sge.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241
  1. /*
  2. * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/skbuff.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/if_vlan.h>
  36. #include <linux/ip.h>
  37. #include <linux/tcp.h>
  38. #include <linux/dma-mapping.h>
  39. #include <net/arp.h>
  40. #include "common.h"
  41. #include "regs.h"
  42. #include "sge_defs.h"
  43. #include "t3_cpl.h"
  44. #include "firmware_exports.h"
  45. #define USE_GTS 0
  46. #define SGE_RX_SM_BUF_SIZE 1536
  47. #define SGE_RX_COPY_THRES 256
  48. #define SGE_RX_PULL_LEN 128
  49. /*
  50. * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
  51. * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
  52. * directly.
  53. */
  54. #define FL0_PG_CHUNK_SIZE 2048
  55. #define FL0_PG_ORDER 0
  56. #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
  57. #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
  58. #define SGE_RX_DROP_THRES 16
  59. #define RX_RECLAIM_PERIOD (HZ/4)
  60. /*
  61. * Max number of Rx buffers we replenish at a time.
  62. */
  63. #define MAX_RX_REFILL 16U
  64. /*
  65. * Period of the Tx buffer reclaim timer. This timer does not need to run
  66. * frequently as Tx buffers are usually reclaimed by new Tx packets.
  67. */
  68. #define TX_RECLAIM_PERIOD (HZ / 4)
  69. #define TX_RECLAIM_TIMER_CHUNK 64U
  70. #define TX_RECLAIM_CHUNK 16U
  71. /* WR size in bytes */
  72. #define WR_LEN (WR_FLITS * 8)
  73. /*
  74. * Types of Tx queues in each queue set. Order here matters, do not change.
  75. */
  76. enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
  77. /* Values for sge_txq.flags */
  78. enum {
  79. TXQ_RUNNING = 1 << 0, /* fetch engine is running */
  80. TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
  81. };
  82. struct tx_desc {
  83. __be64 flit[TX_DESC_FLITS];
  84. };
  85. struct rx_desc {
  86. __be32 addr_lo;
  87. __be32 len_gen;
  88. __be32 gen2;
  89. __be32 addr_hi;
  90. };
  91. struct tx_sw_desc { /* SW state per Tx descriptor */
  92. struct sk_buff *skb;
  93. u8 eop; /* set if last descriptor for packet */
  94. u8 addr_idx; /* buffer index of first SGL entry in descriptor */
  95. u8 fragidx; /* first page fragment associated with descriptor */
  96. s8 sflit; /* start flit of first SGL entry in descriptor */
  97. };
  98. struct rx_sw_desc { /* SW state per Rx descriptor */
  99. union {
  100. struct sk_buff *skb;
  101. struct fl_pg_chunk pg_chunk;
  102. };
  103. DECLARE_PCI_UNMAP_ADDR(dma_addr);
  104. };
  105. struct rsp_desc { /* response queue descriptor */
  106. struct rss_header rss_hdr;
  107. __be32 flags;
  108. __be32 len_cq;
  109. u8 imm_data[47];
  110. u8 intr_gen;
  111. };
  112. /*
  113. * Holds unmapping information for Tx packets that need deferred unmapping.
  114. * This structure lives at skb->head and must be allocated by callers.
  115. */
  116. struct deferred_unmap_info {
  117. struct pci_dev *pdev;
  118. dma_addr_t addr[MAX_SKB_FRAGS + 1];
  119. };
  120. /*
  121. * Maps a number of flits to the number of Tx descriptors that can hold them.
  122. * The formula is
  123. *
  124. * desc = 1 + (flits - 2) / (WR_FLITS - 1).
  125. *
  126. * HW allows up to 4 descriptors to be combined into a WR.
  127. */
  128. static u8 flit_desc_map[] = {
  129. 0,
  130. #if SGE_NUM_GENBITS == 1
  131. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  132. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  133. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  134. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
  135. #elif SGE_NUM_GENBITS == 2
  136. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  137. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  138. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  139. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  140. #else
  141. # error "SGE_NUM_GENBITS must be 1 or 2"
  142. #endif
  143. };
  144. static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
  145. {
  146. return container_of(q, struct sge_qset, fl[qidx]);
  147. }
  148. static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
  149. {
  150. return container_of(q, struct sge_qset, rspq);
  151. }
  152. static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
  153. {
  154. return container_of(q, struct sge_qset, txq[qidx]);
  155. }
  156. /**
  157. * refill_rspq - replenish an SGE response queue
  158. * @adapter: the adapter
  159. * @q: the response queue to replenish
  160. * @credits: how many new responses to make available
  161. *
  162. * Replenishes a response queue by making the supplied number of responses
  163. * available to HW.
  164. */
  165. static inline void refill_rspq(struct adapter *adapter,
  166. const struct sge_rspq *q, unsigned int credits)
  167. {
  168. rmb();
  169. t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
  170. V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
  171. }
  172. /**
  173. * need_skb_unmap - does the platform need unmapping of sk_buffs?
  174. *
  175. * Returns true if the platfrom needs sk_buff unmapping. The compiler
  176. * optimizes away unecessary code if this returns true.
  177. */
  178. static inline int need_skb_unmap(void)
  179. {
  180. /*
  181. * This structure is used to tell if the platfrom needs buffer
  182. * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
  183. */
  184. struct dummy {
  185. DECLARE_PCI_UNMAP_ADDR(addr);
  186. };
  187. return sizeof(struct dummy) != 0;
  188. }
  189. /**
  190. * unmap_skb - unmap a packet main body and its page fragments
  191. * @skb: the packet
  192. * @q: the Tx queue containing Tx descriptors for the packet
  193. * @cidx: index of Tx descriptor
  194. * @pdev: the PCI device
  195. *
  196. * Unmap the main body of an sk_buff and its page fragments, if any.
  197. * Because of the fairly complicated structure of our SGLs and the desire
  198. * to conserve space for metadata, the information necessary to unmap an
  199. * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
  200. * descriptors (the physical addresses of the various data buffers), and
  201. * the SW descriptor state (assorted indices). The send functions
  202. * initialize the indices for the first packet descriptor so we can unmap
  203. * the buffers held in the first Tx descriptor here, and we have enough
  204. * information at this point to set the state for the next Tx descriptor.
  205. *
  206. * Note that it is possible to clean up the first descriptor of a packet
  207. * before the send routines have written the next descriptors, but this
  208. * race does not cause any problem. We just end up writing the unmapping
  209. * info for the descriptor first.
  210. */
  211. static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
  212. unsigned int cidx, struct pci_dev *pdev)
  213. {
  214. const struct sg_ent *sgp;
  215. struct tx_sw_desc *d = &q->sdesc[cidx];
  216. int nfrags, frag_idx, curflit, j = d->addr_idx;
  217. sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
  218. frag_idx = d->fragidx;
  219. if (frag_idx == 0 && skb_headlen(skb)) {
  220. pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
  221. skb_headlen(skb), PCI_DMA_TODEVICE);
  222. j = 1;
  223. }
  224. curflit = d->sflit + 1 + j;
  225. nfrags = skb_shinfo(skb)->nr_frags;
  226. while (frag_idx < nfrags && curflit < WR_FLITS) {
  227. pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
  228. skb_shinfo(skb)->frags[frag_idx].size,
  229. PCI_DMA_TODEVICE);
  230. j ^= 1;
  231. if (j == 0) {
  232. sgp++;
  233. curflit++;
  234. }
  235. curflit++;
  236. frag_idx++;
  237. }
  238. if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
  239. d = cidx + 1 == q->size ? q->sdesc : d + 1;
  240. d->fragidx = frag_idx;
  241. d->addr_idx = j;
  242. d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
  243. }
  244. }
  245. /**
  246. * free_tx_desc - reclaims Tx descriptors and their buffers
  247. * @adapter: the adapter
  248. * @q: the Tx queue to reclaim descriptors from
  249. * @n: the number of descriptors to reclaim
  250. *
  251. * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
  252. * Tx buffers. Called with the Tx queue lock held.
  253. */
  254. static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
  255. unsigned int n)
  256. {
  257. struct tx_sw_desc *d;
  258. struct pci_dev *pdev = adapter->pdev;
  259. unsigned int cidx = q->cidx;
  260. const int need_unmap = need_skb_unmap() &&
  261. q->cntxt_id >= FW_TUNNEL_SGEEC_START;
  262. d = &q->sdesc[cidx];
  263. while (n--) {
  264. if (d->skb) { /* an SGL is present */
  265. if (need_unmap)
  266. unmap_skb(d->skb, q, cidx, pdev);
  267. if (d->eop)
  268. kfree_skb(d->skb);
  269. }
  270. ++d;
  271. if (++cidx == q->size) {
  272. cidx = 0;
  273. d = q->sdesc;
  274. }
  275. }
  276. q->cidx = cidx;
  277. }
  278. /**
  279. * reclaim_completed_tx - reclaims completed Tx descriptors
  280. * @adapter: the adapter
  281. * @q: the Tx queue to reclaim completed descriptors from
  282. * @chunk: maximum number of descriptors to reclaim
  283. *
  284. * Reclaims Tx descriptors that the SGE has indicated it has processed,
  285. * and frees the associated buffers if possible. Called with the Tx
  286. * queue's lock held.
  287. */
  288. static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
  289. struct sge_txq *q,
  290. unsigned int chunk)
  291. {
  292. unsigned int reclaim = q->processed - q->cleaned;
  293. reclaim = min(chunk, reclaim);
  294. if (reclaim) {
  295. free_tx_desc(adapter, q, reclaim);
  296. q->cleaned += reclaim;
  297. q->in_use -= reclaim;
  298. }
  299. return q->processed - q->cleaned;
  300. }
  301. /**
  302. * should_restart_tx - are there enough resources to restart a Tx queue?
  303. * @q: the Tx queue
  304. *
  305. * Checks if there are enough descriptors to restart a suspended Tx queue.
  306. */
  307. static inline int should_restart_tx(const struct sge_txq *q)
  308. {
  309. unsigned int r = q->processed - q->cleaned;
  310. return q->in_use - r < (q->size >> 1);
  311. }
  312. static void clear_rx_desc(const struct sge_fl *q, struct rx_sw_desc *d)
  313. {
  314. if (q->use_pages) {
  315. if (d->pg_chunk.page)
  316. put_page(d->pg_chunk.page);
  317. d->pg_chunk.page = NULL;
  318. } else {
  319. kfree_skb(d->skb);
  320. d->skb = NULL;
  321. }
  322. }
  323. /**
  324. * free_rx_bufs - free the Rx buffers on an SGE free list
  325. * @pdev: the PCI device associated with the adapter
  326. * @rxq: the SGE free list to clean up
  327. *
  328. * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
  329. * this queue should be stopped before calling this function.
  330. */
  331. static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
  332. {
  333. unsigned int cidx = q->cidx;
  334. while (q->credits--) {
  335. struct rx_sw_desc *d = &q->sdesc[cidx];
  336. pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
  337. q->buf_size, PCI_DMA_FROMDEVICE);
  338. clear_rx_desc(q, d);
  339. if (++cidx == q->size)
  340. cidx = 0;
  341. }
  342. if (q->pg_chunk.page) {
  343. __free_pages(q->pg_chunk.page, q->order);
  344. q->pg_chunk.page = NULL;
  345. }
  346. }
  347. /**
  348. * add_one_rx_buf - add a packet buffer to a free-buffer list
  349. * @va: buffer start VA
  350. * @len: the buffer length
  351. * @d: the HW Rx descriptor to write
  352. * @sd: the SW Rx descriptor to write
  353. * @gen: the generation bit value
  354. * @pdev: the PCI device associated with the adapter
  355. *
  356. * Add a buffer of the given length to the supplied HW and SW Rx
  357. * descriptors.
  358. */
  359. static inline int add_one_rx_buf(void *va, unsigned int len,
  360. struct rx_desc *d, struct rx_sw_desc *sd,
  361. unsigned int gen, struct pci_dev *pdev)
  362. {
  363. dma_addr_t mapping;
  364. mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
  365. if (unlikely(pci_dma_mapping_error(pdev, mapping)))
  366. return -ENOMEM;
  367. pci_unmap_addr_set(sd, dma_addr, mapping);
  368. d->addr_lo = cpu_to_be32(mapping);
  369. d->addr_hi = cpu_to_be32((u64) mapping >> 32);
  370. wmb();
  371. d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
  372. d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
  373. return 0;
  374. }
  375. static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
  376. unsigned int order)
  377. {
  378. if (!q->pg_chunk.page) {
  379. q->pg_chunk.page = alloc_pages(gfp, order);
  380. if (unlikely(!q->pg_chunk.page))
  381. return -ENOMEM;
  382. q->pg_chunk.va = page_address(q->pg_chunk.page);
  383. q->pg_chunk.offset = 0;
  384. }
  385. sd->pg_chunk = q->pg_chunk;
  386. q->pg_chunk.offset += q->buf_size;
  387. if (q->pg_chunk.offset == (PAGE_SIZE << order))
  388. q->pg_chunk.page = NULL;
  389. else {
  390. q->pg_chunk.va += q->buf_size;
  391. get_page(q->pg_chunk.page);
  392. }
  393. return 0;
  394. }
  395. static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
  396. {
  397. if (q->pend_cred >= q->credits / 4) {
  398. q->pend_cred = 0;
  399. t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
  400. }
  401. }
  402. /**
  403. * refill_fl - refill an SGE free-buffer list
  404. * @adapter: the adapter
  405. * @q: the free-list to refill
  406. * @n: the number of new buffers to allocate
  407. * @gfp: the gfp flags for allocating new buffers
  408. *
  409. * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
  410. * allocated with the supplied gfp flags. The caller must assure that
  411. * @n does not exceed the queue's capacity.
