workqueue.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include <linux/jhash.h>
  44. #include <linux/hashtable.h>
  45. #include <linux/rculist.h>
  46. #include "workqueue_internal.h"
  47. enum {
  48. /*
  49. * worker_pool flags
  50. *
  51. * A bound pool is either associated or disassociated with its CPU.
  52. * While associated (!DISASSOCIATED), all workers are bound to the
  53. * CPU and none has %WORKER_UNBOUND set and concurrency management
  54. * is in effect.
  55. *
  56. * While DISASSOCIATED, the cpu may be offline and all workers have
  57. * %WORKER_UNBOUND set and concurrency management disabled, and may
  58. * be executing on any CPU. The pool behaves as an unbound one.
  59. *
  60. * Note that DISASSOCIATED should be flipped only while holding
  61. * manager_mutex to avoid changing binding state while
  62. * create_worker() is in progress.
  63. */
  64. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  65. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  66. POOL_FREEZING = 1 << 3, /* freeze in progress */
  67. /* worker flags */
  68. WORKER_STARTED = 1 << 0, /* started */
  69. WORKER_DIE = 1 << 1, /* die die die */
  70. WORKER_IDLE = 1 << 2, /* is idle */
  71. WORKER_PREP = 1 << 3, /* preparing to run works */
  72. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  73. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  74. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  75. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  76. WORKER_UNBOUND | WORKER_REBOUND,
  77. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  78. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  79. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  80. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  81. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  82. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  83. /* call for help after 10ms
  84. (min two ticks) */
  85. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  86. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  87. /*
  88. * Rescue workers are used only on emergencies and shared by
  89. * all cpus. Give -20.
  90. */
  91. RESCUER_NICE_LEVEL = -20,
  92. HIGHPRI_NICE_LEVEL = -20,
  93. };
  94. /*
  95. * Structure fields follow one of the following exclusion rules.
  96. *
  97. * I: Modifiable by initialization/destruction paths and read-only for
  98. * everyone else.
  99. *
  100. * P: Preemption protected. Disabling preemption is enough and should
  101. * only be modified and accessed from the local cpu.
  102. *
  103. * L: pool->lock protected. Access with pool->lock held.
  104. *
  105. * X: During normal operation, modification requires pool->lock and should
  106. * be done only from local cpu. Either disabling preemption on local
  107. * cpu or grabbing pool->lock is enough for read access. If
  108. * POOL_DISASSOCIATED is set, it's identical to L.
  109. *
  110. * F: wq->flush_mutex protected.
  111. *
  112. * MG: pool->manager_mutex and pool->lock protected. Writes require both
  113. * locks. Reads can happen under either lock.
  114. *
  115. * WQ: wq_mutex protected.
  116. *
  117. * WR: wq_mutex protected for writes. Sched-RCU protected for reads.
  118. *
  119. * PW: pwq_lock protected.
  120. *
  121. * FR: wq->flush_mutex and pwq_lock protected for writes. Sched-RCU
  122. * protected for reads.
  123. *
  124. * MD: wq_mayday_lock protected.
  125. */
  126. /* struct worker is defined in workqueue_internal.h */
  127. struct worker_pool {
  128. spinlock_t lock; /* the pool lock */
  129. int cpu; /* I: the associated cpu */
  130. int id; /* I: pool ID */
  131. unsigned int flags; /* X: flags */
  132. struct list_head worklist; /* L: list of pending works */
  133. int nr_workers; /* L: total number of workers */
  134. /* nr_idle includes the ones off idle_list for rebinding */
  135. int nr_idle; /* L: currently idle ones */
  136. struct list_head idle_list; /* X: list of idle workers */
  137. struct timer_list idle_timer; /* L: worker idle timeout */
  138. struct timer_list mayday_timer; /* L: SOS timer for workers */
  139. /* a workers is either on busy_hash or idle_list, or the manager */
  140. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  141. /* L: hash of busy workers */
  142. /* see manage_workers() for details on the two manager mutexes */
  143. struct mutex manager_arb; /* manager arbitration */
  144. struct mutex manager_mutex; /* manager exclusion */
  145. struct idr worker_idr; /* MG: worker IDs and iteration */
  146. struct workqueue_attrs *attrs; /* I: worker attributes */
  147. struct hlist_node hash_node; /* WQ: unbound_pool_hash node */
  148. int refcnt; /* WQ: refcnt for unbound pools */
  149. /*
  150. * The current concurrency level. As it's likely to be accessed
  151. * from other CPUs during try_to_wake_up(), put it in a separate
  152. * cacheline.
  153. */
  154. atomic_t nr_running ____cacheline_aligned_in_smp;
  155. /*
  156. * Destruction of pool is sched-RCU protected to allow dereferences
  157. * from get_work_pool().
  158. */
  159. struct rcu_head rcu;
  160. } ____cacheline_aligned_in_smp;
  161. /*
  162. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  163. * of work_struct->data are used for flags and the remaining high bits
  164. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  165. * number of flag bits.
  166. */
  167. struct pool_workqueue {
  168. struct worker_pool *pool; /* I: the associated pool */
  169. struct workqueue_struct *wq; /* I: the owning workqueue */
  170. int work_color; /* L: current color */
  171. int flush_color; /* L: flushing color */
  172. int refcnt; /* L: reference count */
  173. int nr_in_flight[WORK_NR_COLORS];
  174. /* L: nr of in_flight works */
  175. int nr_active; /* L: nr of active works */
  176. int max_active; /* L: max active works */
  177. struct list_head delayed_works; /* L: delayed works */
  178. struct list_head pwqs_node; /* FR: node on wq->pwqs */
  179. struct list_head mayday_node; /* MD: node on wq->maydays */
  180. /*
  181. * Release of unbound pwq is punted to system_wq. See put_pwq()
  182. * and pwq_unbound_release_workfn() for details. pool_workqueue
  183. * itself is also sched-RCU protected so that the first pwq can be
  184. * determined without grabbing pwq_lock.
  185. */
  186. struct work_struct unbound_release_work;
  187. struct rcu_head rcu;
  188. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  189. /*
  190. * Structure used to wait for workqueue flush.
  191. */
  192. struct wq_flusher {
  193. struct list_head list; /* F: list of flushers */
  194. int flush_color; /* F: flush color waiting for */
  195. struct completion done; /* flush completion */
  196. };
  197. struct wq_device;
  198. /*
  199. * The externally visible workqueue. It relays the issued work items to
  200. * the appropriate worker_pool through its pool_workqueues.
  201. */
  202. struct workqueue_struct {
  203. unsigned int flags; /* WQ: WQ_* flags */
  204. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
  205. struct list_head pwqs; /* FR: all pwqs of this wq */
  206. struct list_head list; /* WQ: list of all workqueues */
  207. struct mutex flush_mutex; /* protects wq flushing */
  208. int work_color; /* F: current work color */
  209. int flush_color; /* F: current flush color */
  210. atomic_t nr_pwqs_to_flush; /* flush in progress */
  211. struct wq_flusher *first_flusher; /* F: first flusher */
  212. struct list_head flusher_queue; /* F: flush waiters */
  213. struct list_head flusher_overflow; /* F: flush overflow list */
  214. struct list_head maydays; /* MD: pwqs requesting rescue */
  215. struct worker *rescuer; /* I: rescue worker */
  216. int nr_drainers; /* WQ: drain in progress */
  217. int saved_max_active; /* PW: saved pwq max_active */
  218. #ifdef CONFIG_SYSFS
  219. struct wq_device *wq_dev; /* I: for sysfs interface */
  220. #endif
  221. #ifdef CONFIG_LOCKDEP
  222. struct lockdep_map lockdep_map;
  223. #endif
  224. char name[]; /* I: workqueue name */
  225. };
  226. static struct kmem_cache *pwq_cache;
  227. static DEFINE_MUTEX(wq_mutex); /* protects workqueues and pools */
  228. static DEFINE_SPINLOCK(pwq_lock); /* protects pool_workqueues */
  229. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  230. static LIST_HEAD(workqueues); /* WQ: list of all workqueues */
  231. static bool workqueue_freezing; /* WQ: have wqs started freezing? */
  232. /* the per-cpu worker pools */
  233. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  234. cpu_worker_pools);
  235. static DEFINE_IDR(worker_pool_idr); /* WR: idr of all pools */
  236. /* WQ: hash of all unbound pools keyed by pool->attrs */
  237. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  238. /* I: attributes used when instantiating standard unbound pools on demand */
  239. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  240. struct workqueue_struct *system_wq __read_mostly;
  241. EXPORT_SYMBOL_GPL(system_wq);
  242. struct workqueue_struct *system_highpri_wq __read_mostly;
  243. EXPORT_SYMBOL_GPL(system_highpri_wq);
  244. struct workqueue_struct *system_long_wq __read_mostly;
  245. EXPORT_SYMBOL_GPL(system_long_wq);
  246. struct workqueue_struct *system_unbound_wq __read_mostly;
  247. EXPORT_SYMBOL_GPL(system_unbound_wq);
  248. struct workqueue_struct *system_freezable_wq __read_mostly;
  249. EXPORT_SYMBOL_GPL(system_freezable_wq);
  250. static int worker_thread(void *__worker);
  251. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  252. const struct workqueue_attrs *from);
  253. #define CREATE_TRACE_POINTS
  254. #include <trace/events/workqueue.h>
  255. #define assert_rcu_or_wq_mutex() \
  256. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  257. lockdep_is_held(&wq_mutex), \
  258. "sched RCU or wq_mutex should be held")
  259. #define assert_rcu_or_pwq_lock() \
  260. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  261. lockdep_is_held(&pwq_lock), \
  262. "sched RCU or pwq_lock should be held")
  263. #ifdef CONFIG_LOCKDEP
  264. #define assert_manager_or_pool_lock(pool) \
  265. WARN_ONCE(!lockdep_is_held(&(pool)->manager_mutex) && \
  266. !lockdep_is_held(&(pool)->lock), \
  267. "pool->manager_mutex or ->lock should be held")
  268. #else
  269. #define assert_manager_or_pool_lock(pool) do { } while (0)
  270. #endif
  271. #define for_each_cpu_worker_pool(pool, cpu) \
  272. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  273. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  274. (pool)++)
  275. /**
  276. * for_each_pool - iterate through all worker_pools in the system
  277. * @pool: iteration cursor
  278. * @pi: integer used for iteration
  279. *
  280. * This must be called either with wq_mutex held or sched RCU read locked.
  281. * If the pool needs to be used beyond the locking in effect, the caller is
  282. * responsible for guaranteeing that the pool stays online.
  283. *
  284. * The if/else clause exists only for the lockdep assertion and can be
  285. * ignored.
  286. */
  287. #define for_each_pool(pool, pi) \
  288. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  289. if (({ assert_rcu_or_wq_mutex(); false; })) { } \
  290. else
  291. /**
  292. * for_each_pool_worker - iterate through all workers of a worker_pool
  293. * @worker: iteration cursor
  294. * @wi: integer used for iteration
  295. * @pool: worker_pool to iterate workers of
  296. *
  297. * This must be called with either @pool->manager_mutex or ->lock held.
  298. *
  299. * The if/else clause exists only for the lockdep assertion and can be
  300. * ignored.
  301. */
  302. #define for_each_pool_worker(worker, wi, pool) \
  303. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  304. if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
  305. else
  306. /**
  307. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  308. * @pwq: iteration cursor
  309. * @wq: the target workqueue
  310. *
  311. * This must be called either with pwq_lock held or sched RCU read locked.
  312. * If the pwq needs to be used beyond the locking in effect, the caller is
  313. * responsible for guaranteeing that the pwq stays online.
  314. *
  315. * The if/else clause exists only for the lockdep assertion and can be
  316. * ignored.
  317. */
  318. #define for_each_pwq(pwq, wq) \
  319. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  320. if (({ assert_rcu_or_pwq_lock(); false; })) { } \
  321. else
  322. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  323. static struct debug_obj_descr work_debug_descr;
  324. static void *work_debug_hint(void *addr)
  325. {
  326. return ((struct work_struct *) addr)->func;
  327. }
  328. /*
  329. * fixup_init is called when:
  330. * - an active object is initialized
  331. */
  332. static int work_fixup_init(void *addr, enum debug_obj_state state)
  333. {
  334. struct work_struct *work = addr;
  335. switch (state) {
  336. case ODEBUG_STATE_ACTIVE:
  337. cancel_work_sync(work);
  338. debug_object_init(work, &work_debug_descr);
  339. return 1;
  340. default:
  341. return 0;
  342. }
  343. }
  344. /*
  345. * fixup_activate is called when:
  346. * - an active object is activated
  347. * - an unknown object is activated (might be a statically initialized object)
  348. */
  349. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  350. {
  351. struct work_struct *work = addr;
  352. switch (state) {
  353. case ODEBUG_STATE_NOTAVAILABLE:
  354. /*
  355. * This is not really a fixup. The work struct was
  356. * statically initialized. We just make sure that it
  357. * is tracked in the object tracker.
  358. */
  359. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  360. debug_object_init(work, &work_debug_descr);
  361. debug_object_activate(work, &work_debug_descr);
  362. return 0;
  363. }
  364. WARN_ON_ONCE(1);
  365. return 0;
  366. case ODEBUG_STATE_ACTIVE:
  367. WARN_ON(1);
  368. default:
  369. return 0;
  370. }
  371. }
  372. /*
  373. * fixup_free is called when:
  374. * - an active object is freed
  375. */
  376. static int work_fixup_free(void *addr, enum debug_obj_state state)
  377. {
  378. struct work_struct *work = addr;
  379. switch (state) {
  380. case ODEBUG_STATE_ACTIVE:
  381. cancel_work_sync(work);
  382. debug_object_free(work, &work_debug_descr);
  383. return 1;
  384. default:
  385. return 0;
  386. }
  387. }
  388. static struct debug_obj_descr work_debug_descr = {
  389. .name = "work_struct",
  390. .debug_hint = work_debug_hint,
  391. .fixup_init = work_fixup_init,
  392. .fixup_activate = work_fixup_activate,
  393. .fixup_free = work_fixup_free,
  394. };
  395. static inline void debug_work_activate(struct work_struct *work)
  396. {
  397. debug_object_activate(work, &work_debug_descr);
  398. }
  399. static inline void debug_work_deactivate(struct work_struct *work)
  400. {
  401. debug_object_deactivate(work, &work_debug_descr);
  402. }
  403. void __init_work(struct work_struct *work, int onstack)
  404. {
  405. if (onstack)
  406. debug_object_init_on_stack(work, &work_debug_descr);
  407. else
  408. debug_object_init(work, &work_debug_descr);
  409. }
  410. EXPORT_SYMBOL_GPL(__init_work);
  411. void destroy_work_on_stack(struct work_struct *work)
  412. {
  413. debug_object_free(work, &work_debug_descr);
  414. }
  415. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  416. #else
  417. static inline void debug_work_activate(struct work_struct *work) { }
  418. static inline void debug_work_deactivate(struct work_struct *work) { }
  419. #endif
  420. /* allocate ID and assign it to @pool */
  421. static int worker_pool_assign_id(struct worker_pool *pool)
  422. {
  423. int ret;
  424. lockdep_assert_held(&wq_mutex);
  425. do {
  426. if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
  427. return -ENOMEM;
  428. ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
  429. } while (ret == -EAGAIN);
  430. return ret;
  431. }
  432. /**
  433. * first_pwq - return the first pool_workqueue of the specified workqueue
  434. * @wq: the target workqueue
  435. *
  436. * This must be called either with pwq_lock held or sched RCU read locked.
  437. * If the pwq needs to be used beyond the locking in effect, the caller is
  438. * responsible for guaranteeing that the pwq stays online.
  439. */
  440. static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
  441. {
  442. assert_rcu_or_pwq_lock();
  443. return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
  444. pwqs_node);
  445. }
  446. static unsigned int work_color_to_flags(int color)
  447. {
  448. return color << WORK_STRUCT_COLOR_SHIFT;
  449. }
  450. static int get_work_color(struct work_struct *work)
  451. {
  452. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  453. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  454. }
  455. static int work_next_color(int color)
  456. {
  457. return (color + 1) % WORK_NR_COLORS;
  458. }
  459. /*
  460. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  461. * contain the pointer to the queued pwq. Once execution starts, the flag
  462. * is cleared and the high bits contain OFFQ flags and pool ID.
  463. *
  464. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  465. * and clear_work_data() can be used to set the pwq, pool or clear
  466. * work->data. These functions should only be called while the work is
  467. * owned - ie. while the PENDING bit is set.
  468. *
  469. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  470. * corresponding to a work. Pool is available once the work has been
  471. * queued anywhere after initialization until it is sync canceled. pwq is
  472. * available only while the work item is queued.
  473. *
  474. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  475. * canceled. While being canceled, a work item may have its PENDING set
  476. * but stay off timer and worklist for arbitrarily long and nobody should
  477. * try to steal the PENDING bit.
  478. */
  479. static inline void set_work_data(struct work_struct *work, unsigned long data,
  480. unsigned long flags)
  481. {
  482. WARN_ON_ONCE(!work_pending(work));
  483. atomic_long_set(&work->data, data | flags | work_static(work));
  484. }
  485. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  486. unsigned long extra_flags)
  487. {
  488. set_work_data(work, (unsigned long)pwq,
  489. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  490. }
  491. static void set_work_pool_and_keep_pending(struct work_struct *work,
  492. int pool_id)
  493. {
  494. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  495. WORK_STRUCT_PENDING);
  496. }
  497. static void set_work_pool_and_clear_pending(struct work_struct *work,
  498. int pool_id)
  499. {
  500. /*
  501. * The following wmb is paired with the implied mb in
  502. * test_and_set_bit(PENDING) and ensures all updates to @work made
  503. * here are visible to and precede any updates by the next PENDING
  504. * owner.
