clock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846
  1. /*
  2. * linux/arch/arm/mach-omap1/clock.c
  3. *
  4. * Copyright (C) 2004 - 2005 Nokia corporation
  5. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  6. *
  7. * Modified to use omap shared clock framework by
  8. * Tony Lindgren <tony@atomide.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/list.h>
  17. #include <linux/errno.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <asm/mach-types.h>
  22. #include <mach/cpu.h>
  23. #include <mach/usb.h>
  24. #include <mach/clock.h>
  25. #include <mach/sram.h>
  26. static const struct clkops clkops_generic;
  27. static const struct clkops clkops_uart;
  28. static const struct clkops clkops_dspck;
  29. #include "clock.h"
  30. static int omap1_clk_enable_generic(struct clk * clk);
  31. static int omap1_clk_enable(struct clk *clk);
  32. static void omap1_clk_disable_generic(struct clk * clk);
  33. static void omap1_clk_disable(struct clk *clk);
  34. __u32 arm_idlect1_mask;
  35. /*-------------------------------------------------------------------------
  36. * Omap1 specific clock functions
  37. *-------------------------------------------------------------------------*/
  38. static void omap1_watchdog_recalc(struct clk * clk)
  39. {
  40. clk->rate = clk->parent->rate / 14;
  41. }
  42. static void omap1_uart_recalc(struct clk * clk)
  43. {
  44. unsigned int val = omap_readl(clk->enable_reg);
  45. if (val & clk->enable_bit)
  46. clk->rate = 48000000;
  47. else
  48. clk->rate = 12000000;
  49. }
  50. static void omap1_sossi_recalc(struct clk *clk)
  51. {
  52. u32 div = omap_readl(MOD_CONF_CTRL_1);
  53. div = (div >> 17) & 0x7;
  54. div++;
  55. clk->rate = clk->parent->rate / div;
  56. }
  57. static int omap1_clk_enable_dsp_domain(struct clk *clk)
  58. {
  59. int retval;
  60. retval = omap1_clk_enable(&api_ck.clk);
  61. if (!retval) {
  62. retval = omap1_clk_enable_generic(clk);
  63. omap1_clk_disable(&api_ck.clk);
  64. }
  65. return retval;
  66. }
  67. static void omap1_clk_disable_dsp_domain(struct clk *clk)
  68. {
  69. if (omap1_clk_enable(&api_ck.clk) == 0) {
  70. omap1_clk_disable_generic(clk);
  71. omap1_clk_disable(&api_ck.clk);
  72. }
  73. }
  74. static const struct clkops clkops_dspck = {
  75. .enable = &omap1_clk_enable_dsp_domain,
  76. .disable = &omap1_clk_disable_dsp_domain,
  77. };
  78. static int omap1_clk_enable_uart_functional(struct clk *clk)
  79. {
  80. int ret;
  81. struct uart_clk *uclk;
  82. ret = omap1_clk_enable_generic(clk);
  83. if (ret == 0) {
  84. /* Set smart idle acknowledgement mode */
  85. uclk = (struct uart_clk *)clk;
  86. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
  87. uclk->sysc_addr);
  88. }
  89. return ret;
  90. }
  91. static void omap1_clk_disable_uart_functional(struct clk *clk)
  92. {
  93. struct uart_clk *uclk;
  94. /* Set force idle acknowledgement mode */
  95. uclk = (struct uart_clk *)clk;
  96. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
  97. omap1_clk_disable_generic(clk);
  98. }
  99. static const struct clkops clkops_uart = {
  100. .enable = &omap1_clk_enable_uart_functional,
  101. .disable = &omap1_clk_disable_uart_functional,
  102. };
  103. static void omap1_clk_allow_idle(struct clk *clk)
  104. {
  105. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  106. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  107. return;
  108. if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
  109. arm_idlect1_mask |= 1 << iclk->idlect_shift;
  110. }
  111. static void omap1_clk_deny_idle(struct clk *clk)
  112. {
  113. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  114. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  115. return;
  116. if (iclk->no_idle_count++ == 0)
  117. arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
  118. }
  119. static __u16 verify_ckctl_value(__u16 newval)
  120. {
  121. /* This function checks for following limitations set
  122. * by the hardware (all conditions must be true):
  123. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  124. * ARM_CK >= TC_CK
  125. * DSP_CK >= TC_CK
  126. * DSPMMU_CK >= TC_CK
  127. *
  128. * In addition following rules are enforced:
  129. * LCD_CK <= TC_CK
  130. * ARMPER_CK <= TC_CK
  131. *
  132. * However, maximum frequencies are not checked for!