  412. */
  413. static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
  414. {
  415. void *buf_start;
  416. struct rx_sw_desc *sd = &q->sdesc[q->pidx];
  417. struct rx_desc *d = &q->desc[q->pidx];
  418. unsigned int count = 0;
  419. while (n--) {
  420. int err;
  421. if (q->use_pages) {
  422. if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
  423. nomem: q->alloc_failed++;
  424. break;
  425. }
  426. buf_start = sd->pg_chunk.va;
  427. } else {
  428. struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
  429. if (!skb)
  430. goto nomem;
  431. sd->skb = skb;
  432. buf_start = skb->data;
  433. }
  434. err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
  435. adap->pdev);
  436. if (unlikely(err)) {
  437. clear_rx_desc(q, sd);
  438. break;
  439. }
  440. d++;
  441. sd++;
  442. if (++q->pidx == q->size) {
  443. q->pidx = 0;
  444. q->gen ^= 1;
  445. sd = q->sdesc;
  446. d = q->desc;
  447. }
  448. count++;
  449. }
  450. q->credits += count;
  451. q->pend_cred += count;
  452. ring_fl_db(adap, q);
  453. return count;
  454. }
  455. static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
  456. {
  457. refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
  458. GFP_ATOMIC | __GFP_COMP);
  459. }
  460. /**
  461. * recycle_rx_buf - recycle a receive buffer
  462. * @adapter: the adapter
  463. * @q: the SGE free list
  464. * @idx: index of buffer to recycle
  465. *
  466. * Recycles the specified buffer on the given free list by adding it at
  467. * the next available slot on the list.
  468. */
  469. static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
  470. unsigned int idx)
  471. {
  472. struct rx_desc *from = &q->desc[idx];
  473. struct rx_desc *to = &q->desc[q->pidx];
  474. q->sdesc[q->pidx] = q->sdesc[idx];
  475. to->addr_lo = from->addr_lo; /* already big endian */
  476. to->addr_hi = from->addr_hi; /* likewise */
  477. wmb();
  478. to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
  479. to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
  480. if (++q->pidx == q->size) {
  481. q->pidx = 0;
  482. q->gen ^= 1;
  483. }
  484. q->credits++;
  485. q->pend_cred++;
  486. ring_fl_db(adap, q);
  487. }
  488. /**
  489. * alloc_ring - allocate resources for an SGE descriptor ring
  490. * @pdev: the PCI device
  491. * @nelem: the number of descriptors
  492. * @elem_size: the size of each descriptor
  493. * @sw_size: the size of the SW state associated with each ring element
  494. * @phys: the physical address of the allocated ring
  495. * @metadata: address of the array holding the SW state for the ring
  496. *
  497. * Allocates resources for an SGE descriptor ring, such as Tx queues,
  498. * free buffer lists, or response queues. Each SGE ring requires
  499. * space for its HW descriptors plus, optionally, space for the SW state
  500. * associated with each HW entry (the metadata). The function returns
  501. * three values: the virtual address for the HW ring (the return value
  502. * of the function), the physical address of the HW ring, and the address
  503. * of the SW ring.
  504. */
  505. static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
  506. size_t sw_size, dma_addr_t * phys, void *metadata)
  507. {
  508. size_t len = nelem * elem_size;
  509. void *s = NULL;
  510. void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
  511. if (!p)
  512. return NULL;
  513. if (sw_size && metadata) {
  514. s = kcalloc(nelem, sw_size, GFP_KERNEL);
  515. if (!s) {
  516. dma_free_coherent(&pdev->dev, len, p, *phys);
  517. return NULL;
  518. }
  519. *(void **)metadata = s;
  520. }
  521. memset(p, 0, len);
  522. return p;
  523. }
  524. /**
  525. * t3_reset_qset - reset a sge qset
  526. * @q: the queue set
  527. *
  528. * Reset the qset structure.
  529. * the NAPI structure is preserved in the event of
  530. * the qset's reincarnation, for example during EEH recovery.
  531. */
  532. static void t3_reset_qset(struct sge_qset *q)
  533. {
  534. if (q->adap &&
  535. !(q->adap->flags & NAPI_INIT)) {
  536. memset(q, 0, sizeof(*q));
  537. return;
  538. }
  539. q->adap = NULL;
  540. memset(&q->rspq, 0, sizeof(q->rspq));
  541. memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
  542. memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
  543. q->txq_stopped = 0;
  544. q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
  545. q->rx_reclaim_timer.function = NULL;
  546. q->lro_frag_tbl.nr_frags = q->lro_frag_tbl.len = 0;
  547. }
  548. /**
  549. * free_qset - free the resources of an SGE queue set
  550. * @adapter: the adapter owning the queue set
  551. * @q: the queue set
  552. *
  553. * Release the HW and SW resources associated with an SGE queue set, such
  554. * as HW contexts, packet buffers, and descriptor rings. Traffic to the
  555. * queue set must be quiesced prior to calling this.
  556. */
  557. static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
  558. {
  559. int i;
  560. struct pci_dev *pdev = adapter->pdev;
  561. for (i = 0; i < SGE_RXQ_PER_SET; ++i)
  562. if (q->fl[i].desc) {
  563. spin_lock_irq(&adapter->sge.reg_lock);
  564. t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
  565. spin_unlock_irq(&adapter->sge.reg_lock);
  566. free_rx_bufs(pdev, &q->fl[i]);
  567. kfree(q->fl[i].sdesc);
  568. dma_free_coherent(&pdev->dev,
  569. q->fl[i].size *
  570. sizeof(struct rx_desc), q->fl[i].desc,
  571. q->fl[i].phys_addr);
  572. }
  573. for (i = 0; i < SGE_TXQ_PER_SET; ++i)
  574. if (q->txq[i].desc) {
  575. spin_lock_irq(&adapter->sge.reg_lock);
  576. t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
  577. spin_unlock_irq(&adapter->sge.reg_lock);
  578. if (q->txq[i].sdesc) {
  579. free_tx_desc(adapter, &q->txq[i],
  580. q->txq[i].in_use);
  581. kfree(q->txq[i].sdesc);
  582. }
  583. dma_free_coherent(&pdev->dev,
  584. q->txq[i].size *
  585. sizeof(struct tx_desc),
  586. q->txq[i].desc, q->txq[i].phys_addr);
  587. __skb_queue_purge(&q->txq[i].sendq);
  588. }
  589. if (q->rspq.desc) {
  590. spin_lock_irq(&adapter->sge.reg_lock);
  591. t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
  592. spin_unlock_irq(&adapter->sge.reg_lock);
  593. dma_free_coherent(&pdev->dev,
  594. q->rspq.size * sizeof(struct rsp_desc),
  595. q->rspq.desc, q->rspq.phys_addr);
  596. }
  597. t3_reset_qset(q);
  598. }
  599. /**
  600. * init_qset_cntxt - initialize an SGE queue set context info
  601. * @qs: the queue set
  602. * @id: the queue set id
  603. *
  604. * Initializes the TIDs and context ids for the queues of a queue set.
  605. */
  606. static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
  607. {
  608. qs->rspq.cntxt_id = id;
  609. qs->fl[0].cntxt_id = 2 * id;
  610. qs->fl[1].cntxt_id = 2 * id + 1;
  611. qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
  612. qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
  613. qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
  614. qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
  615. qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
  616. }
  617. /**
  618. * sgl_len - calculates the size of an SGL of the given capacity
  619. * @n: the number of SGL entries
  620. *
  621. * Calculates the number of flits needed for a scatter/gather list that
  622. * can hold the given number of entries.
  623. */
  624. static inline unsigned int sgl_len(unsigned int n)
  625. {
  626. /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
  627. return (3 * n) / 2 + (n & 1);
  628. }
  629. /**
  630. * flits_to_desc - returns the num of Tx descriptors for the given flits
  631. * @n: the number of flits
  632. *
  633. * Calculates the number of Tx descriptors needed for the supplied number
  634. * of flits.
  635. */
  636. static inline unsigned int flits_to_desc(unsigned int n)
  637. {
  638. BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
  639. return flit_desc_map[n];
  640. }
  641. /**
  642. * get_packet - return the next ingress packet buffer from a free list
  643. * @adap: the adapter that received the packet
  644. * @fl: the SGE free list holding the packet
  645. * @len: the packet length including any SGE padding
  646. * @drop_thres: # of remaining buffers before we start dropping packets
  647. *
  648. * Get the next packet from a free list and complete setup of the
  649. * sk_buff. If the packet is small we make a copy and recycle the
  650. * original buffer, otherwise we use the original buffer itself. If a
  651. * positive drop threshold is supplied packets are dropped and their
  652. * buffers recycled if (a) the number of remaining buffers is under the
  653. * threshold and the packet is too big to copy, or (b) the packet should
  654. * be copied but there is no memory for the copy.
  655. */
  656. static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
  657. unsigned int len, unsigned int drop_thres)
  658. {
  659. struct sk_buff *skb = NULL;
  660. struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
  661. prefetch(sd->skb->data);
  662. fl->credits--;
  663. if (len <= SGE_RX_COPY_THRES) {
  664. skb = alloc_skb(len, GFP_ATOMIC);
  665. if (likely(skb != NULL)) {
  666. __skb_put(skb, len);
  667. pci_dma_sync_single_for_cpu(adap->pdev,
  668. pci_unmap_addr(sd, dma_addr), len,
  669. PCI_DMA_FROMDEVICE);
  670. memcpy(skb->data, sd->skb->data, len);
  671. pci_dma_sync_single_for_device(adap->pdev,
  672. pci_unmap_addr(sd, dma_addr), len,
  673. PCI_DMA_FROMDEVICE);
  674. } else if (!drop_thres)
  675. goto use_orig_buf;
  676. recycle:
  677. recycle_rx_buf(adap, fl, fl->cidx);
  678. return skb;
  679. }
  680. if (unlikely(fl->credits < drop_thres) &&
  681. refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
  682. GFP_ATOMIC | __GFP_COMP) == 0)
  683. goto recycle;
  684. use_orig_buf:
  685. pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
  686. fl->buf_size, PCI_DMA_FROMDEVICE);
  687. skb = sd->skb;
  688. skb_put(skb, len);
  689. __refill_fl(adap, fl);
  690. return skb;
  691. }
  692. /**
  693. * get_packet_pg - return the next ingress packet buffer from a free list
  694. * @adap: the adapter that received the packet
  695. * @fl: the SGE free list holding the packet
  696. * @len: the packet length including any SGE padding
  697. * @drop_thres: # of remaining buffers before we start dropping packets
  698. *
  699. * Get the next packet from a free list populated with page chunks.
  700. * If the packet is small we make a copy and recycle the original buffer,
  701. * otherwise we attach the original buffer as a page fragment to a fresh
  702. * sk_buff. If a positive drop threshold is supplied packets are dropped
  703. * and their buffers recycled if (a) the number of remaining buffers is
  704. * under the threshold and the packet is too big to copy, or (b) there's
  705. * no system memory.
  706. *
  707. * Note: this function is similar to @get_packet but deals with Rx buffers
  708. * that are page chunks rather than sk_buffs.
  709. */
  710. static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
  711. struct sge_rspq *q, unsigned int len,
  712. unsigned int drop_thres)
  713. {
  714. struct sk_buff *newskb, *skb;
  715. struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
  716. newskb = skb = q->pg_skb;
  717. if (!skb && (len <= SGE_RX_COPY_THRES)) {
  718. newskb = alloc_skb(len, GFP_ATOMIC);
  719. if (likely(newskb != NULL)) {
  720. __skb_put(newskb, len);
  721. pci_dma_sync_single_for_cpu(adap->pdev,
  722. pci_unmap_addr(sd, dma_addr), len,
  723. PCI_DMA_FROMDEVICE);
  724. memcpy(newskb->data, sd->pg_chunk.va, len);
  725. pci_dma_sync_single_for_device(adap->pdev,
  726. pci_unmap_addr(sd, dma_addr), len,
  727. PCI_DMA_FROMDEVICE);
  728. } else if (!drop_thres)
  729. return NULL;
  730. recycle:
  731. fl->credits--;
  732. recycle_rx_buf(adap, fl, fl->cidx);
  733. q->rx_recycle_buf++;
  734. return newskb;
  735. }
  736. if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
  737. goto recycle;
  738. if (!skb)
  739. newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
  740. if (unlikely(!newskb)) {
  741. if (!drop_thres)
  742. return NULL;
  743. goto recycle;
  744. }
  745. pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
  746. fl->buf_size, PCI_DMA_FROMDEVICE);
  747. if (!skb) {
  748. __skb_put(newskb, SGE_RX_PULL_LEN);
  749. memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
  750. skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
  751. sd->pg_chunk.offset + SGE_RX_PULL_LEN,
  752. len - SGE_RX_PULL_LEN);
  753. newskb->len = len;
  754. newskb->data_len = len - SGE_RX_PULL_LEN;
  755. newskb->truesize += newskb->data_len;
  756. } else {
  757. skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
  758. sd->pg_chunk.page,
  759. sd->pg_chunk.offset, len);
  760. newskb->len += len;
  761. newskb->data_len += len;
  762. newskb->truesize += len;
  763. }
  764. fl->credits--;
  765. /*
  766. * We do not refill FLs here, we let the caller do it to overlap a
  767. * prefetch.
  768. */
  769. return newskb;
  770. }
  771. /**
  772. * get_imm_packet - return the next ingress packet buffer from a response
  773. * @resp: the response descriptor containing the packet data
  774. *
  775. * Return a packet containing the immediate data of the given response.