  505. */
  506. smp_wmb();
  507. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  508. }
  509. static void clear_work_data(struct work_struct *work)
  510. {
  511. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  512. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  513. }
  514. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  515. {
  516. unsigned long data = atomic_long_read(&work->data);
  517. if (data & WORK_STRUCT_PWQ)
  518. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  519. else
  520. return NULL;
  521. }
  522. /**
  523. * get_work_pool - return the worker_pool a given work was associated with
  524. * @work: the work item of interest
  525. *
  526. * Return the worker_pool @work was last associated with. %NULL if none.
  527. *
  528. * Pools are created and destroyed under wq_mutex, and allows read access
  529. * under sched-RCU read lock. As such, this function should be called
  530. * under wq_mutex or with preemption disabled.
  531. *
  532. * All fields of the returned pool are accessible as long as the above
  533. * mentioned locking is in effect. If the returned pool needs to be used
  534. * beyond the critical section, the caller is responsible for ensuring the
  535. * returned pool is and stays online.
  536. */
  537. static struct worker_pool *get_work_pool(struct work_struct *work)
  538. {
  539. unsigned long data = atomic_long_read(&work->data);
  540. int pool_id;
  541. assert_rcu_or_wq_mutex();
  542. if (data & WORK_STRUCT_PWQ)
  543. return ((struct pool_workqueue *)
  544. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  545. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  546. if (pool_id == WORK_OFFQ_POOL_NONE)
  547. return NULL;
  548. return idr_find(&worker_pool_idr, pool_id);
  549. }
  550. /**
  551. * get_work_pool_id - return the worker pool ID a given work is associated with
  552. * @work: the work item of interest
  553. *
  554. * Return the worker_pool ID @work was last associated with.
  555. * %WORK_OFFQ_POOL_NONE if none.
  556. */
  557. static int get_work_pool_id(struct work_struct *work)
  558. {
  559. unsigned long data = atomic_long_read(&work->data);
  560. if (data & WORK_STRUCT_PWQ)
  561. return ((struct pool_workqueue *)
  562. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  563. return data >> WORK_OFFQ_POOL_SHIFT;
  564. }
  565. static void mark_work_canceling(struct work_struct *work)
  566. {
  567. unsigned long pool_id = get_work_pool_id(work);
  568. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  569. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  570. }
  571. static bool work_is_canceling(struct work_struct *work)
  572. {
  573. unsigned long data = atomic_long_read(&work->data);
  574. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  575. }
  576. /*
  577. * Policy functions. These define the policies on how the global worker
  578. * pools are managed. Unless noted otherwise, these functions assume that
  579. * they're being called with pool->lock held.
  580. */
  581. static bool __need_more_worker(struct worker_pool *pool)
  582. {
  583. return !atomic_read(&pool->nr_running);
  584. }
  585. /*
  586. * Need to wake up a worker? Called from anything but currently
  587. * running workers.
  588. *
  589. * Note that, because unbound workers never contribute to nr_running, this
  590. * function will always return %true for unbound pools as long as the
  591. * worklist isn't empty.
  592. */
  593. static bool need_more_worker(struct worker_pool *pool)
  594. {
  595. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  596. }
  597. /* Can I start working? Called from busy but !running workers. */
  598. static bool may_start_working(struct worker_pool *pool)
  599. {
  600. return pool->nr_idle;
  601. }
  602. /* Do I need to keep working? Called from currently running workers. */
  603. static bool keep_working(struct worker_pool *pool)
  604. {
  605. return !list_empty(&pool->worklist) &&
  606. atomic_read(&pool->nr_running) <= 1;
  607. }
  608. /* Do we need a new worker? Called from manager. */
  609. static bool need_to_create_worker(struct worker_pool *pool)
  610. {
  611. return need_more_worker(pool) && !may_start_working(pool);
  612. }
  613. /* Do I need to be the manager? */
  614. static bool need_to_manage_workers(struct worker_pool *pool)
  615. {
  616. return need_to_create_worker(pool) ||
  617. (pool->flags & POOL_MANAGE_WORKERS);
  618. }
  619. /* Do we have too many workers and should some go away? */
  620. static bool too_many_workers(struct worker_pool *pool)
  621. {
  622. bool managing = mutex_is_locked(&pool->manager_arb);
  623. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  624. int nr_busy = pool->nr_workers - nr_idle;
  625. /*
  626. * nr_idle and idle_list may disagree if idle rebinding is in
  627. * progress. Never return %true if idle_list is empty.
  628. */
  629. if (list_empty(&pool->idle_list))
  630. return false;
  631. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  632. }
  633. /*
  634. * Wake up functions.
  635. */
  636. /* Return the first worker. Safe with preemption disabled */
  637. static struct worker *first_worker(struct worker_pool *pool)
  638. {
  639. if (unlikely(list_empty(&pool->idle_list)))
  640. return NULL;
  641. return list_first_entry(&pool->idle_list, struct worker, entry);
  642. }
  643. /**
  644. * wake_up_worker - wake up an idle worker
  645. * @pool: worker pool to wake worker from
  646. *
  647. * Wake up the first idle worker of @pool.
  648. *
  649. * CONTEXT:
  650. * spin_lock_irq(pool->lock).
  651. */
  652. static void wake_up_worker(struct worker_pool *pool)
  653. {
  654. struct worker *worker = first_worker(pool);
  655. if (likely(worker))
  656. wake_up_process(worker->task);
  657. }
  658. /**
  659. * wq_worker_waking_up - a worker is waking up
  660. * @task: task waking up
  661. * @cpu: CPU @task is waking up to
  662. *
  663. * This function is called during try_to_wake_up() when a worker is
  664. * being awoken.
  665. *
  666. * CONTEXT:
  667. * spin_lock_irq(rq->lock)
  668. */
  669. void wq_worker_waking_up(struct task_struct *task, int cpu)
  670. {
  671. struct worker *worker = kthread_data(task);
  672. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  673. WARN_ON_ONCE(worker->pool->cpu != cpu);
  674. atomic_inc(&worker->pool->nr_running);
  675. }
  676. }
  677. /**
  678. * wq_worker_sleeping - a worker is going to sleep
  679. * @task: task going to sleep
  680. * @cpu: CPU in question, must be the current CPU number
  681. *
  682. * This function is called during schedule() when a busy worker is
  683. * going to sleep. Worker on the same cpu can be woken up by
  684. * returning pointer to its task.
  685. *
  686. * CONTEXT:
  687. * spin_lock_irq(rq->lock)
  688. *
  689. * RETURNS:
  690. * Worker task on @cpu to wake up, %NULL if none.
  691. */
  692. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  693. {
  694. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  695. struct worker_pool *pool;
  696. /*
  697. * Rescuers, which may not have all the fields set up like normal
  698. * workers, also reach here, let's not access anything before
  699. * checking NOT_RUNNING.
  700. */
  701. if (worker->flags & WORKER_NOT_RUNNING)
  702. return NULL;
  703. pool = worker->pool;
  704. /* this can only happen on the local cpu */
  705. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  706. return NULL;
  707. /*
  708. * The counterpart of the following dec_and_test, implied mb,
  709. * worklist not empty test sequence is in insert_work().
  710. * Please read comment there.
  711. *
  712. * NOT_RUNNING is clear. This means that we're bound to and
  713. * running on the local cpu w/ rq lock held and preemption
  714. * disabled, which in turn means that none else could be
  715. * manipulating idle_list, so dereferencing idle_list without pool
  716. * lock is safe.
  717. */
  718. if (atomic_dec_and_test(&pool->nr_running) &&
  719. !list_empty(&pool->worklist))
  720. to_wakeup = first_worker(pool);
  721. return to_wakeup ? to_wakeup->task : NULL;
  722. }
  723. /**
  724. * worker_set_flags - set worker flags and adjust nr_running accordingly
  725. * @worker: self
  726. * @flags: flags to set
  727. * @wakeup: wakeup an idle worker if necessary
  728. *
  729. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  730. * nr_running becomes zero and @wakeup is %true, an idle worker is
  731. * woken up.
  732. *
  733. * CONTEXT:
  734. * spin_lock_irq(pool->lock)
  735. */
  736. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  737. bool wakeup)
  738. {
  739. struct worker_pool *pool = worker->pool;
  740. WARN_ON_ONCE(worker->task != current);
  741. /*
  742. * If transitioning into NOT_RUNNING, adjust nr_running and
  743. * wake up an idle worker as necessary if requested by
  744. * @wakeup.
  745. */
  746. if ((flags & WORKER_NOT_RUNNING) &&
  747. !(worker->flags & WORKER_NOT_RUNNING)) {
  748. if (wakeup) {
  749. if (atomic_dec_and_test(&pool->nr_running) &&
  750. !list_empty(&pool->worklist))
  751. wake_up_worker(pool);
  752. } else
  753. atomic_dec(&pool->nr_running);
  754. }
  755. worker->flags |= flags;
  756. }
  757. /**
  758. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  759. * @worker: self
  760. * @flags: flags to clear
  761. *
  762. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  763. *
  764. * CONTEXT:
  765. * spin_lock_irq(pool->lock)
  766. */
  767. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  768. {
  769. struct worker_pool *pool = worker->pool;
  770. unsigned int oflags = worker->flags;
  771. WARN_ON_ONCE(worker->task != current);
  772. worker->flags &= ~flags;
  773. /*
  774. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  775. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  776. * of multiple flags, not a single flag.
  777. */
  778. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  779. if (!(worker->flags & WORKER_NOT_RUNNING))
  780. atomic_inc(&pool->nr_running);
  781. }
  782. /**
  783. * find_worker_executing_work - find worker which is executing a work
  784. * @pool: pool of interest
  785. * @work: work to find worker for
  786. *
  787. * Find a worker which is executing @work on @pool by searching
  788. * @pool->busy_hash which is keyed by the address of @work. For a worker
  789. * to match, its current execution should match the address of @work and
  790. * its work function. This is to avoid unwanted dependency between
  791. * unrelated work executions through a work item being recycled while still
  792. * being executed.
  793. *
  794. * This is a bit tricky. A work item may be freed once its execution
  795. * starts and nothing prevents the freed area from being recycled for
  796. * another work item. If the same work item address ends up being reused
  797. * before the original execution finishes, workqueue will identify the
  798. * recycled work item as currently executing and make it wait until the
  799. * current execution finishes, introducing an unwanted dependency.
  800. *
  801. * This function checks the work item address and work function to avoid
  802. * false positives. Note that this isn't complete as one may construct a
  803. * work function which can introduce dependency onto itself through a
  804. * recycled work item. Well, if somebody wants to shoot oneself in the
  805. * foot that badly, there's only so much we can do, and if such deadlock
  806. * actually occurs, it should be easy to locate the culprit work function.
  807. *
  808. * CONTEXT:
  809. * spin_lock_irq(pool->lock).
  810. *
  811. * RETURNS:
  812. * Pointer to worker which is executing @work if found, NULL
  813. * otherwise.
  814. */
  815. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  816. struct work_struct *work)
  817. {
  818. struct worker *worker;
  819. hash_for_each_possible(pool->busy_hash, worker, hentry,
  820. (unsigned long)work)
  821. if (worker->current_work == work &&
  822. worker->current_func == work->func)
  823. return worker;
  824. return NULL;
  825. }
  826. /**
  827. * move_linked_works - move linked works to a list
  828. * @work: start of series of works to be scheduled
  829. * @head: target list to append @work to
  830. * @nextp: out paramter for nested worklist walking
  831. *
  832. * Schedule linked works starting from @work to @head. Work series to
  833. * be scheduled starts at @work and includes any consecutive work with
  834. * WORK_STRUCT_LINKED set in its predecessor.
  835. *
  836. * If @nextp is not NULL, it's updated to point to the next work of
  837. * the last scheduled work. This allows move_linked_works() to be
  838. * nested inside outer list_for_each_entry_safe().
  839. *
  840. * CONTEXT:
  841. * spin_lock_irq(pool->lock).
  842. */
  843. static void move_linked_works(struct work_struct *work, struct list_head *head,
  844. struct work_struct **nextp)
  845. {
  846. struct work_struct *n;
  847. /*
  848. * Linked worklist will always end before the end of the list,
  849. * use NULL for list head.
  850. */
  851. list_for_each_entry_safe_from(work, n, NULL, entry) {
  852. list_move_tail(&work->entry, head);
  853. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  854. break;
  855. }
  856. /*
  857. * If we're already inside safe list traversal and have moved
  858. * multiple works to the scheduled queue, the next position
  859. * needs to be updated.
  860. */
  861. if (nextp)
  862. *nextp = n;
  863. }
  864. /**
  865. * get_pwq - get an extra reference on the specified pool_workqueue
  866. * @pwq: pool_workqueue to get
  867. *
  868. * Obtain an extra reference on @pwq. The caller should guarantee that
  869. * @pwq has positive refcnt and be holding the matching pool->lock.
  870. */
  871. static void get_pwq(struct pool_workqueue *pwq)
  872. {
  873. lockdep_assert_held(&pwq->pool->lock);
  874. WARN_ON_ONCE(pwq->refcnt <= 0);
  875. pwq->refcnt++;
  876. }
  877. /**
  878. * put_pwq - put a pool_workqueue reference
  879. * @pwq: pool_workqueue to put
  880. *
  881. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  882. * destruction. The caller should be holding the matching pool->lock.
  883. */
  884. static void put_pwq(struct pool_workqueue *pwq)
  885. {
  886. lockdep_assert_held(&pwq->pool->lock);
  887. if (likely(--pwq->refcnt))
  888. return;
  889. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  890. return;
  891. /*
  892. * @pwq can't be released under pool->lock, bounce to
  893. * pwq_unbound_release_workfn(). This never recurses on the same
  894. * pool->lock as this path is taken only for unbound workqueues and
  895. * the release work item is scheduled on a per-cpu workqueue. To
  896. * avoid lockdep warning, unbound pool->locks are given lockdep
  897. * subclass of 1 in get_unbound_pool().
  898. */
  899. schedule_work(&pwq->unbound_release_work);
  900. }
  901. static void pwq_activate_delayed_work(struct work_struct *work)
  902. {
  903. struct pool_workqueue *pwq = get_work_pwq(work);
  904. trace_workqueue_activate_work(work);
  905. move_linked_works(work, &pwq->pool->worklist, NULL);
  906. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  907. pwq->nr_active++;
  908. }
  909. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  910. {
  911. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  912. struct work_struct, entry);
  913. pwq_activate_delayed_work(work);
  914. }
  915. /**
  916. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  917. * @pwq: pwq of interest
  918. * @color: color of work which left the queue
  919. *
  920. * A work either has completed or is removed from pending queue,
  921. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  922. *
  923. * CONTEXT:
  924. * spin_lock_irq(pool->lock).
  925. */
  926. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  927. {
  928. /* uncolored work items don't participate in flushing or nr_active */
  929. if (color == WORK_NO_COLOR)
  930. goto out_put;
  931. pwq->nr_in_flight[color]--;
  932. pwq->nr_active--;
  933. if (!list_empty(&pwq->delayed_works)) {
  934. /* one down, submit a delayed one */
  935. if (pwq->nr_active < pwq->max_active)
  936. pwq_activate_first_delayed(pwq);
  937. }
  938. /* is flush in progress and are we at the flushing tip? */
  939. if (likely(pwq->flush_color != color))
  940. goto out_put;
  941. /* are there still in-flight works? */
  942. if (pwq->nr_in_flight[color])
  943. goto out_put;
  944. /* this pwq is done, clear flush_color */
  945. pwq->flush_color = -1;
  946. /*
  947. * If this was the last pwq, wake up the first flusher. It
  948. * will handle the rest.
  949. */
  950. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  951. complete(&pwq->wq->first_flusher->done);
  952. out_put:
  953. put_pwq(pwq);
  954. }
  955. /**
  956. * try_to_grab_pending - steal work item from worklist and disable irq
  957. * @work: work item to steal
  958. * @is_dwork: @work is a delayed_work
  959. * @flags: place to store irq state
  960. *
  961. * Try to grab PENDING bit of @work. This function can handle @work in any
  962. * stable state - idle, on timer or on worklist. Return values are
  963. *
  964. * 1 if @work was pending and we successfully stole PENDING
  965. * 0 if @work was idle and we claimed PENDING
  966. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  967. * -ENOENT if someone else is canceling @work, this state may persist
  968. * for arbitrarily long
  969. *
  970. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  971. * interrupted while holding PENDING and @work off queue, irq must be
  972. * disabled on entry. This, combined with delayed_work->timer being
  973. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  974. *
  975. * On successful return, >= 0, irq is disabled and the caller is
  976. * responsible for releasing it using local_irq_restore(*@flags).
  977. *
  978. * This function is safe to call from any context including IRQ handler.
