KERN_INFO "Using dedicated idle loop\n");
  477. }
  478. /* Setup the Lp Event Queue */
  479. setup_hvlpevent_queue();
  480. printk("Max logical processors = %d\n",
  481. itVpdAreas.xSlicMaxLogicalProcs);
  482. printk("Max physical processors = %d\n",
  483. itVpdAreas.xSlicMaxPhysicalProcs);
  484. }
  485. static void iSeries_show_cpuinfo(struct seq_file *m)
  486. {
  487. seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
  488. }
  489. static void __init iSeries_progress(char * st, unsigned short code)
  490. {
  491. printk("Progress: [%04x] - %s\n", (unsigned)code, st);
  492. mf_display_progress(code);
  493. }
  494. static void __init iSeries_fixup_klimit(void)
  495. {
  496. /*
  497. * Change klimit to take into account any ram disk
  498. * that may be included
  499. */
  500. if (naca.xRamDisk)
  501. klimit = KERNELBASE + (u64)naca.xRamDisk +
  502. (naca.xRamDiskSize * HW_PAGE_SIZE);
  503. else {
  504. /*
  505. * No ram disk was included - check and see if there
  506. * was an embedded system map. Change klimit to take
  507. * into account any embedded system map
  508. */
  509. if (embedded_sysmap_end)
  510. klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
  511. 0xfffffffffffff000);
  512. }
  513. }
  514. static int __init iSeries_src_init(void)
  515. {
  516. /* clear the progress line */
  517. ppc_md.progress(" ", 0xffff);
  518. return 0;
  519. }
  520. late_initcall(iSeries_src_init);
  521. static inline void process_iSeries_events(void)
  522. {
  523. asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
  524. }
  525. static void yield_shared_processor(void)
  526. {
  527. unsigned long tb;
  528. HvCall_setEnabledInterrupts(HvCall_MaskIPI |
  529. HvCall_MaskLpEvent |
  530. HvCall_MaskLpProd |
  531. HvCall_MaskTimeout);
  532. tb = get_tb();
  533. /* Compute future tb value when yield should expire */
  534. HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
  535. /*
  536. * The decrementer stops during the yield. Force a fake decrementer
  537. * here and let the timer_interrupt code sort out the actual time.
  538. */
  539. get_lppaca()->int_dword.fields.decr_int = 1;
  540. ppc64_runlatch_on();
  541. process_iSeries_events();
  542. }
  543. static void iseries_shared_idle(void)
  544. {
  545. while (1) {
  546. while (!need_resched() && !hvlpevent_is_pending()) {
  547. local_irq_disable();
  548. ppc64_runlatch_off();
  549. /* Recheck with irqs off */
  550. if (!need_resched() && !hvlpevent_is_pending())
  551. yield_shared_processor();
  552. HMT_medium();
  553. local_irq_enable();
  554. }
  555. ppc64_runlatch_on();
  556. if (hvlpevent_is_pending())
  557. process_iSeries_events();
  558. preempt_enable_no_resched();
  559. schedule();
  560. preempt_disable();
  561. }
  562. }
  563. static void iseries_dedicated_idle(void)
  564. {
  565. set_thread_flag(TIF_POLLING_NRFLAG);
  566. while (1) {
  567. if (!need_resched()) {
  568. while (!need_resched()) {
  569. ppc64_runlatch_off();
  570. HMT_low();
  571. if (hvlpevent_is_pending()) {
  572. HMT_medium();
  573. ppc64_runlatch_on();
  574. process_iSeries_events();
  575. }
  576. }
  577. HMT_medium();
  578. }
  579. ppc64_runlatch_on();
  580. preempt_enable_no_resched();
  581. schedule();
  582. preempt_disable();
  583. }
  584. }
  585. #ifndef CONFIG_PCI
  586. void __init iSeries_init_IRQ(void) { }
  587. #endif
  588. static int __init iseries_probe(int platform)
  589. {
  590. if (PLATFORM_ISERIES_LPAR != platform)
  591. return 0;
  592. ppc64_firmware_features |= FW_FEATURE_ISERIES;
  593. ppc64_firmware_features |= FW_FEATURE_LPAR;
  594. return 1;
  595. }
  596. struct machdep_calls __initdata iseries_md = {
  597. .setup_arch = iSeries_setup_arch,
  598. .show_cpuinfo = iSeries_show_cpuinfo,
  599. .init_IRQ = iSeries_init_IRQ,
