init_64.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory_hotplug.h>
  31. #include <linux/nmi.h>
  32. #include <linux/gfp.h>
  33. #include <asm/processor.h>
  34. #include <asm/bios_ebda.h>
  35. #include <asm/system.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. #include <linux/bootmem.h>
  53. static unsigned long dma_reserve __initdata;
  54. static int __init parse_direct_gbpages_off(char *arg)
  55. {
  56. direct_gbpages = 0;
  57. return 0;
  58. }
  59. early_param("nogbpages", parse_direct_gbpages_off);
  60. static int __init parse_direct_gbpages_on(char *arg)
  61. {
  62. direct_gbpages = 1;
  63. return 0;
  64. }
  65. early_param("gbpages", parse_direct_gbpages_on);
  66. /*
  67. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  68. * physical space so we can cache the place of the first one and move
  69. * around without checking the pgd every time.
  70. */
  71. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  72. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  73. int force_personality32;
  74. /*
  75. * noexec32=on|off
  76. * Control non executable heap for 32bit processes.
  77. * To control the stack too use noexec=off
  78. *
  79. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  80. * off PROT_READ implies PROT_EXEC
  81. */
  82. static int __init nonx32_setup(char *str)
  83. {
  84. if (!strcmp(str, "on"))
  85. force_personality32 &= ~READ_IMPLIES_EXEC;
  86. else if (!strcmp(str, "off"))
  87. force_personality32 |= READ_IMPLIES_EXEC;
  88. return 1;
  89. }
  90. __setup("noexec32=", nonx32_setup);
  91. /*
  92. * NOTE: This function is marked __ref because it calls __init function
  93. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  94. */
  95. static __ref void *spp_getpage(void)
  96. {
  97. void *ptr;
  98. if (after_bootmem)
  99. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  100. else
  101. ptr = alloc_bootmem_pages(PAGE_SIZE);
  102. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  103. panic("set_pte_phys: cannot allocate page data %s\n",
  104. after_bootmem ? "after bootmem" : "");
  105. }
  106. pr_debug("spp_getpage %p\n", ptr);
  107. return ptr;
  108. }
  109. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  110. {
  111. if (pgd_none(*pgd)) {
  112. pud_t *pud = (pud_t *)spp_getpage();
  113. pgd_populate(&init_mm, pgd, pud);
  114. if (pud != pud_offset(pgd, 0))
  115. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  116. pud, pud_offset(pgd, 0));
  117. }
  118. return pud_offset(pgd, vaddr);
  119. }
  120. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  121. {
  122. if (pud_none(*pud)) {
  123. pmd_t *pmd = (pmd_t *) spp_getpage();
  124. pud_populate(&init_mm, pud, pmd);
  125. if (pmd != pmd_offset(pud, 0))
  126. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  127. pmd, pmd_offset(pud, 0));
  128. }
  129. return pmd_offset(pud, vaddr);
  130. }
  131. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  132. {
  133. if (pmd_none(*pmd)) {
  134. pte_t *pte = (pte_t *) spp_getpage();
  135. pmd_populate_kernel(&init_mm, pmd, pte);
  136. if (pte != pte_offset_kernel(pmd, 0))
  137. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  138. }
  139. return pte_offset_kernel(pmd, vaddr);
  140. }
  141. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  142. {
  143. pud_t *pud;
  144. pmd_t *pmd;
  145. pte_t *pte;
  146. pud = pud_page + pud_index(vaddr);
  147. pmd = fill_pmd(pud, vaddr);
  148. pte = fill_pte(pmd, vaddr);
  149. set_pte(pte, new_pte);
  150. /*
  151. * It's enough to flush this one mapping.
  152. * (PGE mappings get flushed as well)
  153. */
  154. __flush_tlb_one(vaddr);
  155. }
  156. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  157. {
  158. pgd_t *pgd;
  159. pud_t *pud_page;
  160. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  161. pgd = pgd_offset_k(vaddr);
  162. if (pgd_none(*pgd)) {
  163. printk(KERN_ERR
  164. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  165. return;
  166. }
  167. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  168. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  169. }
  170. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  171. {
  172. pgd_t *pgd;
  173. pud_t *pud;
  174. pgd = pgd_offset_k(vaddr);
  175. pud = fill_pud(pgd, vaddr);
  176. return fill_pmd(pud, vaddr);
  177. }
  178. pte_t * __init populate_extra_pte(unsigned long vaddr)
  179. {
  180. pmd_t *pmd;
  181. pmd = populate_extra_pmd(vaddr);
  182. return fill_pte(pmd, vaddr);
  183. }
  184. /*
  185. * Create large page table mappings for a range of physical addresses.
