sched.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. #ifdef CONFIG_FAIR_GROUP_SCHED
  158. struct cfs_rq;
  159. /* task group related information */
  160. struct task_grp {
  161. /* schedulable entities of this group on each cpu */
  162. struct sched_entity **se;
  163. /* runqueue "owned" by this group on each cpu */
  164. struct cfs_rq **cfs_rq;
  165. unsigned long shares;
  166. };
  167. /* Default task group's sched entity on each cpu */
  168. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  169. /* Default task group's cfs_rq on each cpu */
  170. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  171. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  172. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  173. /* Default task group.
  174. * Every task in system belong to this group at bootup.
  175. */
  176. struct task_grp init_task_grp = {
  177. .se = init_sched_entity_p,
  178. .cfs_rq = init_cfs_rq_p,
  179. };
  180. #ifdef CONFIG_FAIR_USER_SCHED
  181. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  182. #else
  183. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  184. #endif
  185. static int init_task_grp_load = INIT_TASK_GRP_LOAD;
  186. /* return group to which a task belongs */
  187. static inline struct task_grp *task_grp(struct task_struct *p)
  188. {
  189. struct task_grp *tg;
  190. #ifdef CONFIG_FAIR_USER_SCHED
  191. tg = p->user->tg;
  192. #else
  193. tg = &init_task_grp;
  194. #endif
  195. return tg;
  196. }
  197. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  198. static inline void set_task_cfs_rq(struct task_struct *p)
  199. {
  200. p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
  201. p->se.parent = task_grp(p)->se[task_cpu(p)];
  202. }
  203. #else
  204. static inline void set_task_cfs_rq(struct task_struct *p) { }
  205. #endif /* CONFIG_FAIR_GROUP_SCHED */
  206. /* CFS-related fields in a runqueue */
  207. struct cfs_rq {
  208. struct load_weight load;
  209. unsigned long nr_running;
  210. u64 exec_clock;
  211. u64 min_vruntime;
  212. struct rb_root tasks_timeline;
  213. struct rb_node *rb_leftmost;
  214. struct rb_node *rb_load_balance_curr;
  215. /* 'curr' points to currently running entity on this cfs_rq.
  216. * It is set to NULL otherwise (i.e when none are currently running).
  217. */
  218. struct sched_entity *curr;
  219. unsigned long nr_spread_over;
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  222. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  223. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  224. * (like users, containers etc.)
  225. *
  226. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  227. * list is used during load balance.
  228. */
  229. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  230. struct task_grp *tg; /* group that "owns" this runqueue */
  231. struct rcu_head rcu;
  232. #endif
  233. };
  234. /* Real-Time classes' related field in a runqueue: */
  235. struct rt_rq {
  236. struct rt_prio_array active;
  237. int rt_load_balance_idx;
  238. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  239. };
  240. /*
  241. * This is the main, per-CPU runqueue data structure.
  242. *
  243. * Locking rule: those places that want to lock multiple runqueues
  244. * (such as the load balancing or the thread migration code), lock
  245. * acquire operations must be ordered by ascending &runqueue.
  246. */
  247. struct rq {
  248. spinlock_t lock; /* runqueue lock */
  249. /*
  250. * nr_running and cpu_load should be in the same cacheline because
  251. * remote CPUs use both these fields when doing load calculation.
  252. */
  253. unsigned long nr_running;
  254. #define CPU_LOAD_IDX_MAX 5
  255. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  256. unsigned char idle_at_tick;
  257. #ifdef CONFIG_NO_HZ
  258. unsigned char in_nohz_recently;
  259. #endif
  260. struct load_weight load; /* capture load from *all* tasks on this cpu */
  261. unsigned long nr_load_updates;
  262. u64 nr_switches;
  263. struct cfs_rq cfs;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  266. #endif
  267. struct rt_rq rt;
  268. /*
  269. * This is part of a global counter where only the total sum
  270. * over all CPUs matters. A task can increase this counter on
  271. * one CPU and if it got migrated afterwards it may decrease
  272. * it on another CPU. Always updated under the runqueue lock:
  273. */
  274. unsigned long nr_uninterruptible;
  275. struct task_struct *curr, *idle;
  276. unsigned long next_balance;
  277. struct mm_struct *prev_mm;
  278. u64 clock, prev_clock_raw;
  279. s64 clock_max_delta;
  280. unsigned int clock_warps, clock_overflows;
  281. u64 idle_clock;
  282. unsigned int clock_deep_idle_events;
  283. u64 tick_timestamp;
  284. atomic_t nr_iowait;
  285. #ifdef CONFIG_SMP
  286. struct sched_domain *sd;
  287. /* For active balancing */
  288. int active_balance;
  289. int push_cpu;
  290. int cpu; /* cpu of this runqueue */
  291. struct task_struct *migration_thread;
  292. struct list_head migration_queue;
  293. #endif
  294. #ifdef CONFIG_SCHEDSTATS
  295. /* latency stats */
  296. struct sched_info rq_sched_info;
  297. /* sys_sched_yield() stats */
  298. unsigned long yld_exp_empty;
  299. unsigned long yld_act_empty;
  300. unsigned long yld_both_empty;
  301. unsigned long yld_count;
  302. /* schedule() stats */
  303. unsigned long sched_switch;
  304. unsigned long sched_count;
  305. unsigned long sched_goidle;
  306. /* try_to_wake_up() stats */
  307. unsigned long ttwu_count;
  308. unsigned long ttwu_local;
  309. /* BKL stats */
  310. unsigned long bkl_count;
  311. #endif
  312. struct lock_class_key rq_lock_key;
  313. };
  314. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  315. static DEFINE_MUTEX(sched_hotcpu_mutex);
  316. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  317. {
  318. rq->curr->sched_class->check_preempt_curr(rq, p);
  319. }
  320. static inline int cpu_of(struct rq *rq)
  321. {
  322. #ifdef CONFIG_SMP
  323. return rq->cpu;
  324. #else
  325. return 0;
  326. #endif
  327. }
  328. /*
  329. * Update the per-runqueue clock, as finegrained as the platform can give
  330. * us, but without assuming monotonicity, etc.:
  331. */
  332. static void __update_rq_clock(struct rq *rq)
  333. {
  334. u64 prev_raw = rq->prev_clock_raw;
  335. u64 now = sched_clock();
  336. s64 delta = now - prev_raw;
  337. u64 clock = rq->clock;
  338. #ifdef CONFIG_SCHED_DEBUG
  339. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  340. #endif
  341. /*
  342. * Protect against sched_clock() occasionally going backwards:
  343. */
  344. if (unlikely(delta < 0)) {
  345. clock++;
  346. rq->clock_warps++;
  347. } else {
  348. /*
  349. * Catch too large forward jumps too:
  350. */
  351. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  352. if (clock < rq->tick_timestamp + TICK_NSEC)
  353. clock = rq->tick_timestamp + TICK_NSEC;
  354. else
  355. clock++;
  356. rq->clock_overflows++;
  357. } else {
  358. if (unlikely(delta > rq->clock_max_delta))
  359. rq->clock_max_delta = delta;
  360. clock += delta;
  361. }
  362. }
  363. rq->prev_clock_raw = now;
  364. rq->clock = clock;
  365. }
  366. static void update_rq_clock(struct rq *rq)
  367. {
  368. if (likely(smp_processor_id() == cpu_of(rq)))
  369. __update_rq_clock(rq);
  370. }
  371. /*
  372. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  373. * See detach_destroy_domains: synchronize_sched for details.
  374. *
  375. * The domain tree of any CPU may only be accessed from within
  376. * preempt-disabled sections.
