ctree.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_root *new_root;
  183. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  184. if (!new_root)
  185. return -ENOMEM;
  186. memcpy(new_root, root, sizeof(*new_root));
  187. new_root->root_key.objectid = new_root_objectid;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  194. new_root_objectid, trans->transid,
  195. level, buf->start, 0);
  196. if (IS_ERR(cow)) {
  197. kfree(new_root);
  198. return PTR_ERR(cow);
  199. }
  200. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  201. btrfs_set_header_bytenr(cow, cow->start);
  202. btrfs_set_header_generation(cow, trans->transid);
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  205. write_extent_buffer(cow, root->fs_info->fsid,
  206. (unsigned long)btrfs_header_fsid(cow),
  207. BTRFS_FSID_SIZE);
  208. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  209. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  210. kfree(new_root);
  211. if (ret)
  212. return ret;
  213. btrfs_mark_buffer_dirty(cow);
  214. *cow_ret = cow;
  215. return 0;
  216. }
  217. /*
  218. * does the dirty work in cow of a single block. The parent block (if
  219. * supplied) is updated to point to the new cow copy. The new buffer is marked
  220. * dirty and returned locked. If you modify the block it needs to be marked
  221. * dirty again.
  222. *
  223. * search_start -- an allocation hint for the new block
  224. *
  225. * empty_size -- a hint that you plan on doing more cow. This is the size in
  226. * bytes the allocator should try to find free next to the block it returns.
  227. * This is just a hint and may be ignored by the allocator.
  228. */
  229. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  230. struct btrfs_root *root,
  231. struct extent_buffer *buf,
  232. struct extent_buffer *parent, int parent_slot,
  233. struct extent_buffer **cow_ret,
  234. u64 search_start, u64 empty_size)
  235. {
  236. u64 parent_start;
  237. struct extent_buffer *cow;
  238. u32 nritems;
  239. int ret = 0;
  240. int level;
  241. int unlock_orig = 0;
  242. if (*cow_ret == buf)
  243. unlock_orig = 1;
  244. btrfs_assert_tree_locked(buf);
  245. if (parent)
  246. parent_start = parent->start;
  247. else
  248. parent_start = 0;
  249. WARN_ON(root->ref_cows && trans->transid !=
  250. root->fs_info->running_transaction->transid);
  251. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  252. level = btrfs_header_level(buf);
  253. nritems = btrfs_header_nritems(buf);
  254. cow = btrfs_alloc_free_block(trans, root, buf->len,
  255. parent_start, root->root_key.objectid,
  256. trans->transid, level,
  257. search_start, empty_size);
  258. if (IS_ERR(cow))
  259. return PTR_ERR(cow);
  260. /* cow is set to blocking by btrfs_init_new_buffer */
  261. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  262. btrfs_set_header_bytenr(cow, cow->start);
  263. btrfs_set_header_generation(cow, trans->transid);
  264. btrfs_set_header_owner(cow, root->root_key.objectid);
  265. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  266. write_extent_buffer(cow, root->fs_info->fsid,
  267. (unsigned long)btrfs_header_fsid(cow),
  268. BTRFS_FSID_SIZE);
  269. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  270. if (btrfs_header_generation(buf) != trans->transid) {
  271. u32 nr_extents;
  272. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  273. if (ret)
  274. return ret;
  275. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  276. WARN_ON(ret);
  277. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  278. /*
  279. * There are only two places that can drop reference to
  280. * tree blocks owned by living reloc trees, one is here,
  281. * the other place is btrfs_drop_subtree. In both places,
  282. * we check reference count while tree block is locked.
  283. * Furthermore, if reference count is one, it won't get
  284. * increased by someone else.
  285. */
  286. u32 refs;
  287. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  288. buf->len, &refs);
  289. BUG_ON(ret);
  290. if (refs == 1) {
  291. ret = btrfs_update_ref(trans, root, buf, cow,
  292. 0, nritems);
  293. clean_tree_block(trans, root, buf);
  294. } else {
  295. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  296. }
  297. BUG_ON(ret);
  298. } else {
  299. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  300. if (ret)
  301. return ret;
  302. clean_tree_block(trans, root, buf);
  303. }
  304. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  305. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  306. WARN_ON(ret);
  307. }
  308. if (buf == root->node) {
  309. WARN_ON(parent && parent != buf);
  310. spin_lock(&root->node_lock);
  311. root->node = cow;
  312. extent_buffer_get(cow);
  313. spin_unlock(&root->node_lock);
  314. if (buf != root->commit_root) {
  315. btrfs_free_extent(trans, root, buf->start,
  316. buf->len, buf->start,
  317. root->root_key.objectid,
  318. btrfs_header_generation(buf),
  319. level, 1);
  320. }
  321. free_extent_buffer(buf);
  322. add_root_to_dirty_list(root);
  323. } else {
  324. btrfs_set_node_blockptr(parent, parent_slot,
  325. cow->start);
  326. WARN_ON(trans->transid == 0);
  327. btrfs_set_node_ptr_generation(parent, parent_slot,
  328. trans->transid);
  329. btrfs_mark_buffer_dirty(parent);
  330. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  331. btrfs_free_extent(trans, root, buf->start, buf->len,
  332. parent_start, btrfs_header_owner(parent),
  333. btrfs_header_generation(parent), level, 1);
  334. }
  335. if (unlock_orig)
  336. btrfs_tree_unlock(buf);
  337. free_extent_buffer(buf);
  338. btrfs_mark_buffer_dirty(cow);
  339. *cow_ret = cow;
  340. return 0;
  341. }
  342. /*
  343. * cows a single block, see __btrfs_cow_block for the real work.
  344. * This version of it has extra checks so that a block isn't cow'd more than
  345. * once per transaction, as long as it hasn't been written yet
  346. */
  347. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  348. struct btrfs_root *root, struct extent_buffer *buf,
  349. struct extent_buffer *parent, int parent_slot,
  350. struct extent_buffer **cow_ret)
  351. {
  352. u64 search_start;
  353. int ret;
  354. if (trans->transaction != root->fs_info->running_transaction) {
  355. printk(KERN_CRIT "trans %llu running %llu\n",
  356. (unsigned long long)trans->transid,
  357. (unsigned long long)
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(1);
  360. }
  361. if (trans->transid != root->fs_info->generation) {
  362. printk(KERN_CRIT "trans %llu running %llu\n",
  363. (unsigned long long)trans->transid,
  364. (unsigned long long)root->fs_info->generation);
  365. WARN_ON(1);
  366. }
  367. if (btrfs_header_generation(buf) == trans->transid &&
  368. btrfs_header_owner(buf) == root->root_key.objectid &&
  369. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  370. *cow_ret = buf;
  371. return 0;
  372. }
  373. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  374. if (parent)
  375. btrfs_set_lock_blocking(parent);
  376. btrfs_set_lock_blocking(buf);
  377. ret = __btrfs_cow_block(trans, root, buf, parent,
  378. parent_slot, cow_ret, search_start, 0);
  379. return ret;
  380. }
  381. /*
  382. * helper function for defrag to decide if two blocks pointed to by a
  383. * node are actually close by
  384. */
  385. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  386. {
  387. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  388. return 1;
  389. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  390. return 1;
  391. return 0;
  392. }
  393. /*
  394. * compare two keys in a memcmp fashion
  395. */
  396. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  397. {
  398. struct btrfs_key k1;
  399. btrfs_disk_key_to_cpu(&k1, disk);
  400. if (k1.objectid > k2->objectid)
  401. return 1;
  402. if (k1.objectid < k2->objectid)
  403. return -1;
  404. if (k1.type > k2->type)
  405. return 1;
  406. if (k1.type < k2->type)
  407. return -1;
  408. if (k1.offset > k2->offset)
  409. return 1;
  410. if (k1.offset < k2->offset)
  411. return -1;
  412. return 0;
  413. }
  414. /*
  415. * same as comp_keys only with two btrfs_key's
  416. */
  417. static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  418. {
  419. if (k1->objectid > k2->objectid)
  420. return 1;
  421. if (k1->objectid < k2->objectid)
  422. return -1;
  423. if (k1->type > k2->type)
  424. return 1;
  425. if (k1->type < k2->type)
  426. return -1;
  427. if (k1->offset > k2->offset)
  428. return 1;
  429. if (k1->offset < k2->offset)
  430. return -1;
  431. return 0;
  432. }
  433. /*
  434. * this is used by the defrag code to go through all the
  435. * leaves pointed to by a node and reallocate them so that
  436. * disk order is close to key order
  437. */
  438. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  439. struct btrfs_root *root, struct extent_buffer *parent,
  440. int start_slot, int cache_only, u64 *last_ret,
  441. struct btrfs_key *progress)
  442. {
  443. struct extent_buffer *cur;
  444. u64 blocknr;
  445. u64 gen;
  446. u64 search_start = *last_ret;
  447. u64 last_block = 0;
  448. u64 other;
  449. u32 parent_nritems;
  450. int end_slot;
  451. int i;
  452. int err = 0;
  453. int parent_level;
  454. int uptodate;
  455. u32 blocksize;
  456. int progress_passed = 0;
  457. struct btrfs_disk_key disk_key;
  458. parent_level = btrfs_header_level(parent);
  459. if (cache_only && parent_level != 1)
  460. return 0;
  461. if (trans->transaction != root->fs_info->running_transaction)
  462. WARN_ON(1);
  463. if (trans->transid != root->fs_info->generation)
  464. WARN_ON(1);
  465. parent_nritems = btrfs_header_nritems(parent);
  466. blocksize = btrfs_level_size(root, parent_level - 1);
  467. end_slot = parent_nritems;
  468. if (parent_nritems == 1)
  469. return 0;
  470. btrfs_set_lock_blocking(parent);
  471. for (i = start_slot; i < end_slot; i++) {
  472. int close = 1;
  473. if (!parent->map_token) {
  474. map_extent_buffer(parent,
  475. btrfs_node_key_ptr_offset(i),
  476. sizeof(struct btrfs_key_ptr),
  477. &parent->map_token, &parent->kaddr,
  478. &parent->map_start, &parent->map_len,
  479. KM_USER1);
  480. }
  481. btrfs_node_key(parent, &disk_key, i);
  482. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  483. continue;
  484. progress_passed = 1;
  485. blocknr = btrfs_node_blockptr(parent, i);
  486. gen = btrfs_node_ptr_generation(parent, i);
  487. if (last_block == 0)
  488. last_block = blocknr;
  489. if (i > 0) {
  490. other = btrfs_node_blockptr(parent, i - 1);
  491. close = close_blocks(blocknr, other, blocksize);
  492. }
  493. if (!close && i < end_slot - 2) {
  494. other = btrfs_node_blockptr(parent, i + 1);
  495. close = close_blocks(blocknr, other, blocksize);
  496. }
  497. if (close) {
  498. last_block = blocknr;
  499. continue;
  500. }
  501. if (parent->map_token) {
  502. unmap_extent_buffer(parent, parent->map_token,
  503. KM_USER1);
  504. parent->map_token = NULL;
  505. }
  506. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  507. if (cur)
  508. uptodate = btrfs_buffer_uptodate(cur, gen);
  509. else
  510. uptodate = 0;
  511. if (!cur || !uptodate) {
  512. if (cache_only) {
  513. free_extent_buffer(cur);
  514. continue;
  515. }
  516. if (!cur) {
  517. cur = read_tree_block(root, blocknr,
  518. blocksize, gen);
  519. } else if (!uptodate) {
  520. btrfs_read_buffer(cur, gen);
  521. }
  522. }
  523. if (search_start == 0)
  524. search_start = last_block;
  525. btrfs_tree_lock(cur);
  526. btrfs_set_lock_blocking(cur);
  527. err = __btrfs_cow_block(trans, root, cur, parent, i,
  528. &cur, search_start,
  529. min(16 * blocksize,
  530. (end_slot - i) * blocksize));
  531. if (err) {
  532. btrfs_tree_unlock(cur);
  533. free_extent_buffer(cur);
  534. break;
  535. }
  536. search_start = cur->start;
  537. last_block = cur->start;
  538. *last_ret = search_start;
  539. btrfs_tree_unlock(cur);
  540. free_extent_buffer(cur);
  541. }
  542. if (parent->map_token) {
  543. unmap_extent_buffer(parent, parent->map_token,
  544. KM_USER1);
  545. parent->map_token = NULL;
  546. }
  547. return err;
  548. }
  549. /*
  550. * The leaf data grows from end-to-front in the node.
  551. * this returns the address of the start of the last item,
  552. * which is the stop of the leaf data stack
  553. */
  554. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  555. struct extent_buffer *leaf)
  556. {
  557. u32 nr = btrfs_header_nritems(leaf);
  558. if (nr == 0)
  559. return BTRFS_LEAF_DATA_SIZE(root);
  560. return btrfs_item_offset_nr(leaf, nr - 1);
  561. }
  562. /*
  563. * extra debugging checks to make sure all the items in a key are
  564. * well formed and in the proper order
  565. */
  566. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  567. int level)
  568. {
  569. struct extent_buffer *parent = NULL;
  570. struct extent_buffer *node = path->nodes[level];
  571. struct btrfs_disk_key parent_key;
  572. struct btrfs_disk_key node_key;
  573. int parent_slot;
  574. int slot;
  575. struct btrfs_key cpukey;
  576. u32 nritems = btrfs_header_nritems(node);
  577. if (path->nodes[level + 1])
  578. parent = path->nodes[level + 1];
  579. slot = path->slots[level];
  580. BUG_ON(nritems == 0);
  581. if (parent) {
  582. parent_slot = path->slots[level + 1];
  583. btrfs_node_key(parent, &parent_key, parent_slot);
  584. btrfs_node_key(node, &node_key, 0);
  585. BUG_ON(memcmp(&parent_key, &node_key,
  586. sizeof(struct btrfs_disk_key)));
  587. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  588. btrfs_header_bytenr(node));
  589. }
  590. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  591. if (slot != 0) {
  592. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  593. btrfs_node_key(node, &node_key, slot);
  594. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  595. }
  596. if (slot < nritems - 1) {
  597. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  598. btrfs_node_key(node, &node_key, slot);
  599. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  600. }
  601. return 0;
  602. }
  603. /*
  604. * extra checking to make sure all the items in a leaf are
  605. * well formed and in the proper order
  606. */
  607. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  608. int level)
  609. {
  610. struct extent_buffer *leaf = path->nodes[level];
  611. struct extent_buffer *parent = NULL;
  612. int parent_slot;
  613. struct btrfs_key cpukey;
  614. struct btrfs_disk_key parent_key;
  615. struct btrfs_disk_key leaf_key;
  616. int slot = path->slots[0];
  617. u32 nritems = btrfs_header_nritems(leaf);
  618. if (path->nodes[level + 1])
  619. parent = path->nodes[level + 1];
  620. if (nritems == 0)
  621. return 0;
  622. if (parent) {
  623. parent_slot = path->slots[level + 1];
  624. btrfs_node_key(parent, &parent_key, parent_slot);
  625. btrfs_item_key(leaf, &leaf_key, 0);
  626. BUG_ON(memcmp(&parent_key, &leaf_key,
  627. sizeof(struct btrfs_disk_key)));
  628. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  629. btrfs_header_bytenr(leaf));
  630. }
  631. if (slot != 0 && slot < nritems - 1) {
  632. btrfs_item_key(leaf, &leaf_key, slot);
  633. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  634. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  635. btrfs_print_leaf(root, leaf);
  636. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  637. BUG_ON(1);
  638. }
  639. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  640. btrfs_item_end_nr(leaf, slot)) {
  641. btrfs_print_leaf(root, leaf);
  642. printk(KERN_CRIT "slot %d offset bad\n", slot);
  643. BUG_ON(1);
  644. }
  645. }
  646. if (slot < nritems - 1) {
  647. btrfs_item_key(leaf, &leaf_key, slot);
  648. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  649. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  650. if (btrfs_item_offset_nr(leaf, slot) !=
  651. btrfs_item_end_nr(leaf, slot + 1)) {
  652. btrfs_print_leaf(root, leaf);
  653. printk(KERN_CRIT "slot %d offset bad\n", slot);
  654. BUG_ON(1);
  655. }
  656. }
  657. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  658. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  659. return 0;
  660. }
  661. static noinline int check_block(struct btrfs_root *root,
  662. struct btrfs_path *path, int level)
  663. {
  664. return 0;
  665. if (level == 0)
  666. return check_leaf(root, path, level);
  667. return check_node(root, path, level);
  668. }
  669. /*
  670. * search for key in the extent_buffer. The items start at offset p,
  671. * and they are item_size apart. There are 'max' items in p.