  776. */
  777. static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
  778. {
  779. struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
  780. if (skb) {
  781. __skb_put(skb, IMMED_PKT_SIZE);
  782. skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
  783. }
  784. return skb;
  785. }
  786. /**
  787. * calc_tx_descs - calculate the number of Tx descriptors for a packet
  788. * @skb: the packet
  789. *
  790. * Returns the number of Tx descriptors needed for the given Ethernet
  791. * packet. Ethernet packets require addition of WR and CPL headers.
  792. */
  793. static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
  794. {
  795. unsigned int flits;
  796. if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
  797. return 1;
  798. flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
  799. if (skb_shinfo(skb)->gso_size)
  800. flits++;
  801. return flits_to_desc(flits);
  802. }
  803. /**
  804. * make_sgl - populate a scatter/gather list for a packet
  805. * @skb: the packet
  806. * @sgp: the SGL to populate
  807. * @start: start address of skb main body data to include in the SGL
  808. * @len: length of skb main body data to include in the SGL
  809. * @pdev: the PCI device
  810. *
  811. * Generates a scatter/gather list for the buffers that make up a packet
  812. * and returns the SGL size in 8-byte words. The caller must size the SGL
  813. * appropriately.
  814. */
  815. static inline unsigned int make_sgl(const struct sk_buff *skb,
  816. struct sg_ent *sgp, unsigned char *start,
  817. unsigned int len, struct pci_dev *pdev)
  818. {
  819. dma_addr_t mapping;
  820. unsigned int i, j = 0, nfrags;
  821. if (len) {
  822. mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
  823. sgp->len[0] = cpu_to_be32(len);
  824. sgp->addr[0] = cpu_to_be64(mapping);
  825. j = 1;
  826. }
  827. nfrags = skb_shinfo(skb)->nr_frags;
  828. for (i = 0; i < nfrags; i++) {
  829. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  830. mapping = pci_map_page(pdev, frag->page, frag->page_offset,
  831. frag->size, PCI_DMA_TODEVICE);
  832. sgp->len[j] = cpu_to_be32(frag->size);
  833. sgp->addr[j] = cpu_to_be64(mapping);
  834. j ^= 1;
  835. if (j == 0)
  836. ++sgp;
  837. }
  838. if (j)
  839. sgp->len[j] = 0;
  840. return ((nfrags + (len != 0)) * 3) / 2 + j;
  841. }
  842. /**
  843. * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
  844. * @adap: the adapter
  845. * @q: the Tx queue
  846. *
  847. * Ring the doorbel if a Tx queue is asleep. There is a natural race,
  848. * where the HW is going to sleep just after we checked, however,
  849. * then the interrupt handler will detect the outstanding TX packet
  850. * and ring the doorbell for us.
  851. *
  852. * When GTS is disabled we unconditionally ring the doorbell.
  853. */
  854. static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
  855. {
  856. #if USE_GTS
  857. clear_bit(TXQ_LAST_PKT_DB, &q->flags);
  858. if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
  859. set_bit(TXQ_LAST_PKT_DB, &q->flags);
  860. t3_write_reg(adap, A_SG_KDOORBELL,
  861. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  862. }
  863. #else
  864. wmb(); /* write descriptors before telling HW */
  865. t3_write_reg(adap, A_SG_KDOORBELL,
  866. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  867. #endif
  868. }
  869. static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
  870. {
  871. #if SGE_NUM_GENBITS == 2
  872. d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
  873. #endif
  874. }
  875. /**
  876. * write_wr_hdr_sgl - write a WR header and, optionally, SGL
  877. * @ndesc: number of Tx descriptors spanned by the SGL
  878. * @skb: the packet corresponding to the WR
  879. * @d: first Tx descriptor to be written
  880. * @pidx: index of above descriptors
  881. * @q: the SGE Tx queue
  882. * @sgl: the SGL
  883. * @flits: number of flits to the start of the SGL in the first descriptor
  884. * @sgl_flits: the SGL size in flits
  885. * @gen: the Tx descriptor generation
  886. * @wr_hi: top 32 bits of WR header based on WR type (big endian)
  887. * @wr_lo: low 32 bits of WR header based on WR type (big endian)
  888. *
  889. * Write a work request header and an associated SGL. If the SGL is
  890. * small enough to fit into one Tx descriptor it has already been written
  891. * and we just need to write the WR header. Otherwise we distribute the
  892. * SGL across the number of descriptors it spans.
  893. */
  894. static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
  895. struct tx_desc *d, unsigned int pidx,
  896. const struct sge_txq *q,
  897. const struct sg_ent *sgl,
  898. unsigned int flits, unsigned int sgl_flits,
  899. unsigned int gen, __be32 wr_hi,
  900. __be32 wr_lo)
  901. {
  902. struct work_request_hdr *wrp = (struct work_request_hdr *)d;
  903. struct tx_sw_desc *sd = &q->sdesc[pidx];
  904. sd->skb = skb;
  905. if (need_skb_unmap()) {
  906. sd->fragidx = 0;
  907. sd->addr_idx = 0;
  908. sd->sflit = flits;
  909. }
  910. if (likely(ndesc == 1)) {
  911. sd->eop = 1;
  912. wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
  913. V_WR_SGLSFLT(flits)) | wr_hi;
  914. wmb();
  915. wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
  916. V_WR_GEN(gen)) | wr_lo;
  917. wr_gen2(d, gen);
  918. } else {
  919. unsigned int ogen = gen;
  920. const u64 *fp = (const u64 *)sgl;
  921. struct work_request_hdr *wp = wrp;
  922. wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
  923. V_WR_SGLSFLT(flits)) | wr_hi;
  924. while (sgl_flits) {
  925. unsigned int avail = WR_FLITS - flits;
  926. if (avail > sgl_flits)
  927. avail = sgl_flits;
  928. memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
  929. sgl_flits -= avail;
  930. ndesc--;
  931. if (!sgl_flits)
  932. break;
  933. fp += avail;
  934. d++;
  935. sd->eop = 0;
  936. sd++;
  937. if (++pidx == q->size) {
  938. pidx = 0;
  939. gen ^= 1;
  940. d = q->desc;
  941. sd = q->sdesc;
  942. }
  943. sd->skb = skb;
  944. wrp = (struct work_request_hdr *)d;
  945. wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
  946. V_WR_SGLSFLT(1)) | wr_hi;
  947. wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
  948. sgl_flits + 1)) |
  949. V_WR_GEN(gen)) | wr_lo;
  950. wr_gen2(d, gen);
  951. flits = 1;
  952. }
  953. sd->eop = 1;
  954. wrp->wr_hi |= htonl(F_WR_EOP);
  955. wmb();
  956. wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
  957. wr_gen2((struct tx_desc *)wp, ogen);
  958. WARN_ON(ndesc != 0);
  959. }
  960. }
  961. /**
  962. * write_tx_pkt_wr - write a TX_PKT work request
  963. * @adap: the adapter
  964. * @skb: the packet to send
  965. * @pi: the egress interface
  966. * @pidx: index of the first Tx descriptor to write
  967. * @gen: the generation value to use
  968. * @q: the Tx queue
  969. * @ndesc: number of descriptors the packet will occupy
  970. * @compl: the value of the COMPL bit to use
  971. *
  972. * Generate a TX_PKT work request to send the supplied packet.
  973. */
  974. static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
  975. const struct port_info *pi,
  976. unsigned int pidx, unsigned int gen,
  977. struct sge_txq *q, unsigned int ndesc,
  978. unsigned int compl)
  979. {
  980. unsigned int flits, sgl_flits, cntrl, tso_info;
  981. struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
  982. struct tx_desc *d = &q->desc[pidx];
  983. struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
  984. cpl->len = htonl(skb->len | 0x80000000);
  985. cntrl = V_TXPKT_INTF(pi->port_id);
  986. if (vlan_tx_tag_present(skb) && pi->vlan_grp)
  987. cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
  988. tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
  989. if (tso_info) {
  990. int eth_type;
  991. struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
  992. d->flit[2] = 0;
  993. cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
  994. hdr->cntrl = htonl(cntrl);
  995. eth_type = skb_network_offset(skb) == ETH_HLEN ?
  996. CPL_ETH_II : CPL_ETH_II_VLAN;
  997. tso_info |= V_LSO_ETH_TYPE(eth_type) |
  998. V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
  999. V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
  1000. hdr->lso_info = htonl(tso_info);
  1001. flits = 3;
  1002. } else {
  1003. cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
  1004. cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
  1005. cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
  1006. cpl->cntrl = htonl(cntrl);
  1007. if (skb->len <= WR_LEN - sizeof(*cpl)) {
  1008. q->sdesc[pidx].skb = NULL;
  1009. if (!skb->data_len)
  1010. skb_copy_from_linear_data(skb, &d->flit[2],
  1011. skb->len);
  1012. else
  1013. skb_copy_bits(skb, 0, &d->flit[2], skb->len);
  1014. flits = (skb->len + 7) / 8 + 2;
  1015. cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
  1016. V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
  1017. | F_WR_SOP | F_WR_EOP | compl);
  1018. wmb();
  1019. cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
  1020. V_WR_TID(q->token));
  1021. wr_gen2(d, gen);
  1022. kfree_skb(skb);
  1023. return;
  1024. }
  1025. flits = 2;
  1026. }
  1027. sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
  1028. sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
  1029. write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
  1030. htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
  1031. htonl(V_WR_TID(q->token)));
  1032. }
  1033. static inline void t3_stop_tx_queue(struct netdev_queue *txq,
  1034. struct sge_qset *qs, struct sge_txq *q)
  1035. {
  1036. netif_tx_stop_queue(txq);
  1037. set_bit(TXQ_ETH, &qs->txq_stopped);
  1038. q->stops++;
  1039. }
  1040. /**
  1041. * eth_xmit - add a packet to the Ethernet Tx queue
  1042. * @skb: the packet
  1043. * @dev: the egress net device
  1044. *
  1045. * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
  1046. */
  1047. int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
  1048. {
  1049. int qidx;
  1050. unsigned int ndesc, pidx, credits, gen, compl;
  1051. const struct port_info *pi = netdev_priv(dev);
  1052. struct adapter *adap = pi->adapter;
  1053. struct netdev_queue *txq;
  1054. struct sge_qset *qs;
  1055. struct sge_txq *q;
  1056. /*
  1057. * The chip min packet length is 9 octets but play safe and reject
  1058. * anything shorter than an Ethernet header.
  1059. */
  1060. if (unlikely(skb->len < ETH_HLEN)) {
  1061. dev_kfree_skb(skb);
  1062. return NETDEV_TX_OK;
  1063. }
  1064. qidx = skb_get_queue_mapping(skb);
  1065. qs = &pi->qs[qidx];
  1066. q = &qs->txq[TXQ_ETH];
  1067. txq = netdev_get_tx_queue(dev, qidx);
  1068. spin_lock(&q->lock);
  1069. reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
  1070. credits = q->size - q->in_use;
  1071. ndesc = calc_tx_descs(skb);
  1072. if (unlikely(credits < ndesc)) {
  1073. t3_stop_tx_queue(txq, qs, q);
  1074. dev_err(&adap->pdev->dev,
  1075. "%s: Tx ring %u full while queue awake!\n",
  1076. dev->name, q->cntxt_id & 7);
  1077. spin_unlock(&q->lock);
  1078. return NETDEV_TX_BUSY;
  1079. }
  1080. q->in_use += ndesc;
  1081. if (unlikely(credits - ndesc < q->stop_thres)) {
  1082. t3_stop_tx_queue(txq, qs, q);
  1083. if (should_restart_tx(q) &&
  1084. test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
  1085. q->restarts++;
  1086. netif_tx_wake_queue(txq);
  1087. }
  1088. }
  1089. gen = q->gen;
  1090. q->unacked += ndesc;
  1091. compl = (q->unacked & 8) << (S_WR_COMPL - 3);
  1092. q->unacked &= 7;
  1093. pidx = q->pidx;
  1094. q->pidx += ndesc;
  1095. if (q->pidx >= q->size) {
  1096. q->pidx -= q->size;
  1097. q->gen ^= 1;
  1098. }
  1099. /* update port statistics */
  1100. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1101. qs->port_stats[SGE_PSTAT_TX_CSUM]++;
  1102. if (skb_shinfo(skb)->gso_size)
  1103. qs->port_stats[SGE_PSTAT_TSO]++;
  1104. if (vlan_tx_tag_present(skb) && pi->vlan_grp)
  1105. qs->port_stats[SGE_PSTAT_VLANINS]++;
  1106. dev->trans_start = jiffies;
  1107. spin_unlock(&q->lock);
  1108. /*
  1109. * We do not use Tx completion interrupts to free DMAd Tx packets.
  1110. * This is good for performamce but means that we rely on new Tx
  1111. * packets arriving to run the destructors of completed packets,
  1112. * which open up space in their sockets' send queues. Sometimes
  1113. * we do not get such new packets causing Tx to stall. A single
  1114. * UDP transmitter is a good example of this situation. We have
  1115. * a clean up timer that periodically reclaims completed packets
  1116. * but it doesn't run often enough (nor do we want it to) to prevent
  1117. * lengthy stalls. A solution to this problem is to run the
  1118. * destructor early, after the packet is queued but before it's DMAd.
  1119. * A cons is that we lie to socket memory accounting, but the amount
  1120. * of extra memory is reasonable (limited by the number of Tx
  1121. * descriptors), the packets do actually get freed quickly by new
  1122. * packets almost always, and for protocols like TCP that wait for
  1123. * acks to really free up the data the extra memory is even less.