  377. */
  378. #define for_each_domain(cpu, __sd) \
  379. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  380. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  381. #define this_rq() (&__get_cpu_var(runqueues))
  382. #define task_rq(p) cpu_rq(task_cpu(p))
  383. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  384. /*
  385. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  386. */
  387. #ifdef CONFIG_SCHED_DEBUG
  388. # define const_debug __read_mostly
  389. #else
  390. # define const_debug static const
  391. #endif
  392. /*
  393. * Debugging: various feature bits
  394. */
  395. enum {
  396. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  397. SCHED_FEAT_START_DEBIT = 2,
  398. SCHED_FEAT_USE_TREE_AVG = 4,
  399. SCHED_FEAT_APPROX_AVG = 8,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  403. SCHED_FEAT_START_DEBIT *1 |
  404. SCHED_FEAT_USE_TREE_AVG *0 |
  405. SCHED_FEAT_APPROX_AVG *0;
  406. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  407. /*
  408. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  409. * clock constructed from sched_clock():
  410. */
  411. unsigned long long cpu_clock(int cpu)
  412. {
  413. unsigned long long now;
  414. unsigned long flags;
  415. struct rq *rq;
  416. local_irq_save(flags);
  417. rq = cpu_rq(cpu);
  418. update_rq_clock(rq);
  419. now = rq->clock;
  420. local_irq_restore(flags);
  421. return now;
  422. }
  423. #ifndef prepare_arch_switch
  424. # define prepare_arch_switch(next) do { } while (0)
  425. #endif
  426. #ifndef finish_arch_switch
  427. # define finish_arch_switch(prev) do { } while (0)
  428. #endif
  429. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  430. static inline int task_running(struct rq *rq, struct task_struct *p)
  431. {
  432. return rq->curr == p;
  433. }
  434. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  435. {
  436. }
  437. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  438. {
  439. #ifdef CONFIG_DEBUG_SPINLOCK
  440. /* this is a valid case when another task releases the spinlock */
  441. rq->lock.owner = current;
  442. #endif
  443. /*
  444. * If we are tracking spinlock dependencies then we have to
  445. * fix up the runqueue lock - which gets 'carried over' from
  446. * prev into current:
  447. */
  448. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  449. spin_unlock_irq(&rq->lock);
  450. }
  451. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  452. static inline int task_running(struct rq *rq, struct task_struct *p)
  453. {
  454. #ifdef CONFIG_SMP
  455. return p->oncpu;
  456. #else
  457. return rq->curr == p;
  458. #endif
  459. }
  460. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  461. {
  462. #ifdef CONFIG_SMP
  463. /*
  464. * We can optimise this out completely for !SMP, because the
  465. * SMP rebalancing from interrupt is the only thing that cares
  466. * here.
  467. */
  468. next->oncpu = 1;
  469. #endif
  470. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  471. spin_unlock_irq(&rq->lock);
  472. #else
  473. spin_unlock(&rq->lock);
  474. #endif
  475. }
  476. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  477. {
  478. #ifdef CONFIG_SMP
  479. /*
  480. * After ->oncpu is cleared, the task can be moved to a different CPU.
  481. * We must ensure this doesn't happen until the switch is completely
  482. * finished.
  483. */
  484. smp_wmb();
  485. prev->oncpu = 0;
  486. #endif
  487. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  488. local_irq_enable();
  489. #endif
  490. }
  491. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  492. /*
  493. * __task_rq_lock - lock the runqueue a given task resides on.
  494. * Must be called interrupts disabled.
  495. */
  496. static inline struct rq *__task_rq_lock(struct task_struct *p)
  497. __acquires(rq->lock)
  498. {
  499. struct rq *rq;
  500. repeat_lock_task:
  501. rq = task_rq(p);
  502. spin_lock(&rq->lock);
  503. if (unlikely(rq != task_rq(p))) {
  504. spin_unlock(&rq->lock);
  505. goto repeat_lock_task;
  506. }
  507. return rq;
  508. }
  509. /*
  510. * task_rq_lock - lock the runqueue a given task resides on and disable
  511. * interrupts. Note the ordering: we can safely lookup the task_rq without
  512. * explicitly disabling preemption.
  513. */
  514. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  515. __acquires(rq->lock)
  516. {
  517. struct rq *rq;
  518. repeat_lock_task:
  519. local_irq_save(*flags);
  520. rq = task_rq(p);
  521. spin_lock(&rq->lock);
  522. if (unlikely(rq != task_rq(p))) {
  523. spin_unlock_irqrestore(&rq->lock, *flags);
  524. goto repeat_lock_task;
  525. }
  526. return rq;
  527. }
  528. static void __task_rq_unlock(struct rq *rq)
  529. __releases(rq->lock)
  530. {
  531. spin_unlock(&rq->lock);
  532. }
  533. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  534. __releases(rq->lock)
  535. {
  536. spin_unlock_irqrestore(&rq->lock, *flags);
  537. }
  538. /*
  539. * this_rq_lock - lock this runqueue and disable interrupts.
  540. */
  541. static struct rq *this_rq_lock(void)
  542. __acquires(rq->lock)
  543. {
  544. struct rq *rq;
  545. local_irq_disable();
  546. rq = this_rq();
  547. spin_lock(&rq->lock);
  548. return rq;
  549. }
  550. /*
  551. * We are going deep-idle (irqs are disabled):
  552. */
  553. void sched_clock_idle_sleep_event(void)
  554. {
  555. struct rq *rq = cpu_rq(smp_processor_id());
  556. spin_lock(&rq->lock);
  557. __update_rq_clock(rq);
  558. spin_unlock(&rq->lock);
  559. rq->clock_deep_idle_events++;
  560. }
  561. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  562. /*
  563. * We just idled delta nanoseconds (called with irqs disabled):
  564. */
  565. void sched_clock_idle_wakeup_event(u64 delta_ns)
  566. {
  567. struct rq *rq = cpu_rq(smp_processor_id());
  568. u64 now = sched_clock();
  569. rq->idle_clock += delta_ns;
  570. /*
  571. * Override the previous timestamp and ignore all
  572. * sched_clock() deltas that occured while we idled,
  573. * and use the PM-provided delta_ns to advance the
  574. * rq clock:
  575. */
  576. spin_lock(&rq->lock);
  577. rq->prev_clock_raw = now;
  578. rq->clock += delta_ns;
  579. spin_unlock(&rq->lock);
  580. }
  581. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  582. /*
  583. * resched_task - mark a task 'to be rescheduled now'.
  584. *
  585. * On UP this means the setting of the need_resched flag, on SMP it
  586. * might also involve a cross-CPU call to trigger the scheduler on
  587. * the target CPU.