  672. *
  673. * the slot in the array is returned via slot, and it points to
  674. * the place where you would insert key if it is not found in
  675. * the array.
  676. *
  677. * slot may point to max if the key is bigger than all of the keys
  678. */
  679. static noinline int generic_bin_search(struct extent_buffer *eb,
  680. unsigned long p,
  681. int item_size, struct btrfs_key *key,
  682. int max, int *slot)
  683. {
  684. int low = 0;
  685. int high = max;
  686. int mid;
  687. int ret;
  688. struct btrfs_disk_key *tmp = NULL;
  689. struct btrfs_disk_key unaligned;
  690. unsigned long offset;
  691. char *map_token = NULL;
  692. char *kaddr = NULL;
  693. unsigned long map_start = 0;
  694. unsigned long map_len = 0;
  695. int err;
  696. while (low < high) {
  697. mid = (low + high) / 2;
  698. offset = p + mid * item_size;
  699. if (!map_token || offset < map_start ||
  700. (offset + sizeof(struct btrfs_disk_key)) >
  701. map_start + map_len) {
  702. if (map_token) {
  703. unmap_extent_buffer(eb, map_token, KM_USER0);
  704. map_token = NULL;
  705. }
  706. err = map_private_extent_buffer(eb, offset,
  707. sizeof(struct btrfs_disk_key),
  708. &map_token, &kaddr,
  709. &map_start, &map_len, KM_USER0);
  710. if (!err) {
  711. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  712. map_start);
  713. } else {
  714. read_extent_buffer(eb, &unaligned,
  715. offset, sizeof(unaligned));
  716. tmp = &unaligned;
  717. }
  718. } else {
  719. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  720. map_start);
  721. }
  722. ret = comp_keys(tmp, key);
  723. if (ret < 0)
  724. low = mid + 1;
  725. else if (ret > 0)
  726. high = mid;
  727. else {
  728. *slot = mid;
  729. if (map_token)
  730. unmap_extent_buffer(eb, map_token, KM_USER0);
  731. return 0;
  732. }
  733. }
  734. *slot = low;
  735. if (map_token)
  736. unmap_extent_buffer(eb, map_token, KM_USER0);
  737. return 1;
  738. }
  739. /*
  740. * simple bin_search frontend that does the right thing for
  741. * leaves vs nodes
  742. */
  743. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  744. int level, int *slot)
  745. {
  746. if (level == 0) {
  747. return generic_bin_search(eb,
  748. offsetof(struct btrfs_leaf, items),
  749. sizeof(struct btrfs_item),
  750. key, btrfs_header_nritems(eb),
  751. slot);
  752. } else {
  753. return generic_bin_search(eb,
  754. offsetof(struct btrfs_node, ptrs),
  755. sizeof(struct btrfs_key_ptr),
  756. key, btrfs_header_nritems(eb),
  757. slot);
  758. }
  759. return -1;
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. int err_on_enospc = 0;
  796. u64 orig_ptr;
  797. if (level == 0)
  798. return 0;
  799. mid = path->nodes[level];
  800. WARN_ON(!path->locks[level]);
  801. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  802. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  803. if (level < BTRFS_MAX_LEVEL - 1)
  804. parent = path->nodes[level + 1];
  805. pslot = path->slots[level + 1];
  806. /*
  807. * deal with the case where there is only one pointer in the root
  808. * by promoting the node below to a root
  809. */
  810. if (!parent) {
  811. struct extent_buffer *child;
  812. if (btrfs_header_nritems(mid) != 1)
  813. return 0;
  814. /* promote the child to a root */
  815. child = read_node_slot(root, mid, 0);
  816. BUG_ON(!child);
  817. btrfs_tree_lock(child);
  818. btrfs_set_lock_blocking(child);
  819. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  820. BUG_ON(ret);
  821. spin_lock(&root->node_lock);
  822. root->node = child;
  823. spin_unlock(&root->node_lock);
  824. ret = btrfs_update_extent_ref(trans, root, child->start,
  825. child->len,
  826. mid->start, child->start,
  827. root->root_key.objectid,
  828. trans->transid, level - 1);
  829. BUG_ON(ret);
  830. add_root_to_dirty_list(root);
  831. btrfs_tree_unlock(child);
  832. path->locks[level] = 0;
  833. path->nodes[level] = NULL;
  834. clean_tree_block(trans, root, mid);
  835. btrfs_tree_unlock(mid);
  836. /* once for the path */
  837. free_extent_buffer(mid);
  838. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  839. mid->start, root->root_key.objectid,
  840. btrfs_header_generation(mid),
  841. level, 1);
  842. /* once for the root ptr */
  843. free_extent_buffer(mid);
  844. return ret;
  845. }
  846. if (btrfs_header_nritems(mid) >
  847. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  848. return 0;
  849. if (trans->transaction->delayed_refs.flushing &&
  850. btrfs_header_nritems(mid) > 2)
  851. return 0;
  852. if (btrfs_header_nritems(mid) < 2)
  853. err_on_enospc = 1;
  854. left = read_node_slot(root, parent, pslot - 1);
  855. if (left) {
  856. btrfs_tree_lock(left);
  857. btrfs_set_lock_blocking(left);
  858. wret = btrfs_cow_block(trans, root, left,
  859. parent, pslot - 1, &left);
  860. if (wret) {
  861. ret = wret;
  862. goto enospc;
  863. }
  864. }
  865. right = read_node_slot(root, parent, pslot + 1);
  866. if (right) {
  867. btrfs_tree_lock(right);
  868. btrfs_set_lock_blocking(right);
  869. wret = btrfs_cow_block(trans, root, right,
  870. parent, pslot + 1, &right);
  871. if (wret) {
  872. ret = wret;
  873. goto enospc;
  874. }
  875. }
  876. /* first, try to make some room in the middle buffer */
  877. if (left) {
  878. orig_slot += btrfs_header_nritems(left);
  879. wret = push_node_left(trans, root, left, mid, 1);
  880. if (wret < 0)
  881. ret = wret;
  882. if (btrfs_header_nritems(mid) < 2)
  883. err_on_enospc = 1;
  884. }
  885. /*
  886. * then try to empty the right most buffer into the middle
  887. */
  888. if (right) {
  889. wret = push_node_left(trans, root, mid, right, 1);
  890. if (wret < 0 && wret != -ENOSPC)
  891. ret = wret;
  892. if (btrfs_header_nritems(right) == 0) {
  893. u64 bytenr = right->start;
  894. u64 generation = btrfs_header_generation(parent);
  895. u32 blocksize = right->len;
  896. clean_tree_block(trans, root, right);
  897. btrfs_tree_unlock(right);
  898. free_extent_buffer(right);
  899. right = NULL;
  900. wret = del_ptr(trans, root, path, level + 1, pslot +
  901. 1);
  902. if (wret)
  903. ret = wret;
  904. wret = btrfs_free_extent(trans, root, bytenr,
  905. blocksize, parent->start,
  906. btrfs_header_owner(parent),
  907. generation, level, 1);
  908. if (wret)
  909. ret = wret;
  910. } else {
  911. struct btrfs_disk_key right_key;
  912. btrfs_node_key(right, &right_key, 0);
  913. btrfs_set_node_key(parent, &right_key, pslot + 1);
  914. btrfs_mark_buffer_dirty(parent);
  915. }
  916. }
  917. if (btrfs_header_nritems(mid) == 1) {
  918. /*
  919. * we're not allowed to leave a node with one item in the
  920. * tree during a delete. A deletion from lower in the tree
  921. * could try to delete the only pointer in this node.
  922. * So, pull some keys from the left.
  923. * There has to be a left pointer at this point because
  924. * otherwise we would have pulled some pointers from the
  925. * right
  926. */
  927. BUG_ON(!left);
  928. wret = balance_node_right(trans, root, mid, left);
  929. if (wret < 0) {
  930. ret = wret;
  931. goto enospc;
  932. }
  933. if (wret == 1) {
  934. wret = push_node_left(trans, root, left, mid, 1);
  935. if (wret < 0)
  936. ret = wret;
  937. }
  938. BUG_ON(wret == 1);
  939. }
  940. if (btrfs_header_nritems(mid) == 0) {
  941. /* we've managed to empty the middle node, drop it */
  942. u64 root_gen = btrfs_header_generation(parent);
  943. u64 bytenr = mid->start;
  944. u32 blocksize = mid->len;
  945. clean_tree_block(trans, root, mid);
  946. btrfs_tree_unlock(mid);
  947. free_extent_buffer(mid);
  948. mid = NULL;
  949. wret = del_ptr(trans, root, path, level + 1, pslot);
  950. if (wret)
  951. ret = wret;
  952. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  953. parent->start,
  954. btrfs_header_owner(parent),
  955. root_gen, level, 1);
  956. if (wret)
  957. ret = wret;
  958. } else {
  959. /* update the parent key to reflect our changes */
  960. struct btrfs_disk_key mid_key;
  961. btrfs_node_key(mid, &mid_key, 0);
  962. btrfs_set_node_key(parent, &mid_key, pslot);
  963. btrfs_mark_buffer_dirty(parent);
  964. }
  965. /* update the path */
  966. if (left) {
  967. if (btrfs_header_nritems(left) > orig_slot) {
  968. extent_buffer_get(left);
  969. /* left was locked after cow */
  970. path->nodes[level] = left;
  971. path->slots[level + 1] -= 1;
  972. path->slots[level] = orig_slot;
  973. if (mid) {
  974. btrfs_tree_unlock(mid);
  975. free_extent_buffer(mid);
  976. }
  977. } else {
  978. orig_slot -= btrfs_header_nritems(left);
  979. path->slots[level] = orig_slot;
  980. }
  981. }
  982. /* double check we haven't messed things up */
  983. check_block(root, path, level);
  984. if (orig_ptr !=
  985. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  986. BUG();
  987. enospc:
  988. if (right) {
  989. btrfs_tree_unlock(right);
  990. free_extent_buffer(right);
  991. }
  992. if (left) {
  993. if (path->nodes[level] != left)
  994. btrfs_tree_unlock(left);
  995. free_extent_buffer(left);
  996. }
  997. return ret;
  998. }
  999. /* Node balancing for insertion. Here we only split or push nodes around
  1000. * when they are completely full. This is also done top down, so we
  1001. * have to be pessimistic.
  1002. */
  1003. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1004. struct btrfs_root *root,
  1005. struct btrfs_path *path, int level)
  1006. {
  1007. struct extent_buffer *right = NULL;
  1008. struct extent_buffer *mid;
  1009. struct extent_buffer *left = NULL;
  1010. struct extent_buffer *parent = NULL;
  1011. int ret = 0;
  1012. int wret;
  1013. int pslot;
  1014. int orig_slot = path->slots[level];
  1015. u64 orig_ptr;
  1016. if (level == 0)
  1017. return 1;
  1018. mid = path->nodes[level];
  1019. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1020. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1021. if (level < BTRFS_MAX_LEVEL - 1)
  1022. parent = path->nodes[level + 1];
  1023. pslot = path->slots[level + 1];
  1024. if (!parent)
  1025. return 1;
  1026. left = read_node_slot(root, parent, pslot - 1);
  1027. /* first, try to make some room in the middle buffer */
  1028. if (left) {
  1029. u32 left_nr;
  1030. btrfs_tree_lock(left);
  1031. btrfs_set_lock_blocking(left);
  1032. left_nr = btrfs_header_nritems(left);
  1033. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1034. wret = 1;
  1035. } else {
  1036. ret = btrfs_cow_block(trans, root, left, parent,
  1037. pslot - 1, &left);
  1038. if (ret)
  1039. wret = 1;
  1040. else {
  1041. wret = push_node_left(trans, root,
  1042. left, mid, 0);
  1043. }
  1044. }
  1045. if (wret < 0)
  1046. ret = wret;
  1047. if (wret == 0) {
  1048. struct btrfs_disk_key disk_key;
  1049. orig_slot += left_nr;
  1050. btrfs_node_key(mid, &disk_key, 0);
  1051. btrfs_set_node_key(parent, &disk_key, pslot);
  1052. btrfs_mark_buffer_dirty(parent);
  1053. if (btrfs_header_nritems(left) > orig_slot) {
  1054. path->nodes[level] = left;
  1055. path->slots[level + 1] -= 1;
  1056. path->slots[level] = orig_slot;
  1057. btrfs_tree_unlock(mid);
  1058. free_extent_buffer(mid);
  1059. } else {
  1060. orig_slot -=
  1061. btrfs_header_nritems(left);
  1062. path->slots[level] = orig_slot;
  1063. btrfs_tree_unlock(left);
  1064. free_extent_buffer(left);
  1065. }
  1066. return 0;
  1067. }
  1068. btrfs_tree_unlock(left);
  1069. free_extent_buffer(left);
  1070. }
  1071. right = read_node_slot(root, parent, pslot + 1);
  1072. /*
  1073. * then try to empty the right most buffer into the middle
  1074. */
  1075. if (right) {
  1076. u32 right_nr;
  1077. btrfs_tree_lock(right);
  1078. btrfs_set_lock_blocking(right);
  1079. right_nr = btrfs_header_nritems(right);
  1080. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1081. wret = 1;
  1082. } else {
  1083. ret = btrfs_cow_block(trans, root, right,
  1084. parent, pslot + 1,
  1085. &right);
  1086. if (ret)
  1087. wret = 1;
  1088. else {
  1089. wret = balance_node_right(trans, root,
  1090. right, mid);
  1091. }
  1092. }
  1093. if (wret < 0)
  1094. ret = wret;
  1095. if (wret == 0) {
  1096. struct btrfs_disk_key disk_key;
  1097. btrfs_node_key(right, &disk_key, 0);
  1098. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1099. btrfs_mark_buffer_dirty(parent);
  1100. if (btrfs_header_nritems(mid) <= orig_slot) {
  1101. path->nodes[level] = right;
  1102. path->slots[level + 1] += 1;
  1103. path->slots[level] = orig_slot -
  1104. btrfs_header_nritems(mid);
  1105. btrfs_tree_unlock(mid);
  1106. free_extent_buffer(mid);
  1107. } else {
  1108. btrfs_tree_unlock(right);
  1109. free_extent_buffer(right);
  1110. }
  1111. return 0;
  1112. }
  1113. btrfs_tree_unlock(right);
  1114. free_extent_buffer(right);
  1115. }
  1116. return 1;
  1117. }
  1118. /*
  1119. * readahead one full node of leaves, finding things that are close
  1120. * to the block in 'slot', and triggering ra on them.