  1124. * On the positive side we run the destructors on the sending CPU
  1125. * rather than on a potentially different completing CPU, usually a
  1126. * good thing. We also run them without holding our Tx queue lock,
  1127. * unlike what reclaim_completed_tx() would otherwise do.
  1128. *
  1129. * Run the destructor before telling the DMA engine about the packet
  1130. * to make sure it doesn't complete and get freed prematurely.
  1131. */
  1132. if (likely(!skb_shared(skb)))
  1133. skb_orphan(skb);
  1134. write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
  1135. check_ring_tx_db(adap, q);
  1136. return NETDEV_TX_OK;
  1137. }
  1138. /**
  1139. * write_imm - write a packet into a Tx descriptor as immediate data
  1140. * @d: the Tx descriptor to write
  1141. * @skb: the packet
  1142. * @len: the length of packet data to write as immediate data
  1143. * @gen: the generation bit value to write
  1144. *
  1145. * Writes a packet as immediate data into a Tx descriptor. The packet
  1146. * contains a work request at its beginning. We must write the packet
  1147. * carefully so the SGE doesn't read it accidentally before it's written
  1148. * in its entirety.
  1149. */
  1150. static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
  1151. unsigned int len, unsigned int gen)
  1152. {
  1153. struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
  1154. struct work_request_hdr *to = (struct work_request_hdr *)d;
  1155. if (likely(!skb->data_len))
  1156. memcpy(&to[1], &from[1], len - sizeof(*from));
  1157. else
  1158. skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
  1159. to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
  1160. V_WR_BCNTLFLT(len & 7));
  1161. wmb();
  1162. to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
  1163. V_WR_LEN((len + 7) / 8));
  1164. wr_gen2(d, gen);
  1165. kfree_skb(skb);
  1166. }
  1167. /**
  1168. * check_desc_avail - check descriptor availability on a send queue
  1169. * @adap: the adapter
  1170. * @q: the send queue
  1171. * @skb: the packet needing the descriptors
  1172. * @ndesc: the number of Tx descriptors needed
  1173. * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
  1174. *
  1175. * Checks if the requested number of Tx descriptors is available on an
  1176. * SGE send queue. If the queue is already suspended or not enough
  1177. * descriptors are available the packet is queued for later transmission.
  1178. * Must be called with the Tx queue locked.
  1179. *
  1180. * Returns 0 if enough descriptors are available, 1 if there aren't
  1181. * enough descriptors and the packet has been queued, and 2 if the caller
  1182. * needs to retry because there weren't enough descriptors at the
  1183. * beginning of the call but some freed up in the mean time.
  1184. */
  1185. static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
  1186. struct sk_buff *skb, unsigned int ndesc,
  1187. unsigned int qid)
  1188. {
  1189. if (unlikely(!skb_queue_empty(&q->sendq))) {
  1190. addq_exit:__skb_queue_tail(&q->sendq, skb);
  1191. return 1;
  1192. }
  1193. if (unlikely(q->size - q->in_use < ndesc)) {
  1194. struct sge_qset *qs = txq_to_qset(q, qid);
  1195. set_bit(qid, &qs->txq_stopped);
  1196. smp_mb__after_clear_bit();
  1197. if (should_restart_tx(q) &&
  1198. test_and_clear_bit(qid, &qs->txq_stopped))
  1199. return 2;
  1200. q->stops++;
  1201. goto addq_exit;
  1202. }
  1203. return 0;
  1204. }
  1205. /**
  1206. * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
  1207. * @q: the SGE control Tx queue
  1208. *
  1209. * This is a variant of reclaim_completed_tx() that is used for Tx queues
  1210. * that send only immediate data (presently just the control queues) and
  1211. * thus do not have any sk_buffs to release.
  1212. */
  1213. static inline void reclaim_completed_tx_imm(struct sge_txq *q)
  1214. {
  1215. unsigned int reclaim = q->processed - q->cleaned;
  1216. q->in_use -= reclaim;
  1217. q->cleaned += reclaim;
  1218. }
  1219. static inline int immediate(const struct sk_buff *skb)
  1220. {
  1221. return skb->len <= WR_LEN;
  1222. }
  1223. /**
  1224. * ctrl_xmit - send a packet through an SGE control Tx queue
  1225. * @adap: the adapter
  1226. * @q: the control queue
  1227. * @skb: the packet
  1228. *
  1229. * Send a packet through an SGE control Tx queue. Packets sent through
  1230. * a control queue must fit entirely as immediate data in a single Tx
  1231. * descriptor and have no page fragments.
  1232. */
  1233. static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
  1234. struct sk_buff *skb)
  1235. {
  1236. int ret;
  1237. struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
  1238. if (unlikely(!immediate(skb))) {
  1239. WARN_ON(1);
  1240. dev_kfree_skb(skb);
  1241. return NET_XMIT_SUCCESS;
  1242. }
  1243. wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
  1244. wrp->wr_lo = htonl(V_WR_TID(q->token));
  1245. spin_lock(&q->lock);
  1246. again:reclaim_completed_tx_imm(q);
  1247. ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
  1248. if (unlikely(ret)) {
  1249. if (ret == 1) {
  1250. spin_unlock(&q->lock);
  1251. return NET_XMIT_CN;
  1252. }
  1253. goto again;
  1254. }
  1255. write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
  1256. q->in_use++;
  1257. if (++q->pidx >= q->size) {
  1258. q->pidx = 0;
  1259. q->gen ^= 1;
  1260. }
  1261. spin_unlock(&q->lock);
  1262. wmb();
  1263. t3_write_reg(adap, A_SG_KDOORBELL,
  1264. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  1265. return NET_XMIT_SUCCESS;
  1266. }
  1267. /**
  1268. * restart_ctrlq - restart a suspended control queue
  1269. * @qs: the queue set cotaining the control queue
  1270. *
  1271. * Resumes transmission on a suspended Tx control queue.
  1272. */
  1273. static void restart_ctrlq(unsigned long data)
  1274. {
  1275. struct sk_buff *skb;
  1276. struct sge_qset *qs = (struct sge_qset *)data;
  1277. struct sge_txq *q = &qs->txq[TXQ_CTRL];
  1278. spin_lock(&q->lock);
  1279. again:reclaim_completed_tx_imm(q);
  1280. while (q->in_use < q->size &&
  1281. (skb = __skb_dequeue(&q->sendq)) != NULL) {
  1282. write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
  1283. if (++q->pidx >= q->size) {
  1284. q->pidx = 0;
  1285. q->gen ^= 1;
  1286. }
  1287. q->in_use++;
  1288. }
  1289. if (!skb_queue_empty(&q->sendq)) {
  1290. set_bit(TXQ_CTRL, &qs->txq_stopped);
  1291. smp_mb__after_clear_bit();
  1292. if (should_restart_tx(q) &&
  1293. test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
  1294. goto again;
  1295. q->stops++;
  1296. }
  1297. spin_unlock(&q->lock);
  1298. wmb();
  1299. t3_write_reg(qs->adap, A_SG_KDOORBELL,
  1300. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  1301. }
  1302. /*
  1303. * Send a management message through control queue 0
  1304. */
  1305. int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
  1306. {
  1307. int ret;
  1308. local_bh_disable();
  1309. ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
  1310. local_bh_enable();
  1311. return ret;
  1312. }
  1313. /**
  1314. * deferred_unmap_destructor - unmap a packet when it is freed
  1315. * @skb: the packet
  1316. *
  1317. * This is the packet destructor used for Tx packets that need to remain
  1318. * mapped until they are freed rather than until their Tx descriptors are
  1319. * freed.
  1320. */
  1321. static void deferred_unmap_destructor(struct sk_buff *skb)
  1322. {
  1323. int i;
  1324. const dma_addr_t *p;
  1325. const struct skb_shared_info *si;
  1326. const struct deferred_unmap_info *dui;
  1327. dui = (struct deferred_unmap_info *)skb->head;
  1328. p = dui->addr;
  1329. if (skb->tail - skb->transport_header)
  1330. pci_unmap_single(dui->pdev, *p++,
  1331. skb->tail - skb->transport_header,
  1332. PCI_DMA_TODEVICE);
  1333. si = skb_shinfo(skb);
  1334. for (i = 0; i < si->nr_frags; i++)
  1335. pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
  1336. PCI_DMA_TODEVICE);
  1337. }
  1338. static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
  1339. const struct sg_ent *sgl, int sgl_flits)
  1340. {
  1341. dma_addr_t *p;
  1342. struct deferred_unmap_info *dui;
  1343. dui = (struct deferred_unmap_info *)skb->head;
  1344. dui->pdev = pdev;
  1345. for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
  1346. *p++ = be64_to_cpu(sgl->addr[0]);
  1347. *p++ = be64_to_cpu(sgl->addr[1]);
  1348. }
  1349. if (sgl_flits)
  1350. *p = be64_to_cpu(sgl->addr[0]);
  1351. }
  1352. /**
  1353. * write_ofld_wr - write an offload work request
  1354. * @adap: the adapter
  1355. * @skb: the packet to send
  1356. * @q: the Tx queue
  1357. * @pidx: index of the first Tx descriptor to write
  1358. * @gen: the generation value to use
  1359. * @ndesc: number of descriptors the packet will occupy
  1360. *
  1361. * Write an offload work request to send the supplied packet. The packet
  1362. * data already carry the work request with most fields populated.
  1363. */
  1364. static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
  1365. struct sge_txq *q, unsigned int pidx,
  1366. unsigned int gen, unsigned int ndesc)
  1367. {
  1368. unsigned int sgl_flits, flits;
  1369. struct work_request_hdr *from;
  1370. struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
  1371. struct tx_desc *d = &q->desc[pidx];
  1372. if (immediate(skb)) {
  1373. q->sdesc[pidx].skb = NULL;
  1374. write_imm(d, skb, skb->len, gen);
  1375. return;
  1376. }
  1377. /* Only TX_DATA builds SGLs */
  1378. from = (struct work_request_hdr *)skb->data;
  1379. memcpy(&d->flit[1], &from[1],
  1380. skb_transport_offset(skb) - sizeof(*from));
  1381. flits = skb_transport_offset(skb) / 8;
  1382. sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
  1383. sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
  1384. skb->tail - skb->transport_header,
  1385. adap->pdev);
  1386. if (need_skb_unmap()) {
  1387. setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
  1388. skb->destructor = deferred_unmap_destructor;
  1389. }
  1390. write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
  1391. gen, from->wr_hi, from->wr_lo);
  1392. }
  1393. /**
  1394. * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
  1395. * @skb: the packet
  1396. *
  1397. * Returns the number of Tx descriptors needed for the given offload
  1398. * packet. These packets are already fully constructed.
  1399. */
  1400. static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
  1401. {
  1402. unsigned int flits, cnt;
  1403. if (skb->len <= WR_LEN)
  1404. return 1; /* packet fits as immediate data */
  1405. flits = skb_transport_offset(skb) / 8; /* headers */
  1406. cnt = skb_shinfo(skb)->nr_frags;
  1407. if (skb->tail != skb->transport_header)
  1408. cnt++;
  1409. return flits_to_desc(flits + sgl_len(cnt));
  1410. }
  1411. /**
  1412. * ofld_xmit - send a packet through an offload queue
  1413. * @adap: the adapter
  1414. * @q: the Tx offload queue
  1415. * @skb: the packet
  1416. *
  1417. * Send an offload packet through an SGE offload queue.
  1418. */
  1419. static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
  1420. struct sk_buff *skb)
  1421. {
  1422. int ret;
  1423. unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
  1424. spin_lock(&q->lock);
  1425. again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
  1426. ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
  1427. if (unlikely(ret)) {
  1428. if (ret == 1) {
  1429. skb->priority = ndesc; /* save for restart */
  1430. spin_unlock(&q->lock);
  1431. return NET_XMIT_CN;
  1432. }
  1433. goto again;
  1434. }
  1435. gen = q->gen;
  1436. q->in_use += ndesc;
  1437. pidx = q->pidx;
  1438. q->pidx += ndesc;
  1439. if (q->pidx >= q->size) {
  1440. q->pidx -= q->size;
  1441. q->gen ^= 1;
  1442. }
  1443. spin_unlock(&q->lock);
  1444. write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
  1445. check_ring_tx_db(adap, q);
  1446. return NET_XMIT_SUCCESS;
  1447. }
  1448. /**
  1449. * restart_offloadq - restart a suspended offload queue
  1450. * @qs: the queue set cotaining the offload queue
  1451. *
  1452. * Resumes transmission on a suspended Tx offload queue.
  1453. */
  1454. static void restart_offloadq(unsigned long data)
  1455. {
  1456. struct sk_buff *skb;
  1457. struct sge_qset *qs = (struct sge_qset *)data;
  1458. struct sge_txq *q = &qs->txq[TXQ_OFLD];
  1459. const struct port_info *pi = netdev_priv(qs->netdev);
  1460. struct adapter *adap = pi->adapter;
  1461. spin_lock(&q->lock);
  1462. again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
  1463. while ((skb = skb_peek(&q->sendq)) != NULL) {
  1464. unsigned int gen, pidx;
  1465. unsigned int ndesc = skb->priority;
  1466. if (unlikely(q->size - q->in_use < ndesc)) {
  1467. set_bit(TXQ_OFLD, &qs->txq_stopped);
  1468. smp_mb__after_clear_bit();
  1469. if (should_restart_tx(q) &&
  1470. test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
  1471. goto again;
  1472. q->stops++;
  1473. break;
  1474. }
  1475. gen = q->gen;
  1476. q->in_use += ndesc;
  1477. pidx = q->pidx;
  1478. q->pidx += ndesc;
  1479. if (q->pidx >= q->size) {
  1480. q->pidx -= q->size;
  1481. q->gen ^= 1;
  1482. }
  1483. __skb_unlink(skb, &q->sendq);
  1484. spin_unlock(&q->lock);
  1485. write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
  1486. spin_lock(&q->lock);
  1487. }
  1488. spin_unlock(&q->lock);
  1489. #if USE_GTS
  1490. set_bit(TXQ_RUNNING, &q->flags);
  1491. set_bit(TXQ_LAST_PKT_DB, &q->flags);
  1492. #endif
  1493. wmb();
  1494. t3_write_reg(adap, A_SG_KDOORBELL,
  1495. F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
  1496. }
  1497. /**
  1498. * queue_set - return the queue set a packet should use
  1499. * @skb: the packet
  1500. *
  1501. * Maps a packet to the SGE queue set it should use. The desired queue
  1502. * set is carried in bits 1-3 in the packet's priority.