  133. */
  134. __u8 per_exp;
  135. __u8 lcd_exp;
  136. __u8 arm_exp;
  137. __u8 dsp_exp;
  138. __u8 tc_exp;
  139. __u8 dspmmu_exp;
  140. per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
  141. lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
  142. arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
  143. dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
  144. tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
  145. dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
  146. if (dspmmu_exp < dsp_exp)
  147. dspmmu_exp = dsp_exp;
  148. if (dspmmu_exp > dsp_exp+1)
  149. dspmmu_exp = dsp_exp+1;
  150. if (tc_exp < arm_exp)
  151. tc_exp = arm_exp;
  152. if (tc_exp < dspmmu_exp)
  153. tc_exp = dspmmu_exp;
  154. if (tc_exp > lcd_exp)
  155. lcd_exp = tc_exp;
  156. if (tc_exp > per_exp)
  157. per_exp = tc_exp;
  158. newval &= 0xf000;
  159. newval |= per_exp << CKCTL_PERDIV_OFFSET;
  160. newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
  161. newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
  162. newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
  163. newval |= tc_exp << CKCTL_TCDIV_OFFSET;
  164. newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
  165. return newval;
  166. }
  167. static int calc_dsor_exp(struct clk *clk, unsigned long rate)
  168. {
  169. /* Note: If target frequency is too low, this function will return 4,
  170. * which is invalid value. Caller must check for this value and act
  171. * accordingly.
  172. *
  173. * Note: This function does not check for following limitations set
  174. * by the hardware (all conditions must be true):
  175. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  176. * ARM_CK >= TC_CK
  177. * DSP_CK >= TC_CK
  178. * DSPMMU_CK >= TC_CK
  179. */
  180. unsigned long realrate;
  181. struct clk * parent;
  182. unsigned dsor_exp;
  183. if (unlikely(!(clk->flags & RATE_CKCTL)))
  184. return -EINVAL;
  185. parent = clk->parent;
  186. if (unlikely(parent == NULL))
  187. return -EIO;
  188. realrate = parent->rate;
  189. for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
  190. if (realrate <= rate)
  191. break;
  192. realrate /= 2;
  193. }
  194. return dsor_exp;
  195. }
  196. static void omap1_ckctl_recalc(struct clk * clk)
  197. {
  198. int dsor;
  199. /* Calculate divisor encoded as 2-bit exponent */
  200. dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
  201. if (unlikely(clk->rate == clk->parent->rate / dsor))
  202. return; /* No change, quick exit */
  203. clk->rate = clk->parent->rate / dsor;
  204. if (unlikely(clk->flags & RATE_PROPAGATES))
  205. propagate_rate(clk);
  206. }
  207. static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
  208. {
  209. int dsor;
  210. /* Calculate divisor encoded as 2-bit exponent
  211. *
  212. * The clock control bits are in DSP domain,
  213. * so api_ck is needed for access.
  214. * Note that DSP_CKCTL virt addr = phys addr, so
  215. * we must use __raw_readw() instead of omap_readw().
  216. */
  217. omap1_clk_enable(&api_ck.clk);
  218. dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
  219. omap1_clk_disable(&api_ck.clk);
  220. if (unlikely(clk->rate == clk->parent->rate / dsor))
  221. return; /* No change, quick exit */
  222. clk->rate = clk->parent->rate / dsor;
  223. if (unlikely(clk->flags & RATE_PROPAGATES))
  224. propagate_rate(clk);
  225. }
  226. /* MPU virtual clock functions */
  227. static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
  228. {
  229. /* Find the highest supported frequency <= rate and switch to it */
  230. struct mpu_rate * ptr;
  231. if (clk != &virtual_ck_mpu)
  232. return -EINVAL;
  233. for (ptr = rate_table; ptr->rate; ptr++) {
  234. if (ptr->xtal != ck_ref.rate)
  235. continue;
  236. /* DPLL1 cannot be reprogrammed without risking system crash */
  237. if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
  238. continue;
  239. /* Can check only after xtal frequency check */
  240. if (ptr->rate <= rate)
  241. break;
  242. }
  243. if (!ptr->rate)
  244. return -EINVAL;
  245. /*
  246. * In most cases we should not need to reprogram DPLL.