  1121. */
  1122. static void reada_for_search(struct btrfs_root *root,
  1123. struct btrfs_path *path,
  1124. int level, int slot, u64 objectid)
  1125. {
  1126. struct extent_buffer *node;
  1127. struct btrfs_disk_key disk_key;
  1128. u32 nritems;
  1129. u64 search;
  1130. u64 target;
  1131. u64 nread = 0;
  1132. int direction = path->reada;
  1133. struct extent_buffer *eb;
  1134. u32 nr;
  1135. u32 blocksize;
  1136. u32 nscan = 0;
  1137. if (level != 1)
  1138. return;
  1139. if (!path->nodes[level])
  1140. return;
  1141. node = path->nodes[level];
  1142. search = btrfs_node_blockptr(node, slot);
  1143. blocksize = btrfs_level_size(root, level - 1);
  1144. eb = btrfs_find_tree_block(root, search, blocksize);
  1145. if (eb) {
  1146. free_extent_buffer(eb);
  1147. return;
  1148. }
  1149. target = search;
  1150. nritems = btrfs_header_nritems(node);
  1151. nr = slot;
  1152. while (1) {
  1153. if (direction < 0) {
  1154. if (nr == 0)
  1155. break;
  1156. nr--;
  1157. } else if (direction > 0) {
  1158. nr++;
  1159. if (nr >= nritems)
  1160. break;
  1161. }
  1162. if (path->reada < 0 && objectid) {
  1163. btrfs_node_key(node, &disk_key, nr);
  1164. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1165. break;
  1166. }
  1167. search = btrfs_node_blockptr(node, nr);
  1168. if ((search <= target && target - search <= 65536) ||
  1169. (search > target && search - target <= 65536)) {
  1170. readahead_tree_block(root, search, blocksize,
  1171. btrfs_node_ptr_generation(node, nr));
  1172. nread += blocksize;
  1173. }
  1174. nscan++;
  1175. if ((nread > 65536 || nscan > 32))
  1176. break;
  1177. }
  1178. }
  1179. /*
  1180. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1181. * cache
  1182. */
  1183. static noinline int reada_for_balance(struct btrfs_root *root,
  1184. struct btrfs_path *path, int level)
  1185. {
  1186. int slot;
  1187. int nritems;
  1188. struct extent_buffer *parent;
  1189. struct extent_buffer *eb;
  1190. u64 gen;
  1191. u64 block1 = 0;
  1192. u64 block2 = 0;
  1193. int ret = 0;
  1194. int blocksize;
  1195. parent = path->nodes[level + 1];
  1196. if (!parent)
  1197. return 0;
  1198. nritems = btrfs_header_nritems(parent);
  1199. slot = path->slots[level + 1];
  1200. blocksize = btrfs_level_size(root, level);
  1201. if (slot > 0) {
  1202. block1 = btrfs_node_blockptr(parent, slot - 1);
  1203. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1204. eb = btrfs_find_tree_block(root, block1, blocksize);
  1205. if (eb && btrfs_buffer_uptodate(eb, gen))
  1206. block1 = 0;
  1207. free_extent_buffer(eb);
  1208. }
  1209. if (slot + 1 < nritems) {
  1210. block2 = btrfs_node_blockptr(parent, slot + 1);
  1211. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1212. eb = btrfs_find_tree_block(root, block2, blocksize);
  1213. if (eb && btrfs_buffer_uptodate(eb, gen))
  1214. block2 = 0;
  1215. free_extent_buffer(eb);
  1216. }
  1217. if (block1 || block2) {
  1218. ret = -EAGAIN;
  1219. /* release the whole path */
  1220. btrfs_release_path(root, path);
  1221. /* read the blocks */
  1222. if (block1)
  1223. readahead_tree_block(root, block1, blocksize, 0);
  1224. if (block2)
  1225. readahead_tree_block(root, block2, blocksize, 0);
  1226. if (block1) {
  1227. eb = read_tree_block(root, block1, blocksize, 0);
  1228. free_extent_buffer(eb);
  1229. }
  1230. if (block2) {
  1231. eb = read_tree_block(root, block2, blocksize, 0);
  1232. free_extent_buffer(eb);
  1233. }
  1234. }
  1235. return ret;
  1236. }
  1237. /*
  1238. * when we walk down the tree, it is usually safe to unlock the higher layers
  1239. * in the tree. The exceptions are when our path goes through slot 0, because
  1240. * operations on the tree might require changing key pointers higher up in the
  1241. * tree.
  1242. *
  1243. * callers might also have set path->keep_locks, which tells this code to keep
  1244. * the lock if the path points to the last slot in the block. This is part of
  1245. * walking through the tree, and selecting the next slot in the higher block.
  1246. *
  1247. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1248. * if lowest_unlock is 1, level 0 won't be unlocked
  1249. */
  1250. static noinline void unlock_up(struct btrfs_path *path, int level,
  1251. int lowest_unlock)
  1252. {
  1253. int i;
  1254. int skip_level = level;
  1255. int no_skips = 0;
  1256. struct extent_buffer *t;
  1257. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1258. if (!path->nodes[i])
  1259. break;
  1260. if (!path->locks[i])
  1261. break;
  1262. if (!no_skips && path->slots[i] == 0) {
  1263. skip_level = i + 1;
  1264. continue;
  1265. }
  1266. if (!no_skips && path->keep_locks) {
  1267. u32 nritems;
  1268. t = path->nodes[i];
  1269. nritems = btrfs_header_nritems(t);
  1270. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1271. skip_level = i + 1;
  1272. continue;
  1273. }
  1274. }
  1275. if (skip_level < i && i >= lowest_unlock)
  1276. no_skips = 1;
  1277. t = path->nodes[i];
  1278. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1279. btrfs_tree_unlock(t);
  1280. path->locks[i] = 0;
  1281. }
  1282. }
  1283. }
  1284. /*
  1285. * This releases any locks held in the path starting at level and
  1286. * going all the way up to the root.
  1287. *
  1288. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1289. * corner cases, such as COW of the block at slot zero in the node. This
  1290. * ignores those rules, and it should only be called when there are no
  1291. * more updates to be done higher up in the tree.
  1292. */
  1293. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1294. {
  1295. int i;
  1296. if (path->keep_locks || path->lowest_level)
  1297. return;
  1298. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1299. if (!path->nodes[i])
  1300. continue;
  1301. if (!path->locks[i])
  1302. continue;
  1303. btrfs_tree_unlock(path->nodes[i]);
  1304. path->locks[i] = 0;
  1305. }
  1306. }
  1307. /*
  1308. * helper function for btrfs_search_slot. The goal is to find a block
  1309. * in cache without setting the path to blocking. If we find the block
  1310. * we return zero and the path is unchanged.
  1311. *
  1312. * If we can't find the block, we set the path blocking and do some
  1313. * reada. -EAGAIN is returned and the search must be repeated.
  1314. */
  1315. static int
  1316. read_block_for_search(struct btrfs_trans_handle *trans,
  1317. struct btrfs_root *root, struct btrfs_path *p,
  1318. struct extent_buffer **eb_ret, int level, int slot,
  1319. struct btrfs_key *key)
  1320. {
  1321. u64 blocknr;
  1322. u64 gen;
  1323. u32 blocksize;
  1324. struct extent_buffer *b = *eb_ret;
  1325. struct extent_buffer *tmp;
  1326. blocknr = btrfs_node_blockptr(b, slot);
  1327. gen = btrfs_node_ptr_generation(b, slot);
  1328. blocksize = btrfs_level_size(root, level - 1);
  1329. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1330. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1331. *eb_ret = tmp;
  1332. return 0;
  1333. }
  1334. /*
  1335. * reduce lock contention at high levels
  1336. * of the btree by dropping locks before
  1337. * we read.
  1338. */
  1339. btrfs_unlock_up_safe(p, level + 1);
  1340. btrfs_set_path_blocking(p);
  1341. if (tmp)
  1342. free_extent_buffer(tmp);
  1343. if (p->reada)
  1344. reada_for_search(root, p, level, slot, key->objectid);
  1345. btrfs_release_path(NULL, p);
  1346. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1347. if (tmp)
  1348. free_extent_buffer(tmp);
  1349. return -EAGAIN;
  1350. }
  1351. /*
  1352. * helper function for btrfs_search_slot. This does all of the checks
  1353. * for node-level blocks and does any balancing required based on
  1354. * the ins_len.
  1355. *
  1356. * If no extra work was required, zero is returned. If we had to
  1357. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1358. * start over
  1359. */
  1360. static int
  1361. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1362. struct btrfs_root *root, struct btrfs_path *p,
  1363. struct extent_buffer *b, int level, int ins_len)
  1364. {
  1365. int ret;
  1366. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1367. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1368. int sret;
  1369. sret = reada_for_balance(root, p, level);
  1370. if (sret)
  1371. goto again;
  1372. btrfs_set_path_blocking(p);
  1373. sret = split_node(trans, root, p, level);
  1374. btrfs_clear_path_blocking(p, NULL);
  1375. BUG_ON(sret > 0);
  1376. if (sret) {
  1377. ret = sret;
  1378. goto done;
  1379. }
  1380. b = p->nodes[level];
  1381. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1382. BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
  1383. int sret;
  1384. sret = reada_for_balance(root, p, level);
  1385. if (sret)
  1386. goto again;
  1387. btrfs_set_path_blocking(p);
  1388. sret = balance_level(trans, root, p, level);
  1389. btrfs_clear_path_blocking(p, NULL);
  1390. if (sret) {
  1391. ret = sret;
  1392. goto done;
  1393. }
  1394. b = p->nodes[level];
  1395. if (!b) {
  1396. btrfs_release_path(NULL, p);
  1397. goto again;
  1398. }
  1399. BUG_ON(btrfs_header_nritems(b) == 1);
  1400. }
  1401. return 0;
  1402. again:
  1403. ret = -EAGAIN;
  1404. done:
  1405. return ret;
  1406. }
  1407. /*
  1408. * look for key in the tree. path is filled in with nodes along the way
  1409. * if key is found, we return zero and you can find the item in the leaf
  1410. * level of the path (level 0)
  1411. *
  1412. * If the key isn't found, the path points to the slot where it should
  1413. * be inserted, and 1 is returned. If there are other errors during the
  1414. * search a negative error number is returned.
  1415. *
  1416. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1417. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1418. * possible)
  1419. */
  1420. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1421. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1422. ins_len, int cow)
  1423. {
  1424. struct extent_buffer *b;
  1425. int slot;
  1426. int ret;
  1427. int level;
  1428. int lowest_unlock = 1;
  1429. u8 lowest_level = 0;
  1430. lowest_level = p->lowest_level;
  1431. WARN_ON(lowest_level && ins_len > 0);
  1432. WARN_ON(p->nodes[0] != NULL);
  1433. if (ins_len < 0)
  1434. lowest_unlock = 2;
  1435. again:
  1436. if (p->skip_locking)
  1437. b = btrfs_root_node(root);
  1438. else
  1439. b = btrfs_lock_root_node(root);
  1440. while (b) {
  1441. level = btrfs_header_level(b);
  1442. /*
  1443. * setup the path here so we can release it under lock
  1444. * contention with the cow code
  1445. */
  1446. p->nodes[level] = b;
  1447. if (!p->skip_locking)
  1448. p->locks[level] = 1;
  1449. if (cow) {
  1450. int wret;
  1451. /*
  1452. * if we don't really need to cow this block
  1453. * then we don't want to set the path blocking,
  1454. * so we test it here
  1455. */
  1456. if (btrfs_header_generation(b) == trans->transid &&
  1457. btrfs_header_owner(b) == root->root_key.objectid &&
  1458. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1459. goto cow_done;
  1460. }
  1461. btrfs_set_path_blocking(p);
  1462. wret = btrfs_cow_block(trans, root, b,
  1463. p->nodes[level + 1],
  1464. p->slots[level + 1], &b);
  1465. if (wret) {
  1466. free_extent_buffer(b);
  1467. ret = wret;
  1468. goto done;
  1469. }
  1470. }
  1471. cow_done:
  1472. BUG_ON(!cow && ins_len);
  1473. if (level != btrfs_header_level(b))
  1474. WARN_ON(1);
  1475. level = btrfs_header_level(b);
  1476. p->nodes[level] = b;
  1477. if (!p->skip_locking)
  1478. p->locks[level] = 1;
  1479. btrfs_clear_path_blocking(p, NULL);
  1480. /*
  1481. * we have a lock on b and as long as we aren't changing
  1482. * the tree, there is no way to for the items in b to change.
  1483. * It is safe to drop the lock on our parent before we
  1484. * go through the expensive btree search on b.
  1485. *
  1486. * If cow is true, then we might be changing slot zero,
  1487. * which may require changing the parent. So, we can't
  1488. * drop the lock until after we know which slot we're
  1489. * operating on.
  1490. */
  1491. if (!cow)
  1492. btrfs_unlock_up_safe(p, level + 1);
  1493. ret = check_block(root, p, level);
  1494. if (ret) {
  1495. ret = -1;
  1496. goto done;
  1497. }
  1498. ret = bin_search(b, key, level, &slot);
  1499. if (level != 0) {
  1500. if (ret && slot > 0)
  1501. slot -= 1;
  1502. p->slots[level] = slot;
  1503. ret = setup_nodes_for_search(trans, root, p, b, level,
  1504. ins_len);
  1505. if (ret == -EAGAIN)
  1506. goto again;
  1507. else if (ret)
  1508. goto done;
  1509. b = p->nodes[level];
  1510. slot = p->slots[level];
  1511. unlock_up(p, level, lowest_unlock);
  1512. /* this is only true while dropping a snapshot */
  1513. if (level == lowest_level) {
  1514. ret = 0;
  1515. goto done;
  1516. }
  1517. ret = read_block_for_search(trans, root, p,
  1518. &b, level, slot, key);
  1519. if (ret == -EAGAIN)
  1520. goto again;
  1521. if (!p->skip_locking) {
  1522. int lret;
  1523. btrfs_clear_path_blocking(p, NULL);
  1524. lret = btrfs_try_spin_lock(b);
  1525. if (!lret) {
  1526. btrfs_set_path_blocking(p);
  1527. btrfs_tree_lock(b);
  1528. btrfs_clear_path_blocking(p, b);
  1529. }
  1530. }
  1531. } else {
  1532. p->slots[level] = slot;
  1533. if (ins_len > 0 &&
  1534. btrfs_leaf_free_space(root, b) < ins_len) {
  1535. int sret;
  1536. btrfs_set_path_blocking(p);
  1537. sret = split_leaf(trans, root, key,
  1538. p, ins_len, ret == 0);
  1539. btrfs_clear_path_blocking(p, NULL);
  1540. BUG_ON(sret > 0);
  1541. if (sret) {
  1542. ret = sret;
  1543. goto done;
  1544. }
  1545. }
  1546. if (!p->search_for_split)
  1547. unlock_up(p, level, lowest_unlock);
  1548. goto done;
  1549. }
  1550. }
  1551. ret = 1;
  1552. done:
  1553. /*
  1554. * we don't really know what they plan on doing with the path
  1555. * from here on, so for now just mark it as blocking
  1556. */
  1557. if (!p->leave_spinning)
  1558. btrfs_set_path_blocking(p);
  1559. return ret;
  1560. }
  1561. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1562. struct btrfs_root *root,
  1563. struct btrfs_key *node_keys,
  1564. u64 *nodes, int lowest_level)
  1565. {
  1566. struct extent_buffer *eb;
  1567. struct extent_buffer *parent;
  1568. struct btrfs_key key;
  1569. u64 bytenr;
  1570. u64 generation;
  1571. u32 blocksize;
  1572. int level;
  1573. int slot;
  1574. int key_match;
  1575. int ret;
  1576. eb = btrfs_lock_root_node(root);
  1577. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
  1578. BUG_ON(ret);
  1579. btrfs_set_lock_blocking(eb);
  1580. parent = eb;
  1581. while (1) {
  1582. level = btrfs_header_level(parent);
  1583. if (level == 0 || level <= lowest_level)
  1584. break;
  1585. ret = bin_search(parent, &node_keys[lowest_level], level,
  1586. &slot);
  1587. if (ret && slot > 0)
  1588. slot--;
  1589. bytenr = btrfs_node_blockptr(parent, slot);
  1590. if (nodes[level - 1] == bytenr)
  1591. break;
  1592. blocksize = btrfs_level_size(root, level - 1);
  1593. generation = btrfs_node_ptr_generation(parent, slot);
  1594. btrfs_node_key_to_cpu(eb, &key, slot);
  1595. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1596. if (generation == trans->transid) {
  1597. eb = read_tree_block(root, bytenr, blocksize,
  1598. generation);
  1599. btrfs_tree_lock(eb);
  1600. btrfs_set_lock_blocking(eb);
  1601. }
  1602. /*
  1603. * if node keys match and node pointer hasn't been modified
  1604. * in the running transaction, we can merge the path. for
  1605. * blocks owened by reloc trees, the node pointer check is
  1606. * skipped, this is because these blocks are fully controlled
  1607. * by the space balance code, no one else can modify them.