  979. */
  980. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  981. unsigned long *flags)
  982. {
  983. struct worker_pool *pool;
  984. struct pool_workqueue *pwq;
  985. local_irq_save(*flags);
  986. /* try to steal the timer if it exists */
  987. if (is_dwork) {
  988. struct delayed_work *dwork = to_delayed_work(work);
  989. /*
  990. * dwork->timer is irqsafe. If del_timer() fails, it's
  991. * guaranteed that the timer is not queued anywhere and not
  992. * running on the local CPU.
  993. */
  994. if (likely(del_timer(&dwork->timer)))
  995. return 1;
  996. }
  997. /* try to claim PENDING the normal way */
  998. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  999. return 0;
  1000. /*
  1001. * The queueing is in progress, or it is already queued. Try to
  1002. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1003. */
  1004. pool = get_work_pool(work);
  1005. if (!pool)
  1006. goto fail;
  1007. spin_lock(&pool->lock);
  1008. /*
  1009. * work->data is guaranteed to point to pwq only while the work
  1010. * item is queued on pwq->wq, and both updating work->data to point
  1011. * to pwq on queueing and to pool on dequeueing are done under
  1012. * pwq->pool->lock. This in turn guarantees that, if work->data
  1013. * points to pwq which is associated with a locked pool, the work
  1014. * item is currently queued on that pool.
  1015. */
  1016. pwq = get_work_pwq(work);
  1017. if (pwq && pwq->pool == pool) {
  1018. debug_work_deactivate(work);
  1019. /*
  1020. * A delayed work item cannot be grabbed directly because
  1021. * it might have linked NO_COLOR work items which, if left
  1022. * on the delayed_list, will confuse pwq->nr_active
  1023. * management later on and cause stall. Make sure the work
  1024. * item is activated before grabbing.
  1025. */
  1026. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1027. pwq_activate_delayed_work(work);
  1028. list_del_init(&work->entry);
  1029. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1030. /* work->data points to pwq iff queued, point to pool */
  1031. set_work_pool_and_keep_pending(work, pool->id);
  1032. spin_unlock(&pool->lock);
  1033. return 1;
  1034. }
  1035. spin_unlock(&pool->lock);
  1036. fail:
  1037. local_irq_restore(*flags);
  1038. if (work_is_canceling(work))
  1039. return -ENOENT;
  1040. cpu_relax();
  1041. return -EAGAIN;
  1042. }
  1043. /**
  1044. * insert_work - insert a work into a pool
  1045. * @pwq: pwq @work belongs to
  1046. * @work: work to insert
  1047. * @head: insertion point
  1048. * @extra_flags: extra WORK_STRUCT_* flags to set
  1049. *
  1050. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1051. * work_struct flags.
  1052. *
  1053. * CONTEXT:
  1054. * spin_lock_irq(pool->lock).
  1055. */
  1056. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1057. struct list_head *head, unsigned int extra_flags)
  1058. {
  1059. struct worker_pool *pool = pwq->pool;
  1060. /* we own @work, set data and link */
  1061. set_work_pwq(work, pwq, extra_flags);
  1062. list_add_tail(&work->entry, head);
  1063. get_pwq(pwq);
  1064. /*
  1065. * Ensure either wq_worker_sleeping() sees the above
  1066. * list_add_tail() or we see zero nr_running to avoid workers lying
  1067. * around lazily while there are works to be processed.
  1068. */
  1069. smp_mb();
  1070. if (__need_more_worker(pool))
  1071. wake_up_worker(pool);
  1072. }
  1073. /*
  1074. * Test whether @work is being queued from another work executing on the
  1075. * same workqueue.
  1076. */
  1077. static bool is_chained_work(struct workqueue_struct *wq)
  1078. {
  1079. struct worker *worker;
  1080. worker = current_wq_worker();
  1081. /*
  1082. * Return %true iff I'm a worker execuing a work item on @wq. If
  1083. * I'm @worker, it's safe to dereference it without locking.
  1084. */
  1085. return worker && worker->current_pwq->wq == wq;
  1086. }
  1087. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1088. struct work_struct *work)
  1089. {
  1090. struct pool_workqueue *pwq;
  1091. struct worker_pool *last_pool;
  1092. struct list_head *worklist;
  1093. unsigned int work_flags;
  1094. unsigned int req_cpu = cpu;
  1095. /*
  1096. * While a work item is PENDING && off queue, a task trying to
  1097. * steal the PENDING will busy-loop waiting for it to either get
  1098. * queued or lose PENDING. Grabbing PENDING and queueing should
  1099. * happen with IRQ disabled.
  1100. */
  1101. WARN_ON_ONCE(!irqs_disabled());
  1102. debug_work_activate(work);
  1103. /* if dying, only works from the same workqueue are allowed */
  1104. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1105. WARN_ON_ONCE(!is_chained_work(wq)))
  1106. return;
  1107. retry:
  1108. /* pwq which will be used unless @work is executing elsewhere */
  1109. if (!(wq->flags & WQ_UNBOUND)) {
  1110. if (cpu == WORK_CPU_UNBOUND)
  1111. cpu = raw_smp_processor_id();
  1112. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1113. } else {
  1114. pwq = first_pwq(wq);
  1115. }
  1116. /*
  1117. * If @work was previously on a different pool, it might still be
  1118. * running there, in which case the work needs to be queued on that
  1119. * pool to guarantee non-reentrancy.
  1120. */
  1121. last_pool = get_work_pool(work);
  1122. if (last_pool && last_pool != pwq->pool) {
  1123. struct worker *worker;
  1124. spin_lock(&last_pool->lock);
  1125. worker = find_worker_executing_work(last_pool, work);
  1126. if (worker && worker->current_pwq->wq == wq) {
  1127. pwq = worker->current_pwq;
  1128. } else {
  1129. /* meh... not running there, queue here */
  1130. spin_unlock(&last_pool->lock);
  1131. spin_lock(&pwq->pool->lock);
  1132. }
  1133. } else {
  1134. spin_lock(&pwq->pool->lock);
  1135. }
  1136. /*
  1137. * pwq is determined and locked. For unbound pools, we could have
  1138. * raced with pwq release and it could already be dead. If its
  1139. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1140. * without another pwq replacing it as the first pwq or while a
  1141. * work item is executing on it, so the retying is guaranteed to
  1142. * make forward-progress.
  1143. */
  1144. if (unlikely(!pwq->refcnt)) {
  1145. if (wq->flags & WQ_UNBOUND) {
  1146. spin_unlock(&pwq->pool->lock);
  1147. cpu_relax();
  1148. goto retry;
  1149. }
  1150. /* oops */
  1151. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1152. wq->name, cpu);
  1153. }
  1154. /* pwq determined, queue */
  1155. trace_workqueue_queue_work(req_cpu, pwq, work);
  1156. if (WARN_ON(!list_empty(&work->entry))) {
  1157. spin_unlock(&pwq->pool->lock);
  1158. return;
  1159. }
  1160. pwq->nr_in_flight[pwq->work_color]++;
  1161. work_flags = work_color_to_flags(pwq->work_color);
  1162. if (likely(pwq->nr_active < pwq->max_active)) {
  1163. trace_workqueue_activate_work(work);
  1164. pwq->nr_active++;
  1165. worklist = &pwq->pool->worklist;
  1166. } else {
  1167. work_flags |= WORK_STRUCT_DELAYED;
  1168. worklist = &pwq->delayed_works;
  1169. }
  1170. insert_work(pwq, work, worklist, work_flags);
  1171. spin_unlock(&pwq->pool->lock);
  1172. }
  1173. /**
  1174. * queue_work_on - queue work on specific cpu
  1175. * @cpu: CPU number to execute work on
  1176. * @wq: workqueue to use
  1177. * @work: work to queue
  1178. *
  1179. * Returns %false if @work was already on a queue, %true otherwise.
  1180. *
  1181. * We queue the work to a specific CPU, the caller must ensure it
  1182. * can't go away.
  1183. */
  1184. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1185. struct work_struct *work)
  1186. {
  1187. bool ret = false;
  1188. unsigned long flags;
  1189. local_irq_save(flags);
  1190. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1191. __queue_work(cpu, wq, work);
  1192. ret = true;
  1193. }
  1194. local_irq_restore(flags);
  1195. return ret;
  1196. }
  1197. EXPORT_SYMBOL_GPL(queue_work_on);
  1198. void delayed_work_timer_fn(unsigned long __data)
  1199. {
  1200. struct delayed_work *dwork = (struct delayed_work *)__data;
  1201. /* should have been called from irqsafe timer with irq already off */
  1202. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1203. }
  1204. EXPORT_SYMBOL(delayed_work_timer_fn);
  1205. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1206. struct delayed_work *dwork, unsigned long delay)
  1207. {
  1208. struct timer_list *timer = &dwork->timer;
  1209. struct work_struct *work = &dwork->work;
  1210. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1211. timer->data != (unsigned long)dwork);
  1212. WARN_ON_ONCE(timer_pending(timer));
  1213. WARN_ON_ONCE(!list_empty(&work->entry));
  1214. /*
  1215. * If @delay is 0, queue @dwork->work immediately. This is for
  1216. * both optimization and correctness. The earliest @timer can
  1217. * expire is on the closest next tick and delayed_work users depend
  1218. * on that there's no such delay when @delay is 0.
  1219. */
  1220. if (!delay) {
  1221. __queue_work(cpu, wq, &dwork->work);
  1222. return;
  1223. }
  1224. timer_stats_timer_set_start_info(&dwork->timer);
  1225. dwork->wq = wq;
  1226. dwork->cpu = cpu;
  1227. timer->expires = jiffies + delay;
  1228. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1229. add_timer_on(timer, cpu);
  1230. else
  1231. add_timer(timer);
  1232. }
  1233. /**
  1234. * queue_delayed_work_on - queue work on specific CPU after delay
  1235. * @cpu: CPU number to execute work on
  1236. * @wq: workqueue to use
  1237. * @dwork: work to queue
  1238. * @delay: number of jiffies to wait before queueing
  1239. *
  1240. * Returns %false if @work was already on a queue, %true otherwise. If
  1241. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1242. * execution.
  1243. */
  1244. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1245. struct delayed_work *dwork, unsigned long delay)
  1246. {
  1247. struct work_struct *work = &dwork->work;
  1248. bool ret = false;
  1249. unsigned long flags;
  1250. /* read the comment in __queue_work() */
  1251. local_irq_save(flags);
  1252. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1253. __queue_delayed_work(cpu, wq, dwork, delay);
  1254. ret = true;
  1255. }
  1256. local_irq_restore(flags);
  1257. return ret;
  1258. }
  1259. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1260. /**
  1261. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1262. * @cpu: CPU number to execute work on
  1263. * @wq: workqueue to use
  1264. * @dwork: work to queue
  1265. * @delay: number of jiffies to wait before queueing
  1266. *
  1267. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1268. * modify @dwork's timer so that it expires after @delay. If @delay is
  1269. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1270. * current state.
  1271. *
  1272. * Returns %false if @dwork was idle and queued, %true if @dwork was
  1273. * pending and its timer was modified.
  1274. *
  1275. * This function is safe to call from any context including IRQ handler.
  1276. * See try_to_grab_pending() for details.
  1277. */
  1278. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1279. struct delayed_work *dwork, unsigned long delay)
  1280. {
  1281. unsigned long flags;
  1282. int ret;
  1283. do {
  1284. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1285. } while (unlikely(ret == -EAGAIN));
  1286. if (likely(ret >= 0)) {
  1287. __queue_delayed_work(cpu, wq, dwork, delay);
  1288. local_irq_restore(flags);
  1289. }
  1290. /* -ENOENT from try_to_grab_pending() becomes %true */
  1291. return ret;
  1292. }
  1293. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1294. /**
  1295. * worker_enter_idle - enter idle state
  1296. * @worker: worker which is entering idle state
  1297. *
  1298. * @worker is entering idle state. Update stats and idle timer if
  1299. * necessary.
  1300. *
  1301. * LOCKING:
  1302. * spin_lock_irq(pool->lock).
  1303. */
  1304. static void worker_enter_idle(struct worker *worker)
  1305. {
  1306. struct worker_pool *pool = worker->pool;
  1307. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1308. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1309. (worker->hentry.next || worker->hentry.pprev)))
  1310. return;
  1311. /* can't use worker_set_flags(), also called from start_worker() */
  1312. worker->flags |= WORKER_IDLE;
  1313. pool->nr_idle++;
  1314. worker->last_active = jiffies;
  1315. /* idle_list is LIFO */
  1316. list_add(&worker->entry, &pool->idle_list);
  1317. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1318. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1319. /*
  1320. * Sanity check nr_running. Because wq_unbind_fn() releases
  1321. * pool->lock between setting %WORKER_UNBOUND and zapping
  1322. * nr_running, the warning may trigger spuriously. Check iff
  1323. * unbind is not in progress.
  1324. */
  1325. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1326. pool->nr_workers == pool->nr_idle &&
  1327. atomic_read(&pool->nr_running));
  1328. }
  1329. /**
  1330. * worker_leave_idle - leave idle state
  1331. * @worker: worker which is leaving idle state
  1332. *
  1333. * @worker is leaving idle state. Update stats.
  1334. *
  1335. * LOCKING:
  1336. * spin_lock_irq(pool->lock).
  1337. */
  1338. static void worker_leave_idle(struct worker *worker)
  1339. {
  1340. struct worker_pool *pool = worker->pool;
  1341. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1342. return;
  1343. worker_clr_flags(worker, WORKER_IDLE);
  1344. pool->nr_idle--;
  1345. list_del_init(&worker->entry);
  1346. }
  1347. /**
  1348. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1349. * @pool: target worker_pool
  1350. *
  1351. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1352. *
  1353. * Works which are scheduled while the cpu is online must at least be
  1354. * scheduled to a worker which is bound to the cpu so that if they are
  1355. * flushed from cpu callbacks while cpu is going down, they are
  1356. * guaranteed to execute on the cpu.
  1357. *
  1358. * This function is to be used by unbound workers and rescuers to bind
  1359. * themselves to the target cpu and may race with cpu going down or
  1360. * coming online. kthread_bind() can't be used because it may put the
  1361. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1362. * verbatim as it's best effort and blocking and pool may be
  1363. * [dis]associated in the meantime.
  1364. *
  1365. * This function tries set_cpus_allowed() and locks pool and verifies the
  1366. * binding against %POOL_DISASSOCIATED which is set during
  1367. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1368. * enters idle state or fetches works without dropping lock, it can
  1369. * guarantee the scheduling requirement described in the first paragraph.
  1370. *
  1371. * CONTEXT:
  1372. * Might sleep. Called without any lock but returns with pool->lock
  1373. * held.
  1374. *
  1375. * RETURNS:
  1376. * %true if the associated pool is online (@worker is successfully
  1377. * bound), %false if offline.
  1378. */
  1379. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1380. __acquires(&pool->lock)
  1381. {
  1382. while (true) {
  1383. /*
  1384. * The following call may fail, succeed or succeed
  1385. * without actually migrating the task to the cpu if
  1386. * it races with cpu hotunplug operation. Verify
  1387. * against POOL_DISASSOCIATED.
  1388. */
  1389. if (!(pool->flags & POOL_DISASSOCIATED))
  1390. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1391. spin_lock_irq(&pool->lock);
  1392. if (pool->flags & POOL_DISASSOCIATED)
  1393. return false;
  1394. if (task_cpu(current) == pool->cpu &&
  1395. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1396. return true;
  1397. spin_unlock_irq(&pool->lock);
  1398. /*
  1399. * We've raced with CPU hot[un]plug. Give it a breather
  1400. * and retry migration. cond_resched() is required here;
  1401. * otherwise, we might deadlock against cpu_stop trying to
  1402. * bring down the CPU on non-preemptive kernel.
  1403. */
  1404. cpu_relax();
  1405. cond_resched();
  1406. }
  1407. }
  1408. static struct worker *alloc_worker(void)
  1409. {
  1410. struct worker *worker;
  1411. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1412. if (worker) {
  1413. INIT_LIST_HEAD(&worker->entry);
  1414. INIT_LIST_HEAD(&worker->scheduled);
  1415. /* on creation a worker is in !idle && prep state */
  1416. worker->flags = WORKER_PREP;
  1417. }
  1418. return worker;
  1419. }
  1420. /**
  1421. * create_worker - create a new workqueue worker
  1422. * @pool: pool the new worker will belong to
  1423. *
  1424. * Create a new worker which is bound to @pool. The returned worker
  1425. * can be started by calling start_worker() or destroyed using
  1426. * destroy_worker().
  1427. *
  1428. * CONTEXT:
  1429. * Might sleep. Does GFP_KERNEL allocations.
  1430. *
  1431. * RETURNS:
  1432. * Pointer to the newly created worker.
  1433. */
  1434. static struct worker *create_worker(struct worker_pool *pool)
  1435. {
  1436. const char *pri = pool->attrs->nice < 0 ? "H" : "";
  1437. struct worker *worker = NULL;
  1438. int id = -1;
  1439. lockdep_assert_held(&pool->manager_mutex);
  1440. /*
  1441. * ID is needed to determine kthread name. Allocate ID first
  1442. * without installing the pointer.