  186. */
  187. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  188. pgprot_t prot)
  189. {
  190. pgd_t *pgd;
  191. pud_t *pud;
  192. pmd_t *pmd;
  193. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  194. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  195. pgd = pgd_offset_k((unsigned long)__va(phys));
  196. if (pgd_none(*pgd)) {
  197. pud = (pud_t *) spp_getpage();
  198. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  199. _PAGE_USER));
  200. }
  201. pud = pud_offset(pgd, (unsigned long)__va(phys));
  202. if (pud_none(*pud)) {
  203. pmd = (pmd_t *) spp_getpage();
  204. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  205. _PAGE_USER));
  206. }
  207. pmd = pmd_offset(pud, phys);
  208. BUG_ON(!pmd_none(*pmd));
  209. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  210. }
  211. }
  212. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  213. {
  214. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  215. }
  216. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  217. {
  218. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  219. }
  220. /*
  221. * The head.S code sets up the kernel high mapping:
  222. *
  223. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  224. *
  225. * phys_addr holds the negative offset to the kernel, which is added
  226. * to the compile time generated pmds. This results in invalid pmds up
  227. * to the point where we hit the physaddr 0 mapping.
  228. *
  229. * We limit the mappings to the region from _text to _end. _end is
  230. * rounded up to the 2MB boundary. This catches the invalid pmds as
  231. * well, as they are located before _text:
  232. */
  233. void __init cleanup_highmap(void)
  234. {
  235. unsigned long vaddr = __START_KERNEL_map;
  236. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  237. pmd_t *pmd = level2_kernel_pgt;
  238. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  239. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  240. if (pmd_none(*pmd))
  241. continue;
  242. if (vaddr < (unsigned long) _text || vaddr > end)
  243. set_pmd(pmd, __pmd(0));
  244. }
  245. }
  246. static __ref void *alloc_low_page(unsigned long *phys)
  247. {
  248. unsigned long pfn = e820_table_end++;
  249. void *adr;
  250. if (after_bootmem) {
  251. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  252. *phys = __pa(adr);
  253. return adr;
  254. }
  255. if (pfn >= e820_table_top)
  256. panic("alloc_low_page: ran out of memory");
  257. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  258. memset(adr, 0, PAGE_SIZE);
  259. *phys = pfn * PAGE_SIZE;
  260. return adr;
  261. }
  262. static __ref void unmap_low_page(void *adr)
  263. {
  264. if (after_bootmem)
  265. return;
  266. early_iounmap(adr, PAGE_SIZE);
  267. }
  268. static unsigned long __meminit
  269. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  270. pgprot_t prot)
  271. {
  272. unsigned pages = 0;
  273. unsigned long last_map_addr = end;
  274. int i;
  275. pte_t *pte = pte_page + pte_index(addr);
  276. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  277. if (addr >= end) {
  278. if (!after_bootmem) {
  279. for(; i < PTRS_PER_PTE; i++, pte++)
  280. set_pte(pte, __pte(0));
  281. }
  282. break;
  283. }
  284. /*
  285. * We will re-use the existing mapping.
  286. * Xen for example has some special requirements, like mapping
  287. * pagetable pages as RO. So assume someone who pre-setup
  288. * these mappings are more intelligent.