  1503. */
  1504. static inline int queue_set(const struct sk_buff *skb)
  1505. {
  1506. return skb->priority >> 1;
  1507. }
  1508. /**
  1509. * is_ctrl_pkt - return whether an offload packet is a control packet
  1510. * @skb: the packet
  1511. *
  1512. * Determines whether an offload packet should use an OFLD or a CTRL
  1513. * Tx queue. This is indicated by bit 0 in the packet's priority.
  1514. */
  1515. static inline int is_ctrl_pkt(const struct sk_buff *skb)
  1516. {
  1517. return skb->priority & 1;
  1518. }
  1519. /**
  1520. * t3_offload_tx - send an offload packet
  1521. * @tdev: the offload device to send to
  1522. * @skb: the packet
  1523. *
  1524. * Sends an offload packet. We use the packet priority to select the
  1525. * appropriate Tx queue as follows: bit 0 indicates whether the packet
  1526. * should be sent as regular or control, bits 1-3 select the queue set.
  1527. */
  1528. int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
  1529. {
  1530. struct adapter *adap = tdev2adap(tdev);
  1531. struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
  1532. if (unlikely(is_ctrl_pkt(skb)))
  1533. return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
  1534. return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
  1535. }
  1536. /**
  1537. * offload_enqueue - add an offload packet to an SGE offload receive queue
  1538. * @q: the SGE response queue
  1539. * @skb: the packet
  1540. *
  1541. * Add a new offload packet to an SGE response queue's offload packet
  1542. * queue. If the packet is the first on the queue it schedules the RX
  1543. * softirq to process the queue.
  1544. */
  1545. static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
  1546. {
  1547. int was_empty = skb_queue_empty(&q->rx_queue);
  1548. __skb_queue_tail(&q->rx_queue, skb);
  1549. if (was_empty) {
  1550. struct sge_qset *qs = rspq_to_qset(q);
  1551. napi_schedule(&qs->napi);
  1552. }
  1553. }
  1554. /**
  1555. * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
  1556. * @tdev: the offload device that will be receiving the packets
  1557. * @q: the SGE response queue that assembled the bundle
  1558. * @skbs: the partial bundle
  1559. * @n: the number of packets in the bundle
  1560. *
  1561. * Delivers a (partial) bundle of Rx offload packets to an offload device.
  1562. */
  1563. static inline void deliver_partial_bundle(struct t3cdev *tdev,
  1564. struct sge_rspq *q,
  1565. struct sk_buff *skbs[], int n)
  1566. {
  1567. if (n) {
  1568. q->offload_bundles++;
  1569. tdev->recv(tdev, skbs, n);
  1570. }
  1571. }
  1572. /**
  1573. * ofld_poll - NAPI handler for offload packets in interrupt mode
  1574. * @dev: the network device doing the polling
  1575. * @budget: polling budget
  1576. *
  1577. * The NAPI handler for offload packets when a response queue is serviced
  1578. * by the hard interrupt handler, i.e., when it's operating in non-polling
  1579. * mode. Creates small packet batches and sends them through the offload
  1580. * receive handler. Batches need to be of modest size as we do prefetches
  1581. * on the packets in each.
  1582. */
  1583. static int ofld_poll(struct napi_struct *napi, int budget)
  1584. {
  1585. struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
  1586. struct sge_rspq *q = &qs->rspq;
  1587. struct adapter *adapter = qs->adap;
  1588. int work_done = 0;
  1589. while (work_done < budget) {
  1590. struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
  1591. struct sk_buff_head queue;
  1592. int ngathered;
  1593. spin_lock_irq(&q->lock);
  1594. __skb_queue_head_init(&queue);
  1595. skb_queue_splice_init(&q->rx_queue, &queue);
  1596. if (skb_queue_empty(&queue)) {
  1597. napi_complete(napi);
  1598. spin_unlock_irq(&q->lock);
  1599. return work_done;
  1600. }
  1601. spin_unlock_irq(&q->lock);
  1602. ngathered = 0;
  1603. skb_queue_walk_safe(&queue, skb, tmp) {
  1604. if (work_done >= budget)
  1605. break;
  1606. work_done++;
  1607. __skb_unlink(skb, &queue);
  1608. prefetch(skb->data);
  1609. skbs[ngathered] = skb;
  1610. if (++ngathered == RX_BUNDLE_SIZE) {
  1611. q->offload_bundles++;
  1612. adapter->tdev.recv(&adapter->tdev, skbs,
  1613. ngathered);
  1614. ngathered = 0;
  1615. }
  1616. }
  1617. if (!skb_queue_empty(&queue)) {
  1618. /* splice remaining packets back onto Rx queue */
  1619. spin_lock_irq(&q->lock);
  1620. skb_queue_splice(&queue, &q->rx_queue);
  1621. spin_unlock_irq(&q->lock);
  1622. }
  1623. deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
  1624. }
  1625. return work_done;
  1626. }
  1627. /**
  1628. * rx_offload - process a received offload packet
  1629. * @tdev: the offload device receiving the packet
  1630. * @rq: the response queue that received the packet
  1631. * @skb: the packet
  1632. * @rx_gather: a gather list of packets if we are building a bundle
  1633. * @gather_idx: index of the next available slot in the bundle
  1634. *
  1635. * Process an ingress offload pakcet and add it to the offload ingress
  1636. * queue. Returns the index of the next available slot in the bundle.
  1637. */
  1638. static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
  1639. struct sk_buff *skb, struct sk_buff *rx_gather[],
  1640. unsigned int gather_idx)
  1641. {
  1642. skb_reset_mac_header(skb);
  1643. skb_reset_network_header(skb);
  1644. skb_reset_transport_header(skb);
  1645. if (rq->polling) {
  1646. rx_gather[gather_idx++] = skb;
  1647. if (gather_idx == RX_BUNDLE_SIZE) {
  1648. tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
  1649. gather_idx = 0;
  1650. rq->offload_bundles++;
  1651. }
  1652. } else
  1653. offload_enqueue(rq, skb);
  1654. return gather_idx;
  1655. }
  1656. /**
  1657. * restart_tx - check whether to restart suspended Tx queues
  1658. * @qs: the queue set to resume
  1659. *
  1660. * Restarts suspended Tx queues of an SGE queue set if they have enough
  1661. * free resources to resume operation.
  1662. */
  1663. static void restart_tx(struct sge_qset *qs)
  1664. {
  1665. if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
  1666. should_restart_tx(&qs->txq[TXQ_ETH]) &&
  1667. test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
  1668. qs->txq[TXQ_ETH].restarts++;
  1669. if (netif_running(qs->netdev))
  1670. netif_tx_wake_queue(qs->tx_q);
  1671. }
  1672. if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
  1673. should_restart_tx(&qs->txq[TXQ_OFLD]) &&
  1674. test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
  1675. qs->txq[TXQ_OFLD].restarts++;
  1676. tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
  1677. }
  1678. if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
  1679. should_restart_tx(&qs->txq[TXQ_CTRL]) &&
  1680. test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
  1681. qs->txq[TXQ_CTRL].restarts++;
  1682. tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
  1683. }
  1684. }
  1685. /**
  1686. * cxgb3_arp_process - process an ARP request probing a private IP address
  1687. * @adapter: the adapter
  1688. * @skb: the skbuff containing the ARP request
  1689. *
  1690. * Check if the ARP request is probing the private IP address
  1691. * dedicated to iSCSI, generate an ARP reply if so.
  1692. */
  1693. static void cxgb3_arp_process(struct adapter *adapter, struct sk_buff *skb)
  1694. {
  1695. struct net_device *dev = skb->dev;
  1696. struct port_info *pi;
  1697. struct arphdr *arp;
  1698. unsigned char *arp_ptr;
  1699. unsigned char *sha;
  1700. __be32 sip, tip;
  1701. if (!dev)
  1702. return;
  1703. skb_reset_network_header(skb);
  1704. arp = arp_hdr(skb);
  1705. if (arp->ar_op != htons(ARPOP_REQUEST))
  1706. return;
  1707. arp_ptr = (unsigned char *)(arp + 1);
  1708. sha = arp_ptr;
  1709. arp_ptr += dev->addr_len;
  1710. memcpy(&sip, arp_ptr, sizeof(sip));
  1711. arp_ptr += sizeof(sip);
  1712. arp_ptr += dev->addr_len;
  1713. memcpy(&tip, arp_ptr, sizeof(tip));
  1714. pi = netdev_priv(dev);
  1715. if (tip != pi->iscsi_ipv4addr)
  1716. return;
  1717. arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
  1718. dev->dev_addr, sha);
  1719. }
  1720. static inline int is_arp(struct sk_buff *skb)
  1721. {
  1722. return skb->protocol == htons(ETH_P_ARP);
  1723. }
  1724. /**
  1725. * rx_eth - process an ingress ethernet packet
  1726. * @adap: the adapter
  1727. * @rq: the response queue that received the packet
  1728. * @skb: the packet
  1729. * @pad: amount of padding at the start of the buffer
  1730. *
  1731. * Process an ingress ethernet pakcet and deliver it to the stack.
  1732. * The padding is 2 if the packet was delivered in an Rx buffer and 0
  1733. * if it was immediate data in a response.
  1734. */
  1735. static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
  1736. struct sk_buff *skb, int pad, int lro)
  1737. {
  1738. struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
  1739. struct sge_qset *qs = rspq_to_qset(rq);
  1740. struct port_info *pi;
  1741. skb_pull(skb, sizeof(*p) + pad);
  1742. skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
  1743. pi = netdev_priv(skb->dev);
  1744. if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid && p->csum == htons(0xffff) &&
  1745. !p->fragment) {
  1746. qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
  1747. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1748. } else
  1749. skb->ip_summed = CHECKSUM_NONE;
  1750. skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
  1751. if (unlikely(p->vlan_valid)) {
  1752. struct vlan_group *grp = pi->vlan_grp;
  1753. qs->port_stats[SGE_PSTAT_VLANEX]++;
  1754. if (likely(grp))
  1755. if (lro)
  1756. vlan_gro_receive(&qs->napi, grp,
  1757. ntohs(p->vlan), skb);
  1758. else {
  1759. if (unlikely(pi->iscsi_ipv4addr &&
  1760. is_arp(skb))) {
  1761. unsigned short vtag = ntohs(p->vlan) &
  1762. VLAN_VID_MASK;
  1763. skb->dev = vlan_group_get_device(grp,
  1764. vtag);
  1765. cxgb3_arp_process(adap, skb);
  1766. }
  1767. __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
  1768. rq->polling);
  1769. }
  1770. else
  1771. dev_kfree_skb_any(skb);
  1772. } else if (rq->polling) {
  1773. if (lro)
  1774. napi_gro_receive(&qs->napi, skb);
  1775. else {
  1776. if (unlikely(pi->iscsi_ipv4addr && is_arp(skb)))
  1777. cxgb3_arp_process(adap, skb);
  1778. netif_receive_skb(skb);
  1779. }
  1780. } else
  1781. netif_rx(skb);
  1782. }
  1783. static inline int is_eth_tcp(u32 rss)
  1784. {
  1785. return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
  1786. }
  1787. /**
  1788. * lro_add_page - add a page chunk to an LRO session
  1789. * @adap: the adapter
  1790. * @qs: the associated queue set
  1791. * @fl: the free list containing the page chunk to add
  1792. * @len: packet length
  1793. * @complete: Indicates the last fragment of a frame
  1794. *
  1795. * Add a received packet contained in a page chunk to an existing LRO
  1796. * session.