  588. */
  589. #ifdef CONFIG_SMP
  590. #ifndef tsk_is_polling
  591. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  592. #endif
  593. static void resched_task(struct task_struct *p)
  594. {
  595. int cpu;
  596. assert_spin_locked(&task_rq(p)->lock);
  597. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  598. return;
  599. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  600. cpu = task_cpu(p);
  601. if (cpu == smp_processor_id())
  602. return;
  603. /* NEED_RESCHED must be visible before we test polling */
  604. smp_mb();
  605. if (!tsk_is_polling(p))
  606. smp_send_reschedule(cpu);
  607. }
  608. static void resched_cpu(int cpu)
  609. {
  610. struct rq *rq = cpu_rq(cpu);
  611. unsigned long flags;
  612. if (!spin_trylock_irqsave(&rq->lock, flags))
  613. return;
  614. resched_task(cpu_curr(cpu));
  615. spin_unlock_irqrestore(&rq->lock, flags);
  616. }
  617. #else
  618. static inline void resched_task(struct task_struct *p)
  619. {
  620. assert_spin_locked(&task_rq(p)->lock);
  621. set_tsk_need_resched(p);
  622. }
  623. #endif
  624. #if BITS_PER_LONG == 32
  625. # define WMULT_CONST (~0UL)
  626. #else
  627. # define WMULT_CONST (1UL << 32)
  628. #endif
  629. #define WMULT_SHIFT 32
  630. /*
  631. * Shift right and round:
  632. */
  633. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  634. static unsigned long
  635. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  636. struct load_weight *lw)
  637. {
  638. u64 tmp;
  639. if (unlikely(!lw->inv_weight))
  640. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  641. tmp = (u64)delta_exec * weight;
  642. /*
  643. * Check whether we'd overflow the 64-bit multiplication:
  644. */
  645. if (unlikely(tmp > WMULT_CONST))
  646. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  647. WMULT_SHIFT/2);
  648. else
  649. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  650. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  651. }
  652. static inline unsigned long
  653. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  654. {
  655. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  656. }
  657. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  658. {
  659. lw->weight += inc;
  660. }
  661. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  662. {
  663. lw->weight -= dec;
  664. }
  665. /*
  666. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  667. * of tasks with abnormal "nice" values across CPUs the contribution that
  668. * each task makes to its run queue's load is weighted according to its
  669. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  670. * scaled version of the new time slice allocation that they receive on time
  671. * slice expiry etc.
  672. */
  673. #define WEIGHT_IDLEPRIO 2
  674. #define WMULT_IDLEPRIO (1 << 31)
  675. /*
  676. * Nice levels are multiplicative, with a gentle 10% change for every
  677. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  678. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  679. * that remained on nice 0.
  680. *
  681. * The "10% effect" is relative and cumulative: from _any_ nice level,
  682. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  683. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  684. * If a task goes up by ~10% and another task goes down by ~10% then
  685. * the relative distance between them is ~25%.)
  686. */
  687. static const int prio_to_weight[40] = {
  688. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  689. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  690. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  691. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  692. /* 0 */ 1024, 820, 655, 526, 423,
  693. /* 5 */ 335, 272, 215, 172, 137,
  694. /* 10 */ 110, 87, 70, 56, 45,
  695. /* 15 */ 36, 29, 23, 18, 15,
  696. };
  697. /*
  698. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  699. *
  700. * In cases where the weight does not change often, we can use the
  701. * precalculated inverse to speed up arithmetics by turning divisions
  702. * into multiplications:
  703. */
  704. static const u32 prio_to_wmult[40] = {
  705. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  706. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  707. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  708. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  709. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  710. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  711. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  712. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  713. };
  714. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  715. /*
  716. * runqueue iterator, to support SMP load-balancing between different
  717. * scheduling classes, without having to expose their internal data
  718. * structures to the load-balancing proper:
  719. */
  720. struct rq_iterator {
  721. void *arg;
  722. struct task_struct *(*start)(void *);
  723. struct task_struct *(*next)(void *);
  724. };
  725. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  726. unsigned long max_nr_move, unsigned long max_load_move,
  727. struct sched_domain *sd, enum cpu_idle_type idle,
  728. int *all_pinned, unsigned long *load_moved,
  729. int *this_best_prio, struct rq_iterator *iterator);
  730. #include "sched_stats.h"
  731. #include "sched_idletask.c"
  732. #include "sched_fair.c"
  733. #include "sched_rt.c"
  734. #ifdef CONFIG_SCHED_DEBUG
  735. # include "sched_debug.c"
  736. #endif
  737. #define sched_class_highest (&rt_sched_class)
  738. /*
  739. * Update delta_exec, delta_fair fields for rq.
  740. *
  741. * delta_fair clock advances at a rate inversely proportional to
  742. * total load (rq->load.weight) on the runqueue, while
  743. * delta_exec advances at the same rate as wall-clock (provided
  744. * cpu is not idle).
  745. *
  746. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  747. * runqueue over any given interval. This (smoothened) load is used
  748. * during load balance.
  749. *
  750. * This function is called /before/ updating rq->load
  751. * and when switching tasks.
  752. */
  753. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  754. {
  755. update_load_add(&rq->load, p->se.load.weight);
  756. }
  757. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  758. {
  759. update_load_sub(&rq->load, p->se.load.weight);
  760. }
  761. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  762. {
  763. rq->nr_running++;
  764. inc_load(rq, p);
  765. }
  766. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  767. {
  768. rq->nr_running--;
  769. dec_load(rq, p);
  770. }
  771. static void set_load_weight(struct task_struct *p)
  772. {
  773. if (task_has_rt_policy(p)) {
  774. p->se.load.weight = prio_to_weight[0] * 2;
  775. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  776. return;
  777. }
  778. /*
  779. * SCHED_IDLE tasks get minimal weight:
  780. */
  781. if (p->policy == SCHED_IDLE) {
  782. p->se.load.weight = WEIGHT_IDLEPRIO;
  783. p->se.load.inv_weight = WMULT_IDLEPRIO;
  784. return;
  785. }
  786. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  787. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  788. }
  789. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  790. {
  791. sched_info_queued(p);
  792. p->sched_class->enqueue_task(rq, p, wakeup);
  793. p->se.on_rq = 1;
  794. }
  795. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  796. {
  797. p->sched_class->dequeue_task(rq, p, sleep);
  798. p->se.on_rq = 0;
  799. }
  800. /*
  801. * __normal_prio - return the priority that is based on the static prio
  802. */
  803. static inline int __normal_prio(struct task_struct *p)
  804. {
  805. return p->static_prio;
  806. }
  807. /*
  808. * Calculate the expected normal priority: i.e. priority
  809. * without taking RT-inheritance into account. Might be
  810. * boosted by interactivity modifiers. Changes upon fork,
  811. * setprio syscalls, and whenever the interactivity
  812. * estimator recalculates.
  813. */
  814. static inline int normal_prio(struct task_struct *p)
  815. {
  816. int prio;
  817. if (task_has_rt_policy(p))
  818. prio = MAX_RT_PRIO-1 - p->rt_priority;
  819. else
  820. prio = __normal_prio(p);
  821. return prio;
  822. }
  823. /*
  824. * Calculate the current priority, i.e. the priority
  825. * taken into account by the scheduler. This value might
  826. * be boosted by RT tasks, or might be boosted by
  827. * interactivity modifiers. Will be RT if the task got
  828. * RT-boosted. If not then it returns p->normal_prio.
  829. */
  830. static int effective_prio(struct task_struct *p)
  831. {
  832. p->normal_prio = normal_prio(p);
  833. /*
  834. * If we are RT tasks or we were boosted to RT priority,
  835. * keep the priority unchanged. Otherwise, update priority
  836. * to the normal priority:
  837. */
  838. if (!rt_prio(p->prio))
  839. return p->normal_prio;
  840. return p->prio;
  841. }
  842. /*
  843. * activate_task - move a task to the runqueue.
  844. */
  845. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  846. {
  847. if (p->state == TASK_UNINTERRUPTIBLE)
  848. rq->nr_uninterruptible--;
  849. enqueue_task(rq, p, wakeup);
  850. inc_nr_running(p, rq);
  851. }
  852. /*
  853. * deactivate_task - remove a task from the runqueue.
  854. */
  855. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  856. {
  857. if (p->state == TASK_UNINTERRUPTIBLE)
  858. rq->nr_uninterruptible++;
  859. dequeue_task(rq, p, sleep);
  860. dec_nr_running(p, rq);
  861. }
  862. /**
  863. * task_curr - is this task currently executing on a CPU?
  864. * @p: the task in question.