  1443. */
  1444. idr_preload(GFP_KERNEL);
  1445. spin_lock_irq(&pool->lock);
  1446. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
  1447. spin_unlock_irq(&pool->lock);
  1448. idr_preload_end();
  1449. if (id < 0)
  1450. goto fail;
  1451. worker = alloc_worker();
  1452. if (!worker)
  1453. goto fail;
  1454. worker->pool = pool;
  1455. worker->id = id;
  1456. if (pool->cpu >= 0)
  1457. worker->task = kthread_create_on_node(worker_thread,
  1458. worker, cpu_to_node(pool->cpu),
  1459. "kworker/%d:%d%s", pool->cpu, id, pri);
  1460. else
  1461. worker->task = kthread_create(worker_thread, worker,
  1462. "kworker/u%d:%d%s",
  1463. pool->id, id, pri);
  1464. if (IS_ERR(worker->task))
  1465. goto fail;
  1466. /*
  1467. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1468. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1469. */
  1470. set_user_nice(worker->task, pool->attrs->nice);
  1471. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1472. /* prevent userland from meddling with cpumask of workqueue workers */
  1473. worker->task->flags |= PF_NO_SETAFFINITY;
  1474. /*
  1475. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1476. * remains stable across this function. See the comments above the
  1477. * flag definition for details.
  1478. */
  1479. if (pool->flags & POOL_DISASSOCIATED)
  1480. worker->flags |= WORKER_UNBOUND;
  1481. /* successful, commit the pointer to idr */
  1482. spin_lock_irq(&pool->lock);
  1483. idr_replace(&pool->worker_idr, worker, worker->id);
  1484. spin_unlock_irq(&pool->lock);
  1485. return worker;
  1486. fail:
  1487. if (id >= 0) {
  1488. spin_lock_irq(&pool->lock);
  1489. idr_remove(&pool->worker_idr, id);
  1490. spin_unlock_irq(&pool->lock);
  1491. }
  1492. kfree(worker);
  1493. return NULL;
  1494. }
  1495. /**
  1496. * start_worker - start a newly created worker
  1497. * @worker: worker to start
  1498. *
  1499. * Make the pool aware of @worker and start it.
  1500. *
  1501. * CONTEXT:
  1502. * spin_lock_irq(pool->lock).
  1503. */
  1504. static void start_worker(struct worker *worker)
  1505. {
  1506. worker->flags |= WORKER_STARTED;
  1507. worker->pool->nr_workers++;
  1508. worker_enter_idle(worker);
  1509. wake_up_process(worker->task);
  1510. }
  1511. /**
  1512. * create_and_start_worker - create and start a worker for a pool
  1513. * @pool: the target pool
  1514. *
  1515. * Grab the managership of @pool and create and start a new worker for it.
  1516. */
  1517. static int create_and_start_worker(struct worker_pool *pool)
  1518. {
  1519. struct worker *worker;
  1520. mutex_lock(&pool->manager_mutex);
  1521. worker = create_worker(pool);
  1522. if (worker) {
  1523. spin_lock_irq(&pool->lock);
  1524. start_worker(worker);
  1525. spin_unlock_irq(&pool->lock);
  1526. }
  1527. mutex_unlock(&pool->manager_mutex);
  1528. return worker ? 0 : -ENOMEM;
  1529. }
  1530. /**
  1531. * destroy_worker - destroy a workqueue worker
  1532. * @worker: worker to be destroyed
  1533. *
  1534. * Destroy @worker and adjust @pool stats accordingly.
  1535. *
  1536. * CONTEXT:
  1537. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1538. */
  1539. static void destroy_worker(struct worker *worker)
  1540. {
  1541. struct worker_pool *pool = worker->pool;
  1542. lockdep_assert_held(&pool->manager_mutex);
  1543. lockdep_assert_held(&pool->lock);
  1544. /* sanity check frenzy */
  1545. if (WARN_ON(worker->current_work) ||
  1546. WARN_ON(!list_empty(&worker->scheduled)))
  1547. return;
  1548. if (worker->flags & WORKER_STARTED)
  1549. pool->nr_workers--;
  1550. if (worker->flags & WORKER_IDLE)
  1551. pool->nr_idle--;
  1552. list_del_init(&worker->entry);
  1553. worker->flags |= WORKER_DIE;
  1554. idr_remove(&pool->worker_idr, worker->id);
  1555. spin_unlock_irq(&pool->lock);
  1556. kthread_stop(worker->task);
  1557. kfree(worker);
  1558. spin_lock_irq(&pool->lock);
  1559. }
  1560. static void idle_worker_timeout(unsigned long __pool)
  1561. {
  1562. struct worker_pool *pool = (void *)__pool;
  1563. spin_lock_irq(&pool->lock);
  1564. if (too_many_workers(pool)) {
  1565. struct worker *worker;
  1566. unsigned long expires;
  1567. /* idle_list is kept in LIFO order, check the last one */
  1568. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1569. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1570. if (time_before(jiffies, expires))
  1571. mod_timer(&pool->idle_timer, expires);
  1572. else {
  1573. /* it's been idle for too long, wake up manager */
  1574. pool->flags |= POOL_MANAGE_WORKERS;
  1575. wake_up_worker(pool);
  1576. }
  1577. }
  1578. spin_unlock_irq(&pool->lock);
  1579. }
  1580. static void send_mayday(struct work_struct *work)
  1581. {
  1582. struct pool_workqueue *pwq = get_work_pwq(work);
  1583. struct workqueue_struct *wq = pwq->wq;
  1584. lockdep_assert_held(&wq_mayday_lock);
  1585. if (!wq->rescuer)
  1586. return;
  1587. /* mayday mayday mayday */
  1588. if (list_empty(&pwq->mayday_node)) {
  1589. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1590. wake_up_process(wq->rescuer->task);
  1591. }
  1592. }
  1593. static void pool_mayday_timeout(unsigned long __pool)
  1594. {
  1595. struct worker_pool *pool = (void *)__pool;
  1596. struct work_struct *work;
  1597. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1598. spin_lock(&pool->lock);
  1599. if (need_to_create_worker(pool)) {
  1600. /*
  1601. * We've been trying to create a new worker but
  1602. * haven't been successful. We might be hitting an
  1603. * allocation deadlock. Send distress signals to
  1604. * rescuers.
  1605. */
  1606. list_for_each_entry(work, &pool->worklist, entry)
  1607. send_mayday(work);
  1608. }
  1609. spin_unlock(&pool->lock);
  1610. spin_unlock_irq(&wq_mayday_lock);
  1611. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1612. }
  1613. /**
  1614. * maybe_create_worker - create a new worker if necessary
  1615. * @pool: pool to create a new worker for
  1616. *
  1617. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1618. * have at least one idle worker on return from this function. If
  1619. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1620. * sent to all rescuers with works scheduled on @pool to resolve
  1621. * possible allocation deadlock.
  1622. *
  1623. * On return, need_to_create_worker() is guaranteed to be %false and
  1624. * may_start_working() %true.
  1625. *
  1626. * LOCKING:
  1627. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1628. * multiple times. Does GFP_KERNEL allocations. Called only from
  1629. * manager.
  1630. *
  1631. * RETURNS:
  1632. * %false if no action was taken and pool->lock stayed locked, %true
  1633. * otherwise.
  1634. */
  1635. static bool maybe_create_worker(struct worker_pool *pool)
  1636. __releases(&pool->lock)
  1637. __acquires(&pool->lock)
  1638. {
  1639. if (!need_to_create_worker(pool))
  1640. return false;
  1641. restart:
  1642. spin_unlock_irq(&pool->lock);
  1643. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1644. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1645. while (true) {
  1646. struct worker *worker;
  1647. worker = create_worker(pool);
  1648. if (worker) {
  1649. del_timer_sync(&pool->mayday_timer);
  1650. spin_lock_irq(&pool->lock);
  1651. start_worker(worker);
  1652. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1653. goto restart;
  1654. return true;
  1655. }
  1656. if (!need_to_create_worker(pool))
  1657. break;
  1658. __set_current_state(TASK_INTERRUPTIBLE);
  1659. schedule_timeout(CREATE_COOLDOWN);
  1660. if (!need_to_create_worker(pool))
  1661. break;
  1662. }
  1663. del_timer_sync(&pool->mayday_timer);
  1664. spin_lock_irq(&pool->lock);
  1665. if (need_to_create_worker(pool))
  1666. goto restart;
  1667. return true;
  1668. }
  1669. /**
  1670. * maybe_destroy_worker - destroy workers which have been idle for a while
  1671. * @pool: pool to destroy workers for
  1672. *
  1673. * Destroy @pool workers which have been idle for longer than
  1674. * IDLE_WORKER_TIMEOUT.
  1675. *
  1676. * LOCKING:
  1677. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1678. * multiple times. Called only from manager.
  1679. *
  1680. * RETURNS:
  1681. * %false if no action was taken and pool->lock stayed locked, %true
  1682. * otherwise.
  1683. */
  1684. static bool maybe_destroy_workers(struct worker_pool *pool)
  1685. {
  1686. bool ret = false;
  1687. while (too_many_workers(pool)) {
  1688. struct worker *worker;
  1689. unsigned long expires;
  1690. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1691. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1692. if (time_before(jiffies, expires)) {
  1693. mod_timer(&pool->idle_timer, expires);
  1694. break;
  1695. }
  1696. destroy_worker(worker);
  1697. ret = true;
  1698. }
  1699. return ret;
  1700. }
  1701. /**
  1702. * manage_workers - manage worker pool
  1703. * @worker: self
  1704. *
  1705. * Assume the manager role and manage the worker pool @worker belongs
  1706. * to. At any given time, there can be only zero or one manager per
  1707. * pool. The exclusion is handled automatically by this function.
  1708. *
  1709. * The caller can safely start processing works on false return. On
  1710. * true return, it's guaranteed that need_to_create_worker() is false
  1711. * and may_start_working() is true.
  1712. *
  1713. * CONTEXT:
  1714. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1715. * multiple times. Does GFP_KERNEL allocations.
  1716. *
  1717. * RETURNS:
  1718. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1719. * multiple times. Does GFP_KERNEL allocations.
  1720. */
  1721. static bool manage_workers(struct worker *worker)
  1722. {
  1723. struct worker_pool *pool = worker->pool;
  1724. bool ret = false;
  1725. /*
  1726. * Managership is governed by two mutexes - manager_arb and
  1727. * manager_mutex. manager_arb handles arbitration of manager role.
  1728. * Anyone who successfully grabs manager_arb wins the arbitration
  1729. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1730. * failure while holding pool->lock reliably indicates that someone
  1731. * else is managing the pool and the worker which failed trylock
  1732. * can proceed to executing work items. This means that anyone
  1733. * grabbing manager_arb is responsible for actually performing
  1734. * manager duties. If manager_arb is grabbed and released without
  1735. * actual management, the pool may stall indefinitely.
  1736. *
  1737. * manager_mutex is used for exclusion of actual management
  1738. * operations. The holder of manager_mutex can be sure that none
  1739. * of management operations, including creation and destruction of
  1740. * workers, won't take place until the mutex is released. Because
  1741. * manager_mutex doesn't interfere with manager role arbitration,
  1742. * it is guaranteed that the pool's management, while may be
  1743. * delayed, won't be disturbed by someone else grabbing
  1744. * manager_mutex.
  1745. */
  1746. if (!mutex_trylock(&pool->manager_arb))
  1747. return ret;
  1748. /*
  1749. * With manager arbitration won, manager_mutex would be free in
  1750. * most cases. trylock first without dropping @pool->lock.
  1751. */
  1752. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1753. spin_unlock_irq(&pool->lock);
  1754. mutex_lock(&pool->manager_mutex);
  1755. ret = true;
  1756. }
  1757. pool->flags &= ~POOL_MANAGE_WORKERS;
  1758. /*
  1759. * Destroy and then create so that may_start_working() is true
  1760. * on return.
  1761. */
  1762. ret |= maybe_destroy_workers(pool);
  1763. ret |= maybe_create_worker(pool);
  1764. mutex_unlock(&pool->manager_mutex);
  1765. mutex_unlock(&pool->manager_arb);
  1766. return ret;
  1767. }
  1768. /**
  1769. * process_one_work - process single work
  1770. * @worker: self
  1771. * @work: work to process
  1772. *
  1773. * Process @work. This function contains all the logics necessary to
  1774. * process a single work including synchronization against and
  1775. * interaction with other workers on the same cpu, queueing and
  1776. * flushing. As long as context requirement is met, any worker can
  1777. * call this function to process a work.
  1778. *
  1779. * CONTEXT:
  1780. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1781. */
  1782. static void process_one_work(struct worker *worker, struct work_struct *work)
  1783. __releases(&pool->lock)
  1784. __acquires(&pool->lock)
  1785. {
  1786. struct pool_workqueue *pwq = get_work_pwq(work);
  1787. struct worker_pool *pool = worker->pool;
  1788. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1789. int work_color;
  1790. struct worker *collision;
  1791. #ifdef CONFIG_LOCKDEP
  1792. /*
  1793. * It is permissible to free the struct work_struct from
  1794. * inside the function that is called from it, this we need to
  1795. * take into account for lockdep too. To avoid bogus "held
  1796. * lock freed" warnings as well as problems when looking into
  1797. * work->lockdep_map, make a copy and use that here.
  1798. */
  1799. struct lockdep_map lockdep_map;
  1800. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1801. #endif
  1802. /*
  1803. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1804. * necessary to avoid spurious warnings from rescuers servicing the
  1805. * unbound or a disassociated pool.
  1806. */
  1807. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1808. !(pool->flags & POOL_DISASSOCIATED) &&
  1809. raw_smp_processor_id() != pool->cpu);
  1810. /*
  1811. * A single work shouldn't be executed concurrently by
  1812. * multiple workers on a single cpu. Check whether anyone is
  1813. * already processing the work. If so, defer the work to the
  1814. * currently executing one.
  1815. */
  1816. collision = find_worker_executing_work(pool, work);
  1817. if (unlikely(collision)) {
  1818. move_linked_works(work, &collision->scheduled, NULL);
  1819. return;
  1820. }
  1821. /* claim and dequeue */
  1822. debug_work_deactivate(work);
  1823. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1824. worker->current_work = work;
  1825. worker->current_func = work->func;
  1826. worker->current_pwq = pwq;
  1827. work_color = get_work_color(work);
  1828. list_del_init(&work->entry);
  1829. /*
  1830. * CPU intensive works don't participate in concurrency
  1831. * management. They're the scheduler's responsibility.
  1832. */
  1833. if (unlikely(cpu_intensive))
  1834. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1835. /*
  1836. * Unbound pool isn't concurrency managed and work items should be
  1837. * executed ASAP. Wake up another worker if necessary.
  1838. */
  1839. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1840. wake_up_worker(pool);
  1841. /*
  1842. * Record the last pool and clear PENDING which should be the last
  1843. * update to @work. Also, do this inside @pool->lock so that
  1844. * PENDING and queued state changes happen together while IRQ is
  1845. * disabled.
  1846. */
  1847. set_work_pool_and_clear_pending(work, pool->id);
  1848. spin_unlock_irq(&pool->lock);
  1849. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1850. lock_map_acquire(&lockdep_map);
  1851. trace_workqueue_execute_start(work);
  1852. worker->current_func(work);
  1853. /*
  1854. * While we must be careful to not use "work" after this, the trace
  1855. * point will only record its address.
  1856. */
  1857. trace_workqueue_execute_end(work);
  1858. lock_map_release(&lockdep_map);
  1859. lock_map_release(&pwq->wq->lockdep_map);
  1860. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1861. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1862. " last function: %pf\n",
  1863. current->comm, preempt_count(), task_pid_nr(current),
  1864. worker->current_func);
  1865. debug_show_held_locks(current);
  1866. dump_stack();
  1867. }
  1868. spin_lock_irq(&pool->lock);
  1869. /* clear cpu intensive status */
  1870. if (unlikely(cpu_intensive))
  1871. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1872. /* we're done with it, release */
  1873. hash_del(&worker->hentry);
  1874. worker->current_work = NULL;
  1875. worker->current_func = NULL;
  1876. worker->current_pwq = NULL;
  1877. pwq_dec_nr_in_flight(pwq, work_color);
  1878. }
  1879. /**
  1880. * process_scheduled_works - process scheduled works
  1881. * @worker: self
  1882. *
  1883. * Process all scheduled works. Please note that the scheduled list
  1884. * may change while processing a work, so this function repeatedly
  1885. * fetches a work from the top and executes it.
  1886. *
  1887. * CONTEXT:
  1888. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1889. * multiple times.
  1890. */
  1891. static void process_scheduled_works(struct worker *worker)
  1892. {
  1893. while (!list_empty(&worker->scheduled)) {
  1894. struct work_struct *work = list_first_entry(&worker->scheduled,
  1895. struct work_struct, entry);
  1896. process_one_work(worker, work);
  1897. }
  1898. }
  1899. /**
  1900. * worker_thread - the worker thread function
  1901. * @__worker: self
  1902. *
  1903. * The worker thread function. All workers belong to a worker_pool -
  1904. * either a per-cpu one or dynamic unbound one. These workers process all
  1905. * work items regardless of their specific target workqueue. The only
  1906. * exception is work items which belong to workqueues with a rescuer which
  1907. * will be explained in rescuer_thread().