  1797. */
  1798. static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
  1799. struct sge_fl *fl, int len, int complete)
  1800. {
  1801. struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
  1802. struct cpl_rx_pkt *cpl;
  1803. struct skb_frag_struct *rx_frag = qs->lro_frag_tbl.frags;
  1804. int nr_frags = qs->lro_frag_tbl.nr_frags;
  1805. int frag_len = qs->lro_frag_tbl.len;
  1806. int offset = 0;
  1807. if (!nr_frags) {
  1808. offset = 2 + sizeof(struct cpl_rx_pkt);
  1809. qs->lro_va = cpl = sd->pg_chunk.va + 2;
  1810. }
  1811. fl->credits--;
  1812. len -= offset;
  1813. pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
  1814. fl->buf_size, PCI_DMA_FROMDEVICE);
  1815. prefetch(&qs->lro_frag_tbl);
  1816. rx_frag += nr_frags;
  1817. rx_frag->page = sd->pg_chunk.page;
  1818. rx_frag->page_offset = sd->pg_chunk.offset + offset;
  1819. rx_frag->size = len;
  1820. frag_len += len;
  1821. qs->lro_frag_tbl.nr_frags++;
  1822. qs->lro_frag_tbl.len = frag_len;
  1823. if (!complete)
  1824. return;
  1825. qs->lro_frag_tbl.ip_summed = CHECKSUM_UNNECESSARY;
  1826. cpl = qs->lro_va;
  1827. if (unlikely(cpl->vlan_valid)) {
  1828. struct net_device *dev = qs->netdev;
  1829. struct port_info *pi = netdev_priv(dev);
  1830. struct vlan_group *grp = pi->vlan_grp;
  1831. if (likely(grp != NULL)) {
  1832. vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan),
  1833. &qs->lro_frag_tbl);
  1834. goto out;
  1835. }
  1836. }
  1837. napi_gro_frags(&qs->napi, &qs->lro_frag_tbl);
  1838. out:
  1839. qs->lro_frag_tbl.nr_frags = qs->lro_frag_tbl.len = 0;
  1840. }
  1841. /**
  1842. * handle_rsp_cntrl_info - handles control information in a response
  1843. * @qs: the queue set corresponding to the response
  1844. * @flags: the response control flags
  1845. *
  1846. * Handles the control information of an SGE response, such as GTS
  1847. * indications and completion credits for the queue set's Tx queues.
  1848. * HW coalesces credits, we don't do any extra SW coalescing.
  1849. */
  1850. static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
  1851. {
  1852. unsigned int credits;
  1853. #if USE_GTS
  1854. if (flags & F_RSPD_TXQ0_GTS)
  1855. clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
  1856. #endif
  1857. credits = G_RSPD_TXQ0_CR(flags);
  1858. if (credits)
  1859. qs->txq[TXQ_ETH].processed += credits;
  1860. credits = G_RSPD_TXQ2_CR(flags);
  1861. if (credits)
  1862. qs->txq[TXQ_CTRL].processed += credits;
  1863. # if USE_GTS
  1864. if (flags & F_RSPD_TXQ1_GTS)
  1865. clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
  1866. # endif
  1867. credits = G_RSPD_TXQ1_CR(flags);
  1868. if (credits)
  1869. qs->txq[TXQ_OFLD].processed += credits;
  1870. }
  1871. /**
  1872. * check_ring_db - check if we need to ring any doorbells
  1873. * @adapter: the adapter
  1874. * @qs: the queue set whose Tx queues are to be examined
  1875. * @sleeping: indicates which Tx queue sent GTS
  1876. *
  1877. * Checks if some of a queue set's Tx queues need to ring their doorbells
  1878. * to resume transmission after idling while they still have unprocessed
  1879. * descriptors.
  1880. */
  1881. static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
  1882. unsigned int sleeping)
  1883. {
  1884. if (sleeping & F_RSPD_TXQ0_GTS) {
  1885. struct sge_txq *txq = &qs->txq[TXQ_ETH];
  1886. if (txq->cleaned + txq->in_use != txq->processed &&
  1887. !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
  1888. set_bit(TXQ_RUNNING, &txq->flags);
  1889. t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
  1890. V_EGRCNTX(txq->cntxt_id));
  1891. }
  1892. }
  1893. if (sleeping & F_RSPD_TXQ1_GTS) {
  1894. struct sge_txq *txq = &qs->txq[TXQ_OFLD];
  1895. if (txq->cleaned + txq->in_use != txq->processed &&
  1896. !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
  1897. set_bit(TXQ_RUNNING, &txq->flags);
  1898. t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
  1899. V_EGRCNTX(txq->cntxt_id));
  1900. }
  1901. }
  1902. }
  1903. /**
  1904. * is_new_response - check if a response is newly written
  1905. * @r: the response descriptor
  1906. * @q: the response queue
  1907. *
  1908. * Returns true if a response descriptor contains a yet unprocessed
  1909. * response.
  1910. */
  1911. static inline int is_new_response(const struct rsp_desc *r,
  1912. const struct sge_rspq *q)
  1913. {
  1914. return (r->intr_gen & F_RSPD_GEN2) == q->gen;
  1915. }
  1916. static inline void clear_rspq_bufstate(struct sge_rspq * const q)
  1917. {
  1918. q->pg_skb = NULL;
  1919. q->rx_recycle_buf = 0;
  1920. }
  1921. #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
  1922. #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
  1923. V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
  1924. V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
  1925. V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
  1926. /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
  1927. #define NOMEM_INTR_DELAY 2500
  1928. /**
  1929. * process_responses - process responses from an SGE response queue
  1930. * @adap: the adapter
  1931. * @qs: the queue set to which the response queue belongs
  1932. * @budget: how many responses can be processed in this round
  1933. *
  1934. * Process responses from an SGE response queue up to the supplied budget.
  1935. * Responses include received packets as well as credits and other events
  1936. * for the queues that belong to the response queue's queue set.
  1937. * A negative budget is effectively unlimited.
  1938. *
  1939. * Additionally choose the interrupt holdoff time for the next interrupt
  1940. * on this queue. If the system is under memory shortage use a fairly
  1941. * long delay to help recovery.
  1942. */
  1943. static int process_responses(struct adapter *adap, struct sge_qset *qs,
  1944. int budget)
  1945. {
  1946. struct sge_rspq *q = &qs->rspq;
  1947. struct rsp_desc *r = &q->desc[q->cidx];
  1948. int budget_left = budget;
  1949. unsigned int sleeping = 0;
  1950. struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
  1951. int ngathered = 0;
  1952. q->next_holdoff = q->holdoff_tmr;
  1953. while (likely(budget_left && is_new_response(r, q))) {
  1954. int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
  1955. struct sk_buff *skb = NULL;
  1956. u32 len, flags = ntohl(r->flags);
  1957. __be32 rss_hi = *(const __be32 *)r,
  1958. rss_lo = r->rss_hdr.rss_hash_val;
  1959. eth = r->rss_hdr.opcode == CPL_RX_PKT;
  1960. if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
  1961. skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
  1962. if (!skb)
  1963. goto no_mem;
  1964. memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
  1965. skb->data[0] = CPL_ASYNC_NOTIF;
  1966. rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
  1967. q->async_notif++;
  1968. } else if (flags & F_RSPD_IMM_DATA_VALID) {
  1969. skb = get_imm_packet(r);
  1970. if (unlikely(!skb)) {
  1971. no_mem:
  1972. q->next_holdoff = NOMEM_INTR_DELAY;
  1973. q->nomem++;
  1974. /* consume one credit since we tried */
  1975. budget_left--;
  1976. break;
  1977. }
  1978. q->imm_data++;
  1979. ethpad = 0;
  1980. } else if ((len = ntohl(r->len_cq)) != 0) {
  1981. struct sge_fl *fl;
  1982. lro &= eth && is_eth_tcp(rss_hi);
  1983. fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
  1984. if (fl->use_pages) {
  1985. void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
  1986. prefetch(addr);
  1987. #if L1_CACHE_BYTES < 128
  1988. prefetch(addr + L1_CACHE_BYTES);
  1989. #endif
  1990. __refill_fl(adap, fl);
  1991. if (lro > 0) {
  1992. lro_add_page(adap, qs, fl,
  1993. G_RSPD_LEN(len),
  1994. flags & F_RSPD_EOP);
  1995. goto next_fl;
  1996. }
  1997. skb = get_packet_pg(adap, fl, q,
  1998. G_RSPD_LEN(len),
  1999. eth ?
  2000. SGE_RX_DROP_THRES : 0);
  2001. q->pg_skb = skb;
  2002. } else
  2003. skb = get_packet(adap, fl, G_RSPD_LEN(len),
  2004. eth ? SGE_RX_DROP_THRES : 0);
  2005. if (unlikely(!skb)) {
  2006. if (!eth)
  2007. goto no_mem;
  2008. q->rx_drops++;
  2009. } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
  2010. __skb_pull(skb, 2);
  2011. next_fl:
  2012. if (++fl->cidx == fl->size)
  2013. fl->cidx = 0;
  2014. } else
  2015. q->pure_rsps++;
  2016. if (flags & RSPD_CTRL_MASK) {
  2017. sleeping |= flags & RSPD_GTS_MASK;
  2018. handle_rsp_cntrl_info(qs, flags);
  2019. }
  2020. r++;
  2021. if (unlikely(++q->cidx == q->size)) {
  2022. q->cidx = 0;
  2023. q->gen ^= 1;
  2024. r = q->desc;
  2025. }
  2026. prefetch(r);
  2027. if (++q->credits >= (q->size / 4)) {
  2028. refill_rspq(adap, q, q->credits);
  2029. q->credits = 0;
  2030. }
  2031. packet_complete = flags &
  2032. (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
  2033. F_RSPD_ASYNC_NOTIF);
  2034. if (skb != NULL && packet_complete) {
  2035. if (eth)
  2036. rx_eth(adap, q, skb, ethpad, lro);
  2037. else {
  2038. q->offload_pkts++;
  2039. /* Preserve the RSS info in csum & priority */
  2040. skb->csum = rss_hi;
  2041. skb->priority = rss_lo;
  2042. ngathered = rx_offload(&adap->tdev, q, skb,
  2043. offload_skbs,
  2044. ngathered);
  2045. }
  2046. if (flags & F_RSPD_EOP)
  2047. clear_rspq_bufstate(q);
  2048. }
  2049. --budget_left;
  2050. }
  2051. deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
  2052. if (sleeping)
  2053. check_ring_db(adap, qs, sleeping);
  2054. smp_mb(); /* commit Tx queue .processed updates */
  2055. if (unlikely(qs->txq_stopped != 0))
  2056. restart_tx(qs);
  2057. budget -= budget_left;
  2058. return budget;
  2059. }
  2060. static inline int is_pure_response(const struct rsp_desc *r)
  2061. {
  2062. __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
  2063. return (n | r->len_cq) == 0;
  2064. }
  2065. /**
  2066. * napi_rx_handler - the NAPI handler for Rx processing
  2067. * @napi: the napi instance
  2068. * @budget: how many packets we can process in this round
  2069. *
  2070. * Handler for new data events when using NAPI.
  2071. */
  2072. static int napi_rx_handler(struct napi_struct *napi, int budget)
  2073. {
  2074. struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
  2075. struct adapter *adap = qs->adap;
  2076. int work_done = process_responses(adap, qs, budget);
  2077. if (likely(work_done < budget)) {
  2078. napi_complete(napi);
  2079. /*
  2080. * Because we don't atomically flush the following
  2081. * write it is possible that in very rare cases it can
  2082. * reach the device in a way that races with a new
  2083. * response being written plus an error interrupt
  2084. * causing the NAPI interrupt handler below to return
  2085. * unhandled status to the OS. To protect against
  2086. * this would require flushing the write and doing
  2087. * both the write and the flush with interrupts off.
  2088. * Way too expensive and unjustifiable given the
  2089. * rarity of the race.
  2090. *
  2091. * The race cannot happen at all with MSI-X.
  2092. */
  2093. t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
  2094. V_NEWTIMER(qs->rspq.next_holdoff) |
  2095. V_NEWINDEX(qs->rspq.cidx));
  2096. }
  2097. return work_done;
  2098. }
  2099. /*
  2100. * Returns true if the device is already scheduled for polling.
  2101. */
  2102. static inline int napi_is_scheduled(struct napi_struct *napi)
  2103. {
  2104. return test_bit(NAPI_STATE_SCHED, &napi->state);
  2105. }
  2106. /**
  2107. * process_pure_responses - process pure responses from a response queue
  2108. * @adap: the adapter
  2109. * @qs: the queue set owning the response queue
  2110. * @r: the first pure response to process
  2111. *
  2112. * A simpler version of process_responses() that handles only pure (i.e.,
  2113. * non data-carrying) responses. Such respones are too light-weight to
  2114. * justify calling a softirq under NAPI, so we handle them specially in
  2115. * the interrupt handler. The function is called with a pointer to a
  2116. * response, which the caller must ensure is a valid pure response.
  2117. *
  2118. * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
  2119. */
  2120. static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
  2121. struct rsp_desc *r)
  2122. {
  2123. struct sge_rspq *q = &qs->rspq;
  2124. unsigned int sleeping = 0;
  2125. do {
  2126. u32 flags = ntohl(r->flags);
  2127. r++;
  2128. if (unlikely(++q->cidx == q->size)) {
  2129. q->cidx = 0;
  2130. q->gen ^= 1;
  2131. r = q->desc;
  2132. }
  2133. prefetch(r);
  2134. if (flags & RSPD_CTRL_MASK) {
  2135. sleeping |= flags & RSPD_GTS_MASK;
  2136. handle_rsp_cntrl_info(qs, flags);
  2137. }
  2138. q->pure_rsps++;
  2139. if (++q->credits >= (q->size / 4)) {
  2140. refill_rspq(adap, q, q->credits);
  2141. q->credits = 0;
  2142. }
  2143. } while (is_new_response(r, q) && is_pure_response(r));
  2144. if (sleeping)
  2145. check_ring_db(adap, qs, sleeping);
  2146. smp_mb(); /* commit Tx queue .processed updates */
  2147. if (unlikely(qs->txq_stopped != 0))
  2148. restart_tx(qs);
  2149. return is_new_response(r, q);
  2150. }
  2151. /**
  2152. * handle_responses - decide what to do with new responses in NAPI mode
  2153. * @adap: the adapter
  2154. * @q: the response queue
  2155. *
  2156. * This is used by the NAPI interrupt handlers to decide what to do with
  2157. * new SGE responses. If there are no new responses it returns -1. If
  2158. * there are new responses and they are pure (i.e., non-data carrying)
  2159. * it handles them straight in hard interrupt context as they are very
  2160. * cheap and don't deliver any packets. Finally, if there are any data
  2161. * signaling responses it schedules the NAPI handler. Returns 1 if it
  2162. * schedules NAPI, 0 if all new responses were pure.