  865. */
  866. inline int task_curr(const struct task_struct *p)
  867. {
  868. return cpu_curr(task_cpu(p)) == p;
  869. }
  870. /* Used instead of source_load when we know the type == 0 */
  871. unsigned long weighted_cpuload(const int cpu)
  872. {
  873. return cpu_rq(cpu)->load.weight;
  874. }
  875. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  876. {
  877. #ifdef CONFIG_SMP
  878. task_thread_info(p)->cpu = cpu;
  879. #endif
  880. set_task_cfs_rq(p);
  881. }
  882. #ifdef CONFIG_SMP
  883. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  884. {
  885. int old_cpu = task_cpu(p);
  886. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  887. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  888. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  889. u64 clock_offset;
  890. clock_offset = old_rq->clock - new_rq->clock;
  891. #ifdef CONFIG_SCHEDSTATS
  892. if (p->se.wait_start)
  893. p->se.wait_start -= clock_offset;
  894. if (p->se.sleep_start)
  895. p->se.sleep_start -= clock_offset;
  896. if (p->se.block_start)
  897. p->se.block_start -= clock_offset;
  898. #endif
  899. p->se.vruntime -= old_cfsrq->min_vruntime -
  900. new_cfsrq->min_vruntime;
  901. __set_task_cpu(p, new_cpu);
  902. }
  903. struct migration_req {
  904. struct list_head list;
  905. struct task_struct *task;
  906. int dest_cpu;
  907. struct completion done;
  908. };
  909. /*
  910. * The task's runqueue lock must be held.
  911. * Returns true if you have to wait for migration thread.
  912. */
  913. static int
  914. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  915. {
  916. struct rq *rq = task_rq(p);
  917. /*
  918. * If the task is not on a runqueue (and not running), then
  919. * it is sufficient to simply update the task's cpu field.
  920. */
  921. if (!p->se.on_rq && !task_running(rq, p)) {
  922. set_task_cpu(p, dest_cpu);
  923. return 0;
  924. }
  925. init_completion(&req->done);
  926. req->task = p;
  927. req->dest_cpu = dest_cpu;
  928. list_add(&req->list, &rq->migration_queue);
  929. return 1;
  930. }
  931. /*
  932. * wait_task_inactive - wait for a thread to unschedule.
  933. *
  934. * The caller must ensure that the task *will* unschedule sometime soon,
  935. * else this function might spin for a *long* time. This function can't
  936. * be called with interrupts off, or it may introduce deadlock with
  937. * smp_call_function() if an IPI is sent by the same process we are
  938. * waiting to become inactive.
  939. */
  940. void wait_task_inactive(struct task_struct *p)
  941. {
  942. unsigned long flags;
  943. int running, on_rq;
  944. struct rq *rq;
  945. repeat:
  946. /*
  947. * We do the initial early heuristics without holding
  948. * any task-queue locks at all. We'll only try to get
  949. * the runqueue lock when things look like they will
  950. * work out!
  951. */
  952. rq = task_rq(p);
  953. /*
  954. * If the task is actively running on another CPU
  955. * still, just relax and busy-wait without holding
  956. * any locks.
  957. *
  958. * NOTE! Since we don't hold any locks, it's not
  959. * even sure that "rq" stays as the right runqueue!
  960. * But we don't care, since "task_running()" will
  961. * return false if the runqueue has changed and p
  962. * is actually now running somewhere else!
  963. */
  964. while (task_running(rq, p))
  965. cpu_relax();
  966. /*
  967. * Ok, time to look more closely! We need the rq
  968. * lock now, to be *sure*. If we're wrong, we'll
  969. * just go back and repeat.
  970. */
  971. rq = task_rq_lock(p, &flags);
  972. running = task_running(rq, p);
  973. on_rq = p->se.on_rq;
  974. task_rq_unlock(rq, &flags);
  975. /*
  976. * Was it really running after all now that we
  977. * checked with the proper locks actually held?
  978. *
  979. * Oops. Go back and try again..
  980. */
  981. if (unlikely(running)) {
  982. cpu_relax();
  983. goto repeat;
  984. }
  985. /*
  986. * It's not enough that it's not actively running,
  987. * it must be off the runqueue _entirely_, and not
  988. * preempted!
  989. *
  990. * So if it wa still runnable (but just not actively
  991. * running right now), it's preempted, and we should
  992. * yield - it could be a while.
  993. */
  994. if (unlikely(on_rq)) {
  995. yield();
  996. goto repeat;
  997. }
  998. /*
  999. * Ahh, all good. It wasn't running, and it wasn't
  1000. * runnable, which means that it will never become
  1001. * running in the future either. We're all done!
  1002. */
  1003. }
  1004. /***
  1005. * kick_process - kick a running thread to enter/exit the kernel
  1006. * @p: the to-be-kicked thread
  1007. *
  1008. * Cause a process which is running on another CPU to enter
  1009. * kernel-mode, without any delay. (to get signals handled.)
  1010. *
  1011. * NOTE: this function doesnt have to take the runqueue lock,
  1012. * because all it wants to ensure is that the remote task enters
  1013. * the kernel. If the IPI races and the task has been migrated
  1014. * to another CPU then no harm is done and the purpose has been
  1015. * achieved as well.
  1016. */
  1017. void kick_process(struct task_struct *p)
  1018. {
  1019. int cpu;
  1020. preempt_disable();
  1021. cpu = task_cpu(p);
  1022. if ((cpu != smp_processor_id()) && task_curr(p))
  1023. smp_send_reschedule(cpu);
  1024. preempt_enable();
  1025. }
  1026. /*
  1027. * Return a low guess at the load of a migration-source cpu weighted
  1028. * according to the scheduling class and "nice" value.
  1029. *
  1030. * We want to under-estimate the load of migration sources, to
  1031. * balance conservatively.
  1032. */
  1033. static unsigned long source_load(int cpu, int type)
  1034. {
  1035. struct rq *rq = cpu_rq(cpu);
  1036. unsigned long total = weighted_cpuload(cpu);
  1037. if (type == 0)
  1038. return total;
  1039. return min(rq->cpu_load[type-1], total);
  1040. }
  1041. /*
  1042. * Return a high guess at the load of a migration-target cpu weighted
  1043. * according to the scheduling class and "nice" value.
  1044. */
  1045. static unsigned long target_load(int cpu, int type)
  1046. {
  1047. struct rq *rq = cpu_rq(cpu);
  1048. unsigned long total = weighted_cpuload(cpu);
  1049. if (type == 0)
  1050. return total;
  1051. return max(rq->cpu_load[type-1], total);
  1052. }
  1053. /*
  1054. * Return the average load per task on the cpu's run queue
  1055. */
  1056. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1057. {
  1058. struct rq *rq = cpu_rq(cpu);
  1059. unsigned long total = weighted_cpuload(cpu);
  1060. unsigned long n = rq->nr_running;
  1061. return n ? total / n : SCHED_LOAD_SCALE;
  1062. }
  1063. /*
  1064. * find_idlest_group finds and returns the least busy CPU group within the
  1065. * domain.