  1608. */
  1609. if (!nodes[level - 1] || !key_match ||
  1610. (generation == trans->transid &&
  1611. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1612. if (level == 1 || level == lowest_level + 1) {
  1613. if (generation == trans->transid) {
  1614. btrfs_tree_unlock(eb);
  1615. free_extent_buffer(eb);
  1616. }
  1617. break;
  1618. }
  1619. if (generation != trans->transid) {
  1620. eb = read_tree_block(root, bytenr, blocksize,
  1621. generation);
  1622. btrfs_tree_lock(eb);
  1623. btrfs_set_lock_blocking(eb);
  1624. }
  1625. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1626. &eb);
  1627. BUG_ON(ret);
  1628. if (root->root_key.objectid ==
  1629. BTRFS_TREE_RELOC_OBJECTID) {
  1630. if (!nodes[level - 1]) {
  1631. nodes[level - 1] = eb->start;
  1632. memcpy(&node_keys[level - 1], &key,
  1633. sizeof(node_keys[0]));
  1634. } else {
  1635. WARN_ON(1);
  1636. }
  1637. }
  1638. btrfs_tree_unlock(parent);
  1639. free_extent_buffer(parent);
  1640. parent = eb;
  1641. continue;
  1642. }
  1643. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1644. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1645. btrfs_mark_buffer_dirty(parent);
  1646. ret = btrfs_inc_extent_ref(trans, root,
  1647. nodes[level - 1],
  1648. blocksize, parent->start,
  1649. btrfs_header_owner(parent),
  1650. btrfs_header_generation(parent),
  1651. level - 1);
  1652. BUG_ON(ret);
  1653. /*
  1654. * If the block was created in the running transaction,
  1655. * it's possible this is the last reference to it, so we
  1656. * should drop the subtree.
  1657. */
  1658. if (generation == trans->transid) {
  1659. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1660. BUG_ON(ret);
  1661. btrfs_tree_unlock(eb);
  1662. free_extent_buffer(eb);
  1663. } else {
  1664. ret = btrfs_free_extent(trans, root, bytenr,
  1665. blocksize, parent->start,
  1666. btrfs_header_owner(parent),
  1667. btrfs_header_generation(parent),
  1668. level - 1, 1);
  1669. BUG_ON(ret);
  1670. }
  1671. break;
  1672. }
  1673. btrfs_tree_unlock(parent);
  1674. free_extent_buffer(parent);
  1675. return 0;
  1676. }
  1677. /*
  1678. * adjust the pointers going up the tree, starting at level
  1679. * making sure the right key of each node is points to 'key'.
  1680. * This is used after shifting pointers to the left, so it stops
  1681. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1682. * higher levels
  1683. *
  1684. * If this fails to write a tree block, it returns -1, but continues
  1685. * fixing up the blocks in ram so the tree is consistent.
  1686. */
  1687. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1688. struct btrfs_root *root, struct btrfs_path *path,
  1689. struct btrfs_disk_key *key, int level)
  1690. {
  1691. int i;
  1692. int ret = 0;
  1693. struct extent_buffer *t;
  1694. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1695. int tslot = path->slots[i];
  1696. if (!path->nodes[i])
  1697. break;
  1698. t = path->nodes[i];
  1699. btrfs_set_node_key(t, key, tslot);
  1700. btrfs_mark_buffer_dirty(path->nodes[i]);
  1701. if (tslot != 0)
  1702. break;
  1703. }
  1704. return ret;
  1705. }
  1706. /*
  1707. * update item key.
  1708. *
  1709. * This function isn't completely safe. It's the caller's responsibility
  1710. * that the new key won't break the order
  1711. */
  1712. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1713. struct btrfs_root *root, struct btrfs_path *path,
  1714. struct btrfs_key *new_key)
  1715. {
  1716. struct btrfs_disk_key disk_key;
  1717. struct extent_buffer *eb;
  1718. int slot;
  1719. eb = path->nodes[0];
  1720. slot = path->slots[0];
  1721. if (slot > 0) {
  1722. btrfs_item_key(eb, &disk_key, slot - 1);
  1723. if (comp_keys(&disk_key, new_key) >= 0)
  1724. return -1;
  1725. }
  1726. if (slot < btrfs_header_nritems(eb) - 1) {
  1727. btrfs_item_key(eb, &disk_key, slot + 1);
  1728. if (comp_keys(&disk_key, new_key) <= 0)
  1729. return -1;
  1730. }
  1731. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1732. btrfs_set_item_key(eb, &disk_key, slot);
  1733. btrfs_mark_buffer_dirty(eb);
  1734. if (slot == 0)
  1735. fixup_low_keys(trans, root, path, &disk_key, 1);
  1736. return 0;
  1737. }
  1738. /*
  1739. * try to push data from one node into the next node left in the
  1740. * tree.
  1741. *
  1742. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1743. * error, and > 0 if there was no room in the left hand block.
  1744. */
  1745. static int push_node_left(struct btrfs_trans_handle *trans,
  1746. struct btrfs_root *root, struct extent_buffer *dst,
  1747. struct extent_buffer *src, int empty)
  1748. {
  1749. int push_items = 0;
  1750. int src_nritems;
  1751. int dst_nritems;
  1752. int ret = 0;
  1753. src_nritems = btrfs_header_nritems(src);
  1754. dst_nritems = btrfs_header_nritems(dst);
  1755. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1756. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1757. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1758. if (!empty && src_nritems <= 8)
  1759. return 1;
  1760. if (push_items <= 0)
  1761. return 1;
  1762. if (empty) {
  1763. push_items = min(src_nritems, push_items);
  1764. if (push_items < src_nritems) {
  1765. /* leave at least 8 pointers in the node if
  1766. * we aren't going to empty it
  1767. */
  1768. if (src_nritems - push_items < 8) {
  1769. if (push_items <= 8)
  1770. return 1;
  1771. push_items -= 8;
  1772. }
  1773. }
  1774. } else
  1775. push_items = min(src_nritems - 8, push_items);
  1776. copy_extent_buffer(dst, src,
  1777. btrfs_node_key_ptr_offset(dst_nritems),
  1778. btrfs_node_key_ptr_offset(0),
  1779. push_items * sizeof(struct btrfs_key_ptr));
  1780. if (push_items < src_nritems) {
  1781. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1782. btrfs_node_key_ptr_offset(push_items),
  1783. (src_nritems - push_items) *
  1784. sizeof(struct btrfs_key_ptr));
  1785. }
  1786. btrfs_set_header_nritems(src, src_nritems - push_items);
  1787. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1788. btrfs_mark_buffer_dirty(src);
  1789. btrfs_mark_buffer_dirty(dst);
  1790. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1791. BUG_ON(ret);
  1792. return ret;
  1793. }
  1794. /*
  1795. * try to push data from one node into the next node right in the
  1796. * tree.
  1797. *
  1798. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1799. * error, and > 0 if there was no room in the right hand block.
  1800. *
  1801. * this will only push up to 1/2 the contents of the left node over
  1802. */
  1803. static int balance_node_right(struct btrfs_trans_handle *trans,
  1804. struct btrfs_root *root,
  1805. struct extent_buffer *dst,
  1806. struct extent_buffer *src)
  1807. {
  1808. int push_items = 0;
  1809. int max_push;
  1810. int src_nritems;
  1811. int dst_nritems;
  1812. int ret = 0;
  1813. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1814. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1815. src_nritems = btrfs_header_nritems(src);
  1816. dst_nritems = btrfs_header_nritems(dst);
  1817. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1818. if (push_items <= 0)
  1819. return 1;
  1820. if (src_nritems < 4)
  1821. return 1;
  1822. max_push = src_nritems / 2 + 1;
  1823. /* don't try to empty the node */
  1824. if (max_push >= src_nritems)
  1825. return 1;
  1826. if (max_push < push_items)
  1827. push_items = max_push;
  1828. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1829. btrfs_node_key_ptr_offset(0),
  1830. (dst_nritems) *
  1831. sizeof(struct btrfs_key_ptr));
  1832. copy_extent_buffer(dst, src,
  1833. btrfs_node_key_ptr_offset(0),
  1834. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1835. push_items * sizeof(struct btrfs_key_ptr));
  1836. btrfs_set_header_nritems(src, src_nritems - push_items);
  1837. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1838. btrfs_mark_buffer_dirty(src);
  1839. btrfs_mark_buffer_dirty(dst);
  1840. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1841. BUG_ON(ret);
  1842. return ret;
  1843. }
  1844. /*
  1845. * helper function to insert a new root level in the tree.
  1846. * A new node is allocated, and a single item is inserted to
  1847. * point to the existing root
  1848. *
  1849. * returns zero on success or < 0 on failure.
  1850. */
  1851. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1852. struct btrfs_root *root,
  1853. struct btrfs_path *path, int level)
  1854. {
  1855. u64 lower_gen;
  1856. struct extent_buffer *lower;
  1857. struct extent_buffer *c;
  1858. struct extent_buffer *old;
  1859. struct btrfs_disk_key lower_key;
  1860. int ret;
  1861. BUG_ON(path->nodes[level]);
  1862. BUG_ON(path->nodes[level-1] != root->node);
  1863. lower = path->nodes[level-1];
  1864. if (level == 1)
  1865. btrfs_item_key(lower, &lower_key, 0);
  1866. else
  1867. btrfs_node_key(lower, &lower_key, 0);
  1868. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1869. root->root_key.objectid, trans->transid,
  1870. level, root->node->start, 0);
  1871. if (IS_ERR(c))
  1872. return PTR_ERR(c);
  1873. memset_extent_buffer(c, 0, 0, root->nodesize);
  1874. btrfs_set_header_nritems(c, 1);
  1875. btrfs_set_header_level(c, level);
  1876. btrfs_set_header_bytenr(c, c->start);
  1877. btrfs_set_header_generation(c, trans->transid);
  1878. btrfs_set_header_owner(c, root->root_key.objectid);
  1879. write_extent_buffer(c, root->fs_info->fsid,
  1880. (unsigned long)btrfs_header_fsid(c),
  1881. BTRFS_FSID_SIZE);
  1882. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1883. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1884. BTRFS_UUID_SIZE);
  1885. btrfs_set_node_key(c, &lower_key, 0);
  1886. btrfs_set_node_blockptr(c, 0, lower->start);
  1887. lower_gen = btrfs_header_generation(lower);
  1888. WARN_ON(lower_gen != trans->transid);
  1889. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1890. btrfs_mark_buffer_dirty(c);
  1891. spin_lock(&root->node_lock);
  1892. old = root->node;
  1893. root->node = c;
  1894. spin_unlock(&root->node_lock);
  1895. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1896. lower->len, lower->start, c->start,
  1897. root->root_key.objectid,
  1898. trans->transid, level - 1);
  1899. BUG_ON(ret);
  1900. /* the super has an extra ref to root->node */
  1901. free_extent_buffer(old);
  1902. add_root_to_dirty_list(root);
  1903. extent_buffer_get(c);
  1904. path->nodes[level] = c;
  1905. path->locks[level] = 1;
  1906. path->slots[level] = 0;
  1907. return 0;
  1908. }
  1909. /*
  1910. * worker function to insert a single pointer in a node.
  1911. * the node should have enough room for the pointer already
  1912. *
  1913. * slot and level indicate where you want the key to go, and
  1914. * blocknr is the block the key points to.
  1915. *
  1916. * returns zero on success and < 0 on any error
  1917. */
  1918. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1919. *root, struct btrfs_path *path, struct btrfs_disk_key
  1920. *key, u64 bytenr, int slot, int level)
  1921. {
  1922. struct extent_buffer *lower;
  1923. int nritems;
  1924. BUG_ON(!path->nodes[level]);
  1925. lower = path->nodes[level];
  1926. nritems = btrfs_header_nritems(lower);
  1927. BUG_ON(slot > nritems);
  1928. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1929. BUG();
  1930. if (slot != nritems) {
  1931. memmove_extent_buffer(lower,
  1932. btrfs_node_key_ptr_offset(slot + 1),
  1933. btrfs_node_key_ptr_offset(slot),
  1934. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1935. }
  1936. btrfs_set_node_key(lower, key, slot);
  1937. btrfs_set_node_blockptr(lower, slot, bytenr);
  1938. WARN_ON(trans->transid == 0);
  1939. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1940. btrfs_set_header_nritems(lower, nritems + 1);
  1941. btrfs_mark_buffer_dirty(lower);
  1942. return 0;
  1943. }
  1944. /*
  1945. * split the node at the specified level in path in two.
  1946. * The path is corrected to point to the appropriate node after the split
  1947. *
  1948. * Before splitting this tries to make some room in the node by pushing
  1949. * left and right, if either one works, it returns right away.