  2163. *
  2164. * The caller must ascertain NAPI is not already running.
  2165. */
  2166. static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
  2167. {
  2168. struct sge_qset *qs = rspq_to_qset(q);
  2169. struct rsp_desc *r = &q->desc[q->cidx];
  2170. if (!is_new_response(r, q))
  2171. return -1;
  2172. if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
  2173. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
  2174. V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
  2175. return 0;
  2176. }
  2177. napi_schedule(&qs->napi);
  2178. return 1;
  2179. }
  2180. /*
  2181. * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
  2182. * (i.e., response queue serviced in hard interrupt).
  2183. */
  2184. irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
  2185. {
  2186. struct sge_qset *qs = cookie;
  2187. struct adapter *adap = qs->adap;
  2188. struct sge_rspq *q = &qs->rspq;
  2189. spin_lock(&q->lock);
  2190. if (process_responses(adap, qs, -1) == 0)
  2191. q->unhandled_irqs++;
  2192. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
  2193. V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
  2194. spin_unlock(&q->lock);
  2195. return IRQ_HANDLED;
  2196. }
  2197. /*
  2198. * The MSI-X interrupt handler for an SGE response queue for the NAPI case
  2199. * (i.e., response queue serviced by NAPI polling).
  2200. */
  2201. static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
  2202. {
  2203. struct sge_qset *qs = cookie;
  2204. struct sge_rspq *q = &qs->rspq;
  2205. spin_lock(&q->lock);
  2206. if (handle_responses(qs->adap, q) < 0)
  2207. q->unhandled_irqs++;
  2208. spin_unlock(&q->lock);
  2209. return IRQ_HANDLED;
  2210. }
  2211. /*
  2212. * The non-NAPI MSI interrupt handler. This needs to handle data events from
  2213. * SGE response queues as well as error and other async events as they all use
  2214. * the same MSI vector. We use one SGE response queue per port in this mode
  2215. * and protect all response queues with queue 0's lock.
  2216. */
  2217. static irqreturn_t t3_intr_msi(int irq, void *cookie)
  2218. {
  2219. int new_packets = 0;
  2220. struct adapter *adap = cookie;
  2221. struct sge_rspq *q = &adap->sge.qs[0].rspq;
  2222. spin_lock(&q->lock);
  2223. if (process_responses(adap, &adap->sge.qs[0], -1)) {
  2224. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
  2225. V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
  2226. new_packets = 1;
  2227. }
  2228. if (adap->params.nports == 2 &&
  2229. process_responses(adap, &adap->sge.qs[1], -1)) {
  2230. struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
  2231. t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
  2232. V_NEWTIMER(q1->next_holdoff) |
  2233. V_NEWINDEX(q1->cidx));
  2234. new_packets = 1;
  2235. }
  2236. if (!new_packets && t3_slow_intr_handler(adap) == 0)
  2237. q->unhandled_irqs++;
  2238. spin_unlock(&q->lock);
  2239. return IRQ_HANDLED;
  2240. }
  2241. static int rspq_check_napi(struct sge_qset *qs)
  2242. {
  2243. struct sge_rspq *q = &qs->rspq;
  2244. if (!napi_is_scheduled(&qs->napi) &&
  2245. is_new_response(&q->desc[q->cidx], q)) {
  2246. napi_schedule(&qs->napi);
  2247. return 1;
  2248. }
  2249. return 0;
  2250. }
  2251. /*
  2252. * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
  2253. * by NAPI polling). Handles data events from SGE response queues as well as
  2254. * error and other async events as they all use the same MSI vector. We use
  2255. * one SGE response queue per port in this mode and protect all response
  2256. * queues with queue 0's lock.
  2257. */
  2258. static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
  2259. {
  2260. int new_packets;
  2261. struct adapter *adap = cookie;
  2262. struct sge_rspq *q = &adap->sge.qs[0].rspq;
  2263. spin_lock(&q->lock);
  2264. new_packets = rspq_check_napi(&adap->sge.qs[0]);
  2265. if (adap->params.nports == 2)
  2266. new_packets += rspq_check_napi(&adap->sge.qs[1]);
  2267. if (!new_packets && t3_slow_intr_handler(adap) == 0)
  2268. q->unhandled_irqs++;
  2269. spin_unlock(&q->lock);
  2270. return IRQ_HANDLED;
  2271. }
  2272. /*
  2273. * A helper function that processes responses and issues GTS.
  2274. */
  2275. static inline int process_responses_gts(struct adapter *adap,
  2276. struct sge_rspq *rq)
  2277. {
  2278. int work;
  2279. work = process_responses(adap, rspq_to_qset(rq), -1);
  2280. t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
  2281. V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
  2282. return work;
  2283. }
  2284. /*
  2285. * The legacy INTx interrupt handler. This needs to handle data events from
  2286. * SGE response queues as well as error and other async events as they all use
  2287. * the same interrupt pin. We use one SGE response queue per port in this mode
  2288. * and protect all response queues with queue 0's lock.
  2289. */
  2290. static irqreturn_t t3_intr(int irq, void *cookie)
  2291. {
  2292. int work_done, w0, w1;
  2293. struct adapter *adap = cookie;
  2294. struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
  2295. struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
  2296. spin_lock(&q0->lock);
  2297. w0 = is_new_response(&q0->desc[q0->cidx], q0);
  2298. w1 = adap->params.nports == 2 &&
  2299. is_new_response(&q1->desc[q1->cidx], q1);
  2300. if (likely(w0 | w1)) {
  2301. t3_write_reg(adap, A_PL_CLI, 0);
  2302. t3_read_reg(adap, A_PL_CLI); /* flush */
  2303. if (likely(w0))
  2304. process_responses_gts(adap, q0);
  2305. if (w1)
  2306. process_responses_gts(adap, q1);
  2307. work_done = w0 | w1;
  2308. } else
  2309. work_done = t3_slow_intr_handler(adap);
  2310. spin_unlock(&q0->lock);
  2311. return IRQ_RETVAL(work_done != 0);
  2312. }
  2313. /*
  2314. * Interrupt handler for legacy INTx interrupts for T3B-based cards.
  2315. * Handles data events from SGE response queues as well as error and other
  2316. * async events as they all use the same interrupt pin. We use one SGE
  2317. * response queue per port in this mode and protect all response queues with
  2318. * queue 0's lock.
  2319. */
  2320. static irqreturn_t t3b_intr(int irq, void *cookie)
  2321. {
  2322. u32 map;
  2323. struct adapter *adap = cookie;
  2324. struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
  2325. t3_write_reg(adap, A_PL_CLI, 0);
  2326. map = t3_read_reg(adap, A_SG_DATA_INTR);
  2327. if (unlikely(!map)) /* shared interrupt, most likely */
  2328. return IRQ_NONE;
  2329. spin_lock(&q0->lock);
  2330. if (unlikely(map & F_ERRINTR))
  2331. t3_slow_intr_handler(adap);
  2332. if (likely(map & 1))
  2333. process_responses_gts(adap, q0);
  2334. if (map & 2)
  2335. process_responses_gts(adap, &adap->sge.qs[1].rspq);
  2336. spin_unlock(&q0->lock);
  2337. return IRQ_HANDLED;
  2338. }
  2339. /*
  2340. * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
  2341. * Handles data events from SGE response queues as well as error and other
  2342. * async events as they all use the same interrupt pin. We use one SGE
  2343. * response queue per port in this mode and protect all response queues with
  2344. * queue 0's lock.
  2345. */
  2346. static irqreturn_t t3b_intr_napi(int irq, void *cookie)
  2347. {
  2348. u32 map;
  2349. struct adapter *adap = cookie;
  2350. struct sge_qset *qs0 = &adap->sge.qs[0];
  2351. struct sge_rspq *q0 = &qs0->rspq;
  2352. t3_write_reg(adap, A_PL_CLI, 0);
  2353. map = t3_read_reg(adap, A_SG_DATA_INTR);
  2354. if (unlikely(!map)) /* shared interrupt, most likely */
  2355. return IRQ_NONE;
  2356. spin_lock(&q0->lock);
  2357. if (unlikely(map & F_ERRINTR))
  2358. t3_slow_intr_handler(adap);
  2359. if (likely(map & 1))
  2360. napi_schedule(&qs0->napi);
  2361. if (map & 2)
  2362. napi_schedule(&adap->sge.qs[1].napi);
  2363. spin_unlock(&q0->lock);
  2364. return IRQ_HANDLED;
  2365. }
  2366. /**
  2367. * t3_intr_handler - select the top-level interrupt handler
  2368. * @adap: the adapter
  2369. * @polling: whether using NAPI to service response queues
  2370. *
  2371. * Selects the top-level interrupt handler based on the type of interrupts
  2372. * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
  2373. * response queues.
  2374. */
  2375. irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
  2376. {
  2377. if (adap->flags & USING_MSIX)
  2378. return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
  2379. if (adap->flags & USING_MSI)
  2380. return polling ? t3_intr_msi_napi : t3_intr_msi;
  2381. if (adap->params.rev > 0)
  2382. return polling ? t3b_intr_napi : t3b_intr;
  2383. return t3_intr;
  2384. }
  2385. #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  2386. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  2387. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  2388. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  2389. F_HIRCQPARITYERROR)
  2390. #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
  2391. #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
  2392. F_RSPQDISABLED)
  2393. /**
  2394. * t3_sge_err_intr_handler - SGE async event interrupt handler
  2395. * @adapter: the adapter
  2396. *
  2397. * Interrupt handler for SGE asynchronous (non-data) events.
  2398. */
  2399. void t3_sge_err_intr_handler(struct adapter *adapter)
  2400. {
  2401. unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
  2402. ~F_FLEMPTY;
  2403. if (status & SGE_PARERR)
  2404. CH_ALERT(adapter, "SGE parity error (0x%x)\n",
  2405. status & SGE_PARERR);
  2406. if (status & SGE_FRAMINGERR)
  2407. CH_ALERT(adapter, "SGE framing error (0x%x)\n",
  2408. status & SGE_FRAMINGERR);
  2409. if (status & F_RSPQCREDITOVERFOW)
  2410. CH_ALERT(adapter, "SGE response queue credit overflow\n");
  2411. if (status & F_RSPQDISABLED) {
  2412. v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
  2413. CH_ALERT(adapter,
  2414. "packet delivered to disabled response queue "
  2415. "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
  2416. }
  2417. if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
  2418. CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
  2419. status & F_HIPIODRBDROPERR ? "high" : "lo");
  2420. t3_write_reg(adapter, A_SG_INT_CAUSE, status);
  2421. if (status & SGE_FATALERR)
  2422. t3_fatal_err(adapter);
  2423. }
  2424. /**
  2425. * sge_timer_tx - perform periodic maintenance of an SGE qset
  2426. * @data: the SGE queue set to maintain
  2427. *
  2428. * Runs periodically from a timer to perform maintenance of an SGE queue
  2429. * set. It performs two tasks:
  2430. *
  2431. * Cleans up any completed Tx descriptors that may still be pending.
  2432. * Normal descriptor cleanup happens when new packets are added to a Tx
  2433. * queue so this timer is relatively infrequent and does any cleanup only
  2434. * if the Tx queue has not seen any new packets in a while. We make a
  2435. * best effort attempt to reclaim descriptors, in that we don't wait
  2436. * around if we cannot get a queue's lock (which most likely is because
  2437. * someone else is queueing new packets and so will also handle the clean
  2438. * up). Since control queues use immediate data exclusively we don't
  2439. * bother cleaning them up here.
  2440. *
  2441. */
  2442. static void sge_timer_tx(unsigned long data)
  2443. {
  2444. struct sge_qset *qs = (struct sge_qset *)data;
  2445. struct port_info *pi = netdev_priv(qs->netdev);
  2446. struct adapter *adap = pi->adapter;
  2447. unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
  2448. unsigned long next_period;
  2449. if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
  2450. tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
  2451. TX_RECLAIM_TIMER_CHUNK);
  2452. spin_unlock(&qs->txq[TXQ_ETH].lock);
  2453. }
  2454. if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
  2455. tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
  2456. TX_RECLAIM_TIMER_CHUNK);
  2457. spin_unlock(&qs->txq[TXQ_OFLD].lock);
  2458. }
  2459. next_period = TX_RECLAIM_PERIOD >>
  2460. (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
  2461. TX_RECLAIM_TIMER_CHUNK);
  2462. mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
  2463. }
  2464. /*
  2465. * sge_timer_rx - perform periodic maintenance of an SGE qset
  2466. * @data: the SGE queue set to maintain
  2467. *
  2468. * a) Replenishes Rx queues that have run out due to memory shortage.
  2469. * Normally new Rx buffers are added when existing ones are consumed but
  2470. * when out of memory a queue can become empty. We try to add only a few
  2471. * buffers here, the queue will be replenished fully as these new buffers
  2472. * are used up if memory shortage has subsided.
  2473. *
  2474. * b) Return coalesced response queue credits in case a response queue is
  2475. * starved.
  2476. *
  2477. */
  2478. static void sge_timer_rx(unsigned long data)
  2479. {
  2480. spinlock_t *lock;
  2481. struct sge_qset *qs = (struct sge_qset *)data;
  2482. struct port_info *pi = netdev_priv(qs->netdev);
  2483. struct adapter *adap = pi->adapter;
  2484. u32 status;
  2485. lock = adap->params.rev > 0 ?