  1066. */
  1067. static struct sched_group *
  1068. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1069. {
  1070. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1071. unsigned long min_load = ULONG_MAX, this_load = 0;
  1072. int load_idx = sd->forkexec_idx;
  1073. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1074. do {
  1075. unsigned long load, avg_load;
  1076. int local_group;
  1077. int i;
  1078. /* Skip over this group if it has no CPUs allowed */
  1079. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1080. goto nextgroup;
  1081. local_group = cpu_isset(this_cpu, group->cpumask);
  1082. /* Tally up the load of all CPUs in the group */
  1083. avg_load = 0;
  1084. for_each_cpu_mask(i, group->cpumask) {
  1085. /* Bias balancing toward cpus of our domain */
  1086. if (local_group)
  1087. load = source_load(i, load_idx);
  1088. else
  1089. load = target_load(i, load_idx);
  1090. avg_load += load;
  1091. }
  1092. /* Adjust by relative CPU power of the group */
  1093. avg_load = sg_div_cpu_power(group,
  1094. avg_load * SCHED_LOAD_SCALE);
  1095. if (local_group) {
  1096. this_load = avg_load;
  1097. this = group;
  1098. } else if (avg_load < min_load) {
  1099. min_load = avg_load;
  1100. idlest = group;
  1101. }
  1102. nextgroup:
  1103. group = group->next;
  1104. } while (group != sd->groups);
  1105. if (!idlest || 100*this_load < imbalance*min_load)
  1106. return NULL;
  1107. return idlest;
  1108. }
  1109. /*
  1110. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1111. */
  1112. static int
  1113. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1114. {
  1115. cpumask_t tmp;
  1116. unsigned long load, min_load = ULONG_MAX;
  1117. int idlest = -1;
  1118. int i;
  1119. /* Traverse only the allowed CPUs */
  1120. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1121. for_each_cpu_mask(i, tmp) {
  1122. load = weighted_cpuload(i);
  1123. if (load < min_load || (load == min_load && i == this_cpu)) {
  1124. min_load = load;
  1125. idlest = i;
  1126. }
  1127. }
  1128. return idlest;
  1129. }
  1130. /*
  1131. * sched_balance_self: balance the current task (running on cpu) in domains
  1132. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1133. * SD_BALANCE_EXEC.
  1134. *
  1135. * Balance, ie. select the least loaded group.
  1136. *
  1137. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1138. *
  1139. * preempt must be disabled.
  1140. */
  1141. static int sched_balance_self(int cpu, int flag)
  1142. {
  1143. struct task_struct *t = current;
  1144. struct sched_domain *tmp, *sd = NULL;
  1145. for_each_domain(cpu, tmp) {
  1146. /*
  1147. * If power savings logic is enabled for a domain, stop there.
  1148. */
  1149. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1150. break;
  1151. if (tmp->flags & flag)
  1152. sd = tmp;
  1153. }
  1154. while (sd) {
  1155. cpumask_t span;
  1156. struct sched_group *group;
  1157. int new_cpu, weight;
  1158. if (!(sd->flags & flag)) {
  1159. sd = sd->child;
  1160. continue;
  1161. }
  1162. span = sd->span;
  1163. group = find_idlest_group(sd, t, cpu);
  1164. if (!group) {
  1165. sd = sd->child;
  1166. continue;
  1167. }
  1168. new_cpu = find_idlest_cpu(group, t, cpu);
  1169. if (new_cpu == -1 || new_cpu == cpu) {
  1170. /* Now try balancing at a lower domain level of cpu */
  1171. sd = sd->child;
  1172. continue;
  1173. }
  1174. /* Now try balancing at a lower domain level of new_cpu */
  1175. cpu = new_cpu;
  1176. sd = NULL;
  1177. weight = cpus_weight(span);
  1178. for_each_domain(cpu, tmp) {
  1179. if (weight <= cpus_weight(tmp->span))
  1180. break;
  1181. if (tmp->flags & flag)
  1182. sd = tmp;
  1183. }
  1184. /* while loop will break here if sd == NULL */
  1185. }
  1186. return cpu;
  1187. }
  1188. #endif /* CONFIG_SMP */
  1189. /*
  1190. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1191. * not idle and an idle cpu is available. The span of cpus to
  1192. * search starts with cpus closest then further out as needed,
  1193. * so we always favor a closer, idle cpu.
  1194. *
  1195. * Returns the CPU we should wake onto.
  1196. */
  1197. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1198. static int wake_idle(int cpu, struct task_struct *p)
  1199. {
  1200. cpumask_t tmp;
  1201. struct sched_domain *sd;
  1202. int i;
  1203. /*
  1204. * If it is idle, then it is the best cpu to run this task.
  1205. *
  1206. * This cpu is also the best, if it has more than one task already.
  1207. * Siblings must be also busy(in most cases) as they didn't already
  1208. * pickup the extra load from this cpu and hence we need not check
  1209. * sibling runqueue info. This will avoid the checks and cache miss
  1210. * penalities associated with that.
  1211. */
  1212. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1213. return cpu;
  1214. for_each_domain(cpu, sd) {
  1215. if (sd->flags & SD_WAKE_IDLE) {
  1216. cpus_and(tmp, sd->span, p->cpus_allowed);
  1217. for_each_cpu_mask(i, tmp) {
  1218. if (idle_cpu(i))
  1219. return i;
  1220. }
  1221. } else {
  1222. break;
  1223. }
  1224. }
  1225. return cpu;
  1226. }
  1227. #else
  1228. static inline int wake_idle(int cpu, struct task_struct *p)
  1229. {
  1230. return cpu;
  1231. }
  1232. #endif
  1233. /***
  1234. * try_to_wake_up - wake up a thread
  1235. * @p: the to-be-woken-up thread
  1236. * @state: the mask of task states that can be woken
  1237. * @sync: do a synchronous wakeup?
  1238. *
  1239. * Put it on the run-queue if it's not already there. The "current"
  1240. * thread is always on the run-queue (except when the actual
  1241. * re-schedule is in progress), and as such you're allowed to do
  1242. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1243. * runnable without the overhead of this.
  1244. *
  1245. * returns failure only if the task is already active.
  1246. */
  1247. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1248. {
  1249. int cpu, this_cpu, success = 0;
  1250. unsigned long flags;
  1251. long old_state;
  1252. struct rq *rq;
  1253. #ifdef CONFIG_SMP
  1254. struct sched_domain *sd, *this_sd = NULL;
  1255. unsigned long load, this_load;
  1256. int new_cpu;
  1257. #endif
  1258. rq = task_rq_lock(p, &flags);
  1259. old_state = p->state;
  1260. if (!(old_state & state))
  1261. goto out;
  1262. if (p->se.on_rq)
  1263. goto out_running;
  1264. cpu = task_cpu(p);
  1265. this_cpu = smp_processor_id();
  1266. #ifdef CONFIG_SMP
  1267. if (unlikely(task_running(rq, p)))
  1268. goto out_activate;
  1269. new_cpu = cpu;
  1270. schedstat_inc(rq, ttwu_count);
  1271. if (cpu == this_cpu) {
  1272. schedstat_inc(rq, ttwu_local);
  1273. goto out_set_cpu;
  1274. }
  1275. for_each_domain(this_cpu, sd) {
  1276. if (cpu_isset(cpu, sd->span)) {
  1277. schedstat_inc(sd, ttwu_wake_remote);
  1278. this_sd = sd;
  1279. break;
  1280. }
  1281. }
  1282. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1283. goto out_set_cpu;
  1284. /*
  1285. * Check for affine wakeup and passive balancing possibilities.
  1286. */
  1287. if (this_sd) {
  1288. int idx = this_sd->wake_idx;
  1289. unsigned int imbalance;
  1290. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1291. load = source_load(cpu, idx);
  1292. this_load = target_load(this_cpu, idx);
  1293. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1294. if (this_sd->flags & SD_WAKE_AFFINE) {
  1295. unsigned long tl = this_load;
  1296. unsigned long tl_per_task;
  1297. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1298. /*
  1299. * If sync wakeup then subtract the (maximum possible)
  1300. * effect of the currently running task from the load
  1301. * of the current CPU:
  1302. */
  1303. if (sync)
  1304. tl -= current->se.load.weight;
  1305. if ((tl <= load &&
  1306. tl + target_load(cpu, idx) <= tl_per_task) ||
  1307. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1308. /*
  1309. * This domain has SD_WAKE_AFFINE and
  1310. * p is cache cold in this domain, and
  1311. * there is no bad imbalance.