  1908. */
  1909. static int worker_thread(void *__worker)
  1910. {
  1911. struct worker *worker = __worker;
  1912. struct worker_pool *pool = worker->pool;
  1913. /* tell the scheduler that this is a workqueue worker */
  1914. worker->task->flags |= PF_WQ_WORKER;
  1915. woke_up:
  1916. spin_lock_irq(&pool->lock);
  1917. /* am I supposed to die? */
  1918. if (unlikely(worker->flags & WORKER_DIE)) {
  1919. spin_unlock_irq(&pool->lock);
  1920. WARN_ON_ONCE(!list_empty(&worker->entry));
  1921. worker->task->flags &= ~PF_WQ_WORKER;
  1922. return 0;
  1923. }
  1924. worker_leave_idle(worker);
  1925. recheck:
  1926. /* no more worker necessary? */
  1927. if (!need_more_worker(pool))
  1928. goto sleep;
  1929. /* do we need to manage? */
  1930. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1931. goto recheck;
  1932. /*
  1933. * ->scheduled list can only be filled while a worker is
  1934. * preparing to process a work or actually processing it.
  1935. * Make sure nobody diddled with it while I was sleeping.
  1936. */
  1937. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  1938. /*
  1939. * Finish PREP stage. We're guaranteed to have at least one idle
  1940. * worker or that someone else has already assumed the manager
  1941. * role. This is where @worker starts participating in concurrency
  1942. * management if applicable and concurrency management is restored
  1943. * after being rebound. See rebind_workers() for details.
  1944. */
  1945. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  1946. do {
  1947. struct work_struct *work =
  1948. list_first_entry(&pool->worklist,
  1949. struct work_struct, entry);
  1950. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1951. /* optimization path, not strictly necessary */
  1952. process_one_work(worker, work);
  1953. if (unlikely(!list_empty(&worker->scheduled)))
  1954. process_scheduled_works(worker);
  1955. } else {
  1956. move_linked_works(work, &worker->scheduled, NULL);
  1957. process_scheduled_works(worker);
  1958. }
  1959. } while (keep_working(pool));
  1960. worker_set_flags(worker, WORKER_PREP, false);
  1961. sleep:
  1962. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1963. goto recheck;
  1964. /*
  1965. * pool->lock is held and there's no work to process and no need to
  1966. * manage, sleep. Workers are woken up only while holding
  1967. * pool->lock or from local cpu, so setting the current state
  1968. * before releasing pool->lock is enough to prevent losing any
  1969. * event.
  1970. */
  1971. worker_enter_idle(worker);
  1972. __set_current_state(TASK_INTERRUPTIBLE);
  1973. spin_unlock_irq(&pool->lock);
  1974. schedule();
  1975. goto woke_up;
  1976. }
  1977. /**
  1978. * rescuer_thread - the rescuer thread function
  1979. * @__rescuer: self
  1980. *
  1981. * Workqueue rescuer thread function. There's one rescuer for each
  1982. * workqueue which has WQ_MEM_RECLAIM set.
  1983. *
  1984. * Regular work processing on a pool may block trying to create a new
  1985. * worker which uses GFP_KERNEL allocation which has slight chance of
  1986. * developing into deadlock if some works currently on the same queue
  1987. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1988. * the problem rescuer solves.
  1989. *
  1990. * When such condition is possible, the pool summons rescuers of all
  1991. * workqueues which have works queued on the pool and let them process
  1992. * those works so that forward progress can be guaranteed.
  1993. *
  1994. * This should happen rarely.
  1995. */
  1996. static int rescuer_thread(void *__rescuer)
  1997. {
  1998. struct worker *rescuer = __rescuer;
  1999. struct workqueue_struct *wq = rescuer->rescue_wq;
  2000. struct list_head *scheduled = &rescuer->scheduled;
  2001. set_user_nice(current, RESCUER_NICE_LEVEL);
  2002. /*
  2003. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2004. * doesn't participate in concurrency management.
  2005. */
  2006. rescuer->task->flags |= PF_WQ_WORKER;
  2007. repeat:
  2008. set_current_state(TASK_INTERRUPTIBLE);
  2009. if (kthread_should_stop()) {
  2010. __set_current_state(TASK_RUNNING);
  2011. rescuer->task->flags &= ~PF_WQ_WORKER;
  2012. return 0;
  2013. }
  2014. /* see whether any pwq is asking for help */
  2015. spin_lock_irq(&wq_mayday_lock);
  2016. while (!list_empty(&wq->maydays)) {
  2017. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2018. struct pool_workqueue, mayday_node);
  2019. struct worker_pool *pool = pwq->pool;
  2020. struct work_struct *work, *n;
  2021. __set_current_state(TASK_RUNNING);
  2022. list_del_init(&pwq->mayday_node);
  2023. spin_unlock_irq(&wq_mayday_lock);
  2024. /* migrate to the target cpu if possible */
  2025. worker_maybe_bind_and_lock(pool);
  2026. rescuer->pool = pool;
  2027. /*
  2028. * Slurp in all works issued via this workqueue and
  2029. * process'em.
  2030. */
  2031. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2032. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2033. if (get_work_pwq(work) == pwq)
  2034. move_linked_works(work, scheduled, &n);
  2035. process_scheduled_works(rescuer);
  2036. /*
  2037. * Leave this pool. If keep_working() is %true, notify a
  2038. * regular worker; otherwise, we end up with 0 concurrency
  2039. * and stalling the execution.
  2040. */
  2041. if (keep_working(pool))
  2042. wake_up_worker(pool);
  2043. rescuer->pool = NULL;
  2044. spin_unlock(&pool->lock);
  2045. spin_lock(&wq_mayday_lock);
  2046. }
  2047. spin_unlock_irq(&wq_mayday_lock);
  2048. /* rescuers should never participate in concurrency management */
  2049. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2050. schedule();
  2051. goto repeat;
  2052. }
  2053. struct wq_barrier {
  2054. struct work_struct work;
  2055. struct completion done;
  2056. };
  2057. static void wq_barrier_func(struct work_struct *work)
  2058. {
  2059. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2060. complete(&barr->done);
  2061. }
  2062. /**
  2063. * insert_wq_barrier - insert a barrier work
  2064. * @pwq: pwq to insert barrier into
  2065. * @barr: wq_barrier to insert
  2066. * @target: target work to attach @barr to
  2067. * @worker: worker currently executing @target, NULL if @target is not executing
  2068. *
  2069. * @barr is linked to @target such that @barr is completed only after
  2070. * @target finishes execution. Please note that the ordering
  2071. * guarantee is observed only with respect to @target and on the local
  2072. * cpu.
  2073. *
  2074. * Currently, a queued barrier can't be canceled. This is because
  2075. * try_to_grab_pending() can't determine whether the work to be
  2076. * grabbed is at the head of the queue and thus can't clear LINKED
  2077. * flag of the previous work while there must be a valid next work
  2078. * after a work with LINKED flag set.
  2079. *
  2080. * Note that when @worker is non-NULL, @target may be modified
  2081. * underneath us, so we can't reliably determine pwq from @target.
  2082. *
  2083. * CONTEXT:
  2084. * spin_lock_irq(pool->lock).
  2085. */
  2086. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2087. struct wq_barrier *barr,
  2088. struct work_struct *target, struct worker *worker)
  2089. {
  2090. struct list_head *head;
  2091. unsigned int linked = 0;
  2092. /*
  2093. * debugobject calls are safe here even with pool->lock locked
  2094. * as we know for sure that this will not trigger any of the
  2095. * checks and call back into the fixup functions where we
  2096. * might deadlock.
  2097. */
  2098. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2099. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2100. init_completion(&barr->done);
  2101. /*
  2102. * If @target is currently being executed, schedule the
  2103. * barrier to the worker; otherwise, put it after @target.
  2104. */
  2105. if (worker)
  2106. head = worker->scheduled.next;
  2107. else {
  2108. unsigned long *bits = work_data_bits(target);
  2109. head = target->entry.next;
  2110. /* there can already be other linked works, inherit and set */
  2111. linked = *bits & WORK_STRUCT_LINKED;
  2112. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2113. }
  2114. debug_work_activate(&barr->work);
  2115. insert_work(pwq, &barr->work, head,
  2116. work_color_to_flags(WORK_NO_COLOR) | linked);
  2117. }
  2118. /**
  2119. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2120. * @wq: workqueue being flushed
  2121. * @flush_color: new flush color, < 0 for no-op
  2122. * @work_color: new work color, < 0 for no-op
  2123. *
  2124. * Prepare pwqs for workqueue flushing.
  2125. *
  2126. * If @flush_color is non-negative, flush_color on all pwqs should be
  2127. * -1. If no pwq has in-flight commands at the specified color, all
  2128. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2129. * has in flight commands, its pwq->flush_color is set to
  2130. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2131. * wakeup logic is armed and %true is returned.
  2132. *
  2133. * The caller should have initialized @wq->first_flusher prior to
  2134. * calling this function with non-negative @flush_color. If
  2135. * @flush_color is negative, no flush color update is done and %false
  2136. * is returned.
  2137. *
  2138. * If @work_color is non-negative, all pwqs should have the same
  2139. * work_color which is previous to @work_color and all will be
  2140. * advanced to @work_color.
  2141. *
  2142. * CONTEXT:
  2143. * mutex_lock(wq->flush_mutex).
  2144. *
  2145. * RETURNS:
  2146. * %true if @flush_color >= 0 and there's something to flush. %false
  2147. * otherwise.
  2148. */
  2149. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2150. int flush_color, int work_color)
  2151. {
  2152. bool wait = false;
  2153. struct pool_workqueue *pwq;
  2154. if (flush_color >= 0) {
  2155. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2156. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2157. }
  2158. local_irq_disable();
  2159. for_each_pwq(pwq, wq) {
  2160. struct worker_pool *pool = pwq->pool;
  2161. spin_lock(&pool->lock);
  2162. if (flush_color >= 0) {
  2163. WARN_ON_ONCE(pwq->flush_color != -1);
  2164. if (pwq->nr_in_flight[flush_color]) {
  2165. pwq->flush_color = flush_color;
  2166. atomic_inc(&wq->nr_pwqs_to_flush);
  2167. wait = true;
  2168. }
  2169. }
  2170. if (work_color >= 0) {
  2171. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2172. pwq->work_color = work_color;
  2173. }
  2174. spin_unlock(&pool->lock);
  2175. }
  2176. local_irq_enable();
  2177. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2178. complete(&wq->first_flusher->done);
  2179. return wait;
  2180. }
  2181. /**
  2182. * flush_workqueue - ensure that any scheduled work has run to completion.
  2183. * @wq: workqueue to flush
  2184. *
  2185. * This function sleeps until all work items which were queued on entry
  2186. * have finished execution, but it is not livelocked by new incoming ones.
  2187. */
  2188. void flush_workqueue(struct workqueue_struct *wq)
  2189. {
  2190. struct wq_flusher this_flusher = {
  2191. .list = LIST_HEAD_INIT(this_flusher.list),
  2192. .flush_color = -1,
  2193. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2194. };
  2195. int next_color;
  2196. lock_map_acquire(&wq->lockdep_map);
  2197. lock_map_release(&wq->lockdep_map);
  2198. mutex_lock(&wq->flush_mutex);
  2199. /*
  2200. * Start-to-wait phase
  2201. */
  2202. next_color = work_next_color(wq->work_color);
  2203. if (next_color != wq->flush_color) {
  2204. /*
  2205. * Color space is not full. The current work_color
  2206. * becomes our flush_color and work_color is advanced
  2207. * by one.
  2208. */
  2209. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2210. this_flusher.flush_color = wq->work_color;
  2211. wq->work_color = next_color;
  2212. if (!wq->first_flusher) {
  2213. /* no flush in progress, become the first flusher */
  2214. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2215. wq->first_flusher = &this_flusher;
  2216. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2217. wq->work_color)) {
  2218. /* nothing to flush, done */
  2219. wq->flush_color = next_color;
  2220. wq->first_flusher = NULL;
  2221. goto out_unlock;
  2222. }
  2223. } else {
  2224. /* wait in queue */
  2225. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2226. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2227. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2228. }
  2229. } else {
  2230. /*
  2231. * Oops, color space is full, wait on overflow queue.
  2232. * The next flush completion will assign us
  2233. * flush_color and transfer to flusher_queue.
  2234. */
  2235. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2236. }
  2237. mutex_unlock(&wq->flush_mutex);
  2238. wait_for_completion(&this_flusher.done);
  2239. /*
  2240. * Wake-up-and-cascade phase
  2241. *
  2242. * First flushers are responsible for cascading flushes and
  2243. * handling overflow. Non-first flushers can simply return.
  2244. */
  2245. if (wq->first_flusher != &this_flusher)
  2246. return;
  2247. mutex_lock(&wq->flush_mutex);
  2248. /* we might have raced, check again with mutex held */
  2249. if (wq->first_flusher != &this_flusher)
  2250. goto out_unlock;
  2251. wq->first_flusher = NULL;
  2252. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2253. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2254. while (true) {
  2255. struct wq_flusher *next, *tmp;
  2256. /* complete all the flushers sharing the current flush color */
  2257. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2258. if (next->flush_color != wq->flush_color)
  2259. break;
  2260. list_del_init(&next->list);
  2261. complete(&next->done);
  2262. }
  2263. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2264. wq->flush_color != work_next_color(wq->work_color));
  2265. /* this flush_color is finished, advance by one */
  2266. wq->flush_color = work_next_color(wq->flush_color);
  2267. /* one color has been freed, handle overflow queue */
  2268. if (!list_empty(&wq->flusher_overflow)) {
  2269. /*
  2270. * Assign the same color to all overflowed
  2271. * flushers, advance work_color and append to
  2272. * flusher_queue. This is the start-to-wait
  2273. * phase for these overflowed flushers.
  2274. */
  2275. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2276. tmp->flush_color = wq->work_color;
  2277. wq->work_color = work_next_color(wq->work_color);
  2278. list_splice_tail_init(&wq->flusher_overflow,
  2279. &wq->flusher_queue);
  2280. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2281. }
  2282. if (list_empty(&wq->flusher_queue)) {
  2283. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2284. break;
  2285. }
  2286. /*
  2287. * Need to flush more colors. Make the next flusher
  2288. * the new first flusher and arm pwqs.
  2289. */
  2290. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2291. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2292. list_del_init(&next->list);
  2293. wq->first_flusher = next;
  2294. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2295. break;
  2296. /*
  2297. * Meh... this color is already done, clear first
  2298. * flusher and repeat cascading.
  2299. */
  2300. wq->first_flusher = NULL;
  2301. }
  2302. out_unlock:
  2303. mutex_unlock(&wq->flush_mutex);
  2304. }
  2305. EXPORT_SYMBOL_GPL(flush_workqueue);
  2306. /**
  2307. * drain_workqueue - drain a workqueue
  2308. * @wq: workqueue to drain
  2309. *
  2310. * Wait until the workqueue becomes empty. While draining is in progress,
  2311. * only chain queueing is allowed. IOW, only currently pending or running
  2312. * work items on @wq can queue further work items on it. @wq is flushed
  2313. * repeatedly until it becomes empty. The number of flushing is detemined
  2314. * by the depth of chaining and should be relatively short. Whine if it
  2315. * takes too long.
  2316. */
  2317. void drain_workqueue(struct workqueue_struct *wq)
  2318. {
  2319. unsigned int flush_cnt = 0;
  2320. struct pool_workqueue *pwq;
  2321. /*
  2322. * __queue_work() needs to test whether there are drainers, is much
  2323. * hotter than drain_workqueue() and already looks at @wq->flags.
  2324. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2325. */
  2326. mutex_lock(&wq_mutex);
  2327. if (!wq->nr_drainers++)
  2328. wq->flags |= __WQ_DRAINING;
  2329. mutex_unlock(&wq_mutex);
  2330. reflush:
  2331. flush_workqueue(wq);
  2332. local_irq_disable();
  2333. for_each_pwq(pwq, wq) {
  2334. bool drained;
  2335. spin_lock(&pwq->pool->lock);
  2336. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2337. spin_unlock(&pwq->pool->lock);
  2338. if (drained)
  2339. continue;
  2340. if (++flush_cnt == 10 ||
  2341. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2342. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2343. wq->name, flush_cnt);
  2344. local_irq_enable();
  2345. goto reflush;
  2346. }
  2347. local_irq_enable();
  2348. mutex_lock(&wq_mutex);
  2349. if (!--wq->nr_drainers)
  2350. wq->flags &= ~__WQ_DRAINING;
  2351. mutex_unlock(&wq_mutex);
  2352. }
  2353. EXPORT_SYMBOL_GPL(drain_workqueue);
  2354. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2355. {
  2356. struct worker *worker = NULL;
  2357. struct worker_pool *pool;
  2358. struct pool_workqueue *pwq;
  2359. might_sleep();
  2360. local_irq_disable();
  2361. pool = get_work_pool(work);
  2362. if (!pool) {
  2363. local_irq_enable();
  2364. return false;
  2365. }
  2366. spin_lock(&pool->lock);
  2367. /* see the comment in try_to_grab_pending() with the same code */
  2368. pwq = get_work_pwq(work);
  2369. if (pwq) {
  2370. if (unlikely(pwq->pool != pool))
  2371. goto already_gone;
  2372. } else {
  2373. worker = find_worker_executing_work(pool, work);
  2374. if (!worker)
  2375. goto already_gone;
  2376. pwq = worker->current_pwq;
  2377. }
  2378. insert_wq_barrier(pwq, barr, work, worker);
  2379. spin_unlock_irq(&pool->lock);
  2380. /*
  2381. * If @max_active is 1 or rescuer is in use, flushing another work
  2382. * item on the same workqueue may lead to deadlock. Make sure the
  2383. * flusher is not running on the same workqueue by verifying write
  2384. * access.