  2486. &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
  2487. if (!spin_trylock_irq(lock))
  2488. goto out;
  2489. if (napi_is_scheduled(&qs->napi))
  2490. goto unlock;
  2491. if (adap->params.rev < 4) {
  2492. status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
  2493. if (status & (1 << qs->rspq.cntxt_id)) {
  2494. qs->rspq.starved++;
  2495. if (qs->rspq.credits) {
  2496. qs->rspq.credits--;
  2497. refill_rspq(adap, &qs->rspq, 1);
  2498. qs->rspq.restarted++;
  2499. t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
  2500. 1 << qs->rspq.cntxt_id);
  2501. }
  2502. }
  2503. }
  2504. if (qs->fl[0].credits < qs->fl[0].size)
  2505. __refill_fl(adap, &qs->fl[0]);
  2506. if (qs->fl[1].credits < qs->fl[1].size)
  2507. __refill_fl(adap, &qs->fl[1]);
  2508. unlock:
  2509. spin_unlock_irq(lock);
  2510. out:
  2511. mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
  2512. }
  2513. /**
  2514. * t3_update_qset_coalesce - update coalescing settings for a queue set
  2515. * @qs: the SGE queue set
  2516. * @p: new queue set parameters
  2517. *
  2518. * Update the coalescing settings for an SGE queue set. Nothing is done
  2519. * if the queue set is not initialized yet.
  2520. */
  2521. void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
  2522. {
  2523. qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
  2524. qs->rspq.polling = p->polling;
  2525. qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
  2526. }
  2527. /**
  2528. * t3_sge_alloc_qset - initialize an SGE queue set
  2529. * @adapter: the adapter
  2530. * @id: the queue set id
  2531. * @nports: how many Ethernet ports will be using this queue set
  2532. * @irq_vec_idx: the IRQ vector index for response queue interrupts
  2533. * @p: configuration parameters for this queue set
  2534. * @ntxq: number of Tx queues for the queue set
  2535. * @netdev: net device associated with this queue set
  2536. * @netdevq: net device TX queue associated with this queue set
  2537. *
  2538. * Allocate resources and initialize an SGE queue set. A queue set
  2539. * comprises a response queue, two Rx free-buffer queues, and up to 3
  2540. * Tx queues. The Tx queues are assigned roles in the order Ethernet
  2541. * queue, offload queue, and control queue.
  2542. */
  2543. int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
  2544. int irq_vec_idx, const struct qset_params *p,
  2545. int ntxq, struct net_device *dev,
  2546. struct netdev_queue *netdevq)
  2547. {
  2548. int i, avail, ret = -ENOMEM;
  2549. struct sge_qset *q = &adapter->sge.qs[id];
  2550. init_qset_cntxt(q, id);
  2551. setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
  2552. setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
  2553. q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
  2554. sizeof(struct rx_desc),
  2555. sizeof(struct rx_sw_desc),
  2556. &q->fl[0].phys_addr, &q->fl[0].sdesc);
  2557. if (!q->fl[0].desc)
  2558. goto err;
  2559. q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
  2560. sizeof(struct rx_desc),
  2561. sizeof(struct rx_sw_desc),
  2562. &q->fl[1].phys_addr, &q->fl[1].sdesc);
  2563. if (!q->fl[1].desc)
  2564. goto err;
  2565. q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
  2566. sizeof(struct rsp_desc), 0,
  2567. &q->rspq.phys_addr, NULL);
  2568. if (!q->rspq.desc)
  2569. goto err;
  2570. for (i = 0; i < ntxq; ++i) {
  2571. /*
  2572. * The control queue always uses immediate data so does not
  2573. * need to keep track of any sk_buffs.
  2574. */
  2575. size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
  2576. q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
  2577. sizeof(struct tx_desc), sz,
  2578. &q->txq[i].phys_addr,
  2579. &q->txq[i].sdesc);
  2580. if (!q->txq[i].desc)
  2581. goto err;
  2582. q->txq[i].gen = 1;
  2583. q->txq[i].size = p->txq_size[i];
  2584. spin_lock_init(&q->txq[i].lock);
  2585. skb_queue_head_init(&q->txq[i].sendq);
  2586. }
  2587. tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
  2588. (unsigned long)q);
  2589. tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
  2590. (unsigned long)q);
  2591. q->fl[0].gen = q->fl[1].gen = 1;
  2592. q->fl[0].size = p->fl_size;
  2593. q->fl[1].size = p->jumbo_size;
  2594. q->rspq.gen = 1;
  2595. q->rspq.size = p->rspq_size;
  2596. spin_lock_init(&q->rspq.lock);
  2597. skb_queue_head_init(&q->rspq.rx_queue);
  2598. q->txq[TXQ_ETH].stop_thres = nports *
  2599. flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
  2600. #if FL0_PG_CHUNK_SIZE > 0
  2601. q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
  2602. #else
  2603. q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
  2604. #endif
  2605. #if FL1_PG_CHUNK_SIZE > 0
  2606. q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
  2607. #else
  2608. q->fl[1].buf_size = is_offload(adapter) ?
  2609. (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
  2610. MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
  2611. #endif
  2612. q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
  2613. q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
  2614. q->fl[0].order = FL0_PG_ORDER;
  2615. q->fl[1].order = FL1_PG_ORDER;
  2616. spin_lock_irq(&adapter->sge.reg_lock);
  2617. /* FL threshold comparison uses < */
  2618. ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
  2619. q->rspq.phys_addr, q->rspq.size,
  2620. q->fl[0].buf_size, 1, 0);
  2621. if (ret)
  2622. goto err_unlock;
  2623. for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
  2624. ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
  2625. q->fl[i].phys_addr, q->fl[i].size,
  2626. q->fl[i].buf_size, p->cong_thres, 1,
  2627. 0);
  2628. if (ret)
  2629. goto err_unlock;
  2630. }
  2631. ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
  2632. SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
  2633. q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
  2634. 1, 0);
  2635. if (ret)
  2636. goto err_unlock;
  2637. if (ntxq > 1) {
  2638. ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
  2639. USE_GTS, SGE_CNTXT_OFLD, id,
  2640. q->txq[TXQ_OFLD].phys_addr,
  2641. q->txq[TXQ_OFLD].size, 0, 1, 0);
  2642. if (ret)
  2643. goto err_unlock;
  2644. }
  2645. if (ntxq > 2) {
  2646. ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
  2647. SGE_CNTXT_CTRL, id,
  2648. q->txq[TXQ_CTRL].phys_addr,
  2649. q->txq[TXQ_CTRL].size,
  2650. q->txq[TXQ_CTRL].token, 1, 0);
  2651. if (ret)
  2652. goto err_unlock;
  2653. }
  2654. spin_unlock_irq(&adapter->sge.reg_lock);
  2655. q->adap = adapter;
  2656. q->netdev = dev;
  2657. q->tx_q = netdevq;
  2658. t3_update_qset_coalesce(q, p);
  2659. avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
  2660. GFP_KERNEL | __GFP_COMP);
  2661. if (!avail) {
  2662. CH_ALERT(adapter, "free list queue 0 initialization failed\n");
  2663. goto err;
  2664. }
  2665. if (avail < q->fl[0].size)
  2666. CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
  2667. avail);
  2668. avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
  2669. GFP_KERNEL | __GFP_COMP);
  2670. if (avail < q->fl[1].size)
  2671. CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
  2672. avail);
  2673. refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
  2674. t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
  2675. V_NEWTIMER(q->rspq.holdoff_tmr));
  2676. mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  2677. mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
  2678. return 0;
  2679. err_unlock:
  2680. spin_unlock_irq(&adapter->sge.reg_lock);
  2681. err:
  2682. t3_free_qset(adapter, q);
  2683. return ret;
  2684. }
  2685. /**
  2686. * t3_stop_sge_timers - stop SGE timer call backs
  2687. * @adap: the adapter
  2688. *
  2689. * Stops each SGE queue set's timer call back
  2690. */
  2691. void t3_stop_sge_timers(struct adapter *adap)
  2692. {
  2693. int i;
  2694. for (i = 0; i < SGE_QSETS; ++i) {
  2695. struct sge_qset *q = &adap->sge.qs[i];
  2696. if (q->tx_reclaim_timer.function)
  2697. del_timer_sync(&q->tx_reclaim_timer);
  2698. if (q->rx_reclaim_timer.function)
  2699. del_timer_sync(&q->rx_reclaim_timer);
  2700. }
  2701. }
  2702. /**
  2703. * t3_free_sge_resources - free SGE resources
  2704. * @adap: the adapter
  2705. *
  2706. * Frees resources used by the SGE queue sets.
  2707. */
  2708. void t3_free_sge_resources(struct adapter *adap)
  2709. {
  2710. int i;
  2711. for (i = 0; i < SGE_QSETS; ++i)
  2712. t3_free_qset(adap, &adap->sge.qs[i]);
  2713. }
  2714. /**
  2715. * t3_sge_start - enable SGE
  2716. * @adap: the adapter
  2717. *
  2718. * Enables the SGE for DMAs. This is the last step in starting packet
  2719. * transfers.
  2720. */
  2721. void t3_sge_start(struct adapter *adap)
  2722. {
  2723. t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
  2724. }
  2725. /**
  2726. * t3_sge_stop - disable SGE operation
  2727. * @adap: the adapter
  2728. *
  2729. * Disables the DMA engine. This can be called in emeregencies (e.g.,
  2730. * from error interrupts) or from normal process context. In the latter
  2731. * case it also disables any pending queue restart tasklets. Note that
  2732. * if it is called in interrupt context it cannot disable the restart
  2733. * tasklets as it cannot wait, however the tasklets will have no effect
  2734. * since the doorbells are disabled and the driver will call this again
  2735. * later from process context, at which time the tasklets will be stopped
  2736. * if they are still running.
  2737. */
  2738. void t3_sge_stop(struct adapter *adap)
  2739. {
  2740. t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
  2741. if (!in_interrupt()) {
  2742. int i;
  2743. for (i = 0; i < SGE_QSETS; ++i) {
  2744. struct sge_qset *qs = &adap->sge.qs[i];
  2745. tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
  2746. tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
  2747. }
  2748. }
  2749. }
  2750. /**
  2751. * t3_sge_init - initialize SGE
  2752. * @adap: the adapter
  2753. * @p: the SGE parameters
  2754. *
  2755. * Performs SGE initialization needed every time after a chip reset.
  2756. * We do not initialize any of the queue sets here, instead the driver
  2757. * top-level must request those individually. We also do not enable DMA
  2758. * here, that should be done after the queues have been set up.
  2759. */
  2760. void t3_sge_init(struct adapter *adap, struct sge_params *p)
  2761. {
  2762. unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
  2763. ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
  2764. F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
  2765. V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
  2766. V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
  2767. #if SGE_NUM_GENBITS == 1
  2768. ctrl |= F_EGRGENCTRL;
  2769. #endif
  2770. if (adap->params.rev > 0) {
  2771. if (!(adap->flags & (USING_MSIX | USING_MSI)))
  2772. ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
  2773. }
  2774. t3_write_reg(adap, A_SG_CONTROL, ctrl);
  2775. t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
  2776. V_LORCQDRBTHRSH(512));
  2777. t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
  2778. t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
  2779. V_TIMEOUT(200 * core_ticks_per_usec(adap)));
  2780. t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
  2781. adap->params.rev < T3_REV_C ? 1000 : 500);
  2782. t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
  2783. t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
  2784. t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
  2785. t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
  2786. t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
  2787. }
  2788. /**
  2789. * t3_sge_prep - one-time SGE initialization
  2790. * @adap: the associated adapter
  2791. * @p: SGE parameters
  2792. *
  2793. * Performs one-time initialization of SGE SW state. Includes determining
  2794. * defaults for the assorted SGE parameters, which admins can change until
  2795. * they are used to initialize the SGE.
  2796. */
  2797. void t3_sge_prep(struct adapter *adap, struct sge_params *p)
  2798. {
  2799. int i;
  2800. p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
  2801. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2802. for (i = 0; i < SGE_QSETS; ++i) {
  2803. struct qset_params *q = p->qset + i;
  2804. q->polling = adap->params.rev > 0;
  2805. q->coalesce_usecs = 5;
  2806. q->rspq_size = 1024;
  2807. q->fl_size = 1024;
  2808. q->jumbo_size = 512;
  2809. q->txq_size[TXQ_ETH] = 1024;
  2810. q->txq_size[TXQ_OFLD] = 1024;
  2811. q->txq_size[TXQ_CTRL] = 256;
  2812. q->cong_thres = 0;
  2813. }
  2814. spin_lock_init(&adap->sge.reg_lock);
  2815. }
  2816. /**
  2817. * t3_get_desc - dump an SGE descriptor for debugging purposes
  2818. * @qs: the queue set
  2819. * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
  2820. * @idx: the descriptor index in the queue
  2821. * @data: where to dump the descriptor contents
  2822. *
  2823. * Dumps the contents of a HW descriptor of an SGE queue. Returns the
  2824. * size of the descriptor.
  2825. */
  2826. int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
  2827. unsigned char *data)
  2828. {
  2829. if (qnum >= 6)
  2830. return -EINVAL;
  2831. if (qnum < 3) {
  2832. if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
  2833. return -EINVAL;
  2834. memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
  2835. return sizeof(struct tx_desc);
  2836. }
  2837. if (qnum == 3) {
  2838. if (!qs->rspq.desc || idx >= qs->rspq.size)
  2839. return -EINVAL;
  2840. memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
  2841. return sizeof(struct rsp_desc);
  2842. }
  2843. qnum -= 4;
  2844. if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
  2845. return -EINVAL;
  2846. memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
  2847. return sizeof(struct rx_desc);
  2848. }