  289. */
  290. if (pte_val(*pte)) {
  291. pages++;
  292. continue;
  293. }
  294. if (0)
  295. printk(" pte=%p addr=%lx pte=%016lx\n",
  296. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  297. pages++;
  298. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  299. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  300. }
  301. update_page_count(PG_LEVEL_4K, pages);
  302. return last_map_addr;
  303. }
  304. static unsigned long __meminit
  305. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  306. pgprot_t prot)
  307. {
  308. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  309. return phys_pte_init(pte, address, end, prot);
  310. }
  311. static unsigned long __meminit
  312. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  313. unsigned long page_size_mask, pgprot_t prot)
  314. {
  315. unsigned long pages = 0;
  316. unsigned long last_map_addr = end;
  317. int i = pmd_index(address);
  318. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  319. unsigned long pte_phys;
  320. pmd_t *pmd = pmd_page + pmd_index(address);
  321. pte_t *pte;
  322. pgprot_t new_prot = prot;
  323. if (address >= end) {
  324. if (!after_bootmem) {
  325. for (; i < PTRS_PER_PMD; i++, pmd++)
  326. set_pmd(pmd, __pmd(0));
  327. }
  328. break;
  329. }
  330. if (pmd_val(*pmd)) {
  331. if (!pmd_large(*pmd)) {
  332. spin_lock(&init_mm.page_table_lock);
  333. last_map_addr = phys_pte_update(pmd, address,
  334. end, prot);
  335. spin_unlock(&init_mm.page_table_lock);
  336. continue;
  337. }
  338. /*
  339. * If we are ok with PG_LEVEL_2M mapping, then we will
  340. * use the existing mapping,
  341. *
  342. * Otherwise, we will split the large page mapping but
  343. * use the same existing protection bits except for
  344. * large page, so that we don't violate Intel's TLB
  345. * Application note (317080) which says, while changing
  346. * the page sizes, new and old translations should
  347. * not differ with respect to page frame and
  348. * attributes.
  349. */
  350. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  351. pages++;
  352. continue;
  353. }
  354. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  355. }
  356. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  357. pages++;
  358. spin_lock(&init_mm.page_table_lock);
  359. set_pte((pte_t *)pmd,
  360. pfn_pte(address >> PAGE_SHIFT,
  361. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  362. spin_unlock(&init_mm.page_table_lock);
  363. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  364. continue;
  365. }
  366. pte = alloc_low_page(&pte_phys);
  367. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  368. unmap_low_page(pte);
  369. spin_lock(&init_mm.page_table_lock);
  370. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  371. spin_unlock(&init_mm.page_table_lock);
  372. }
  373. update_page_count(PG_LEVEL_2M, pages);
  374. return last_map_addr;
  375. }
  376. static unsigned long __meminit
  377. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  378. unsigned long page_size_mask, pgprot_t prot)
  379. {
  380. pmd_t *pmd = pmd_offset(pud, 0);
  381. unsigned long last_map_addr;
  382. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  383. __flush_tlb_all();
  384. return last_map_addr;
  385. }
  386. static unsigned long __meminit
  387. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  388. unsigned long page_size_mask)
  389. {
  390. unsigned long pages = 0;
  391. unsigned long last_map_addr = end;
  392. int i = pud_index(addr);
  393. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  394. unsigned long pmd_phys;
  395. pud_t *pud = pud_page + pud_index(addr);
  396. pmd_t *pmd;
  397. pgprot_t prot = PAGE_KERNEL;
  398. if (addr >= end)
  399. break;
  400. if (!after_bootmem &&
  401. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  402. set_pud(pud, __pud(0));
  403. continue;
  404. }
  405. if (pud_val(*pud)) {
  406. if (!pud_large(*pud)) {
  407. last_map_addr = phys_pmd_update(pud, addr, end,
  408. page_size_mask, prot);
  409. continue;
  410. }
  411. /*
  412. * If we are ok with PG_LEVEL_1G mapping, then we will
  413. * use the existing mapping.
  414. *
  415. * Otherwise, we will split the gbpage mapping but use
  416. * the same existing protection bits except for large
  417. * page, so that we don't violate Intel's TLB
  418. * Application note (317080) which says, while changing
  419. * the page sizes, new and old translations should
  420. * not differ with respect to page frame and
  421. * attributes.