  2385. */
  2386. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2387. lock_map_acquire(&pwq->wq->lockdep_map);
  2388. else
  2389. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2390. lock_map_release(&pwq->wq->lockdep_map);
  2391. return true;
  2392. already_gone:
  2393. spin_unlock_irq(&pool->lock);
  2394. return false;
  2395. }
  2396. /**
  2397. * flush_work - wait for a work to finish executing the last queueing instance
  2398. * @work: the work to flush
  2399. *
  2400. * Wait until @work has finished execution. @work is guaranteed to be idle
  2401. * on return if it hasn't been requeued since flush started.
  2402. *
  2403. * RETURNS:
  2404. * %true if flush_work() waited for the work to finish execution,
  2405. * %false if it was already idle.
  2406. */
  2407. bool flush_work(struct work_struct *work)
  2408. {
  2409. struct wq_barrier barr;
  2410. lock_map_acquire(&work->lockdep_map);
  2411. lock_map_release(&work->lockdep_map);
  2412. if (start_flush_work(work, &barr)) {
  2413. wait_for_completion(&barr.done);
  2414. destroy_work_on_stack(&barr.work);
  2415. return true;
  2416. } else {
  2417. return false;
  2418. }
  2419. }
  2420. EXPORT_SYMBOL_GPL(flush_work);
  2421. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2422. {
  2423. unsigned long flags;
  2424. int ret;
  2425. do {
  2426. ret = try_to_grab_pending(work, is_dwork, &flags);
  2427. /*
  2428. * If someone else is canceling, wait for the same event it
  2429. * would be waiting for before retrying.
  2430. */
  2431. if (unlikely(ret == -ENOENT))
  2432. flush_work(work);
  2433. } while (unlikely(ret < 0));
  2434. /* tell other tasks trying to grab @work to back off */
  2435. mark_work_canceling(work);
  2436. local_irq_restore(flags);
  2437. flush_work(work);
  2438. clear_work_data(work);
  2439. return ret;
  2440. }
  2441. /**
  2442. * cancel_work_sync - cancel a work and wait for it to finish
  2443. * @work: the work to cancel
  2444. *
  2445. * Cancel @work and wait for its execution to finish. This function
  2446. * can be used even if the work re-queues itself or migrates to
  2447. * another workqueue. On return from this function, @work is
  2448. * guaranteed to be not pending or executing on any CPU.
  2449. *
  2450. * cancel_work_sync(&delayed_work->work) must not be used for
  2451. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2452. *
  2453. * The caller must ensure that the workqueue on which @work was last
  2454. * queued can't be destroyed before this function returns.
  2455. *
  2456. * RETURNS:
  2457. * %true if @work was pending, %false otherwise.
  2458. */
  2459. bool cancel_work_sync(struct work_struct *work)
  2460. {
  2461. return __cancel_work_timer(work, false);
  2462. }
  2463. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2464. /**
  2465. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2466. * @dwork: the delayed work to flush
  2467. *
  2468. * Delayed timer is cancelled and the pending work is queued for
  2469. * immediate execution. Like flush_work(), this function only
  2470. * considers the last queueing instance of @dwork.
  2471. *
  2472. * RETURNS:
  2473. * %true if flush_work() waited for the work to finish execution,
  2474. * %false if it was already idle.
  2475. */
  2476. bool flush_delayed_work(struct delayed_work *dwork)
  2477. {
  2478. local_irq_disable();
  2479. if (del_timer_sync(&dwork->timer))
  2480. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2481. local_irq_enable();
  2482. return flush_work(&dwork->work);
  2483. }
  2484. EXPORT_SYMBOL(flush_delayed_work);
  2485. /**
  2486. * cancel_delayed_work - cancel a delayed work
  2487. * @dwork: delayed_work to cancel
  2488. *
  2489. * Kill off a pending delayed_work. Returns %true if @dwork was pending
  2490. * and canceled; %false if wasn't pending. Note that the work callback
  2491. * function may still be running on return, unless it returns %true and the
  2492. * work doesn't re-arm itself. Explicitly flush or use
  2493. * cancel_delayed_work_sync() to wait on it.
  2494. *
  2495. * This function is safe to call from any context including IRQ handler.
  2496. */
  2497. bool cancel_delayed_work(struct delayed_work *dwork)
  2498. {
  2499. unsigned long flags;
  2500. int ret;
  2501. do {
  2502. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2503. } while (unlikely(ret == -EAGAIN));
  2504. if (unlikely(ret < 0))
  2505. return false;
  2506. set_work_pool_and_clear_pending(&dwork->work,
  2507. get_work_pool_id(&dwork->work));
  2508. local_irq_restore(flags);
  2509. return ret;
  2510. }
  2511. EXPORT_SYMBOL(cancel_delayed_work);
  2512. /**
  2513. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2514. * @dwork: the delayed work cancel
  2515. *
  2516. * This is cancel_work_sync() for delayed works.
  2517. *
  2518. * RETURNS:
  2519. * %true if @dwork was pending, %false otherwise.
  2520. */
  2521. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2522. {
  2523. return __cancel_work_timer(&dwork->work, true);
  2524. }
  2525. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2526. /**
  2527. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2528. * @func: the function to call
  2529. *
  2530. * schedule_on_each_cpu() executes @func on each online CPU using the
  2531. * system workqueue and blocks until all CPUs have completed.
  2532. * schedule_on_each_cpu() is very slow.
  2533. *
  2534. * RETURNS:
  2535. * 0 on success, -errno on failure.
  2536. */
  2537. int schedule_on_each_cpu(work_func_t func)
  2538. {
  2539. int cpu;
  2540. struct work_struct __percpu *works;
  2541. works = alloc_percpu(struct work_struct);
  2542. if (!works)
  2543. return -ENOMEM;
  2544. get_online_cpus();
  2545. for_each_online_cpu(cpu) {
  2546. struct work_struct *work = per_cpu_ptr(works, cpu);
  2547. INIT_WORK(work, func);
  2548. schedule_work_on(cpu, work);
  2549. }
  2550. for_each_online_cpu(cpu)
  2551. flush_work(per_cpu_ptr(works, cpu));
  2552. put_online_cpus();
  2553. free_percpu(works);
  2554. return 0;
  2555. }
  2556. /**
  2557. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2558. *
  2559. * Forces execution of the kernel-global workqueue and blocks until its
  2560. * completion.
  2561. *
  2562. * Think twice before calling this function! It's very easy to get into
  2563. * trouble if you don't take great care. Either of the following situations
  2564. * will lead to deadlock:
  2565. *
  2566. * One of the work items currently on the workqueue needs to acquire
  2567. * a lock held by your code or its caller.
  2568. *
  2569. * Your code is running in the context of a work routine.
  2570. *
  2571. * They will be detected by lockdep when they occur, but the first might not
  2572. * occur very often. It depends on what work items are on the workqueue and
  2573. * what locks they need, which you have no control over.
  2574. *
  2575. * In most situations flushing the entire workqueue is overkill; you merely
  2576. * need to know that a particular work item isn't queued and isn't running.
  2577. * In such cases you should use cancel_delayed_work_sync() or
  2578. * cancel_work_sync() instead.
  2579. */
  2580. void flush_scheduled_work(void)
  2581. {
  2582. flush_workqueue(system_wq);
  2583. }
  2584. EXPORT_SYMBOL(flush_scheduled_work);
  2585. /**
  2586. * execute_in_process_context - reliably execute the routine with user context
  2587. * @fn: the function to execute
  2588. * @ew: guaranteed storage for the execute work structure (must
  2589. * be available when the work executes)
  2590. *
  2591. * Executes the function immediately if process context is available,
  2592. * otherwise schedules the function for delayed execution.
  2593. *
  2594. * Returns: 0 - function was executed
  2595. * 1 - function was scheduled for execution
  2596. */
  2597. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2598. {
  2599. if (!in_interrupt()) {
  2600. fn(&ew->work);
  2601. return 0;
  2602. }
  2603. INIT_WORK(&ew->work, fn);
  2604. schedule_work(&ew->work);
  2605. return 1;
  2606. }
  2607. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2608. #ifdef CONFIG_SYSFS
  2609. /*
  2610. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2611. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2612. * following attributes.
  2613. *
  2614. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2615. * max_active RW int : maximum number of in-flight work items
  2616. *
  2617. * Unbound workqueues have the following extra attributes.
  2618. *
  2619. * id RO int : the associated pool ID
  2620. * nice RW int : nice value of the workers
  2621. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2622. */
  2623. struct wq_device {
  2624. struct workqueue_struct *wq;
  2625. struct device dev;
  2626. };
  2627. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2628. {
  2629. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2630. return wq_dev->wq;
  2631. }
  2632. static ssize_t wq_per_cpu_show(struct device *dev,
  2633. struct device_attribute *attr, char *buf)
  2634. {
  2635. struct workqueue_struct *wq = dev_to_wq(dev);
  2636. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2637. }
  2638. static ssize_t wq_max_active_show(struct device *dev,
  2639. struct device_attribute *attr, char *buf)
  2640. {
  2641. struct workqueue_struct *wq = dev_to_wq(dev);
  2642. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2643. }
  2644. static ssize_t wq_max_active_store(struct device *dev,
  2645. struct device_attribute *attr,
  2646. const char *buf, size_t count)
  2647. {
  2648. struct workqueue_struct *wq = dev_to_wq(dev);
  2649. int val;
  2650. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2651. return -EINVAL;
  2652. workqueue_set_max_active(wq, val);
  2653. return count;
  2654. }
  2655. static struct device_attribute wq_sysfs_attrs[] = {
  2656. __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
  2657. __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
  2658. __ATTR_NULL,
  2659. };
  2660. static ssize_t wq_pool_id_show(struct device *dev,
  2661. struct device_attribute *attr, char *buf)
  2662. {
  2663. struct workqueue_struct *wq = dev_to_wq(dev);
  2664. struct worker_pool *pool;
  2665. int written;
  2666. rcu_read_lock_sched();
  2667. pool = first_pwq(wq)->pool;
  2668. written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
  2669. rcu_read_unlock_sched();
  2670. return written;
  2671. }
  2672. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2673. char *buf)
  2674. {
  2675. struct workqueue_struct *wq = dev_to_wq(dev);
  2676. int written;
  2677. rcu_read_lock_sched();
  2678. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2679. first_pwq(wq)->pool->attrs->nice);
  2680. rcu_read_unlock_sched();
  2681. return written;
  2682. }
  2683. /* prepare workqueue_attrs for sysfs store operations */
  2684. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2685. {
  2686. struct workqueue_attrs *attrs;
  2687. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2688. if (!attrs)
  2689. return NULL;
  2690. rcu_read_lock_sched();
  2691. copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
  2692. rcu_read_unlock_sched();
  2693. return attrs;
  2694. }
  2695. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2696. const char *buf, size_t count)
  2697. {
  2698. struct workqueue_struct *wq = dev_to_wq(dev);
  2699. struct workqueue_attrs *attrs;
  2700. int ret;
  2701. attrs = wq_sysfs_prep_attrs(wq);
  2702. if (!attrs)
  2703. return -ENOMEM;
  2704. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2705. attrs->nice >= -20 && attrs->nice <= 19)
  2706. ret = apply_workqueue_attrs(wq, attrs);
  2707. else
  2708. ret = -EINVAL;
  2709. free_workqueue_attrs(attrs);
  2710. return ret ?: count;
  2711. }
  2712. static ssize_t wq_cpumask_show(struct device *dev,
  2713. struct device_attribute *attr, char *buf)
  2714. {
  2715. struct workqueue_struct *wq = dev_to_wq(dev);
  2716. int written;
  2717. rcu_read_lock_sched();
  2718. written = cpumask_scnprintf(buf, PAGE_SIZE,
  2719. first_pwq(wq)->pool->attrs->cpumask);
  2720. rcu_read_unlock_sched();
  2721. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2722. return written;
  2723. }
  2724. static ssize_t wq_cpumask_store(struct device *dev,
  2725. struct device_attribute *attr,
  2726. const char *buf, size_t count)
  2727. {
  2728. struct workqueue_struct *wq = dev_to_wq(dev);
  2729. struct workqueue_attrs *attrs;
  2730. int ret;
  2731. attrs = wq_sysfs_prep_attrs(wq);
  2732. if (!attrs)
  2733. return -ENOMEM;
  2734. ret = cpumask_parse(buf, attrs->cpumask);
  2735. if (!ret)
  2736. ret = apply_workqueue_attrs(wq, attrs);
  2737. free_workqueue_attrs(attrs);
  2738. return ret ?: count;
  2739. }
  2740. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2741. __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
  2742. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2743. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2744. __ATTR_NULL,
  2745. };
  2746. static struct bus_type wq_subsys = {
  2747. .name = "workqueue",
  2748. .dev_attrs = wq_sysfs_attrs,
  2749. };
  2750. static int __init wq_sysfs_init(void)
  2751. {
  2752. return subsys_virtual_register(&wq_subsys, NULL);
  2753. }
  2754. core_initcall(wq_sysfs_init);
  2755. static void wq_device_release(struct device *dev)
  2756. {
  2757. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2758. kfree(wq_dev);
  2759. }
  2760. /**
  2761. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2762. * @wq: the workqueue to register
  2763. *
  2764. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2765. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2766. * which is the preferred method.
  2767. *
  2768. * Workqueue user should use this function directly iff it wants to apply
  2769. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2770. * apply_workqueue_attrs() may race against userland updating the
  2771. * attributes.
  2772. *
  2773. * Returns 0 on success, -errno on failure.
  2774. */
  2775. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2776. {
  2777. struct wq_device *wq_dev;
  2778. int ret;
  2779. /*
  2780. * Adjusting max_active or creating new pwqs by applyting
  2781. * attributes breaks ordering guarantee. Disallow exposing ordered
  2782. * workqueues.
  2783. */
  2784. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2785. return -EINVAL;
  2786. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2787. if (!wq_dev)
  2788. return -ENOMEM;
  2789. wq_dev->wq = wq;
  2790. wq_dev->dev.bus = &wq_subsys;
  2791. wq_dev->dev.init_name = wq->name;
  2792. wq_dev->dev.release = wq_device_release;
  2793. /*
  2794. * unbound_attrs are created separately. Suppress uevent until
  2795. * everything is ready.
  2796. */
  2797. dev_set_uevent_suppress(&wq_dev->dev, true);
  2798. ret = device_register(&wq_dev->dev);
  2799. if (ret) {
  2800. kfree(wq_dev);
  2801. wq->wq_dev = NULL;
  2802. return ret;
  2803. }
  2804. if (wq->flags & WQ_UNBOUND) {
  2805. struct device_attribute *attr;
  2806. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2807. ret = device_create_file(&wq_dev->dev, attr);
  2808. if (ret) {
  2809. device_unregister(&wq_dev->dev);
  2810. wq->wq_dev = NULL;
  2811. return ret;
  2812. }
  2813. }
  2814. }
  2815. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2816. return 0;
  2817. }
  2818. /**
  2819. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2820. * @wq: the workqueue to unregister
  2821. *
  2822. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2823. */
  2824. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2825. {
  2826. struct wq_device *wq_dev = wq->wq_dev;
  2827. if (!wq->wq_dev)
  2828. return;
  2829. wq->wq_dev = NULL;
  2830. device_unregister(&wq_dev->dev);
  2831. }
  2832. #else /* CONFIG_SYSFS */
  2833. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2834. #endif /* CONFIG_SYSFS */
  2835. /**
  2836. * free_workqueue_attrs - free a workqueue_attrs
  2837. * @attrs: workqueue_attrs to free
  2838. *
  2839. * Undo alloc_workqueue_attrs().
  2840. */
  2841. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2842. {
  2843. if (attrs) {
  2844. free_cpumask_var(attrs->cpumask);
  2845. kfree(attrs);
  2846. }
  2847. }
  2848. /**
  2849. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2850. * @gfp_mask: allocation mask to use
  2851. *
  2852. * Allocate a new workqueue_attrs, initialize with default settings and
  2853. * return it. Returns NULL on failure.
  2854. */
  2855. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2856. {
  2857. struct workqueue_attrs *attrs;
  2858. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2859. if (!attrs)
  2860. goto fail;
  2861. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2862. goto fail;
  2863. cpumask_setall(attrs->cpumask);
  2864. return attrs;
  2865. fail:
  2866. free_workqueue_attrs(attrs);
  2867. return NULL;
  2868. }
  2869. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2870. const struct workqueue_attrs *from)
  2871. {
  2872. to->nice = from->nice;
  2873. cpumask_copy(to->cpumask, from->cpumask);
  2874. }
  2875. /*
  2876. * Hacky implementation of jhash of bitmaps which only considers the
  2877. * specified number of bits. We probably want a proper implementation in
  2878. * include/linux/jhash.h.