  247. * Reprogramming the DPLL is tricky, it must be done from SRAM.
  248. * (on 730, bit 13 must always be 1)
  249. */
  250. if (cpu_is_omap730())
  251. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000);
  252. else
  253. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
  254. ck_dpll1.rate = ptr->pll_rate;
  255. return 0;
  256. }
  257. static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
  258. {
  259. int ret = -EINVAL;
  260. int dsor_exp;
  261. __u16 regval;
  262. if (clk->flags & RATE_CKCTL) {
  263. dsor_exp = calc_dsor_exp(clk, rate);
  264. if (dsor_exp > 3)
  265. dsor_exp = -EINVAL;
  266. if (dsor_exp < 0)
  267. return dsor_exp;
  268. regval = __raw_readw(DSP_CKCTL);
  269. regval &= ~(3 << clk->rate_offset);
  270. regval |= dsor_exp << clk->rate_offset;
  271. __raw_writew(regval, DSP_CKCTL);
  272. clk->rate = clk->parent->rate / (1 << dsor_exp);
  273. ret = 0;
  274. }
  275. return ret;
  276. }
  277. static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
  278. {
  279. /* Find the highest supported frequency <= rate */
  280. struct mpu_rate * ptr;
  281. long highest_rate;
  282. if (clk != &virtual_ck_mpu)
  283. return -EINVAL;
  284. highest_rate = -EINVAL;
  285. for (ptr = rate_table; ptr->rate; ptr++) {
  286. if (ptr->xtal != ck_ref.rate)
  287. continue;
  288. highest_rate = ptr->rate;
  289. /* Can check only after xtal frequency check */
  290. if (ptr->rate <= rate)
  291. break;
  292. }
  293. return highest_rate;
  294. }
  295. static unsigned calc_ext_dsor(unsigned long rate)
  296. {
  297. unsigned dsor;
  298. /* MCLK and BCLK divisor selection is not linear:
  299. * freq = 96MHz / dsor
  300. *
  301. * RATIO_SEL range: dsor <-> RATIO_SEL
  302. * 0..6: (RATIO_SEL+2) <-> (dsor-2)
  303. * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
  304. * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
  305. * can not be used.
  306. */
  307. for (dsor = 2; dsor < 96; ++dsor) {
  308. if ((dsor & 1) && dsor > 8)
  309. continue;
  310. if (rate >= 96000000 / dsor)
  311. break;
  312. }
  313. return dsor;
  314. }
  315. /* Only needed on 1510 */
  316. static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
  317. {
  318. unsigned int val;
  319. val = omap_readl(clk->enable_reg);
  320. if (rate == 12000000)
  321. val &= ~(1 << clk->enable_bit);
  322. else if (rate == 48000000)
  323. val |= (1 << clk->enable_bit);
  324. else
  325. return -EINVAL;
  326. omap_writel(val, clk->enable_reg);
  327. clk->rate = rate;
  328. return 0;
  329. }
  330. /* External clock (MCLK & BCLK) functions */
  331. static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
  332. {
  333. unsigned dsor;
  334. __u16 ratio_bits;
  335. dsor = calc_ext_dsor(rate);
  336. clk->rate = 96000000 / dsor;
  337. if (dsor > 8)
  338. ratio_bits = ((dsor - 8) / 2 + 6) << 2;
  339. else
  340. ratio_bits = (dsor - 2) << 2;
  341. ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
  342. omap_writew(ratio_bits, clk->enable_reg);
  343. return 0;
  344. }
  345. static int omap1_set_sossi_rate(struct clk *clk, unsigned long rate)
  346. {
  347. u32 l;
  348. int div;
  349. unsigned long p_rate;
  350. p_rate = clk->parent->rate;
  351. /* Round towards slower frequency */
  352. div = (p_rate + rate - 1) / rate;
  353. div--;
  354. if (div < 0 || div > 7)
  355. return -EINVAL;
  356. l = omap_readl(MOD_CONF_CTRL_1);
  357. l &= ~(7 << 17);
  358. l |= div << 17;
  359. omap_writel(l, MOD_CONF_CTRL_1);
  360. clk->rate = p_rate / (div + 1);
  361. return 0;
  362. }
  363. static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