  1950. *
  1951. * returns 0 on success and < 0 on failure
  1952. */
  1953. static noinline int split_node(struct btrfs_trans_handle *trans,
  1954. struct btrfs_root *root,
  1955. struct btrfs_path *path, int level)
  1956. {
  1957. struct extent_buffer *c;
  1958. struct extent_buffer *split;
  1959. struct btrfs_disk_key disk_key;
  1960. int mid;
  1961. int ret;
  1962. int wret;
  1963. u32 c_nritems;
  1964. c = path->nodes[level];
  1965. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1966. if (c == root->node) {
  1967. /* trying to split the root, lets make a new one */
  1968. ret = insert_new_root(trans, root, path, level + 1);
  1969. if (ret)
  1970. return ret;
  1971. } else if (!trans->transaction->delayed_refs.flushing) {
  1972. ret = push_nodes_for_insert(trans, root, path, level);
  1973. c = path->nodes[level];
  1974. if (!ret && btrfs_header_nritems(c) <
  1975. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1976. return 0;
  1977. if (ret < 0)
  1978. return ret;
  1979. }
  1980. c_nritems = btrfs_header_nritems(c);
  1981. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1982. path->nodes[level + 1]->start,
  1983. root->root_key.objectid,
  1984. trans->transid, level, c->start, 0);
  1985. if (IS_ERR(split))
  1986. return PTR_ERR(split);
  1987. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1988. btrfs_set_header_level(split, btrfs_header_level(c));
  1989. btrfs_set_header_bytenr(split, split->start);
  1990. btrfs_set_header_generation(split, trans->transid);
  1991. btrfs_set_header_owner(split, root->root_key.objectid);
  1992. btrfs_set_header_flags(split, 0);
  1993. write_extent_buffer(split, root->fs_info->fsid,
  1994. (unsigned long)btrfs_header_fsid(split),
  1995. BTRFS_FSID_SIZE);
  1996. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1997. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1998. BTRFS_UUID_SIZE);
  1999. mid = (c_nritems + 1) / 2;
  2000. copy_extent_buffer(split, c,
  2001. btrfs_node_key_ptr_offset(0),
  2002. btrfs_node_key_ptr_offset(mid),
  2003. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2004. btrfs_set_header_nritems(split, c_nritems - mid);
  2005. btrfs_set_header_nritems(c, mid);
  2006. ret = 0;
  2007. btrfs_mark_buffer_dirty(c);
  2008. btrfs_mark_buffer_dirty(split);
  2009. btrfs_node_key(split, &disk_key, 0);
  2010. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2011. path->slots[level + 1] + 1,
  2012. level + 1);
  2013. if (wret)
  2014. ret = wret;
  2015. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  2016. BUG_ON(ret);
  2017. if (path->slots[level] >= mid) {
  2018. path->slots[level] -= mid;
  2019. btrfs_tree_unlock(c);
  2020. free_extent_buffer(c);
  2021. path->nodes[level] = split;
  2022. path->slots[level + 1] += 1;
  2023. } else {
  2024. btrfs_tree_unlock(split);
  2025. free_extent_buffer(split);
  2026. }
  2027. return ret;
  2028. }
  2029. /*
  2030. * how many bytes are required to store the items in a leaf. start
  2031. * and nr indicate which items in the leaf to check. This totals up the
  2032. * space used both by the item structs and the item data
  2033. */
  2034. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2035. {
  2036. int data_len;
  2037. int nritems = btrfs_header_nritems(l);
  2038. int end = min(nritems, start + nr) - 1;
  2039. if (!nr)
  2040. return 0;
  2041. data_len = btrfs_item_end_nr(l, start);
  2042. data_len = data_len - btrfs_item_offset_nr(l, end);
  2043. data_len += sizeof(struct btrfs_item) * nr;
  2044. WARN_ON(data_len < 0);
  2045. return data_len;
  2046. }
  2047. /*
  2048. * The space between the end of the leaf items and
  2049. * the start of the leaf data. IOW, how much room
  2050. * the leaf has left for both items and data
  2051. */
  2052. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2053. struct extent_buffer *leaf)
  2054. {
  2055. int nritems = btrfs_header_nritems(leaf);
  2056. int ret;
  2057. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2058. if (ret < 0) {
  2059. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2060. "used %d nritems %d\n",
  2061. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2062. leaf_space_used(leaf, 0, nritems), nritems);
  2063. }
  2064. return ret;
  2065. }
  2066. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2067. struct btrfs_root *root,
  2068. struct btrfs_path *path,
  2069. int data_size, int empty,
  2070. struct extent_buffer *right,
  2071. int free_space, u32 left_nritems)
  2072. {
  2073. struct extent_buffer *left = path->nodes[0];
  2074. struct extent_buffer *upper = path->nodes[1];
  2075. struct btrfs_disk_key disk_key;
  2076. int slot;
  2077. u32 i;
  2078. int push_space = 0;
  2079. int push_items = 0;
  2080. struct btrfs_item *item;
  2081. u32 nr;
  2082. u32 right_nritems;
  2083. u32 data_end;
  2084. u32 this_item_size;
  2085. int ret;
  2086. if (empty)
  2087. nr = 0;
  2088. else
  2089. nr = 1;
  2090. if (path->slots[0] >= left_nritems)
  2091. push_space += data_size;
  2092. slot = path->slots[1];
  2093. i = left_nritems - 1;
  2094. while (i >= nr) {
  2095. item = btrfs_item_nr(left, i);
  2096. if (!empty && push_items > 0) {
  2097. if (path->slots[0] > i)
  2098. break;
  2099. if (path->slots[0] == i) {
  2100. int space = btrfs_leaf_free_space(root, left);
  2101. if (space + push_space * 2 > free_space)
  2102. break;
  2103. }
  2104. }
  2105. if (path->slots[0] == i)
  2106. push_space += data_size;
  2107. if (!left->map_token) {
  2108. map_extent_buffer(left, (unsigned long)item,
  2109. sizeof(struct btrfs_item),
  2110. &left->map_token, &left->kaddr,
  2111. &left->map_start, &left->map_len,
  2112. KM_USER1);
  2113. }
  2114. this_item_size = btrfs_item_size(left, item);
  2115. if (this_item_size + sizeof(*item) + push_space > free_space)
  2116. break;
  2117. push_items++;
  2118. push_space += this_item_size + sizeof(*item);
  2119. if (i == 0)
  2120. break;
  2121. i--;
  2122. }
  2123. if (left->map_token) {
  2124. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2125. left->map_token = NULL;
  2126. }
  2127. if (push_items == 0)
  2128. goto out_unlock;
  2129. if (!empty && push_items == left_nritems)
  2130. WARN_ON(1);
  2131. /* push left to right */
  2132. right_nritems = btrfs_header_nritems(right);
  2133. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2134. push_space -= leaf_data_end(root, left);
  2135. /* make room in the right data area */
  2136. data_end = leaf_data_end(root, right);
  2137. memmove_extent_buffer(right,
  2138. btrfs_leaf_data(right) + data_end - push_space,
  2139. btrfs_leaf_data(right) + data_end,
  2140. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2141. /* copy from the left data area */
  2142. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2143. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2144. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2145. push_space);
  2146. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2147. btrfs_item_nr_offset(0),
  2148. right_nritems * sizeof(struct btrfs_item));
  2149. /* copy the items from left to right */
  2150. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2151. btrfs_item_nr_offset(left_nritems - push_items),
  2152. push_items * sizeof(struct btrfs_item));
  2153. /* update the item pointers */
  2154. right_nritems += push_items;
  2155. btrfs_set_header_nritems(right, right_nritems);
  2156. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2157. for (i = 0; i < right_nritems; i++) {
  2158. item = btrfs_item_nr(right, i);
  2159. if (!right->map_token) {
  2160. map_extent_buffer(right, (unsigned long)item,
  2161. sizeof(struct btrfs_item),
  2162. &right->map_token, &right->kaddr,
  2163. &right->map_start, &right->map_len,
  2164. KM_USER1);
  2165. }
  2166. push_space -= btrfs_item_size(right, item);
  2167. btrfs_set_item_offset(right, item, push_space);
  2168. }
  2169. if (right->map_token) {
  2170. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2171. right->map_token = NULL;
  2172. }
  2173. left_nritems -= push_items;
  2174. btrfs_set_header_nritems(left, left_nritems);
  2175. if (left_nritems)
  2176. btrfs_mark_buffer_dirty(left);
  2177. btrfs_mark_buffer_dirty(right);
  2178. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2179. BUG_ON(ret);
  2180. btrfs_item_key(right, &disk_key, 0);
  2181. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2182. btrfs_mark_buffer_dirty(upper);
  2183. /* then fixup the leaf pointer in the path */
  2184. if (path->slots[0] >= left_nritems) {
  2185. path->slots[0] -= left_nritems;
  2186. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2187. clean_tree_block(trans, root, path->nodes[0]);
  2188. btrfs_tree_unlock(path->nodes[0]);
  2189. free_extent_buffer(path->nodes[0]);
  2190. path->nodes[0] = right;
  2191. path->slots[1] += 1;
  2192. } else {
  2193. btrfs_tree_unlock(right);
  2194. free_extent_buffer(right);
  2195. }
  2196. return 0;
  2197. out_unlock:
  2198. btrfs_tree_unlock(right);
  2199. free_extent_buffer(right);
  2200. return 1;
  2201. }
  2202. /*
  2203. * push some data in the path leaf to the right, trying to free up at
  2204. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2205. *
  2206. * returns 1 if the push failed because the other node didn't have enough
  2207. * room, 0 if everything worked out and < 0 if there were major errors.
  2208. */
  2209. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2210. *root, struct btrfs_path *path, int data_size,
  2211. int empty)
  2212. {
  2213. struct extent_buffer *left = path->nodes[0];
  2214. struct extent_buffer *right;
  2215. struct extent_buffer *upper;
  2216. int slot;
  2217. int free_space;
  2218. u32 left_nritems;
  2219. int ret;
  2220. if (!path->nodes[1])
  2221. return 1;
  2222. slot = path->slots[1];
  2223. upper = path->nodes[1];
  2224. if (slot >= btrfs_header_nritems(upper) - 1)
  2225. return 1;
  2226. btrfs_assert_tree_locked(path->nodes[1]);
  2227. right = read_node_slot(root, upper, slot + 1);
  2228. btrfs_tree_lock(right);
  2229. btrfs_set_lock_blocking(right);
  2230. free_space = btrfs_leaf_free_space(root, right);
  2231. if (free_space < data_size)
  2232. goto out_unlock;
  2233. /* cow and double check */
  2234. ret = btrfs_cow_block(trans, root, right, upper,
  2235. slot + 1, &right);
  2236. if (ret)
  2237. goto out_unlock;
  2238. free_space = btrfs_leaf_free_space(root, right);
  2239. if (free_space < data_size)
  2240. goto out_unlock;
  2241. left_nritems = btrfs_header_nritems(left);
  2242. if (left_nritems == 0)
  2243. goto out_unlock;
  2244. return __push_leaf_right(trans, root, path, data_size, empty,
  2245. right, free_space, left_nritems);
  2246. out_unlock:
  2247. btrfs_tree_unlock(right);
  2248. free_extent_buffer(right);
  2249. return 1;
  2250. }
  2251. /*
  2252. * push some data in the path leaf to the left, trying to free up at
  2253. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2254. */
  2255. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2256. struct btrfs_root *root,
  2257. struct btrfs_path *path, int data_size,
  2258. int empty, struct extent_buffer *left,
  2259. int free_space, int right_nritems)
  2260. {
  2261. struct btrfs_disk_key disk_key;
  2262. struct extent_buffer *right = path->nodes[0];
  2263. int slot;
  2264. int i;
  2265. int push_space = 0;
  2266. int push_items = 0;
  2267. struct btrfs_item *item;
  2268. u32 old_left_nritems;
  2269. u32 nr;
  2270. int ret = 0;
  2271. int wret;
  2272. u32 this_item_size;
  2273. u32 old_left_item_size;
  2274. slot = path->slots[1];
  2275. if (empty)
  2276. nr = right_nritems;
  2277. else
  2278. nr = right_nritems - 1;
  2279. for (i = 0; i < nr; i++) {
  2280. item = btrfs_item_nr(right, i);
  2281. if (!right->map_token) {
  2282. map_extent_buffer(right, (unsigned long)item,
  2283. sizeof(struct btrfs_item),
  2284. &right->map_token, &right->kaddr,
  2285. &right->map_start, &right->map_len,
  2286. KM_USER1);
  2287. }
  2288. if (!empty && push_items > 0) {
  2289. if (path->slots[0] < i)
  2290. break;
  2291. if (path->slots[0] == i) {
  2292. int space = btrfs_leaf_free_space(root, right);
  2293. if (space + push_space * 2 > free_space)
  2294. break;
  2295. }
  2296. }
  2297. if (path->slots[0] == i)
  2298. push_space += data_size;
  2299. this_item_size = btrfs_item_size(right, item);
  2300. if (this_item_size + sizeof(*item) + push_space > free_space)
  2301. break;
  2302. push_items++;
  2303. push_space += this_item_size + sizeof(*item);
  2304. }
  2305. if (right->map_token) {
  2306. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2307. right->map_token = NULL;
  2308. }
  2309. if (push_items == 0) {
  2310. ret = 1;
  2311. goto out;
  2312. }
  2313. if (!empty && push_items == btrfs_header_nritems(right))
  2314. WARN_ON(1);
  2315. /* push data from right to left */
  2316. copy_extent_buffer(left, right,
  2317. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2318. btrfs_item_nr_offset(0),
  2319. push_items * sizeof(struct btrfs_item));
  2320. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2321. btrfs_item_offset_nr(right, push_items - 1);
  2322. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2323. leaf_data_end(root, left) - push_space,
  2324. btrfs_leaf_data(right) +
  2325. btrfs_item_offset_nr(right, push_items - 1),
  2326. push_space);
  2327. old_left_nritems = btrfs_header_nritems(left);
  2328. BUG_ON(old_left_nritems <= 0);
  2329. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2330. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2331. u32 ioff;
  2332. item = btrfs_item_nr(left, i);
  2333. if (!left->map_token) {
  2334. map_extent_buffer(left, (unsigned long)item,
  2335. sizeof(struct btrfs_item),
  2336. &left->map_token, &left->kaddr,
  2337. &left->map_start, &left->map_len,
  2338. KM_USER1);
  2339. }
  2340. ioff = btrfs_item_offset(left, item);
  2341. btrfs_set_item_offset(left, item,
  2342. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2343. }
  2344. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2345. if (left->map_token) {
  2346. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2347. left->map_token = NULL;
  2348. }
  2349. /* fixup right node */
  2350. if (push_items > right_nritems) {
  2351. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2352. right_nritems);
  2353. WARN_ON(1);
  2354. }
  2355. if (push_items < right_nritems) {
  2356. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2357. leaf_data_end(root, right);
  2358. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2359. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2360. btrfs_leaf_data(right) +
  2361. leaf_data_end(root, right), push_space);
  2362. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2363. btrfs_item_nr_offset(push_items),
  2364. (btrfs_header_nritems(right) - push_items) *
  2365. sizeof(struct btrfs_item));
  2366. }
  2367. right_nritems -= push_items;
  2368. btrfs_set_header_nritems(right, right_nritems);
  2369. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2370. for (i = 0; i < right_nritems; i++) {
  2371. item = btrfs_item_nr(right, i);
  2372. if (!right->map_token) {
  2373. map_extent_buffer(right, (unsigned long)item,
  2374. sizeof(struct btrfs_item),
  2375. &right->map_token, &right->kaddr,
  2376. &right->map_start, &right->map_len,
  2377. KM_USER1);
  2378. }
  2379. push_space = push_space - btrfs_item_size(right, item);
  2380. btrfs_set_item_offset(right, item, push_space);
  2381. }
  2382. if (right->map_token) {
  2383. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2384. right->map_token = NULL;
  2385. }
  2386. btrfs_mark_buffer_dirty(left);
  2387. if (right_nritems)
  2388. btrfs_mark_buffer_dirty(right);
  2389. ret = btrfs_update_ref(trans, root, right, left,
  2390. old_left_nritems, push_items);
  2391. BUG_ON(ret);
  2392. btrfs_item_key(right, &disk_key, 0);
  2393. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2394. if (wret)
  2395. ret = wret;
  2396. /* then fixup the leaf pointer in the path */
  2397. if (path->slots[0] < push_items) {
  2398. path->slots[0] += old_left_nritems;
  2399. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2400. clean_tree_block(trans, root, path->nodes[0]);
  2401. btrfs_tree_unlock(path->nodes[0]);
  2402. free_extent_buffer(path->nodes[0]);
  2403. path->nodes[0] = left;
  2404. path->slots[1] -= 1;
  2405. } else {
  2406. btrfs_tree_unlock(left);
  2407. free_extent_buffer(left);
  2408. path->slots[0] -= push_items;
  2409. }
  2410. BUG_ON(path->slots[0] < 0);
  2411. return ret;
  2412. out:
  2413. btrfs_tree_unlock(left);
  2414. free_extent_buffer(left);
  2415. return ret;
  2416. }
  2417. /*
  2418. * push some data in the path leaf to the left, trying to free up at
  2419. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2420. */
  2421. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2422. *root, struct btrfs_path *path, int data_size,
  2423. int empty)
  2424. {
  2425. struct extent_buffer *right = path->nodes[0];
  2426. struct extent_buffer *left;
  2427. int slot;
  2428. int free_space;
  2429. u32 right_nritems;
  2430. int ret = 0;
  2431. slot = path->slots[1];
  2432. if (slot == 0)
  2433. return 1;
  2434. if (!path->nodes[1])
  2435. return 1;
  2436. right_nritems = btrfs_header_nritems(right);
  2437. if (right_nritems == 0)
  2438. return 1;
  2439. btrfs_assert_tree_locked(path->nodes[1]);
  2440. left = read_node_slot(root, path->nodes[1], slot - 1);
  2441. btrfs_tree_lock(left);
  2442. btrfs_set_lock_blocking(left);
  2443. free_space = btrfs_leaf_free_space(root, left);
  2444. if (free_space < data_size) {
  2445. ret = 1;
  2446. goto out;
  2447. }
  2448. /* cow and double check */
  2449. ret = btrfs_cow_block(trans, root, left,
  2450. path->nodes[1], slot - 1, &left);
  2451. if (ret) {
  2452. /* we hit -ENOSPC, but it isn't fatal here */
  2453. ret = 1;
  2454. goto out;
  2455. }
  2456. free_space = btrfs_leaf_free_space(root, left);
  2457. if (free_space < data_size) {
  2458. ret = 1;
  2459. goto out;
  2460. }
  2461. return __push_leaf_left(trans, root, path, data_size,
  2462. empty, left, free_space, right_nritems);
  2463. out:
  2464. btrfs_tree_unlock(left);
  2465. free_extent_buffer(left);
  2466. return ret;
  2467. }
  2468. /*
  2469. * split the path's leaf in two, making sure there is at least data_size
  2470. * available for the resulting leaf level of the path.