  2879. */
  2880. static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
  2881. {
  2882. int nr_longs = bits / BITS_PER_LONG;
  2883. int nr_leftover = bits % BITS_PER_LONG;
  2884. unsigned long leftover = 0;
  2885. if (nr_longs)
  2886. hash = jhash(bitmap, nr_longs * sizeof(long), hash);
  2887. if (nr_leftover) {
  2888. bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
  2889. hash = jhash(&leftover, sizeof(long), hash);
  2890. }
  2891. return hash;
  2892. }
  2893. /* hash value of the content of @attr */
  2894. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2895. {
  2896. u32 hash = 0;
  2897. hash = jhash_1word(attrs->nice, hash);
  2898. hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
  2899. return hash;
  2900. }
  2901. /* content equality test */
  2902. static bool wqattrs_equal(const struct workqueue_attrs *a,
  2903. const struct workqueue_attrs *b)
  2904. {
  2905. if (a->nice != b->nice)
  2906. return false;
  2907. if (!cpumask_equal(a->cpumask, b->cpumask))
  2908. return false;
  2909. return true;
  2910. }
  2911. /**
  2912. * init_worker_pool - initialize a newly zalloc'd worker_pool
  2913. * @pool: worker_pool to initialize
  2914. *
  2915. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  2916. * Returns 0 on success, -errno on failure. Even on failure, all fields
  2917. * inside @pool proper are initialized and put_unbound_pool() can be called
  2918. * on @pool safely to release it.
  2919. */
  2920. static int init_worker_pool(struct worker_pool *pool)
  2921. {
  2922. spin_lock_init(&pool->lock);
  2923. pool->id = -1;
  2924. pool->cpu = -1;
  2925. pool->flags |= POOL_DISASSOCIATED;
  2926. INIT_LIST_HEAD(&pool->worklist);
  2927. INIT_LIST_HEAD(&pool->idle_list);
  2928. hash_init(pool->busy_hash);
  2929. init_timer_deferrable(&pool->idle_timer);
  2930. pool->idle_timer.function = idle_worker_timeout;
  2931. pool->idle_timer.data = (unsigned long)pool;
  2932. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  2933. (unsigned long)pool);
  2934. mutex_init(&pool->manager_arb);
  2935. mutex_init(&pool->manager_mutex);
  2936. idr_init(&pool->worker_idr);
  2937. INIT_HLIST_NODE(&pool->hash_node);
  2938. pool->refcnt = 1;
  2939. /* shouldn't fail above this point */
  2940. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2941. if (!pool->attrs)
  2942. return -ENOMEM;
  2943. return 0;
  2944. }
  2945. static void rcu_free_pool(struct rcu_head *rcu)
  2946. {
  2947. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  2948. idr_destroy(&pool->worker_idr);
  2949. free_workqueue_attrs(pool->attrs);
  2950. kfree(pool);
  2951. }
  2952. /**
  2953. * put_unbound_pool - put a worker_pool
  2954. * @pool: worker_pool to put
  2955. *
  2956. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  2957. * safe manner. get_unbound_pool() calls this function on its failure path
  2958. * and this function should be able to release pools which went through,
  2959. * successfully or not, init_worker_pool().
  2960. */
  2961. static void put_unbound_pool(struct worker_pool *pool)
  2962. {
  2963. struct worker *worker;
  2964. mutex_lock(&wq_mutex);
  2965. if (--pool->refcnt) {
  2966. mutex_unlock(&wq_mutex);
  2967. return;
  2968. }
  2969. /* sanity checks */
  2970. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  2971. WARN_ON(!list_empty(&pool->worklist))) {
  2972. mutex_unlock(&wq_mutex);
  2973. return;
  2974. }
  2975. /* release id and unhash */
  2976. if (pool->id >= 0)
  2977. idr_remove(&worker_pool_idr, pool->id);
  2978. hash_del(&pool->hash_node);
  2979. mutex_unlock(&wq_mutex);
  2980. /*
  2981. * Become the manager and destroy all workers. Grabbing
  2982. * manager_arb prevents @pool's workers from blocking on
  2983. * manager_mutex.
  2984. */
  2985. mutex_lock(&pool->manager_arb);
  2986. mutex_lock(&pool->manager_mutex);
  2987. spin_lock_irq(&pool->lock);
  2988. while ((worker = first_worker(pool)))
  2989. destroy_worker(worker);
  2990. WARN_ON(pool->nr_workers || pool->nr_idle);
  2991. spin_unlock_irq(&pool->lock);
  2992. mutex_unlock(&pool->manager_mutex);
  2993. mutex_unlock(&pool->manager_arb);
  2994. /* shut down the timers */
  2995. del_timer_sync(&pool->idle_timer);
  2996. del_timer_sync(&pool->mayday_timer);
  2997. /* sched-RCU protected to allow dereferences from get_work_pool() */
  2998. call_rcu_sched(&pool->rcu, rcu_free_pool);
  2999. }
  3000. /**
  3001. * get_unbound_pool - get a worker_pool with the specified attributes
  3002. * @attrs: the attributes of the worker_pool to get
  3003. *
  3004. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3005. * reference count and return it. If there already is a matching
  3006. * worker_pool, it will be used; otherwise, this function attempts to
  3007. * create a new one. On failure, returns NULL.
  3008. */
  3009. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3010. {
  3011. u32 hash = wqattrs_hash(attrs);
  3012. struct worker_pool *pool;
  3013. mutex_lock(&wq_mutex);
  3014. /* do we already have a matching pool? */
  3015. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3016. if (wqattrs_equal(pool->attrs, attrs)) {
  3017. pool->refcnt++;
  3018. goto out_unlock;
  3019. }
  3020. }
  3021. /* nope, create a new one */
  3022. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3023. if (!pool || init_worker_pool(pool) < 0)
  3024. goto fail;
  3025. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3026. copy_workqueue_attrs(pool->attrs, attrs);
  3027. if (worker_pool_assign_id(pool) < 0)
  3028. goto fail;
  3029. /* create and start the initial worker */
  3030. if (create_and_start_worker(pool) < 0)
  3031. goto fail;
  3032. /* install */
  3033. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3034. out_unlock:
  3035. mutex_unlock(&wq_mutex);
  3036. return pool;
  3037. fail:
  3038. mutex_unlock(&wq_mutex);
  3039. if (pool)
  3040. put_unbound_pool(pool);
  3041. return NULL;
  3042. }
  3043. static void rcu_free_pwq(struct rcu_head *rcu)
  3044. {
  3045. kmem_cache_free(pwq_cache,
  3046. container_of(rcu, struct pool_workqueue, rcu));
  3047. }
  3048. /*
  3049. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3050. * and needs to be destroyed.
  3051. */
  3052. static void pwq_unbound_release_workfn(struct work_struct *work)
  3053. {
  3054. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3055. unbound_release_work);
  3056. struct workqueue_struct *wq = pwq->wq;
  3057. struct worker_pool *pool = pwq->pool;
  3058. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3059. return;
  3060. /*
  3061. * Unlink @pwq. Synchronization against flush_mutex isn't strictly
  3062. * necessary on release but do it anyway. It's easier to verify
  3063. * and consistent with the linking path.
  3064. */
  3065. mutex_lock(&wq->flush_mutex);
  3066. spin_lock_irq(&pwq_lock);
  3067. list_del_rcu(&pwq->pwqs_node);
  3068. spin_unlock_irq(&pwq_lock);
  3069. mutex_unlock(&wq->flush_mutex);
  3070. put_unbound_pool(pool);
  3071. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3072. /*
  3073. * If we're the last pwq going away, @wq is already dead and no one
  3074. * is gonna access it anymore. Free it.
  3075. */
  3076. if (list_empty(&wq->pwqs))
  3077. kfree(wq);
  3078. }
  3079. /**
  3080. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3081. * @pwq: target pool_workqueue
  3082. *
  3083. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3084. * workqueue's saved_max_active and activate delayed work items
  3085. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3086. */
  3087. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3088. {
  3089. struct workqueue_struct *wq = pwq->wq;
  3090. bool freezable = wq->flags & WQ_FREEZABLE;
  3091. /* for @wq->saved_max_active */
  3092. lockdep_assert_held(&pwq_lock);
  3093. /* fast exit for non-freezable wqs */
  3094. if (!freezable && pwq->max_active == wq->saved_max_active)
  3095. return;
  3096. spin_lock(&pwq->pool->lock);
  3097. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3098. pwq->max_active = wq->saved_max_active;
  3099. while (!list_empty(&pwq->delayed_works) &&
  3100. pwq->nr_active < pwq->max_active)
  3101. pwq_activate_first_delayed(pwq);
  3102. } else {
  3103. pwq->max_active = 0;
  3104. }
  3105. spin_unlock(&pwq->pool->lock);
  3106. }
  3107. static void init_and_link_pwq(struct pool_workqueue *pwq,
  3108. struct workqueue_struct *wq,
  3109. struct worker_pool *pool,
  3110. struct pool_workqueue **p_last_pwq)
  3111. {
  3112. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3113. pwq->pool = pool;
  3114. pwq->wq = wq;
  3115. pwq->flush_color = -1;
  3116. pwq->refcnt = 1;
  3117. INIT_LIST_HEAD(&pwq->delayed_works);
  3118. INIT_LIST_HEAD(&pwq->mayday_node);
  3119. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3120. mutex_lock(&wq->flush_mutex);
  3121. spin_lock_irq(&pwq_lock);
  3122. /*
  3123. * Set the matching work_color. This is synchronized with
  3124. * flush_mutex to avoid confusing flush_workqueue().
  3125. */
  3126. if (p_last_pwq)
  3127. *p_last_pwq = first_pwq(wq);
  3128. pwq->work_color = wq->work_color;
  3129. /* sync max_active to the current setting */
  3130. pwq_adjust_max_active(pwq);
  3131. /* link in @pwq */
  3132. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3133. spin_unlock_irq(&pwq_lock);
  3134. mutex_unlock(&wq->flush_mutex);
  3135. }
  3136. /**
  3137. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3138. * @wq: the target workqueue
  3139. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3140. *
  3141. * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
  3142. * current attributes, a new pwq is created and made the first pwq which
  3143. * will serve all new work items. Older pwqs are released as in-flight
  3144. * work items finish. Note that a work item which repeatedly requeues
  3145. * itself back-to-back will stay on its current pwq.
  3146. *
  3147. * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
  3148. * failure.
  3149. */
  3150. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3151. const struct workqueue_attrs *attrs)
  3152. {
  3153. struct pool_workqueue *pwq, *last_pwq;
  3154. struct worker_pool *pool;
  3155. /* only unbound workqueues can change attributes */
  3156. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3157. return -EINVAL;
  3158. /* creating multiple pwqs breaks ordering guarantee */
  3159. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3160. return -EINVAL;
  3161. pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
  3162. if (!pwq)
  3163. return -ENOMEM;
  3164. pool = get_unbound_pool(attrs);
  3165. if (!pool) {
  3166. kmem_cache_free(pwq_cache, pwq);
  3167. return -ENOMEM;
  3168. }
  3169. init_and_link_pwq(pwq, wq, pool, &last_pwq);
  3170. if (last_pwq) {
  3171. spin_lock_irq(&last_pwq->pool->lock);
  3172. put_pwq(last_pwq);
  3173. spin_unlock_irq(&last_pwq->pool->lock);
  3174. }
  3175. return 0;
  3176. }
  3177. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3178. {
  3179. bool highpri = wq->flags & WQ_HIGHPRI;
  3180. int cpu;
  3181. if (!(wq->flags & WQ_UNBOUND)) {
  3182. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3183. if (!wq->cpu_pwqs)
  3184. return -ENOMEM;
  3185. for_each_possible_cpu(cpu) {
  3186. struct pool_workqueue *pwq =
  3187. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3188. struct worker_pool *cpu_pools =
  3189. per_cpu(cpu_worker_pools, cpu);
  3190. init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
  3191. }
  3192. return 0;
  3193. } else {
  3194. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3195. }
  3196. }
  3197. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3198. const char *name)
  3199. {
  3200. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3201. if (max_active < 1 || max_active > lim)
  3202. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3203. max_active, name, 1, lim);
  3204. return clamp_val(max_active, 1, lim);
  3205. }
  3206. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3207. unsigned int flags,
  3208. int max_active,
  3209. struct lock_class_key *key,
  3210. const char *lock_name, ...)
  3211. {
  3212. va_list args, args1;
  3213. struct workqueue_struct *wq;
  3214. struct pool_workqueue *pwq;
  3215. size_t namelen;
  3216. /* determine namelen, allocate wq and format name */
  3217. va_start(args, lock_name);
  3218. va_copy(args1, args);
  3219. namelen = vsnprintf(NULL, 0, fmt, args) + 1;
  3220. wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
  3221. if (!wq)
  3222. return NULL;
  3223. vsnprintf(wq->name, namelen, fmt, args1);
  3224. va_end(args);
  3225. va_end(args1);
  3226. max_active = max_active ?: WQ_DFL_ACTIVE;
  3227. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3228. /* init wq */
  3229. wq->flags = flags;
  3230. wq->saved_max_active = max_active;
  3231. mutex_init(&wq->flush_mutex);
  3232. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3233. INIT_LIST_HEAD(&wq->pwqs);
  3234. INIT_LIST_HEAD(&wq->flusher_queue);
  3235. INIT_LIST_HEAD(&wq->flusher_overflow);
  3236. INIT_LIST_HEAD(&wq->maydays);
  3237. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3238. INIT_LIST_HEAD(&wq->list);
  3239. if (alloc_and_link_pwqs(wq) < 0)
  3240. goto err_free_wq;
  3241. /*
  3242. * Workqueues which may be used during memory reclaim should
  3243. * have a rescuer to guarantee forward progress.
  3244. */
  3245. if (flags & WQ_MEM_RECLAIM) {
  3246. struct worker *rescuer;
  3247. rescuer = alloc_worker();
  3248. if (!rescuer)
  3249. goto err_destroy;
  3250. rescuer->rescue_wq = wq;
  3251. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3252. wq->name);
  3253. if (IS_ERR(rescuer->task)) {
  3254. kfree(rescuer);
  3255. goto err_destroy;
  3256. }
  3257. wq->rescuer = rescuer;
  3258. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3259. wake_up_process(rescuer->task);
  3260. }
  3261. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3262. goto err_destroy;
  3263. /*
  3264. * wq_mutex protects global freeze state and workqueues list. Grab
  3265. * it, adjust max_active and add the new @wq to workqueues list.
  3266. */
  3267. mutex_lock(&wq_mutex);
  3268. spin_lock_irq(&pwq_lock);
  3269. for_each_pwq(pwq, wq)
  3270. pwq_adjust_max_active(pwq);
  3271. spin_unlock_irq(&pwq_lock);
  3272. list_add(&wq->list, &workqueues);
  3273. mutex_unlock(&wq_mutex);
  3274. return wq;
  3275. err_free_wq:
  3276. kfree(wq);
  3277. return NULL;
  3278. err_destroy:
  3279. destroy_workqueue(wq);
  3280. return NULL;
  3281. }
  3282. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3283. /**
  3284. * destroy_workqueue - safely terminate a workqueue
  3285. * @wq: target workqueue
  3286. *
  3287. * Safely destroy a workqueue. All work currently pending will be done first.
  3288. */
  3289. void destroy_workqueue(struct workqueue_struct *wq)
  3290. {
  3291. struct pool_workqueue *pwq;
  3292. /* drain it before proceeding with destruction */
  3293. drain_workqueue(wq);
  3294. /* sanity checks */
  3295. spin_lock_irq(&pwq_lock);
  3296. for_each_pwq(pwq, wq) {
  3297. int i;
  3298. for (i = 0; i < WORK_NR_COLORS; i++) {
  3299. if (WARN_ON(pwq->nr_in_flight[i])) {
  3300. spin_unlock_irq(&pwq_lock);
  3301. return;
  3302. }
  3303. }
  3304. if (WARN_ON(pwq->refcnt > 1) ||
  3305. WARN_ON(pwq->nr_active) ||
  3306. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3307. spin_unlock_irq(&pwq_lock);
  3308. return;
  3309. }
  3310. }
  3311. spin_unlock_irq(&pwq_lock);
  3312. /*
  3313. * wq list is used to freeze wq, remove from list after
  3314. * flushing is complete in case freeze races us.
  3315. */
  3316. mutex_lock(&wq_mutex);
  3317. list_del_init(&wq->list);
  3318. mutex_unlock(&wq_mutex);
  3319. workqueue_sysfs_unregister(wq);
  3320. if (wq->rescuer) {
  3321. kthread_stop(wq->rescuer->task);
  3322. kfree(wq->rescuer);
  3323. wq->rescuer = NULL;
  3324. }
  3325. if (!(wq->flags & WQ_UNBOUND)) {
  3326. /*
  3327. * The base ref is never dropped on per-cpu pwqs. Directly
  3328. * free the pwqs and wq.
  3329. */
  3330. free_percpu(wq->cpu_pwqs);
  3331. kfree(wq);
  3332. } else {
  3333. /*
  3334. * We're the sole accessor of @wq at this point. Directly
  3335. * access the first pwq and put the base ref. As both pwqs
  3336. * and pools are sched-RCU protected, the lock operations
  3337. * are safe. @wq will be freed when the last pwq is
  3338. * released.
  3339. */
  3340. pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
  3341. pwqs_node);
  3342. spin_lock_irq(&pwq->pool->lock);
  3343. put_pwq(pwq);
  3344. spin_unlock_irq(&pwq->pool->lock);
  3345. }
  3346. }
  3347. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3348. /**
  3349. * workqueue_set_max_active - adjust max_active of a workqueue
  3350. * @wq: target workqueue
  3351. * @max_active: new max_active value.
  3352. *
  3353. * Set max_active of @wq to @max_active.
  3354. *
  3355. * CONTEXT:
  3356. * Don't call from IRQ context.