  364. {
  365. return 96000000 / calc_ext_dsor(rate);
  366. }
  367. static void omap1_init_ext_clk(struct clk * clk)
  368. {
  369. unsigned dsor;
  370. __u16 ratio_bits;
  371. /* Determine current rate and ensure clock is based on 96MHz APLL */
  372. ratio_bits = omap_readw(clk->enable_reg) & ~1;
  373. omap_writew(ratio_bits, clk->enable_reg);
  374. ratio_bits = (ratio_bits & 0xfc) >> 2;
  375. if (ratio_bits > 6)
  376. dsor = (ratio_bits - 6) * 2 + 8;
  377. else
  378. dsor = ratio_bits + 2;
  379. clk-> rate = 96000000 / dsor;
  380. }
  381. static int omap1_clk_enable(struct clk *clk)
  382. {
  383. int ret = 0;
  384. if (clk->usecount++ == 0) {
  385. if (likely(clk->parent)) {
  386. ret = omap1_clk_enable(clk->parent);
  387. if (unlikely(ret != 0)) {
  388. clk->usecount--;
  389. return ret;
  390. }
  391. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  392. omap1_clk_deny_idle(clk->parent);
  393. }
  394. ret = clk->ops->enable(clk);
  395. if (unlikely(ret != 0) && clk->parent) {
  396. omap1_clk_disable(clk->parent);
  397. clk->usecount--;
  398. }
  399. }
  400. return ret;
  401. }
  402. static void omap1_clk_disable(struct clk *clk)
  403. {
  404. if (clk->usecount > 0 && !(--clk->usecount)) {
  405. clk->ops->disable(clk);
  406. if (likely(clk->parent)) {
  407. omap1_clk_disable(clk->parent);
  408. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  409. omap1_clk_allow_idle(clk->parent);
  410. }
  411. }
  412. }
  413. static int omap1_clk_enable_generic(struct clk *clk)
  414. {
  415. __u16 regval16;
  416. __u32 regval32;
  417. if (unlikely(clk->enable_reg == NULL)) {
  418. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  419. clk->name);
  420. return -EINVAL;
  421. }
  422. if (clk->flags & ENABLE_REG_32BIT) {
  423. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  424. regval32 = __raw_readl(clk->enable_reg);
  425. regval32 |= (1 << clk->enable_bit);
  426. __raw_writel(regval32, clk->enable_reg);
  427. } else {
  428. regval32 = omap_readl(clk->enable_reg);
  429. regval32 |= (1 << clk->enable_bit);
  430. omap_writel(regval32, clk->enable_reg);
  431. }
  432. } else {
  433. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  434. regval16 = __raw_readw(clk->enable_reg);
  435. regval16 |= (1 << clk->enable_bit);
  436. __raw_writew(regval16, clk->enable_reg);
  437. } else {
  438. regval16 = omap_readw(clk->enable_reg);
  439. regval16 |= (1 << clk->enable_bit);
  440. omap_writew(regval16, clk->enable_reg);
  441. }
  442. }
  443. return 0;
  444. }
  445. static void omap1_clk_disable_generic(struct clk *clk)
  446. {
  447. __u16 regval16;
  448. __u32 regval32;
  449. if (clk->enable_reg == NULL)
  450. return;
  451. if (clk->flags & ENABLE_REG_32BIT) {
  452. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  453. regval32 = __raw_readl(clk->enable_reg);
  454. regval32 &= ~(1 << clk->enable_bit);
  455. __raw_writel(regval32, clk->enable_reg);
  456. } else {
  457. regval32 = omap_readl(clk->enable_reg);
  458. regval32 &= ~(1 << clk->enable_bit);
  459. omap_writel(regval32, clk->enable_reg);
  460. }
  461. } else {
  462. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  463. regval16 = __raw_readw(clk->enable_reg);
  464. regval16 &= ~(1 << clk->enable_bit);
  465. __raw_writew(regval16, clk->enable_reg);
  466. } else {
  467. regval16 = omap_readw(clk->enable_reg);
  468. regval16 &= ~(1 << clk->enable_bit);
  469. omap_writew(regval16, clk->enable_reg);
  470. }
  471. }
  472. }
  473. static const struct clkops clkops_generic = {
  474. .enable = &omap1_clk_enable_generic,