  2471. *
  2472. * returns 0 if all went well and < 0 on failure.
  2473. */
  2474. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2475. struct btrfs_root *root,
  2476. struct btrfs_path *path,
  2477. struct extent_buffer *l,
  2478. struct extent_buffer *right,
  2479. int slot, int mid, int nritems)
  2480. {
  2481. int data_copy_size;
  2482. int rt_data_off;
  2483. int i;
  2484. int ret = 0;
  2485. int wret;
  2486. struct btrfs_disk_key disk_key;
  2487. nritems = nritems - mid;
  2488. btrfs_set_header_nritems(right, nritems);
  2489. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2490. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2491. btrfs_item_nr_offset(mid),
  2492. nritems * sizeof(struct btrfs_item));
  2493. copy_extent_buffer(right, l,
  2494. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2495. data_copy_size, btrfs_leaf_data(l) +
  2496. leaf_data_end(root, l), data_copy_size);
  2497. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2498. btrfs_item_end_nr(l, mid);
  2499. for (i = 0; i < nritems; i++) {
  2500. struct btrfs_item *item = btrfs_item_nr(right, i);
  2501. u32 ioff;
  2502. if (!right->map_token) {
  2503. map_extent_buffer(right, (unsigned long)item,
  2504. sizeof(struct btrfs_item),
  2505. &right->map_token, &right->kaddr,
  2506. &right->map_start, &right->map_len,
  2507. KM_USER1);
  2508. }
  2509. ioff = btrfs_item_offset(right, item);
  2510. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2511. }
  2512. if (right->map_token) {
  2513. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2514. right->map_token = NULL;
  2515. }
  2516. btrfs_set_header_nritems(l, mid);
  2517. ret = 0;
  2518. btrfs_item_key(right, &disk_key, 0);
  2519. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2520. path->slots[1] + 1, 1);
  2521. if (wret)
  2522. ret = wret;
  2523. btrfs_mark_buffer_dirty(right);
  2524. btrfs_mark_buffer_dirty(l);
  2525. BUG_ON(path->slots[0] != slot);
  2526. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2527. BUG_ON(ret);
  2528. if (mid <= slot) {
  2529. btrfs_tree_unlock(path->nodes[0]);
  2530. free_extent_buffer(path->nodes[0]);
  2531. path->nodes[0] = right;
  2532. path->slots[0] -= mid;
  2533. path->slots[1] += 1;
  2534. } else {
  2535. btrfs_tree_unlock(right);
  2536. free_extent_buffer(right);
  2537. }
  2538. BUG_ON(path->slots[0] < 0);
  2539. return ret;
  2540. }
  2541. /*
  2542. * split the path's leaf in two, making sure there is at least data_size
  2543. * available for the resulting leaf level of the path.
  2544. *
  2545. * returns 0 if all went well and < 0 on failure.
  2546. */
  2547. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2548. struct btrfs_root *root,
  2549. struct btrfs_key *ins_key,
  2550. struct btrfs_path *path, int data_size,
  2551. int extend)
  2552. {
  2553. struct extent_buffer *l;
  2554. u32 nritems;
  2555. int mid;
  2556. int slot;
  2557. struct extent_buffer *right;
  2558. int ret = 0;
  2559. int wret;
  2560. int double_split;
  2561. int num_doubles = 0;
  2562. /* first try to make some room by pushing left and right */
  2563. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
  2564. !trans->transaction->delayed_refs.flushing) {
  2565. wret = push_leaf_right(trans, root, path, data_size, 0);
  2566. if (wret < 0)
  2567. return wret;
  2568. if (wret) {
  2569. wret = push_leaf_left(trans, root, path, data_size, 0);
  2570. if (wret < 0)
  2571. return wret;
  2572. }
  2573. l = path->nodes[0];
  2574. /* did the pushes work? */
  2575. if (btrfs_leaf_free_space(root, l) >= data_size)
  2576. return 0;
  2577. }
  2578. if (!path->nodes[1]) {
  2579. ret = insert_new_root(trans, root, path, 1);
  2580. if (ret)
  2581. return ret;
  2582. }
  2583. again:
  2584. double_split = 0;
  2585. l = path->nodes[0];
  2586. slot = path->slots[0];
  2587. nritems = btrfs_header_nritems(l);
  2588. mid = (nritems + 1) / 2;
  2589. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2590. path->nodes[1]->start,
  2591. root->root_key.objectid,
  2592. trans->transid, 0, l->start, 0);
  2593. if (IS_ERR(right)) {
  2594. BUG_ON(1);
  2595. return PTR_ERR(right);
  2596. }
  2597. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2598. btrfs_set_header_bytenr(right, right->start);
  2599. btrfs_set_header_generation(right, trans->transid);
  2600. btrfs_set_header_owner(right, root->root_key.objectid);
  2601. btrfs_set_header_level(right, 0);
  2602. write_extent_buffer(right, root->fs_info->fsid,
  2603. (unsigned long)btrfs_header_fsid(right),
  2604. BTRFS_FSID_SIZE);
  2605. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2606. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2607. BTRFS_UUID_SIZE);
  2608. if (mid <= slot) {
  2609. if (nritems == 1 ||
  2610. leaf_space_used(l, mid, nritems - mid) + data_size >
  2611. BTRFS_LEAF_DATA_SIZE(root)) {
  2612. if (slot >= nritems) {
  2613. struct btrfs_disk_key disk_key;
  2614. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2615. btrfs_set_header_nritems(right, 0);
  2616. wret = insert_ptr(trans, root, path,
  2617. &disk_key, right->start,
  2618. path->slots[1] + 1, 1);
  2619. if (wret)
  2620. ret = wret;
  2621. btrfs_tree_unlock(path->nodes[0]);
  2622. free_extent_buffer(path->nodes[0]);
  2623. path->nodes[0] = right;
  2624. path->slots[0] = 0;
  2625. path->slots[1] += 1;
  2626. btrfs_mark_buffer_dirty(right);
  2627. return ret;
  2628. }
  2629. mid = slot;
  2630. if (mid != nritems &&
  2631. leaf_space_used(l, mid, nritems - mid) +
  2632. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2633. double_split = 1;
  2634. }
  2635. }
  2636. } else {
  2637. if (leaf_space_used(l, 0, mid) + data_size >
  2638. BTRFS_LEAF_DATA_SIZE(root)) {
  2639. if (!extend && data_size && slot == 0) {
  2640. struct btrfs_disk_key disk_key;
  2641. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2642. btrfs_set_header_nritems(right, 0);
  2643. wret = insert_ptr(trans, root, path,
  2644. &disk_key,
  2645. right->start,
  2646. path->slots[1], 1);
  2647. if (wret)
  2648. ret = wret;
  2649. btrfs_tree_unlock(path->nodes[0]);
  2650. free_extent_buffer(path->nodes[0]);
  2651. path->nodes[0] = right;
  2652. path->slots[0] = 0;
  2653. if (path->slots[1] == 0) {
  2654. wret = fixup_low_keys(trans, root,
  2655. path, &disk_key, 1);
  2656. if (wret)
  2657. ret = wret;
  2658. }
  2659. btrfs_mark_buffer_dirty(right);
  2660. return ret;
  2661. } else if ((extend || !data_size) && slot == 0) {
  2662. mid = 1;
  2663. } else {
  2664. mid = slot;
  2665. if (mid != nritems &&
  2666. leaf_space_used(l, mid, nritems - mid) +
  2667. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2668. double_split = 1;
  2669. }
  2670. }
  2671. }
  2672. }
  2673. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2674. BUG_ON(ret);
  2675. if (double_split) {
  2676. BUG_ON(num_doubles != 0);
  2677. num_doubles++;
  2678. goto again;
  2679. }
  2680. return ret;
  2681. }
  2682. /*
  2683. * This function splits a single item into two items,
  2684. * giving 'new_key' to the new item and splitting the
  2685. * old one at split_offset (from the start of the item).
  2686. *
  2687. * The path may be released by this operation. After
  2688. * the split, the path is pointing to the old item. The
  2689. * new item is going to be in the same node as the old one.
  2690. *
  2691. * Note, the item being split must be smaller enough to live alone on
  2692. * a tree block with room for one extra struct btrfs_item
  2693. *
  2694. * This allows us to split the item in place, keeping a lock on the
  2695. * leaf the entire time.
  2696. */
  2697. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2698. struct btrfs_root *root,
  2699. struct btrfs_path *path,
  2700. struct btrfs_key *new_key,
  2701. unsigned long split_offset)
  2702. {
  2703. u32 item_size;
  2704. struct extent_buffer *leaf;
  2705. struct btrfs_key orig_key;
  2706. struct btrfs_item *item;
  2707. struct btrfs_item *new_item;
  2708. int ret = 0;
  2709. int slot;
  2710. u32 nritems;
  2711. u32 orig_offset;
  2712. struct btrfs_disk_key disk_key;
  2713. char *buf;
  2714. leaf = path->nodes[0];
  2715. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2716. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2717. goto split;
  2718. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2719. btrfs_release_path(root, path);
  2720. path->search_for_split = 1;
  2721. path->keep_locks = 1;
  2722. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2723. path->search_for_split = 0;
  2724. /* if our item isn't there or got smaller, return now */
  2725. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2726. path->slots[0])) {
  2727. path->keep_locks = 0;
  2728. return -EAGAIN;
  2729. }
  2730. btrfs_set_path_blocking(path);
  2731. ret = split_leaf(trans, root, &orig_key, path,
  2732. sizeof(struct btrfs_item), 1);
  2733. path->keep_locks = 0;
  2734. BUG_ON(ret);
  2735. btrfs_unlock_up_safe(path, 1);
  2736. leaf = path->nodes[0];
  2737. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2738. split:
  2739. /*
  2740. * make sure any changes to the path from split_leaf leave it
  2741. * in a blocking state
  2742. */
  2743. btrfs_set_path_blocking(path);
  2744. item = btrfs_item_nr(leaf, path->slots[0]);
  2745. orig_offset = btrfs_item_offset(leaf, item);
  2746. item_size = btrfs_item_size(leaf, item);
  2747. buf = kmalloc(item_size, GFP_NOFS);
  2748. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2749. path->slots[0]), item_size);
  2750. slot = path->slots[0] + 1;
  2751. leaf = path->nodes[0];
  2752. nritems = btrfs_header_nritems(leaf);
  2753. if (slot != nritems) {
  2754. /* shift the items */
  2755. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2756. btrfs_item_nr_offset(slot),
  2757. (nritems - slot) * sizeof(struct btrfs_item));
  2758. }
  2759. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2760. btrfs_set_item_key(leaf, &disk_key, slot);
  2761. new_item = btrfs_item_nr(leaf, slot);
  2762. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2763. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2764. btrfs_set_item_offset(leaf, item,
  2765. orig_offset + item_size - split_offset);
  2766. btrfs_set_item_size(leaf, item, split_offset);
  2767. btrfs_set_header_nritems(leaf, nritems + 1);
  2768. /* write the data for the start of the original item */
  2769. write_extent_buffer(leaf, buf,
  2770. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2771. split_offset);
  2772. /* write the data for the new item */
  2773. write_extent_buffer(leaf, buf + split_offset,
  2774. btrfs_item_ptr_offset(leaf, slot),
  2775. item_size - split_offset);
  2776. btrfs_mark_buffer_dirty(leaf);
  2777. ret = 0;
  2778. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2779. btrfs_print_leaf(root, leaf);
  2780. BUG();
  2781. }
  2782. kfree(buf);
  2783. return ret;
  2784. }
  2785. /*
  2786. * make the item pointed to by the path smaller. new_size indicates
  2787. * how small to make it, and from_end tells us if we just chop bytes
  2788. * off the end of the item or if we shift the item to chop bytes off
  2789. * the front.
  2790. */
  2791. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2792. struct btrfs_root *root,
  2793. struct btrfs_path *path,
  2794. u32 new_size, int from_end)
  2795. {
  2796. int ret = 0;
  2797. int slot;
  2798. int slot_orig;
  2799. struct extent_buffer *leaf;
  2800. struct btrfs_item *item;
  2801. u32 nritems;
  2802. unsigned int data_end;
  2803. unsigned int old_data_start;
  2804. unsigned int old_size;
  2805. unsigned int size_diff;
  2806. int i;
  2807. slot_orig = path->slots[0];
  2808. leaf = path->nodes[0];
  2809. slot = path->slots[0];
  2810. old_size = btrfs_item_size_nr(leaf, slot);
  2811. if (old_size == new_size)
  2812. return 0;
  2813. nritems = btrfs_header_nritems(leaf);
  2814. data_end = leaf_data_end(root, leaf);
  2815. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2816. size_diff = old_size - new_size;
  2817. BUG_ON(slot < 0);
  2818. BUG_ON(slot >= nritems);
  2819. /*
  2820. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2821. */
  2822. /* first correct the data pointers */
  2823. for (i = slot; i < nritems; i++) {
  2824. u32 ioff;
  2825. item = btrfs_item_nr(leaf, i);
  2826. if (!leaf->map_token) {
  2827. map_extent_buffer(leaf, (unsigned long)item,
  2828. sizeof(struct btrfs_item),
  2829. &leaf->map_token, &leaf->kaddr,
  2830. &leaf->map_start, &leaf->map_len,
  2831. KM_USER1);
  2832. }
  2833. ioff = btrfs_item_offset(leaf, item);
  2834. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2835. }
  2836. if (leaf->map_token) {
  2837. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2838. leaf->map_token = NULL;
  2839. }
  2840. /* shift the data */
  2841. if (from_end) {
  2842. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2843. data_end + size_diff, btrfs_leaf_data(leaf) +
  2844. data_end, old_data_start + new_size - data_end);
  2845. } else {
  2846. struct btrfs_disk_key disk_key;
  2847. u64 offset;
  2848. btrfs_item_key(leaf, &disk_key, slot);
  2849. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2850. unsigned long ptr;
  2851. struct btrfs_file_extent_item *fi;
  2852. fi = btrfs_item_ptr(leaf, slot,
  2853. struct btrfs_file_extent_item);
  2854. fi = (struct btrfs_file_extent_item *)(
  2855. (unsigned long)fi - size_diff);
  2856. if (btrfs_file_extent_type(leaf, fi) ==
  2857. BTRFS_FILE_EXTENT_INLINE) {
  2858. ptr = btrfs_item_ptr_offset(leaf, slot);
  2859. memmove_extent_buffer(leaf, ptr,
  2860. (unsigned long)fi,
  2861. offsetof(struct btrfs_file_extent_item,
  2862. disk_bytenr));
  2863. }
  2864. }
  2865. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2866. data_end + size_diff, btrfs_leaf_data(leaf) +
  2867. data_end, old_data_start - data_end);
  2868. offset = btrfs_disk_key_offset(&disk_key);
  2869. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2870. btrfs_set_item_key(leaf, &disk_key, slot);
  2871. if (slot == 0)
  2872. fixup_low_keys(trans, root, path, &disk_key, 1);
  2873. }
  2874. item = btrfs_item_nr(leaf, slot);
  2875. btrfs_set_item_size(leaf, item, new_size);
  2876. btrfs_mark_buffer_dirty(leaf);
  2877. ret = 0;
  2878. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2879. btrfs_print_leaf(root, leaf);
  2880. BUG();
  2881. }
  2882. return ret;
  2883. }
  2884. /*
  2885. * make the item pointed to by the path bigger, data_size is the new size.