  600. .get_irq = iSeries_get_irq,
  601. .init_early = iSeries_init_early,
  602. .pcibios_fixup = iSeries_pci_final_fixup,
  603. .restart = mf_reboot,
  604. .power_off = mf_power_off,
  605. .halt = mf_power_off,
  606. .get_boot_time = iSeries_get_boot_time,
  607. .set_rtc_time = iSeries_set_rtc_time,
  608. .get_rtc_time = iSeries_get_rtc_time,
  609. .calibrate_decr = generic_calibrate_decr,
  610. .progress = iSeries_progress,
  611. .probe = iseries_probe,
  612. /* XXX Implement enable_pmcs for iSeries */
  613. };
  614. struct blob {
  615. unsigned char data[PAGE_SIZE];
  616. unsigned long next;
  617. };
  618. struct iseries_flat_dt {
  619. struct boot_param_header header;
  620. u64 reserve_map[2];
  621. struct blob dt;
  622. struct blob strings;
  623. };
  624. struct iseries_flat_dt iseries_dt;
  625. void dt_init(struct iseries_flat_dt *dt)
  626. {
  627. dt->header.off_mem_rsvmap =
  628. offsetof(struct iseries_flat_dt, reserve_map);
  629. dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
  630. dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
  631. dt->header.totalsize = sizeof(struct iseries_flat_dt);
  632. dt->header.dt_strings_size = sizeof(struct blob);
  633. /* There is no notion of hardware cpu id on iSeries */
  634. dt->header.boot_cpuid_phys = smp_processor_id();
  635. dt->dt.next = (unsigned long)&dt->dt.data;
  636. dt->strings.next = (unsigned long)&dt->strings.data;
  637. dt->header.magic = OF_DT_HEADER;
  638. dt->header.version = 0x10;
  639. dt->header.last_comp_version = 0x10;
  640. dt->reserve_map[0] = 0;
  641. dt->reserve_map[1] = 0;
  642. }
  643. void dt_check_blob(struct blob *b)
  644. {
  645. if (b->next >= (unsigned long)&b->next) {
  646. DBG("Ran out of space in flat device tree blob!\n");
  647. BUG();
  648. }
  649. }
  650. void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
  651. {
  652. *((u32*)dt->dt.next) = value;
  653. dt->dt.next += sizeof(u32);
  654. dt_check_blob(&dt->dt);
  655. }
  656. void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
  657. {
  658. *((u64*)dt->dt.next) = value;
  659. dt->dt.next += sizeof(u64);
  660. dt_check_blob(&dt->dt);
  661. }
  662. unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
  663. {
  664. unsigned long start = blob->next - (unsigned long)blob->data;
  665. memcpy((char *)blob->next, data, len);
  666. blob->next = _ALIGN(blob->next + len, 4);
  667. dt_check_blob(blob);
  668. return start;
  669. }
  670. void dt_start_node(struct iseries_flat_dt *dt, char *name)
  671. {
  672. dt_push_u32(dt, OF_DT_BEGIN_NODE);
  673. dt_push_bytes(&dt->dt, name, strlen(name) + 1);
  674. }
  675. #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
  676. void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
  677. {
  678. unsigned long offset;
  679. dt_push_u32(dt, OF_DT_PROP);
  680. /* Length of the data */
  681. dt_push_u32(dt, len);
  682. /* Put the property name in the string blob. */
  683. offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
  684. /* The offset of the properties name in the string blob. */
  685. dt_push_u32(dt, (u32)offset);
  686. /* The actual data. */
  687. dt_push_bytes(&dt->dt, data, len);
  688. }
  689. void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
  690. {
  691. dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
  692. }
  693. void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
  694. {
  695. dt_prop(dt, name, (char *)&data, sizeof(u32));
  696. }
  697. void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
  698. {
  699. dt_prop(dt, name, (char *)&data, sizeof(u64));
  700. }
  701. void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
  702. {
  703. dt_prop(dt, name, (char *)data, sizeof(u64) * n);
  704. }