  475. .disable = &omap1_clk_disable_generic,
  476. };
  477. static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
  478. {
  479. int dsor_exp;
  480. if (clk->flags & RATE_FIXED)
  481. return clk->rate;
  482. if (clk->flags & RATE_CKCTL) {
  483. dsor_exp = calc_dsor_exp(clk, rate);
  484. if (dsor_exp < 0)
  485. return dsor_exp;
  486. if (dsor_exp > 3)
  487. dsor_exp = 3;
  488. return clk->parent->rate / (1 << dsor_exp);
  489. }
  490. if (clk->round_rate != NULL)
  491. return clk->round_rate(clk, rate);
  492. return clk->rate;
  493. }
  494. static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
  495. {
  496. int ret = -EINVAL;
  497. int dsor_exp;
  498. __u16 regval;
  499. if (clk->set_rate)
  500. ret = clk->set_rate(clk, rate);
  501. else if (clk->flags & RATE_CKCTL) {
  502. dsor_exp = calc_dsor_exp(clk, rate);
  503. if (dsor_exp > 3)
  504. dsor_exp = -EINVAL;
  505. if (dsor_exp < 0)
  506. return dsor_exp;
  507. regval = omap_readw(ARM_CKCTL);
  508. regval &= ~(3 << clk->rate_offset);
  509. regval |= dsor_exp << clk->rate_offset;
  510. regval = verify_ckctl_value(regval);
  511. omap_writew(regval, ARM_CKCTL);
  512. clk->rate = clk->parent->rate / (1 << dsor_exp);
  513. ret = 0;
  514. }
  515. return ret;
  516. }
  517. /*-------------------------------------------------------------------------
  518. * Omap1 clock reset and init functions
  519. *-------------------------------------------------------------------------*/
  520. #ifdef CONFIG_OMAP_RESET_CLOCKS
  521. static void __init omap1_clk_disable_unused(struct clk *clk)
  522. {
  523. __u32 regval32;
  524. /* Clocks in the DSP domain need api_ck. Just assume bootloader
  525. * has not enabled any DSP clocks */
  526. if (clk->enable_reg == DSP_IDLECT2) {
  527. printk(KERN_INFO "Skipping reset check for DSP domain "
  528. "clock \"%s\"\n", clk->name);
  529. return;
  530. }
  531. /* Is the clock already disabled? */
  532. if (clk->flags & ENABLE_REG_32BIT) {
  533. if (clk->flags & VIRTUAL_IO_ADDRESS)
  534. regval32 = __raw_readl(clk->enable_reg);
  535. else
  536. regval32 = omap_readl(clk->enable_reg);
  537. } else {
  538. if (clk->flags & VIRTUAL_IO_ADDRESS)
  539. regval32 = __raw_readw(clk->enable_reg);
  540. else
  541. regval32 = omap_readw(clk->enable_reg);
  542. }
  543. if ((regval32 & (1 << clk->enable_bit)) == 0)
  544. return;
  545. /* FIXME: This clock seems to be necessary but no-one
  546. * has asked for its activation. */
  547. if (clk == &tc2_ck /* FIX: pm.c (SRAM), CCP, Camera */
  548. || clk == &ck_dpll1out.clk /* FIX: SoSSI, SSR */
  549. || clk == &arm_gpio_ck /* FIX: GPIO code for 1510 */
  550. ) {
  551. printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
  552. clk->name);
  553. return;
  554. }
  555. printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name);
  556. clk->ops->disable(clk);
  557. printk(" done\n");
  558. }
  559. #else
  560. #define omap1_clk_disable_unused NULL
  561. #endif
  562. static struct clk_functions omap1_clk_functions = {
  563. .clk_enable = omap1_clk_enable,
  564. .clk_disable = omap1_clk_disable,
  565. .clk_round_rate = omap1_clk_round_rate,
  566. .clk_set_rate = omap1_clk_set_rate,
  567. .clk_disable_unused = omap1_clk_disable_unused,
  568. };
  569. int __init omap1_clk_init(void)
  570. {
  571. struct clk ** clkp;
  572. const struct omap_clock_config *info;
  573. int crystal_type = 0; /* Default 12 MHz */
  574. u32 reg;
  575. #ifdef CONFIG_DEBUG_LL
  576. /* Resets some clocks that may be left on from bootloader,
  577. * but leaves serial clocks on.