  2886. */
  2887. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2888. struct btrfs_root *root, struct btrfs_path *path,
  2889. u32 data_size)
  2890. {
  2891. int ret = 0;
  2892. int slot;
  2893. int slot_orig;
  2894. struct extent_buffer *leaf;
  2895. struct btrfs_item *item;
  2896. u32 nritems;
  2897. unsigned int data_end;
  2898. unsigned int old_data;
  2899. unsigned int old_size;
  2900. int i;
  2901. slot_orig = path->slots[0];
  2902. leaf = path->nodes[0];
  2903. nritems = btrfs_header_nritems(leaf);
  2904. data_end = leaf_data_end(root, leaf);
  2905. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2906. btrfs_print_leaf(root, leaf);
  2907. BUG();
  2908. }
  2909. slot = path->slots[0];
  2910. old_data = btrfs_item_end_nr(leaf, slot);
  2911. BUG_ON(slot < 0);
  2912. if (slot >= nritems) {
  2913. btrfs_print_leaf(root, leaf);
  2914. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2915. slot, nritems);
  2916. BUG_ON(1);
  2917. }
  2918. /*
  2919. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2920. */
  2921. /* first correct the data pointers */
  2922. for (i = slot; i < nritems; i++) {
  2923. u32 ioff;
  2924. item = btrfs_item_nr(leaf, i);
  2925. if (!leaf->map_token) {
  2926. map_extent_buffer(leaf, (unsigned long)item,
  2927. sizeof(struct btrfs_item),
  2928. &leaf->map_token, &leaf->kaddr,
  2929. &leaf->map_start, &leaf->map_len,
  2930. KM_USER1);
  2931. }
  2932. ioff = btrfs_item_offset(leaf, item);
  2933. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2934. }
  2935. if (leaf->map_token) {
  2936. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2937. leaf->map_token = NULL;
  2938. }
  2939. /* shift the data */
  2940. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2941. data_end - data_size, btrfs_leaf_data(leaf) +
  2942. data_end, old_data - data_end);
  2943. data_end = old_data;
  2944. old_size = btrfs_item_size_nr(leaf, slot);
  2945. item = btrfs_item_nr(leaf, slot);
  2946. btrfs_set_item_size(leaf, item, old_size + data_size);
  2947. btrfs_mark_buffer_dirty(leaf);
  2948. ret = 0;
  2949. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2950. btrfs_print_leaf(root, leaf);
  2951. BUG();
  2952. }
  2953. return ret;
  2954. }
  2955. /*
  2956. * Given a key and some data, insert items into the tree.
  2957. * This does all the path init required, making room in the tree if needed.
  2958. * Returns the number of keys that were inserted.
  2959. */
  2960. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2961. struct btrfs_root *root,
  2962. struct btrfs_path *path,
  2963. struct btrfs_key *cpu_key, u32 *data_size,
  2964. int nr)
  2965. {
  2966. struct extent_buffer *leaf;
  2967. struct btrfs_item *item;
  2968. int ret = 0;
  2969. int slot;
  2970. int i;
  2971. u32 nritems;
  2972. u32 total_data = 0;
  2973. u32 total_size = 0;
  2974. unsigned int data_end;
  2975. struct btrfs_disk_key disk_key;
  2976. struct btrfs_key found_key;
  2977. for (i = 0; i < nr; i++) {
  2978. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2979. BTRFS_LEAF_DATA_SIZE(root)) {
  2980. break;
  2981. nr = i;
  2982. }
  2983. total_data += data_size[i];
  2984. total_size += data_size[i] + sizeof(struct btrfs_item);
  2985. }
  2986. BUG_ON(nr == 0);
  2987. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2988. if (ret == 0)
  2989. return -EEXIST;
  2990. if (ret < 0)
  2991. goto out;
  2992. leaf = path->nodes[0];
  2993. nritems = btrfs_header_nritems(leaf);
  2994. data_end = leaf_data_end(root, leaf);
  2995. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2996. for (i = nr; i >= 0; i--) {
  2997. total_data -= data_size[i];
  2998. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2999. if (total_size < btrfs_leaf_free_space(root, leaf))
  3000. break;
  3001. }
  3002. nr = i;
  3003. }
  3004. slot = path->slots[0];
  3005. BUG_ON(slot < 0);
  3006. if (slot != nritems) {
  3007. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3008. item = btrfs_item_nr(leaf, slot);
  3009. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3010. /* figure out how many keys we can insert in here */
  3011. total_data = data_size[0];
  3012. for (i = 1; i < nr; i++) {
  3013. if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3014. break;
  3015. total_data += data_size[i];
  3016. }
  3017. nr = i;
  3018. if (old_data < data_end) {
  3019. btrfs_print_leaf(root, leaf);
  3020. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3021. slot, old_data, data_end);
  3022. BUG_ON(1);
  3023. }
  3024. /*
  3025. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3026. */
  3027. /* first correct the data pointers */
  3028. WARN_ON(leaf->map_token);
  3029. for (i = slot; i < nritems; i++) {
  3030. u32 ioff;
  3031. item = btrfs_item_nr(leaf, i);
  3032. if (!leaf->map_token) {
  3033. map_extent_buffer(leaf, (unsigned long)item,
  3034. sizeof(struct btrfs_item),
  3035. &leaf->map_token, &leaf->kaddr,
  3036. &leaf->map_start, &leaf->map_len,
  3037. KM_USER1);
  3038. }
  3039. ioff = btrfs_item_offset(leaf, item);
  3040. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3041. }
  3042. if (leaf->map_token) {
  3043. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3044. leaf->map_token = NULL;
  3045. }
  3046. /* shift the items */
  3047. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3048. btrfs_item_nr_offset(slot),
  3049. (nritems - slot) * sizeof(struct btrfs_item));
  3050. /* shift the data */
  3051. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3052. data_end - total_data, btrfs_leaf_data(leaf) +
  3053. data_end, old_data - data_end);
  3054. data_end = old_data;
  3055. } else {
  3056. /*
  3057. * this sucks but it has to be done, if we are inserting at
  3058. * the end of the leaf only insert 1 of the items, since we
  3059. * have no way of knowing whats on the next leaf and we'd have
  3060. * to drop our current locks to figure it out
  3061. */
  3062. nr = 1;
  3063. }
  3064. /* setup the item for the new data */
  3065. for (i = 0; i < nr; i++) {
  3066. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3067. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3068. item = btrfs_item_nr(leaf, slot + i);
  3069. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3070. data_end -= data_size[i];
  3071. btrfs_set_item_size(leaf, item, data_size[i]);
  3072. }
  3073. btrfs_set_header_nritems(leaf, nritems + nr);
  3074. btrfs_mark_buffer_dirty(leaf);
  3075. ret = 0;
  3076. if (slot == 0) {
  3077. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3078. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3079. }
  3080. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3081. btrfs_print_leaf(root, leaf);
  3082. BUG();
  3083. }
  3084. out:
  3085. if (!ret)
  3086. ret = nr;
  3087. return ret;
  3088. }
  3089. /*
  3090. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3091. * to save stack depth by doing the bulk of the work in a function
  3092. * that doesn't call btrfs_search_slot
  3093. */
  3094. static noinline_for_stack int
  3095. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3096. struct btrfs_root *root, struct btrfs_path *path,
  3097. struct btrfs_key *cpu_key, u32 *data_size,
  3098. u32 total_data, u32 total_size, int nr)
  3099. {
  3100. struct btrfs_item *item;
  3101. int i;
  3102. u32 nritems;
  3103. unsigned int data_end;
  3104. struct btrfs_disk_key disk_key;
  3105. int ret;
  3106. struct extent_buffer *leaf;
  3107. int slot;
  3108. leaf = path->nodes[0];
  3109. slot = path->slots[0];
  3110. nritems = btrfs_header_nritems(leaf);
  3111. data_end = leaf_data_end(root, leaf);
  3112. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3113. btrfs_print_leaf(root, leaf);
  3114. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3115. total_size, btrfs_leaf_free_space(root, leaf));
  3116. BUG();
  3117. }
  3118. if (slot != nritems) {
  3119. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3120. if (old_data < data_end) {
  3121. btrfs_print_leaf(root, leaf);
  3122. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3123. slot, old_data, data_end);
  3124. BUG_ON(1);
  3125. }
  3126. /*
  3127. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3128. */
  3129. /* first correct the data pointers */
  3130. WARN_ON(leaf->map_token);
  3131. for (i = slot; i < nritems; i++) {
  3132. u32 ioff;
  3133. item = btrfs_item_nr(leaf, i);
  3134. if (!leaf->map_token) {
  3135. map_extent_buffer(leaf, (unsigned long)item,
  3136. sizeof(struct btrfs_item),
  3137. &leaf->map_token, &leaf->kaddr,
  3138. &leaf->map_start, &leaf->map_len,
  3139. KM_USER1);
  3140. }
  3141. ioff = btrfs_item_offset(leaf, item);
  3142. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3143. }
  3144. if (leaf->map_token) {
  3145. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3146. leaf->map_token = NULL;
  3147. }
  3148. /* shift the items */
  3149. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3150. btrfs_item_nr_offset(slot),
  3151. (nritems - slot) * sizeof(struct btrfs_item));
  3152. /* shift the data */
  3153. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3154. data_end - total_data, btrfs_leaf_data(leaf) +
  3155. data_end, old_data - data_end);
  3156. data_end = old_data;
  3157. }
  3158. /* setup the item for the new data */
  3159. for (i = 0; i < nr; i++) {
  3160. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3161. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3162. item = btrfs_item_nr(leaf, slot + i);
  3163. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3164. data_end -= data_size[i];
  3165. btrfs_set_item_size(leaf, item, data_size[i]);
  3166. }
  3167. btrfs_set_header_nritems(leaf, nritems + nr);
  3168. ret = 0;
  3169. if (slot == 0) {
  3170. struct btrfs_disk_key disk_key;
  3171. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3172. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3173. }
  3174. btrfs_unlock_up_safe(path, 1);
  3175. btrfs_mark_buffer_dirty(leaf);
  3176. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3177. btrfs_print_leaf(root, leaf);
  3178. BUG();
  3179. }
  3180. return ret;
  3181. }
  3182. /*
  3183. * Given a key and some data, insert items into the tree.
  3184. * This does all the path init required, making room in the tree if needed.
  3185. */
  3186. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3187. struct btrfs_root *root,
  3188. struct btrfs_path *path,
  3189. struct btrfs_key *cpu_key, u32 *data_size,
  3190. int nr)
  3191. {
  3192. struct extent_buffer *leaf;
  3193. int ret = 0;
  3194. int slot;
  3195. int i;
  3196. u32 total_size = 0;
  3197. u32 total_data = 0;
  3198. for (i = 0; i < nr; i++)
  3199. total_data += data_size[i];
  3200. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3201. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3202. if (ret == 0)
  3203. return -EEXIST;
  3204. if (ret < 0)
  3205. goto out;
  3206. leaf = path->nodes[0];
  3207. slot = path->slots[0];
  3208. BUG_ON(slot < 0);
  3209. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3210. total_data, total_size, nr);
  3211. out:
  3212. return ret;
  3213. }
  3214. /*
  3215. * Given a key and some data, insert an item into the tree.
  3216. * This does all the path init required, making room in the tree if needed.
  3217. */
  3218. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3219. *root, struct btrfs_key *cpu_key, void *data, u32
  3220. data_size)
  3221. {
  3222. int ret = 0;
  3223. struct btrfs_path *path;
  3224. struct extent_buffer *leaf;
  3225. unsigned long ptr;
  3226. path = btrfs_alloc_path();
  3227. BUG_ON(!path);
  3228. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3229. if (!ret) {
  3230. leaf = path->nodes[0];
  3231. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3232. write_extent_buffer(leaf, data, ptr, data_size);
  3233. btrfs_mark_buffer_dirty(leaf);
  3234. }
  3235. btrfs_free_path(path);
  3236. return ret;
  3237. }
  3238. /*
  3239. * delete the pointer from a given node.
  3240. *
  3241. * the tree should have been previously balanced so the deletion does not
  3242. * empty a node.
  3243. */
  3244. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3245. struct btrfs_path *path, int level, int slot)
  3246. {
  3247. struct extent_buffer *parent = path->nodes[level];
  3248. u32 nritems;
  3249. int ret = 0;
  3250. int wret;
  3251. nritems = btrfs_header_nritems(parent);
  3252. if (slot != nritems - 1) {
  3253. memmove_extent_buffer(parent,
  3254. btrfs_node_key_ptr_offset(slot),
  3255. btrfs_node_key_ptr_offset(slot + 1),
  3256. sizeof(struct btrfs_key_ptr) *
  3257. (nritems - slot - 1));
  3258. }
  3259. nritems--;
  3260. btrfs_set_header_nritems(parent, nritems);
  3261. if (nritems == 0 && parent == root->node) {
  3262. BUG_ON(btrfs_header_level(root->node) != 1);
  3263. /* just turn the root into a leaf and break */
  3264. btrfs_set_header_level(root->node, 0);
  3265. } else if (slot == 0) {
  3266. struct btrfs_disk_key disk_key;
  3267. btrfs_node_key(parent, &disk_key, 0);
  3268. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3269. if (wret)
  3270. ret = wret;
  3271. }
  3272. btrfs_mark_buffer_dirty(parent);
  3273. return ret;
  3274. }
  3275. /*
  3276. * a helper function to delete the leaf pointed to by path->slots[1] and
  3277. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  3278. * already know it, it is faster to have them pass it down than to
  3279. * read it out of the node again.
  3280. *
  3281. * This deletes the pointer in path->nodes[1] and frees the leaf
  3282. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3283. *
  3284. * The path must have already been setup for deleting the leaf, including
  3285. * all the proper balancing. path->nodes[1] must be locked.
  3286. */
  3287. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3288. struct btrfs_root *root,
  3289. struct btrfs_path *path, u64 bytenr)
  3290. {
  3291. int ret;
  3292. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  3293. u64 parent_start = path->nodes[1]->start;
  3294. u64 parent_owner = btrfs_header_owner(path->nodes[1]);
  3295. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3296. if (ret)
  3297. return ret;
  3298. /*
  3299. * btrfs_free_extent is expensive, we want to make sure we
  3300. * aren't holding any locks when we call it
  3301. */
  3302. btrfs_unlock_up_safe(path, 0);
  3303. ret = btrfs_free_extent(trans, root, bytenr,
  3304. btrfs_level_size(root, 0),
  3305. parent_start, parent_owner,
  3306. root_gen, 0, 1);
  3307. return ret;
  3308. }
  3309. /*
  3310. * delete the item at the leaf level in path. If that empties
  3311. * the leaf, remove it from the tree
  3312. */
  3313. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3314. struct btrfs_path *path, int slot, int nr)
  3315. {
  3316. struct extent_buffer *leaf;
  3317. struct btrfs_item *item;
  3318. int last_off;
  3319. int dsize = 0;
  3320. int ret = 0;
  3321. int wret;
  3322. int i;
  3323. u32 nritems;
  3324. leaf = path->nodes[0];
  3325. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3326. for (i = 0; i < nr; i++)
  3327. dsize += btrfs_item_size_nr(leaf, slot + i);
  3328. nritems = btrfs_header_nritems(leaf);
  3329. if (slot + nr != nritems) {
  3330. int data_end = leaf_data_end(root, leaf);
  3331. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3332. data_end + dsize,
  3333. btrfs_leaf_data(leaf) + data_end,
  3334. last_off - data_end);
  3335. for (i = slot + nr; i < nritems; i++) {
  3336. u32 ioff;
  3337. item = btrfs_item_nr(leaf, i);
  3338. if (!leaf->map_token) {
  3339. map_extent_buffer(leaf, (unsigned long)item,
  3340. sizeof(struct btrfs_item),
  3341. &leaf->map_token, &leaf->kaddr,
  3342. &leaf->map_start, &leaf->map_len,
  3343. KM_USER1);
  3344. }
  3345. ioff = btrfs_item_offset(leaf, item);
  3346. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3347. }
  3348. if (leaf->map_token) {
  3349. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3350. leaf->map_token = NULL;
  3351. }
  3352. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3353. btrfs_item_nr_offset(slot + nr),
  3354. sizeof(struct btrfs_item) *
  3355. (nritems - slot - nr));
  3356. }
  3357. btrfs_set_header_nritems(leaf, nritems - nr);
  3358. nritems -= nr;
  3359. /* delete the leaf if we've emptied it */
  3360. if (nritems == 0) {
  3361. if (leaf == root->node) {
  3362. btrfs_set_header_level(leaf, 0);
  3363. } else {
  3364. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  3365. BUG_ON(ret);
  3366. }
  3367. } else {
  3368. int used = leaf_space_used(leaf, 0, nritems);
  3369. if (slot == 0) {
  3370. struct btrfs_disk_key disk_key;
  3371. btrfs_item_key(leaf, &disk_key, 0);
  3372. wret = fixup_low_keys(trans, root, path,
  3373. &disk_key, 1);
  3374. if (wret)
  3375. ret = wret;
  3376. }
  3377. /* delete the leaf if it is mostly empty */
  3378. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
  3379. !trans->transaction->delayed_refs.flushing) {
  3380. /* push_leaf_left fixes the path.