  1312. */
  1313. schedstat_inc(this_sd, ttwu_move_affine);
  1314. goto out_set_cpu;
  1315. }
  1316. }
  1317. /*
  1318. * Start passive balancing when half the imbalance_pct
  1319. * limit is reached.
  1320. */
  1321. if (this_sd->flags & SD_WAKE_BALANCE) {
  1322. if (imbalance*this_load <= 100*load) {
  1323. schedstat_inc(this_sd, ttwu_move_balance);
  1324. goto out_set_cpu;
  1325. }
  1326. }
  1327. }
  1328. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1329. out_set_cpu:
  1330. new_cpu = wake_idle(new_cpu, p);
  1331. if (new_cpu != cpu) {
  1332. set_task_cpu(p, new_cpu);
  1333. task_rq_unlock(rq, &flags);
  1334. /* might preempt at this point */
  1335. rq = task_rq_lock(p, &flags);
  1336. old_state = p->state;
  1337. if (!(old_state & state))
  1338. goto out;
  1339. if (p->se.on_rq)
  1340. goto out_running;
  1341. this_cpu = smp_processor_id();
  1342. cpu = task_cpu(p);
  1343. }
  1344. out_activate:
  1345. #endif /* CONFIG_SMP */
  1346. update_rq_clock(rq);
  1347. activate_task(rq, p, 1);
  1348. /*
  1349. * Sync wakeups (i.e. those types of wakeups where the waker
  1350. * has indicated that it will leave the CPU in short order)
  1351. * don't trigger a preemption, if the woken up task will run on
  1352. * this cpu. (in this case the 'I will reschedule' promise of
  1353. * the waker guarantees that the freshly woken up task is going
  1354. * to be considered on this CPU.)
  1355. */
  1356. if (!sync || cpu != this_cpu)
  1357. check_preempt_curr(rq, p);
  1358. success = 1;
  1359. out_running:
  1360. p->state = TASK_RUNNING;
  1361. out:
  1362. task_rq_unlock(rq, &flags);
  1363. return success;
  1364. }
  1365. int fastcall wake_up_process(struct task_struct *p)
  1366. {
  1367. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1368. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1369. }
  1370. EXPORT_SYMBOL(wake_up_process);
  1371. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1372. {
  1373. return try_to_wake_up(p, state, 0);
  1374. }
  1375. /*
  1376. * Perform scheduler related setup for a newly forked process p.
  1377. * p is forked by current.
  1378. *
  1379. * __sched_fork() is basic setup used by init_idle() too:
  1380. */
  1381. static void __sched_fork(struct task_struct *p)
  1382. {
  1383. p->se.exec_start = 0;
  1384. p->se.sum_exec_runtime = 0;
  1385. p->se.prev_sum_exec_runtime = 0;
  1386. #ifdef CONFIG_SCHEDSTATS
  1387. p->se.wait_start = 0;
  1388. p->se.sum_sleep_runtime = 0;
  1389. p->se.sleep_start = 0;
  1390. p->se.block_start = 0;
  1391. p->se.sleep_max = 0;
  1392. p->se.block_max = 0;
  1393. p->se.exec_max = 0;
  1394. p->se.slice_max = 0;
  1395. p->se.wait_max = 0;
  1396. #endif
  1397. INIT_LIST_HEAD(&p->run_list);
  1398. p->se.on_rq = 0;
  1399. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1400. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1401. #endif
  1402. /*
  1403. * We mark the process as running here, but have not actually
  1404. * inserted it onto the runqueue yet. This guarantees that
  1405. * nobody will actually run it, and a signal or other external
  1406. * event cannot wake it up and insert it on the runqueue either.
  1407. */
  1408. p->state = TASK_RUNNING;
  1409. }
  1410. /*
  1411. * fork()/clone()-time setup:
  1412. */
  1413. void sched_fork(struct task_struct *p, int clone_flags)
  1414. {
  1415. int cpu = get_cpu();
  1416. __sched_fork(p);
  1417. #ifdef CONFIG_SMP
  1418. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1419. #endif
  1420. set_task_cpu(p, cpu);
  1421. /*
  1422. * Make sure we do not leak PI boosting priority to the child:
  1423. */
  1424. p->prio = current->normal_prio;
  1425. if (!rt_prio(p->prio))
  1426. p->sched_class = &fair_sched_class;
  1427. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1428. if (likely(sched_info_on()))
  1429. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1430. #endif
  1431. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1432. p->oncpu = 0;
  1433. #endif
  1434. #ifdef CONFIG_PREEMPT
  1435. /* Want to start with kernel preemption disabled. */
  1436. task_thread_info(p)->preempt_count = 1;
  1437. #endif
  1438. put_cpu();
  1439. }
  1440. /*
  1441. * wake_up_new_task - wake up a newly created task for the first time.
  1442. *
  1443. * This function will do some initial scheduler statistics housekeeping
  1444. * that must be done for every newly created context, then puts the task
  1445. * on the runqueue and wakes it.
  1446. */
  1447. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1448. {
  1449. unsigned long flags;
  1450. struct rq *rq;
  1451. int this_cpu;
  1452. rq = task_rq_lock(p, &flags);
  1453. BUG_ON(p->state != TASK_RUNNING);
  1454. this_cpu = smp_processor_id(); /* parent's CPU */
  1455. update_rq_clock(rq);
  1456. p->prio = effective_prio(p);
  1457. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1458. !current->se.on_rq) {
  1459. activate_task(rq, p, 0);
  1460. } else {
  1461. /*
  1462. * Let the scheduling class do new task startup
  1463. * management (if any):
  1464. */
  1465. p->sched_class->task_new(rq, p);
  1466. inc_nr_running(p, rq);
  1467. }
  1468. check_preempt_curr(rq, p);
  1469. task_rq_unlock(rq, &flags);
  1470. }
  1471. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1472. /**
  1473. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1474. * @notifier: notifier struct to register
  1475. */
  1476. void preempt_notifier_register(struct preempt_notifier *notifier)
  1477. {
  1478. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1479. }
  1480. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1481. /**
  1482. * preempt_notifier_unregister - no longer interested in preemption notifications
  1483. * @notifier: notifier struct to unregister
  1484. *
  1485. * This is safe to call from within a preemption notifier.
  1486. */
  1487. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1488. {
  1489. hlist_del(&notifier->link);
  1490. }
  1491. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1492. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1493. {
  1494. struct preempt_notifier *notifier;
  1495. struct hlist_node *node;
  1496. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1497. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1498. }
  1499. static void
  1500. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1501. struct task_struct *next)
  1502. {
  1503. struct preempt_notifier *notifier;
  1504. struct hlist_node *node;
  1505. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1506. notifier->ops->sched_out(notifier, next);
  1507. }
  1508. #else
  1509. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1510. {
  1511. }
  1512. static void
  1513. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1514. struct task_struct *next)
  1515. {
  1516. }
  1517. #endif
  1518. /**
  1519. * prepare_task_switch - prepare to switch tasks
  1520. * @rq: the runqueue preparing to switch
  1521. * @prev: the current task that is being switched out
  1522. * @next: the task we are going to switch to.
  1523. *
  1524. * This is called with the rq lock held and interrupts off. It must
  1525. * be paired with a subsequent finish_task_switch after the context
  1526. * switch.
  1527. *
  1528. * prepare_task_switch sets up locking and calls architecture specific
  1529. * hooks.
  1530. */
  1531. static inline void
  1532. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1533. struct task_struct *next)
  1534. {
  1535. fire_sched_out_preempt_notifiers(prev, next);
  1536. prepare_lock_switch(rq, next);
  1537. prepare_arch_switch(next);
  1538. }
  1539. /**
  1540. * finish_task_switch - clean up after a task-switch
  1541. * @rq: runqueue associated with task-switch
  1542. * @prev: the thread we just switched away from.