  422. */
  423. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  424. pages++;
  425. continue;
  426. }
  427. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  428. }
  429. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  430. pages++;
  431. spin_lock(&init_mm.page_table_lock);
  432. set_pte((pte_t *)pud,
  433. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  434. spin_unlock(&init_mm.page_table_lock);
  435. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  436. continue;
  437. }
  438. pmd = alloc_low_page(&pmd_phys);
  439. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  440. prot);
  441. unmap_low_page(pmd);
  442. spin_lock(&init_mm.page_table_lock);
  443. pud_populate(&init_mm, pud, __va(pmd_phys));
  444. spin_unlock(&init_mm.page_table_lock);
  445. }
  446. __flush_tlb_all();
  447. update_page_count(PG_LEVEL_1G, pages);
  448. return last_map_addr;
  449. }
  450. static unsigned long __meminit
  451. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  452. unsigned long page_size_mask)
  453. {
  454. pud_t *pud;
  455. pud = (pud_t *)pgd_page_vaddr(*pgd);
  456. return phys_pud_init(pud, addr, end, page_size_mask);
  457. }
  458. unsigned long __meminit
  459. kernel_physical_mapping_init(unsigned long start,
  460. unsigned long end,
  461. unsigned long page_size_mask)
  462. {
  463. unsigned long next, last_map_addr = end;
  464. start = (unsigned long)__va(start);
  465. end = (unsigned long)__va(end);
  466. for (; start < end; start = next) {
  467. pgd_t *pgd = pgd_offset_k(start);
  468. unsigned long pud_phys;
  469. pud_t *pud;
  470. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  471. if (next > end)
  472. next = end;
  473. if (pgd_val(*pgd)) {
  474. last_map_addr = phys_pud_update(pgd, __pa(start),
  475. __pa(end), page_size_mask);
  476. continue;
  477. }
  478. pud = alloc_low_page(&pud_phys);
  479. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  480. page_size_mask);
  481. unmap_low_page(pud);
  482. spin_lock(&init_mm.page_table_lock);
  483. pgd_populate(&init_mm, pgd, __va(pud_phys));
  484. spin_unlock(&init_mm.page_table_lock);
  485. }
  486. __flush_tlb_all();
  487. return last_map_addr;
  488. }
  489. #ifndef CONFIG_NUMA
  490. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
  491. int acpi, int k8)
  492. {
  493. #ifndef CONFIG_NO_BOOTMEM
  494. unsigned long bootmap_size, bootmap;
  495. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  496. bootmap = memblock_find_in_range(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  497. PAGE_SIZE);
  498. if (bootmap == MEMBLOCK_ERROR)
  499. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  500. memblock_x86_reserve_range(bootmap, bootmap + bootmap_size, "BOOTMAP");
  501. /* don't touch min_low_pfn */
  502. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  503. 0, end_pfn);
  504. memblock_x86_register_active_regions(0, start_pfn, end_pfn);
  505. free_bootmem_with_active_regions(0, end_pfn);
  506. #else
  507. memblock_x86_register_active_regions(0, start_pfn, end_pfn);
  508. #endif
  509. }
  510. #endif
  511. void __init paging_init(void)
  512. {
  513. unsigned long max_zone_pfns[MAX_NR_ZONES];
  514. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  515. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  516. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  517. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  518. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  519. sparse_init();
  520. /*
  521. * clear the default setting with node 0
  522. * note: don't use nodes_clear here, that is really clearing when
  523. * numa support is not compiled in, and later node_set_state
  524. * will not set it back.
  525. */
  526. node_clear_state(0, N_NORMAL_MEMORY);
  527. free_area_init_nodes(max_zone_pfns);
  528. }
  529. /*
  530. * Memory hotplug specific functions
  531. */
  532. #ifdef CONFIG_MEMORY_HOTPLUG
  533. /*
  534. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  535. * updating.
  536. */
  537. static void update_end_of_memory_vars(u64 start, u64 size)
  538. {
  539. unsigned long end_pfn = PFN_UP(start + size);
  540. if (end_pfn > max_pfn) {
  541. max_pfn = end_pfn;
  542. max_low_pfn = end_pfn;
  543. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  544. }
  545. }
  546. /*
  547. * Memory is added always to NORMAL zone. This means you will never get
  548. * additional DMA/DMA32 memory.