  3357. */
  3358. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3359. {
  3360. struct pool_workqueue *pwq;
  3361. /* disallow meddling with max_active for ordered workqueues */
  3362. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3363. return;
  3364. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3365. spin_lock_irq(&pwq_lock);
  3366. wq->saved_max_active = max_active;
  3367. for_each_pwq(pwq, wq)
  3368. pwq_adjust_max_active(pwq);
  3369. spin_unlock_irq(&pwq_lock);
  3370. }
  3371. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3372. /**
  3373. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3374. *
  3375. * Determine whether %current is a workqueue rescuer. Can be used from
  3376. * work functions to determine whether it's being run off the rescuer task.
  3377. */
  3378. bool current_is_workqueue_rescuer(void)
  3379. {
  3380. struct worker *worker = current_wq_worker();
  3381. return worker && worker == worker->current_pwq->wq->rescuer;
  3382. }
  3383. /**
  3384. * workqueue_congested - test whether a workqueue is congested
  3385. * @cpu: CPU in question
  3386. * @wq: target workqueue
  3387. *
  3388. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3389. * no synchronization around this function and the test result is
  3390. * unreliable and only useful as advisory hints or for debugging.
  3391. *
  3392. * RETURNS:
  3393. * %true if congested, %false otherwise.
  3394. */
  3395. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3396. {
  3397. struct pool_workqueue *pwq;
  3398. bool ret;
  3399. preempt_disable();
  3400. if (!(wq->flags & WQ_UNBOUND))
  3401. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3402. else
  3403. pwq = first_pwq(wq);
  3404. ret = !list_empty(&pwq->delayed_works);
  3405. preempt_enable();
  3406. return ret;
  3407. }
  3408. EXPORT_SYMBOL_GPL(workqueue_congested);
  3409. /**
  3410. * work_busy - test whether a work is currently pending or running
  3411. * @work: the work to be tested
  3412. *
  3413. * Test whether @work is currently pending or running. There is no
  3414. * synchronization around this function and the test result is
  3415. * unreliable and only useful as advisory hints or for debugging.
  3416. *
  3417. * RETURNS:
  3418. * OR'd bitmask of WORK_BUSY_* bits.
  3419. */
  3420. unsigned int work_busy(struct work_struct *work)
  3421. {
  3422. struct worker_pool *pool;
  3423. unsigned long flags;
  3424. unsigned int ret = 0;
  3425. if (work_pending(work))
  3426. ret |= WORK_BUSY_PENDING;
  3427. local_irq_save(flags);
  3428. pool = get_work_pool(work);
  3429. if (pool) {
  3430. spin_lock(&pool->lock);
  3431. if (find_worker_executing_work(pool, work))
  3432. ret |= WORK_BUSY_RUNNING;
  3433. spin_unlock(&pool->lock);
  3434. }
  3435. local_irq_restore(flags);
  3436. return ret;
  3437. }
  3438. EXPORT_SYMBOL_GPL(work_busy);
  3439. /*
  3440. * CPU hotplug.
  3441. *
  3442. * There are two challenges in supporting CPU hotplug. Firstly, there
  3443. * are a lot of assumptions on strong associations among work, pwq and
  3444. * pool which make migrating pending and scheduled works very
  3445. * difficult to implement without impacting hot paths. Secondly,
  3446. * worker pools serve mix of short, long and very long running works making
  3447. * blocked draining impractical.
  3448. *
  3449. * This is solved by allowing the pools to be disassociated from the CPU
  3450. * running as an unbound one and allowing it to be reattached later if the
  3451. * cpu comes back online.
  3452. */
  3453. static void wq_unbind_fn(struct work_struct *work)
  3454. {
  3455. int cpu = smp_processor_id();
  3456. struct worker_pool *pool;
  3457. struct worker *worker;
  3458. int wi;
  3459. for_each_cpu_worker_pool(pool, cpu) {
  3460. WARN_ON_ONCE(cpu != smp_processor_id());
  3461. mutex_lock(&pool->manager_mutex);
  3462. spin_lock_irq(&pool->lock);
  3463. /*
  3464. * We've blocked all manager operations. Make all workers
  3465. * unbound and set DISASSOCIATED. Before this, all workers
  3466. * except for the ones which are still executing works from
  3467. * before the last CPU down must be on the cpu. After
  3468. * this, they may become diasporas.
  3469. */
  3470. for_each_pool_worker(worker, wi, pool)
  3471. worker->flags |= WORKER_UNBOUND;
  3472. pool->flags |= POOL_DISASSOCIATED;
  3473. spin_unlock_irq(&pool->lock);
  3474. mutex_unlock(&pool->manager_mutex);
  3475. }
  3476. /*
  3477. * Call schedule() so that we cross rq->lock and thus can guarantee
  3478. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  3479. * as scheduler callbacks may be invoked from other cpus.
  3480. */
  3481. schedule();
  3482. /*
  3483. * Sched callbacks are disabled now. Zap nr_running. After this,
  3484. * nr_running stays zero and need_more_worker() and keep_working()
  3485. * are always true as long as the worklist is not empty. Pools on
  3486. * @cpu now behave as unbound (in terms of concurrency management)
  3487. * pools which are served by workers tied to the CPU.
  3488. *
  3489. * On return from this function, the current worker would trigger
  3490. * unbound chain execution of pending work items if other workers
  3491. * didn't already.
  3492. */
  3493. for_each_cpu_worker_pool(pool, cpu)
  3494. atomic_set(&pool->nr_running, 0);
  3495. }
  3496. /**
  3497. * rebind_workers - rebind all workers of a pool to the associated CPU
  3498. * @pool: pool of interest
  3499. *
  3500. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3501. */
  3502. static void rebind_workers(struct worker_pool *pool)
  3503. {
  3504. struct worker *worker;
  3505. int wi;
  3506. lockdep_assert_held(&pool->manager_mutex);
  3507. /*
  3508. * Restore CPU affinity of all workers. As all idle workers should
  3509. * be on the run-queue of the associated CPU before any local
  3510. * wake-ups for concurrency management happen, restore CPU affinty
  3511. * of all workers first and then clear UNBOUND. As we're called
  3512. * from CPU_ONLINE, the following shouldn't fail.
  3513. */
  3514. for_each_pool_worker(worker, wi, pool)
  3515. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3516. pool->attrs->cpumask) < 0);
  3517. spin_lock_irq(&pool->lock);
  3518. for_each_pool_worker(worker, wi, pool) {
  3519. unsigned int worker_flags = worker->flags;
  3520. /*
  3521. * A bound idle worker should actually be on the runqueue
  3522. * of the associated CPU for local wake-ups targeting it to
  3523. * work. Kick all idle workers so that they migrate to the
  3524. * associated CPU. Doing this in the same loop as
  3525. * replacing UNBOUND with REBOUND is safe as no worker will
  3526. * be bound before @pool->lock is released.
  3527. */
  3528. if (worker_flags & WORKER_IDLE)
  3529. wake_up_process(worker->task);
  3530. /*
  3531. * We want to clear UNBOUND but can't directly call
  3532. * worker_clr_flags() or adjust nr_running. Atomically
  3533. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  3534. * @worker will clear REBOUND using worker_clr_flags() when
  3535. * it initiates the next execution cycle thus restoring
  3536. * concurrency management. Note that when or whether
  3537. * @worker clears REBOUND doesn't affect correctness.
  3538. *
  3539. * ACCESS_ONCE() is necessary because @worker->flags may be
  3540. * tested without holding any lock in
  3541. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  3542. * fail incorrectly leading to premature concurrency
  3543. * management operations.
  3544. */
  3545. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  3546. worker_flags |= WORKER_REBOUND;
  3547. worker_flags &= ~WORKER_UNBOUND;
  3548. ACCESS_ONCE(worker->flags) = worker_flags;
  3549. }
  3550. spin_unlock_irq(&pool->lock);
  3551. }
  3552. /*
  3553. * Workqueues should be brought up before normal priority CPU notifiers.
  3554. * This will be registered high priority CPU notifier.
  3555. */
  3556. static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  3557. unsigned long action,
  3558. void *hcpu)
  3559. {
  3560. int cpu = (unsigned long)hcpu;
  3561. struct worker_pool *pool;
  3562. switch (action & ~CPU_TASKS_FROZEN) {
  3563. case CPU_UP_PREPARE:
  3564. for_each_cpu_worker_pool(pool, cpu) {
  3565. if (pool->nr_workers)
  3566. continue;
  3567. if (create_and_start_worker(pool) < 0)
  3568. return NOTIFY_BAD;
  3569. }
  3570. break;
  3571. case CPU_DOWN_FAILED:
  3572. case CPU_ONLINE:
  3573. for_each_cpu_worker_pool(pool, cpu) {
  3574. mutex_lock(&pool->manager_mutex);
  3575. spin_lock_irq(&pool->lock);
  3576. pool->flags &= ~POOL_DISASSOCIATED;
  3577. spin_unlock_irq(&pool->lock);
  3578. rebind_workers(pool);
  3579. mutex_unlock(&pool->manager_mutex);
  3580. }
  3581. break;
  3582. }
  3583. return NOTIFY_OK;
  3584. }
  3585. /*
  3586. * Workqueues should be brought down after normal priority CPU notifiers.
  3587. * This will be registered as low priority CPU notifier.
  3588. */
  3589. static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3590. unsigned long action,
  3591. void *hcpu)
  3592. {
  3593. int cpu = (unsigned long)hcpu;
  3594. struct work_struct unbind_work;
  3595. switch (action & ~CPU_TASKS_FROZEN) {
  3596. case CPU_DOWN_PREPARE:
  3597. /* unbinding should happen on the local CPU */
  3598. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  3599. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  3600. flush_work(&unbind_work);
  3601. break;
  3602. }
  3603. return NOTIFY_OK;
  3604. }
  3605. #ifdef CONFIG_SMP
  3606. struct work_for_cpu {
  3607. struct work_struct work;
  3608. long (*fn)(void *);
  3609. void *arg;
  3610. long ret;
  3611. };
  3612. static void work_for_cpu_fn(struct work_struct *work)
  3613. {
  3614. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  3615. wfc->ret = wfc->fn(wfc->arg);
  3616. }
  3617. /**
  3618. * work_on_cpu - run a function in user context on a particular cpu
  3619. * @cpu: the cpu to run on
  3620. * @fn: the function to run
  3621. * @arg: the function arg
  3622. *
  3623. * This will return the value @fn returns.
  3624. * It is up to the caller to ensure that the cpu doesn't go offline.
  3625. * The caller must not hold any locks which would prevent @fn from completing.
  3626. */
  3627. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  3628. {
  3629. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  3630. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  3631. schedule_work_on(cpu, &wfc.work);
  3632. flush_work(&wfc.work);
  3633. return wfc.ret;
  3634. }
  3635. EXPORT_SYMBOL_GPL(work_on_cpu);
  3636. #endif /* CONFIG_SMP */
  3637. #ifdef CONFIG_FREEZER
  3638. /**
  3639. * freeze_workqueues_begin - begin freezing workqueues
  3640. *
  3641. * Start freezing workqueues. After this function returns, all freezable
  3642. * workqueues will queue new works to their delayed_works list instead of
  3643. * pool->worklist.
  3644. *
  3645. * CONTEXT:
  3646. * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
  3647. */
  3648. void freeze_workqueues_begin(void)
  3649. {
  3650. struct worker_pool *pool;
  3651. struct workqueue_struct *wq;
  3652. struct pool_workqueue *pwq;
  3653. int pi;
  3654. mutex_lock(&wq_mutex);
  3655. WARN_ON_ONCE(workqueue_freezing);
  3656. workqueue_freezing = true;
  3657. /* set FREEZING */
  3658. for_each_pool(pool, pi) {
  3659. spin_lock_irq(&pool->lock);
  3660. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  3661. pool->flags |= POOL_FREEZING;
  3662. spin_unlock_irq(&pool->lock);
  3663. }
  3664. /* suppress further executions by setting max_active to zero */
  3665. spin_lock_irq(&pwq_lock);
  3666. list_for_each_entry(wq, &workqueues, list) {
  3667. for_each_pwq(pwq, wq)
  3668. pwq_adjust_max_active(pwq);
  3669. }
  3670. spin_unlock_irq(&pwq_lock);
  3671. mutex_unlock(&wq_mutex);
  3672. }
  3673. /**
  3674. * freeze_workqueues_busy - are freezable workqueues still busy?
  3675. *
  3676. * Check whether freezing is complete. This function must be called
  3677. * between freeze_workqueues_begin() and thaw_workqueues().
  3678. *
  3679. * CONTEXT:
  3680. * Grabs and releases wq_mutex.
  3681. *
  3682. * RETURNS:
  3683. * %true if some freezable workqueues are still busy. %false if freezing
  3684. * is complete.
  3685. */
  3686. bool freeze_workqueues_busy(void)
  3687. {
  3688. bool busy = false;
  3689. struct workqueue_struct *wq;
  3690. struct pool_workqueue *pwq;
  3691. mutex_lock(&wq_mutex);
  3692. WARN_ON_ONCE(!workqueue_freezing);
  3693. list_for_each_entry(wq, &workqueues, list) {
  3694. if (!(wq->flags & WQ_FREEZABLE))
  3695. continue;
  3696. /*
  3697. * nr_active is monotonically decreasing. It's safe
  3698. * to peek without lock.
  3699. */
  3700. preempt_disable();
  3701. for_each_pwq(pwq, wq) {
  3702. WARN_ON_ONCE(pwq->nr_active < 0);
  3703. if (pwq->nr_active) {
  3704. busy = true;
  3705. preempt_enable();
  3706. goto out_unlock;
  3707. }
  3708. }
  3709. preempt_enable();
  3710. }
  3711. out_unlock:
  3712. mutex_unlock(&wq_mutex);
  3713. return busy;
  3714. }
  3715. /**
  3716. * thaw_workqueues - thaw workqueues
  3717. *
  3718. * Thaw workqueues. Normal queueing is restored and all collected
  3719. * frozen works are transferred to their respective pool worklists.
  3720. *
  3721. * CONTEXT:
  3722. * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
  3723. */
  3724. void thaw_workqueues(void)
  3725. {
  3726. struct workqueue_struct *wq;
  3727. struct pool_workqueue *pwq;
  3728. struct worker_pool *pool;
  3729. int pi;
  3730. mutex_lock(&wq_mutex);
  3731. if (!workqueue_freezing)
  3732. goto out_unlock;
  3733. /* clear FREEZING */
  3734. for_each_pool(pool, pi) {
  3735. spin_lock_irq(&pool->lock);
  3736. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  3737. pool->flags &= ~POOL_FREEZING;
  3738. spin_unlock_irq(&pool->lock);
  3739. }
  3740. /* restore max_active and repopulate worklist */
  3741. spin_lock_irq(&pwq_lock);
  3742. list_for_each_entry(wq, &workqueues, list) {
  3743. for_each_pwq(pwq, wq)
  3744. pwq_adjust_max_active(pwq);
  3745. }
  3746. spin_unlock_irq(&pwq_lock);
  3747. /* kick workers */
  3748. for_each_pool(pool, pi) {
  3749. spin_lock_irq(&pool->lock);
  3750. wake_up_worker(pool);
  3751. spin_unlock_irq(&pool->lock);
  3752. }
  3753. workqueue_freezing = false;
  3754. out_unlock:
  3755. mutex_unlock(&wq_mutex);
  3756. }
  3757. #endif /* CONFIG_FREEZER */
  3758. static int __init init_workqueues(void)
  3759. {
  3760. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  3761. int i, cpu;
  3762. /* make sure we have enough bits for OFFQ pool ID */
  3763. BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
  3764. WORK_CPU_END * NR_STD_WORKER_POOLS);
  3765. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  3766. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  3767. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3768. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3769. /* initialize CPU pools */
  3770. for_each_possible_cpu(cpu) {
  3771. struct worker_pool *pool;
  3772. i = 0;
  3773. for_each_cpu_worker_pool(pool, cpu) {
  3774. BUG_ON(init_worker_pool(pool));
  3775. pool->cpu = cpu;
  3776. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  3777. pool->attrs->nice = std_nice[i++];
  3778. /* alloc pool ID */
  3779. mutex_lock(&wq_mutex);
  3780. BUG_ON(worker_pool_assign_id(pool));
  3781. mutex_unlock(&wq_mutex);
  3782. }
  3783. }
  3784. /* create the initial worker */
  3785. for_each_online_cpu(cpu) {
  3786. struct worker_pool *pool;
  3787. for_each_cpu_worker_pool(pool, cpu) {
  3788. pool->flags &= ~POOL_DISASSOCIATED;
  3789. BUG_ON(create_and_start_worker(pool) < 0);
  3790. }
  3791. }
  3792. /* create default unbound wq attrs */
  3793. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  3794. struct workqueue_attrs *attrs;
  3795. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  3796. attrs->nice = std_nice[i];
  3797. cpumask_setall(attrs->cpumask);
  3798. unbound_std_wq_attrs[i] = attrs;
  3799. }
  3800. system_wq = alloc_workqueue("events", 0, 0);
  3801. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  3802. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3803. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3804. WQ_UNBOUND_MAX_ACTIVE);
  3805. system_freezable_wq = alloc_workqueue("events_freezable",
  3806. WQ_FREEZABLE, 0);
  3807. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  3808. !system_unbound_wq || !system_freezable_wq);
  3809. return 0;
  3810. }
  3811. early_initcall(init_workqueues);