  3381. * make sure the path still points to our leaf
  3382. * for possible call to del_ptr below
  3383. */
  3384. slot = path->slots[1];
  3385. extent_buffer_get(leaf);
  3386. btrfs_set_path_blocking(path);
  3387. wret = push_leaf_left(trans, root, path, 1, 1);
  3388. if (wret < 0 && wret != -ENOSPC)
  3389. ret = wret;
  3390. if (path->nodes[0] == leaf &&
  3391. btrfs_header_nritems(leaf)) {
  3392. wret = push_leaf_right(trans, root, path, 1, 1);
  3393. if (wret < 0 && wret != -ENOSPC)
  3394. ret = wret;
  3395. }
  3396. if (btrfs_header_nritems(leaf) == 0) {
  3397. path->slots[1] = slot;
  3398. ret = btrfs_del_leaf(trans, root, path,
  3399. leaf->start);
  3400. BUG_ON(ret);
  3401. free_extent_buffer(leaf);
  3402. } else {
  3403. /* if we're still in the path, make sure
  3404. * we're dirty. Otherwise, one of the
  3405. * push_leaf functions must have already
  3406. * dirtied this buffer
  3407. */
  3408. if (path->nodes[0] == leaf)
  3409. btrfs_mark_buffer_dirty(leaf);
  3410. free_extent_buffer(leaf);
  3411. }
  3412. } else {
  3413. btrfs_mark_buffer_dirty(leaf);
  3414. }
  3415. }
  3416. return ret;
  3417. }
  3418. /*
  3419. * search the tree again to find a leaf with lesser keys
  3420. * returns 0 if it found something or 1 if there are no lesser leaves.
  3421. * returns < 0 on io errors.
  3422. *
  3423. * This may release the path, and so you may lose any locks held at the
  3424. * time you call it.
  3425. */
  3426. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3427. {
  3428. struct btrfs_key key;
  3429. struct btrfs_disk_key found_key;
  3430. int ret;
  3431. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3432. if (key.offset > 0)
  3433. key.offset--;
  3434. else if (key.type > 0)
  3435. key.type--;
  3436. else if (key.objectid > 0)
  3437. key.objectid--;
  3438. else
  3439. return 1;
  3440. btrfs_release_path(root, path);
  3441. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3442. if (ret < 0)
  3443. return ret;
  3444. btrfs_item_key(path->nodes[0], &found_key, 0);
  3445. ret = comp_keys(&found_key, &key);
  3446. if (ret < 0)
  3447. return 0;
  3448. return 1;
  3449. }
  3450. /*
  3451. * A helper function to walk down the tree starting at min_key, and looking
  3452. * for nodes or leaves that are either in cache or have a minimum
  3453. * transaction id. This is used by the btree defrag code, and tree logging
  3454. *
  3455. * This does not cow, but it does stuff the starting key it finds back
  3456. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3457. * key and get a writable path.
  3458. *
  3459. * This does lock as it descends, and path->keep_locks should be set
  3460. * to 1 by the caller.
  3461. *
  3462. * This honors path->lowest_level to prevent descent past a given level
  3463. * of the tree.
  3464. *
  3465. * min_trans indicates the oldest transaction that you are interested
  3466. * in walking through. Any nodes or leaves older than min_trans are
  3467. * skipped over (without reading them).
  3468. *
  3469. * returns zero if something useful was found, < 0 on error and 1 if there
  3470. * was nothing in the tree that matched the search criteria.
  3471. */
  3472. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3473. struct btrfs_key *max_key,
  3474. struct btrfs_path *path, int cache_only,
  3475. u64 min_trans)
  3476. {
  3477. struct extent_buffer *cur;
  3478. struct btrfs_key found_key;
  3479. int slot;
  3480. int sret;
  3481. u32 nritems;
  3482. int level;
  3483. int ret = 1;
  3484. WARN_ON(!path->keep_locks);
  3485. again:
  3486. cur = btrfs_lock_root_node(root);
  3487. level = btrfs_header_level(cur);
  3488. WARN_ON(path->nodes[level]);
  3489. path->nodes[level] = cur;
  3490. path->locks[level] = 1;
  3491. if (btrfs_header_generation(cur) < min_trans) {
  3492. ret = 1;
  3493. goto out;
  3494. }
  3495. while (1) {
  3496. nritems = btrfs_header_nritems(cur);
  3497. level = btrfs_header_level(cur);
  3498. sret = bin_search(cur, min_key, level, &slot);
  3499. /* at the lowest level, we're done, setup the path and exit */
  3500. if (level == path->lowest_level) {
  3501. if (slot >= nritems)
  3502. goto find_next_key;
  3503. ret = 0;
  3504. path->slots[level] = slot;
  3505. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3506. goto out;
  3507. }
  3508. if (sret && slot > 0)
  3509. slot--;
  3510. /*
  3511. * check this node pointer against the cache_only and
  3512. * min_trans parameters. If it isn't in cache or is too
  3513. * old, skip to the next one.
  3514. */
  3515. while (slot < nritems) {
  3516. u64 blockptr;
  3517. u64 gen;
  3518. struct extent_buffer *tmp;
  3519. struct btrfs_disk_key disk_key;
  3520. blockptr = btrfs_node_blockptr(cur, slot);
  3521. gen = btrfs_node_ptr_generation(cur, slot);
  3522. if (gen < min_trans) {
  3523. slot++;
  3524. continue;
  3525. }
  3526. if (!cache_only)
  3527. break;
  3528. if (max_key) {
  3529. btrfs_node_key(cur, &disk_key, slot);
  3530. if (comp_keys(&disk_key, max_key) >= 0) {
  3531. ret = 1;
  3532. goto out;
  3533. }
  3534. }
  3535. tmp = btrfs_find_tree_block(root, blockptr,
  3536. btrfs_level_size(root, level - 1));
  3537. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3538. free_extent_buffer(tmp);
  3539. break;
  3540. }
  3541. if (tmp)
  3542. free_extent_buffer(tmp);
  3543. slot++;
  3544. }
  3545. find_next_key:
  3546. /*
  3547. * we didn't find a candidate key in this node, walk forward
  3548. * and find another one
  3549. */
  3550. if (slot >= nritems) {
  3551. path->slots[level] = slot;
  3552. btrfs_set_path_blocking(path);
  3553. sret = btrfs_find_next_key(root, path, min_key, level,
  3554. cache_only, min_trans);
  3555. if (sret == 0) {
  3556. btrfs_release_path(root, path);
  3557. goto again;
  3558. } else {
  3559. goto out;
  3560. }
  3561. }
  3562. /* save our key for returning back */
  3563. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3564. path->slots[level] = slot;
  3565. if (level == path->lowest_level) {
  3566. ret = 0;
  3567. unlock_up(path, level, 1);
  3568. goto out;
  3569. }
  3570. btrfs_set_path_blocking(path);
  3571. cur = read_node_slot(root, cur, slot);
  3572. btrfs_tree_lock(cur);
  3573. path->locks[level - 1] = 1;
  3574. path->nodes[level - 1] = cur;
  3575. unlock_up(path, level, 1);
  3576. btrfs_clear_path_blocking(path, NULL);
  3577. }
  3578. out:
  3579. if (ret == 0)
  3580. memcpy(min_key, &found_key, sizeof(found_key));
  3581. btrfs_set_path_blocking(path);
  3582. return ret;
  3583. }
  3584. /*
  3585. * this is similar to btrfs_next_leaf, but does not try to preserve
  3586. * and fixup the path. It looks for and returns the next key in the
  3587. * tree based on the current path and the cache_only and min_trans
  3588. * parameters.
  3589. *
  3590. * 0 is returned if another key is found, < 0 if there are any errors
  3591. * and 1 is returned if there are no higher keys in the tree
  3592. *
  3593. * path->keep_locks should be set to 1 on the search made before
  3594. * calling this function.
  3595. */
  3596. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3597. struct btrfs_key *key, int lowest_level,
  3598. int cache_only, u64 min_trans)
  3599. {
  3600. int level = lowest_level;
  3601. int slot;
  3602. struct extent_buffer *c;
  3603. WARN_ON(!path->keep_locks);
  3604. while (level < BTRFS_MAX_LEVEL) {
  3605. if (!path->nodes[level])
  3606. return 1;
  3607. slot = path->slots[level] + 1;
  3608. c = path->nodes[level];
  3609. next:
  3610. if (slot >= btrfs_header_nritems(c)) {
  3611. level++;
  3612. if (level == BTRFS_MAX_LEVEL)
  3613. return 1;
  3614. continue;
  3615. }
  3616. if (level == 0)
  3617. btrfs_item_key_to_cpu(c, key, slot);
  3618. else {
  3619. u64 blockptr = btrfs_node_blockptr(c, slot);
  3620. u64 gen = btrfs_node_ptr_generation(c, slot);
  3621. if (cache_only) {
  3622. struct extent_buffer *cur;
  3623. cur = btrfs_find_tree_block(root, blockptr,
  3624. btrfs_level_size(root, level - 1));
  3625. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3626. slot++;
  3627. if (cur)
  3628. free_extent_buffer(cur);
  3629. goto next;
  3630. }
  3631. free_extent_buffer(cur);
  3632. }
  3633. if (gen < min_trans) {
  3634. slot++;
  3635. goto next;
  3636. }
  3637. btrfs_node_key_to_cpu(c, key, slot);
  3638. }
  3639. return 0;
  3640. }
  3641. return 1;
  3642. }
  3643. /*
  3644. * search the tree again to find a leaf with greater keys
  3645. * returns 0 if it found something or 1 if there are no greater leaves.
  3646. * returns < 0 on io errors.
  3647. */
  3648. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3649. {
  3650. int slot;
  3651. int level;
  3652. struct extent_buffer *c;
  3653. struct extent_buffer *next;
  3654. struct btrfs_key key;
  3655. u32 nritems;
  3656. int ret;
  3657. int old_spinning = path->leave_spinning;
  3658. int force_blocking = 0;
  3659. nritems = btrfs_header_nritems(path->nodes[0]);
  3660. if (nritems == 0)
  3661. return 1;
  3662. /*
  3663. * we take the blocks in an order that upsets lockdep. Using
  3664. * blocking mode is the only way around it.
  3665. */
  3666. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3667. force_blocking = 1;
  3668. #endif
  3669. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3670. again:
  3671. level = 1;
  3672. next = NULL;
  3673. btrfs_release_path(root, path);
  3674. path->keep_locks = 1;
  3675. if (!force_blocking)
  3676. path->leave_spinning = 1;
  3677. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3678. path->keep_locks = 0;
  3679. if (ret < 0)
  3680. return ret;
  3681. nritems = btrfs_header_nritems(path->nodes[0]);
  3682. /*
  3683. * by releasing the path above we dropped all our locks. A balance
  3684. * could have added more items next to the key that used to be
  3685. * at the very end of the block. So, check again here and
  3686. * advance the path if there are now more items available.
  3687. */
  3688. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3689. path->slots[0]++;
  3690. ret = 0;
  3691. goto done;
  3692. }
  3693. while (level < BTRFS_MAX_LEVEL) {
  3694. if (!path->nodes[level]) {
  3695. ret = 1;
  3696. goto done;
  3697. }
  3698. slot = path->slots[level] + 1;
  3699. c = path->nodes[level];
  3700. if (slot >= btrfs_header_nritems(c)) {
  3701. level++;
  3702. if (level == BTRFS_MAX_LEVEL) {
  3703. ret = 1;
  3704. goto done;
  3705. }
  3706. continue;
  3707. }
  3708. if (next) {
  3709. btrfs_tree_unlock(next);
  3710. free_extent_buffer(next);
  3711. }
  3712. next = c;
  3713. ret = read_block_for_search(NULL, root, path, &next, level,
  3714. slot, &key);
  3715. if (ret == -EAGAIN)
  3716. goto again;
  3717. if (!path->skip_locking) {
  3718. ret = btrfs_try_spin_lock(next);
  3719. if (!ret) {
  3720. btrfs_set_path_blocking(path);
  3721. btrfs_tree_lock(next);
  3722. if (!force_blocking)
  3723. btrfs_clear_path_blocking(path, next);
  3724. }
  3725. if (force_blocking)
  3726. btrfs_set_lock_blocking(next);
  3727. }
  3728. break;
  3729. }
  3730. path->slots[level] = slot;
  3731. while (1) {
  3732. level--;
  3733. c = path->nodes[level];
  3734. if (path->locks[level])
  3735. btrfs_tree_unlock(c);
  3736. free_extent_buffer(c);
  3737. path->nodes[level] = next;
  3738. path->slots[level] = 0;
  3739. if (!path->skip_locking)
  3740. path->locks[level] = 1;
  3741. if (!level)
  3742. break;
  3743. ret = read_block_for_search(NULL, root, path, &next, level,
  3744. 0, &key);
  3745. if (ret == -EAGAIN)
  3746. goto again;
  3747. if (!path->skip_locking) {
  3748. btrfs_assert_tree_locked(path->nodes[level]);
  3749. ret = btrfs_try_spin_lock(next);
  3750. if (!ret) {
  3751. btrfs_set_path_blocking(path);
  3752. btrfs_tree_lock(next);
  3753. if (!force_blocking)
  3754. btrfs_clear_path_blocking(path, next);
  3755. }
  3756. if (force_blocking)
  3757. btrfs_set_lock_blocking(next);
  3758. }
  3759. }
  3760. ret = 0;
  3761. done:
  3762. unlock_up(path, 0, 1);
  3763. path->leave_spinning = old_spinning;
  3764. if (!old_spinning)
  3765. btrfs_set_path_blocking(path);
  3766. return ret;
  3767. }
  3768. /*
  3769. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3770. * searching until it gets past min_objectid or finds an item of 'type'
  3771. *
  3772. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3773. */
  3774. int btrfs_previous_item(struct btrfs_root *root,
  3775. struct btrfs_path *path, u64 min_objectid,
  3776. int type)
  3777. {
  3778. struct btrfs_key found_key;
  3779. struct extent_buffer *leaf;
  3780. u32 nritems;
  3781. int ret;
  3782. while (1) {
  3783. if (path->slots[0] == 0) {
  3784. btrfs_set_path_blocking(path);
  3785. ret = btrfs_prev_leaf(root, path);
  3786. if (ret != 0)
  3787. return ret;
  3788. } else {
  3789. path->slots[0]--;
  3790. }
  3791. leaf = path->nodes[0];
  3792. nritems = btrfs_header_nritems(leaf);
  3793. if (nritems == 0)
  3794. return 1;
  3795. if (path->slots[0] == nritems)
  3796. path->slots[0]--;
  3797. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3798. if (found_key.type == type)
  3799. return 0;
  3800. if (found_key.objectid < min_objectid)
  3801. break;
  3802. if (found_key.objectid == min_objectid &&
  3803. found_key.type < type)
  3804. break;
  3805. }
  3806. return 1;
  3807. }