  549. */
  550. int arch_add_memory(int nid, u64 start, u64 size)
  551. {
  552. struct pglist_data *pgdat = NODE_DATA(nid);
  553. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  554. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  555. unsigned long nr_pages = size >> PAGE_SHIFT;
  556. int ret;
  557. last_mapped_pfn = init_memory_mapping(start, start + size);
  558. if (last_mapped_pfn > max_pfn_mapped)
  559. max_pfn_mapped = last_mapped_pfn;
  560. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  561. WARN_ON_ONCE(ret);
  562. /* update max_pfn, max_low_pfn and high_memory */
  563. update_end_of_memory_vars(start, size);
  564. return ret;
  565. }
  566. EXPORT_SYMBOL_GPL(arch_add_memory);
  567. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  568. int memory_add_physaddr_to_nid(u64 start)
  569. {
  570. return 0;
  571. }
  572. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  573. #endif
  574. #endif /* CONFIG_MEMORY_HOTPLUG */
  575. static struct kcore_list kcore_vsyscall;
  576. void __init mem_init(void)
  577. {
  578. long codesize, reservedpages, datasize, initsize;
  579. unsigned long absent_pages;
  580. pci_iommu_alloc();
  581. /* clear_bss() already clear the empty_zero_page */
  582. reservedpages = 0;
  583. /* this will put all low memory onto the freelists */
  584. #ifdef CONFIG_NUMA
  585. totalram_pages = numa_free_all_bootmem();
  586. #else
  587. totalram_pages = free_all_bootmem();
  588. #endif
  589. absent_pages = absent_pages_in_range(0, max_pfn);
  590. reservedpages = max_pfn - totalram_pages - absent_pages;
  591. after_bootmem = 1;
  592. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  593. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  594. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  595. /* Register memory areas for /proc/kcore */
  596. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  597. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  598. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  599. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  600. nr_free_pages() << (PAGE_SHIFT-10),
  601. max_pfn << (PAGE_SHIFT-10),
  602. codesize >> 10,
  603. absent_pages << (PAGE_SHIFT-10),
  604. reservedpages << (PAGE_SHIFT-10),
  605. datasize >> 10,
  606. initsize >> 10);
  607. }
  608. #ifdef CONFIG_DEBUG_RODATA
  609. const int rodata_test_data = 0xC3;
  610. EXPORT_SYMBOL_GPL(rodata_test_data);
  611. int kernel_set_to_readonly;
  612. void set_kernel_text_rw(void)
  613. {
  614. unsigned long start = PFN_ALIGN(_text);
  615. unsigned long end = PFN_ALIGN(__stop___ex_table);
  616. if (!kernel_set_to_readonly)
  617. return;
  618. pr_debug("Set kernel text: %lx - %lx for read write\n",
  619. start, end);
  620. /*
  621. * Make the kernel identity mapping for text RW. Kernel text
  622. * mapping will always be RO. Refer to the comment in
  623. * static_protections() in pageattr.c
  624. */
  625. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  626. }
  627. void set_kernel_text_ro(void)
  628. {
  629. unsigned long start = PFN_ALIGN(_text);
  630. unsigned long end = PFN_ALIGN(__stop___ex_table);
  631. if (!kernel_set_to_readonly)
  632. return;
  633. pr_debug("Set kernel text: %lx - %lx for read only\n",
  634. start, end);
  635. /*
  636. * Set the kernel identity mapping for text RO.
  637. */
  638. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  639. }
  640. void mark_rodata_ro(void)
  641. {
  642. unsigned long start = PFN_ALIGN(_text);
  643. unsigned long rodata_start =
  644. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  645. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  646. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  647. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  648. unsigned long data_start = (unsigned long) &_sdata;
  649. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  650. (end - start) >> 10);
  651. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  652. kernel_set_to_readonly = 1;
  653. /*
  654. * The rodata section (but not the kernel text!) should also be
  655. * not-executable.
  656. */
  657. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  658. rodata_test();
  659. #ifdef CONFIG_CPA_DEBUG
  660. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  661. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  662. printk(KERN_INFO "Testing CPA: again\n");
  663. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  664. #endif
  665. free_init_pages("unused kernel memory",
  666. (unsigned long) page_address(virt_to_page(text_end)),
  667. (unsigned long)
  668. page_address(virt_to_page(rodata_start)));
  669. free_init_pages("unused kernel memory",
  670. (unsigned long) page_address(virt_to_page(rodata_end)),
  671. (unsigned long) page_address(virt_to_page(data_start)));
  672. }
  673. #endif
  674. #ifndef CONFIG_NO_BOOTMEM
  675. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  676. int flags)
  677. {