  1543. *
  1544. * finish_task_switch must be called after the context switch, paired
  1545. * with a prepare_task_switch call before the context switch.
  1546. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1547. * and do any other architecture-specific cleanup actions.
  1548. *
  1549. * Note that we may have delayed dropping an mm in context_switch(). If
  1550. * so, we finish that here outside of the runqueue lock. (Doing it
  1551. * with the lock held can cause deadlocks; see schedule() for
  1552. * details.)
  1553. */
  1554. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1555. __releases(rq->lock)
  1556. {
  1557. struct mm_struct *mm = rq->prev_mm;
  1558. long prev_state;
  1559. rq->prev_mm = NULL;
  1560. /*
  1561. * A task struct has one reference for the use as "current".
  1562. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1563. * schedule one last time. The schedule call will never return, and
  1564. * the scheduled task must drop that reference.
  1565. * The test for TASK_DEAD must occur while the runqueue locks are
  1566. * still held, otherwise prev could be scheduled on another cpu, die
  1567. * there before we look at prev->state, and then the reference would
  1568. * be dropped twice.
  1569. * Manfred Spraul <manfred@colorfullife.com>
  1570. */
  1571. prev_state = prev->state;
  1572. finish_arch_switch(prev);
  1573. finish_lock_switch(rq, prev);
  1574. fire_sched_in_preempt_notifiers(current);
  1575. if (mm)
  1576. mmdrop(mm);
  1577. if (unlikely(prev_state == TASK_DEAD)) {
  1578. /*
  1579. * Remove function-return probe instances associated with this
  1580. * task and put them back on the free list.
  1581. */
  1582. kprobe_flush_task(prev);
  1583. put_task_struct(prev);
  1584. }
  1585. }
  1586. /**
  1587. * schedule_tail - first thing a freshly forked thread must call.
  1588. * @prev: the thread we just switched away from.
  1589. */
  1590. asmlinkage void schedule_tail(struct task_struct *prev)
  1591. __releases(rq->lock)
  1592. {
  1593. struct rq *rq = this_rq();
  1594. finish_task_switch(rq, prev);
  1595. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1596. /* In this case, finish_task_switch does not reenable preemption */
  1597. preempt_enable();
  1598. #endif
  1599. if (current->set_child_tid)
  1600. put_user(current->pid, current->set_child_tid);
  1601. }
  1602. /*
  1603. * context_switch - switch to the new MM and the new
  1604. * thread's register state.
  1605. */
  1606. static inline void
  1607. context_switch(struct rq *rq, struct task_struct *prev,
  1608. struct task_struct *next)
  1609. {
  1610. struct mm_struct *mm, *oldmm;
  1611. prepare_task_switch(rq, prev, next);
  1612. mm = next->mm;
  1613. oldmm = prev->active_mm;
  1614. /*
  1615. * For paravirt, this is coupled with an exit in switch_to to
  1616. * combine the page table reload and the switch backend into
  1617. * one hypercall.
  1618. */
  1619. arch_enter_lazy_cpu_mode();
  1620. if (unlikely(!mm)) {
  1621. next->active_mm = oldmm;
  1622. atomic_inc(&oldmm->mm_count);
  1623. enter_lazy_tlb(oldmm, next);
  1624. } else
  1625. switch_mm(oldmm, mm, next);
  1626. if (unlikely(!prev->mm)) {
  1627. prev->active_mm = NULL;
  1628. rq->prev_mm = oldmm;
  1629. }
  1630. /*
  1631. * Since the runqueue lock will be released by the next
  1632. * task (which is an invalid locking op but in the case
  1633. * of the scheduler it's an obvious special-case), so we
  1634. * do an early lockdep release here:
  1635. */
  1636. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1637. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1638. #endif
  1639. /* Here we just switch the register state and the stack. */
  1640. switch_to(prev, next, prev);
  1641. barrier();
  1642. /*
  1643. * this_rq must be evaluated again because prev may have moved
  1644. * CPUs since it called schedule(), thus the 'rq' on its stack
  1645. * frame will be invalid.
  1646. */
  1647. finish_task_switch(this_rq(), prev);
  1648. }
  1649. /*
  1650. * nr_running, nr_uninterruptible and nr_context_switches:
  1651. *
  1652. * externally visible scheduler statistics: current number of runnable
  1653. * threads, current number of uninterruptible-sleeping threads, total
  1654. * number of context switches performed since bootup.
  1655. */
  1656. unsigned long nr_running(void)
  1657. {
  1658. unsigned long i, sum = 0;
  1659. for_each_online_cpu(i)
  1660. sum += cpu_rq(i)->nr_running;
  1661. return sum;
  1662. }
  1663. unsigned long nr_uninterruptible(void)
  1664. {
  1665. unsigned long i, sum = 0;
  1666. for_each_possible_cpu(i)
  1667. sum += cpu_rq(i)->nr_uninterruptible;
  1668. /*
  1669. * Since we read the counters lockless, it might be slightly
  1670. * inaccurate. Do not allow it to go below zero though:
  1671. */
  1672. if (unlikely((long)sum < 0))
  1673. sum = 0;
  1674. return sum;
  1675. }
  1676. unsigned long long nr_context_switches(void)
  1677. {
  1678. int i;
  1679. unsigned long long sum = 0;
  1680. for_each_possible_cpu(i)
  1681. sum += cpu_rq(i)->nr_switches;
  1682. return sum;
  1683. }
  1684. unsigned long nr_iowait(void)
  1685. {
  1686. unsigned long i, sum = 0;
  1687. for_each_possible_cpu(i)
  1688. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1689. return sum;
  1690. }
  1691. unsigned long nr_active(void)
  1692. {
  1693. unsigned long i, running = 0, uninterruptible = 0;
  1694. for_each_online_cpu(i) {
  1695. running += cpu_rq(i)->nr_running;
  1696. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1697. }
  1698. if (unlikely((long)uninterruptible < 0))
  1699. uninterruptible = 0;
  1700. return running + uninterruptible;
  1701. }
  1702. /*
  1703. * Update rq->cpu_load[] statistics. This function is usually called every
  1704. * scheduler tick (TICK_NSEC).
  1705. */
  1706. static void update_cpu_load(struct rq *this_rq)
  1707. {
  1708. unsigned long this_load = this_rq->load.weight;
  1709. int i, scale;
  1710. this_rq->nr_load_updates++;
  1711. /* Update our load: */
  1712. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1713. unsigned long old_load, new_load;
  1714. /* scale is effectively 1 << i now, and >> i divides by scale */
  1715. old_load = this_rq->cpu_load[i];
  1716. new_load = this_load;
  1717. /*
  1718. * Round up the averaging division if load is increasing. This
  1719. * prevents us from getting stuck on 9 if the load is 10, for
  1720. * example.
  1721. */
  1722. if (new_load > old_load)
  1723. new_load += scale-1;
  1724. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1725. }
  1726. }
  1727. #ifdef CONFIG_SMP
  1728. /*
  1729. * double_rq_lock - safely lock two runqueues
  1730. *
  1731. * Note this does not disable interrupts like task_rq_lock,
  1732. * you need to do so manually before calling.
  1733. */
  1734. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1735. __acquires(rq1->lock)
  1736. __acquires(rq2->lock)
  1737. {
  1738. BUG_ON(!irqs_disabled());
  1739. if (rq1 == rq2) {
  1740. spin_lock(&rq1->lock);
  1741. __acquire(rq2->lock); /* Fake it out ;) */
  1742. } else {
  1743. if (rq1 < rq2) {
  1744. spin_lock(&rq1->lock);
  1745. spin_lock(&rq2->lock);
  1746. } else {
  1747. spin_lock(&rq2->lock);
  1748. spin_lock(&rq1->lock);
  1749. }
  1750. }
  1751. update_rq_clock(rq1);
  1752. update_rq_clock(rq2);
  1753. }
  1754. /*
  1755. * double_rq_unlock - safely unlock two runqueues
  1756. *
  1757. * Note this does not restore interrupts like task_rq_unlock,
  1758. * you need to do so manually after calling.