  578. */
  579. omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
  580. #endif
  581. /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
  582. reg = omap_readw(SOFT_REQ_REG) & (1 << 4);
  583. omap_writew(reg, SOFT_REQ_REG);
  584. if (!cpu_is_omap15xx())
  585. omap_writew(0, SOFT_REQ_REG2);
  586. clk_init(&omap1_clk_functions);
  587. /* By default all idlect1 clocks are allowed to idle */
  588. arm_idlect1_mask = ~0;
  589. for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
  590. if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
  591. clk_register(*clkp);
  592. continue;
  593. }
  594. if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
  595. clk_register(*clkp);
  596. continue;
  597. }
  598. if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
  599. clk_register(*clkp);
  600. continue;
  601. }
  602. if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) {
  603. clk_register(*clkp);
  604. continue;
  605. }
  606. }
  607. info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
  608. if (info != NULL) {
  609. if (!cpu_is_omap15xx())
  610. crystal_type = info->system_clock_type;
  611. }
  612. #if defined(CONFIG_ARCH_OMAP730)
  613. ck_ref.rate = 13000000;
  614. #elif defined(CONFIG_ARCH_OMAP16XX)
  615. if (crystal_type == 2)
  616. ck_ref.rate = 19200000;
  617. #endif
  618. printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
  619. omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
  620. omap_readw(ARM_CKCTL));
  621. /* We want to be in syncronous scalable mode */
  622. omap_writew(0x1000, ARM_SYSST);
  623. #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
  624. /* Use values set by bootloader. Determine PLL rate and recalculate
  625. * dependent clocks as if kernel had changed PLL or divisors.
  626. */
  627. {
  628. unsigned pll_ctl_val = omap_readw(DPLL_CTL);
  629. ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
  630. if (pll_ctl_val & 0x10) {
  631. /* PLL enabled, apply multiplier and divisor */
  632. if (pll_ctl_val & 0xf80)
  633. ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
  634. ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
  635. } else {
  636. /* PLL disabled, apply bypass divisor */
  637. switch (pll_ctl_val & 0xc) {
  638. case 0:
  639. break;
  640. case 0x4:
  641. ck_dpll1.rate /= 2;
  642. break;
  643. default:
  644. ck_dpll1.rate /= 4;
  645. break;
  646. }
  647. }
  648. }
  649. #else
  650. /* Find the highest supported frequency and enable it */
  651. if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
  652. printk(KERN_ERR "System frequencies not set. Check your config.\n");
  653. /* Guess sane values (60MHz) */
  654. omap_writew(0x2290, DPLL_CTL);
  655. omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL);
  656. ck_dpll1.rate = 60000000;
  657. }
  658. #endif
  659. propagate_rate(&ck_dpll1);
  660. /* Cache rates for clocks connected to ck_ref (not dpll1) */
  661. propagate_rate(&ck_ref);
  662. printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
  663. "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
  664. ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
  665. ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
  666. arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
  667. #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE)
  668. /* Select slicer output as OMAP input clock */
  669. omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
  670. #endif
  671. /* Amstrad Delta wants BCLK high when inactive */
  672. if (machine_is_ams_delta())
  673. omap_writel(omap_readl(ULPD_CLOCK_CTRL) |
  674. (1 << SDW_MCLK_INV_BIT),
  675. ULPD_CLOCK_CTRL);
  676. /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
  677. /* (on 730, bit 13 must not be cleared) */
  678. if (cpu_is_omap730())
  679. omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL);
  680. else
  681. omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
  682. /* Put DSP/MPUI into reset until needed */
  683. omap_writew(0, ARM_RSTCT1);
  684. omap_writew(1, ARM_RSTCT2);
  685. omap_writew(0x400, ARM_IDLECT1);
  686. /*
  687. * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
  688. * of the ARM_IDLECT2 register must be set to zero. The power-on
  689. * default value of this bit is one.
  690. */
  691. omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
  692. /*
  693. * Only enable those clocks we will need, let the drivers
  694. * enable other clocks as necessary
  695. */
  696. clk_enable(&armper_ck.clk);
  697. clk_enable(&armxor_ck.clk);
  698. clk_enable(&armtim_ck.clk); /* This should be done by timer code */
  699. if (cpu_is_omap15xx())
  700. clk_enable(&arm_gpio_ck);
  701. return 0;
  702. }