  678. unsigned long pfn = phys >> PAGE_SHIFT;
  679. if (pfn >= max_pfn) {
  680. /*
  681. * This can happen with kdump kernels when accessing
  682. * firmware tables:
  683. */
  684. if (pfn < max_pfn_mapped)
  685. return -EFAULT;
  686. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  687. phys, len);
  688. return -EFAULT;
  689. }
  690. reserve_bootmem(phys, len, flags);
  691. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  692. dma_reserve += len / PAGE_SIZE;
  693. set_dma_reserve(dma_reserve);
  694. }
  695. return 0;
  696. }
  697. #endif
  698. int kern_addr_valid(unsigned long addr)
  699. {
  700. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  701. pgd_t *pgd;
  702. pud_t *pud;
  703. pmd_t *pmd;
  704. pte_t *pte;
  705. if (above != 0 && above != -1UL)
  706. return 0;
  707. pgd = pgd_offset_k(addr);
  708. if (pgd_none(*pgd))
  709. return 0;
  710. pud = pud_offset(pgd, addr);
  711. if (pud_none(*pud))
  712. return 0;
  713. pmd = pmd_offset(pud, addr);
  714. if (pmd_none(*pmd))
  715. return 0;
  716. if (pmd_large(*pmd))
  717. return pfn_valid(pmd_pfn(*pmd));
  718. pte = pte_offset_kernel(pmd, addr);
  719. if (pte_none(*pte))
  720. return 0;
  721. return pfn_valid(pte_pfn(*pte));
  722. }
  723. /*
  724. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  725. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  726. * not need special handling anymore:
  727. */
  728. static struct vm_area_struct gate_vma = {
  729. .vm_start = VSYSCALL_START,
  730. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  731. .vm_page_prot = PAGE_READONLY_EXEC,
  732. .vm_flags = VM_READ | VM_EXEC
  733. };
  734. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  735. {
  736. #ifdef CONFIG_IA32_EMULATION
  737. if (test_tsk_thread_flag(tsk, TIF_IA32))
  738. return NULL;
  739. #endif
  740. return &gate_vma;
  741. }
  742. int in_gate_area(struct task_struct *task, unsigned long addr)
  743. {
  744. struct vm_area_struct *vma = get_gate_vma(task);
  745. if (!vma)
  746. return 0;
  747. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  748. }
  749. /*
  750. * Use this when you have no reliable task/vma, typically from interrupt
  751. * context. It is less reliable than using the task's vma and may give
  752. * false positives:
  753. */
  754. int in_gate_area_no_task(unsigned long addr)
  755. {
  756. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  757. }
  758. const char *arch_vma_name(struct vm_area_struct *vma)
  759. {
  760. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  761. return "[vdso]";
  762. if (vma == &gate_vma)
  763. return "[vsyscall]";
  764. return NULL;
  765. }
  766. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  767. /*
  768. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  769. */
  770. static long __meminitdata addr_start, addr_end;
  771. static void __meminitdata *p_start, *p_end;
  772. static int __meminitdata node_start;
  773. int __meminit
  774. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  775. {
  776. unsigned long addr = (unsigned long)start_page;
  777. unsigned long end = (unsigned long)(start_page + size);
  778. unsigned long next;
  779. pgd_t *pgd;
  780. pud_t *pud;
  781. pmd_t *pmd;
  782. for (; addr < end; addr = next) {
  783. void *p = NULL;
  784. pgd = vmemmap_pgd_populate(addr, node);
  785. if (!pgd)
  786. return -ENOMEM;
  787. pud = vmemmap_pud_populate(pgd, addr, node);
  788. if (!pud)
  789. return -ENOMEM;
  790. if (!cpu_has_pse) {
  791. next = (addr + PAGE_SIZE) & PAGE_MASK;
  792. pmd = vmemmap_pmd_populate(pud, addr, node);
  793. if (!pmd)
  794. return -ENOMEM;
  795. p = vmemmap_pte_populate(pmd, addr, node);
  796. if (!p)
  797. return -ENOMEM;
  798. addr_end = addr + PAGE_SIZE;
  799. p_end = p + PAGE_SIZE;
  800. } else {
  801. next = pmd_addr_end(addr, end);
  802. pmd = pmd_offset(pud, addr);
  803. if (pmd_none(*pmd)) {
  804. pte_t entry;
  805. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  806. if (!p)
  807. return -ENOMEM;
  808. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  809. PAGE_KERNEL_LARGE);
  810. set_pmd(pmd, __pmd(pte_val(entry)));
  811. /* check to see if we have contiguous blocks */
  812. if (p_end != p || node_start != node) {
  813. if (p_start)
  814. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  815. addr_start, addr_end-1, p_start, p_end-1, node_start);
  816. addr_start = addr;
  817. node_start = node;
  818. p_start = p;
  819. }
  820. addr_end = addr + PMD_SIZE;
  821. p_end = p + PMD_SIZE;
  822. } else
  823. vmemmap_verify((pte_t *)pmd, node, addr, next);
  824. }
  825. }
  826. return 0;
  827. }
  828. void __meminit vmemmap_populate_print_last(void)
  829. {
  830. if (p_start) {
  831. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  832. addr_start, addr_end-1, p_start, p_end-1, node_start);
  833. p_start = NULL;
  834. p_end = NULL;
  835. node_start = 0;
  836. }
  837. }
  838. #endif