  705. void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
  706. {
  707. dt_prop(dt, name, (char *)data, sizeof(u32) * n);
  708. }
  709. void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
  710. {
  711. dt_prop(dt, name, NULL, 0);
  712. }
  713. void dt_cpus(struct iseries_flat_dt *dt)
  714. {
  715. unsigned char buf[32];
  716. unsigned char *p;
  717. unsigned int i, index;
  718. struct IoHriProcessorVpd *d;
  719. u32 pft_size[2];
  720. /* yuck */
  721. snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
  722. p = strchr(buf, ' ');
  723. if (!p) p = buf + strlen(buf);
  724. dt_start_node(dt, "cpus");
  725. dt_prop_u32(dt, "#address-cells", 1);
  726. dt_prop_u32(dt, "#size-cells", 0);
  727. pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
  728. pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
  729. for (i = 0; i < NR_CPUS; i++) {
  730. if (lppaca[i].dyn_proc_status >= 2)
  731. continue;
  732. snprintf(p, 32 - (p - buf), "@%d", i);
  733. dt_start_node(dt, buf);
  734. dt_prop_str(dt, "device_type", "cpu");
  735. index = lppaca[i].dyn_hv_phys_proc_index;
  736. d = &xIoHriProcessorVpd[index];
  737. dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
  738. dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
  739. dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
  740. dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
  741. /* magic conversions to Hz copied from old code */
  742. dt_prop_u32(dt, "clock-frequency",
  743. ((1UL << 34) * 1000000) / d->xProcFreq);
  744. dt_prop_u32(dt, "timebase-frequency",
  745. ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
  746. dt_prop_u32(dt, "reg", i);
  747. dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
  748. dt_end_node(dt);
  749. }
  750. dt_end_node(dt);
  751. }
  752. void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
  753. {
  754. u64 tmp[2];
  755. dt_init(dt);
  756. dt_start_node(dt, "");
  757. dt_prop_u32(dt, "#address-cells", 2);
  758. dt_prop_u32(dt, "#size-cells", 2);
  759. /* /memory */
  760. dt_start_node(dt, "memory@0");
  761. dt_prop_str(dt, "name", "memory");
  762. dt_prop_str(dt, "device_type", "memory");
  763. tmp[0] = 0;
  764. tmp[1] = phys_mem_size;
  765. dt_prop_u64_list(dt, "reg", tmp, 2);
  766. dt_end_node(dt);
  767. /* /chosen */
  768. dt_start_node(dt, "chosen");
  769. dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
  770. if (cmd_mem_limit)
  771. dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
  772. dt_end_node(dt);
  773. dt_cpus(dt);
  774. dt_end_node(dt);
  775. dt_push_u32(dt, OF_DT_END);
  776. }
  777. void * __init iSeries_early_setup(void)
  778. {
  779. unsigned long phys_mem_size;
  780. iSeries_fixup_klimit();
  781. /*
  782. * Initialize the table which translate Linux physical addresses to
  783. * AS/400 absolute addresses
  784. */
  785. phys_mem_size = build_iSeries_Memory_Map();
  786. iSeries_get_cmdline();
  787. /* Save unparsed command line copy for /proc/cmdline */
  788. strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
  789. /* Parse early parameters, in particular mem=x */
  790. parse_early_param();
  791. build_flat_dt(&iseries_dt, phys_mem_size);
  792. return (void *) __pa(&iseries_dt);
  793. }
  794. /*
  795. * On iSeries we just parse the mem=X option from the command line.
  796. * On pSeries it's a bit more complicated, see prom_init_mem()
  797. */
  798. static int __init early_parsemem(char *p)
  799. {
  800. if (p)
  801. cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
  802. return 0;
  803. }
  804. early_param("mem", early_parsemem);
  805. static void hvputc(char c)
  806. {
  807. if (c == '\n')
  808. hvputc('\r');
  809. HvCall_writeLogBuffer(&c, 1);
  810. }
  811. void __init udbg_init_iseries(void)
  812. {
  813. udbg_putc = hvputc;
  814. }