  1759. */
  1760. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1761. __releases(rq1->lock)
  1762. __releases(rq2->lock)
  1763. {
  1764. spin_unlock(&rq1->lock);
  1765. if (rq1 != rq2)
  1766. spin_unlock(&rq2->lock);
  1767. else
  1768. __release(rq2->lock);
  1769. }
  1770. /*
  1771. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1772. */
  1773. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1774. __releases(this_rq->lock)
  1775. __acquires(busiest->lock)
  1776. __acquires(this_rq->lock)
  1777. {
  1778. if (unlikely(!irqs_disabled())) {
  1779. /* printk() doesn't work good under rq->lock */
  1780. spin_unlock(&this_rq->lock);
  1781. BUG_ON(1);
  1782. }
  1783. if (unlikely(!spin_trylock(&busiest->lock))) {
  1784. if (busiest < this_rq) {
  1785. spin_unlock(&this_rq->lock);
  1786. spin_lock(&busiest->lock);
  1787. spin_lock(&this_rq->lock);
  1788. } else
  1789. spin_lock(&busiest->lock);
  1790. }
  1791. }
  1792. /*
  1793. * If dest_cpu is allowed for this process, migrate the task to it.
  1794. * This is accomplished by forcing the cpu_allowed mask to only
  1795. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1796. * the cpu_allowed mask is restored.
  1797. */
  1798. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1799. {
  1800. struct migration_req req;
  1801. unsigned long flags;
  1802. struct rq *rq;
  1803. rq = task_rq_lock(p, &flags);
  1804. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1805. || unlikely(cpu_is_offline(dest_cpu)))
  1806. goto out;
  1807. /* force the process onto the specified CPU */
  1808. if (migrate_task(p, dest_cpu, &req)) {
  1809. /* Need to wait for migration thread (might exit: take ref). */
  1810. struct task_struct *mt = rq->migration_thread;
  1811. get_task_struct(mt);
  1812. task_rq_unlock(rq, &flags);
  1813. wake_up_process(mt);
  1814. put_task_struct(mt);
  1815. wait_for_completion(&req.done);
  1816. return;
  1817. }
  1818. out:
  1819. task_rq_unlock(rq, &flags);
  1820. }
  1821. /*
  1822. * sched_exec - execve() is a valuable balancing opportunity, because at
  1823. * this point the task has the smallest effective memory and cache footprint.
  1824. */
  1825. void sched_exec(void)
  1826. {
  1827. int new_cpu, this_cpu = get_cpu();
  1828. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1829. put_cpu();
  1830. if (new_cpu != this_cpu)
  1831. sched_migrate_task(current, new_cpu);
  1832. }
  1833. /*
  1834. * pull_task - move a task from a remote runqueue to the local runqueue.
  1835. * Both runqueues must be locked.
  1836. */
  1837. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1838. struct rq *this_rq, int this_cpu)
  1839. {
  1840. deactivate_task(src_rq, p, 0);
  1841. set_task_cpu(p, this_cpu);
  1842. activate_task(this_rq, p, 0);
  1843. /*
  1844. * Note that idle threads have a prio of MAX_PRIO, for this test
  1845. * to be always true for them.
  1846. */
  1847. check_preempt_curr(this_rq, p);
  1848. }
  1849. /*
  1850. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1851. */
  1852. static
  1853. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1854. struct sched_domain *sd, enum cpu_idle_type idle,
  1855. int *all_pinned)
  1856. {
  1857. /*
  1858. * We do not migrate tasks that are:
  1859. * 1) running (obviously), or
  1860. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1861. * 3) are cache-hot on their current CPU.
  1862. */
  1863. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1864. return 0;
  1865. *all_pinned = 0;
  1866. if (task_running(rq, p))
  1867. return 0;
  1868. return 1;
  1869. }
  1870. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1871. unsigned long max_nr_move, unsigned long max_load_move,
  1872. struct sched_domain *sd, enum cpu_idle_type idle,
  1873. int *all_pinned, unsigned long *load_moved,
  1874. int *this_best_prio, struct rq_iterator *iterator)
  1875. {
  1876. int pulled = 0, pinned = 0, skip_for_load;
  1877. struct task_struct *p;
  1878. long rem_load_move = max_load_move;
  1879. if (max_nr_move == 0 || max_load_move == 0)
  1880. goto out;
  1881. pinned = 1;
  1882. /*
  1883. * Start the load-balancing iterator:
  1884. */
  1885. p = iterator->start(iterator->arg);
  1886. next:
  1887. if (!p)
  1888. goto out;
  1889. /*
  1890. * To help distribute high priority tasks accross CPUs we don't
  1891. * skip a task if it will be the highest priority task (i.e. smallest
  1892. * prio value) on its new queue regardless of its load weight
  1893. */
  1894. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1895. SCHED_LOAD_SCALE_FUZZ;
  1896. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1897. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1898. p = iterator->next(iterator->arg);
  1899. goto next;
  1900. }
  1901. pull_task(busiest, p, this_rq, this_cpu);
  1902. pulled++;
  1903. rem_load_move -= p->se.load.weight;
  1904. /*
  1905. * We only want to steal up to the prescribed number of tasks
  1906. * and the prescribed amount of weighted load.
  1907. */
  1908. if (pulled < max_nr_move && rem_load_move > 0) {
  1909. if (p->prio < *this_best_prio)
  1910. *this_best_prio = p->prio;
  1911. p = iterator->next(iterator->arg);
  1912. goto next;
  1913. }
  1914. out:
  1915. /*
  1916. * Right now, this is the only place pull_task() is called,
  1917. * so we can safely collect pull_task() stats here rather than
  1918. * inside pull_task().
  1919. */
  1920. schedstat_add(sd, lb_gained[idle], pulled);
  1921. if (all_pinned)
  1922. *all_pinned = pinned;
  1923. *load_moved = max_load_move - rem_load_move;
  1924. return pulled;
  1925. }
  1926. /*
  1927. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1928. * this_rq, as part of a balancing operation within domain "sd".
  1929. * Returns 1 if successful and 0 otherwise.
  1930. *
  1931. * Called with both runqueues locked.
  1932. */
  1933. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1934. unsigned long max_load_move,
  1935. struct sched_domain *sd, enum cpu_idle_type idle,
  1936. int *all_pinned)
  1937. {
  1938. const struct sched_class *class = sched_class_highest;
  1939. unsigned long total_load_moved = 0;
  1940. int this_best_prio = this_rq->curr->prio;
  1941. do {
  1942. total_load_moved +=
  1943. class->load_balance(this_rq, this_cpu, busiest,
  1944. ULONG_MAX, max_load_move - total_load_moved,
  1945. sd, idle, all_pinned, &this_best_prio);
  1946. class = class->next;
  1947. } while (class && max_load_move > total_load_moved);
  1948. return total_load_moved > 0;
  1949. }
  1950. /*
  1951. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1952. * part of active balancing operations within "domain".
  1953. * Returns 1 if successful and 0 otherwise.
  1954. *
  1955. * Called with both runqueues locked.
  1956. */
  1957. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1958. struct sched_domain *sd, enum cpu_idle_type idle)
  1959. {
  1960. const struct sched_class *class;
  1961. int this_best_prio = MAX_PRIO;
  1962. for (class = sched_class_highest; class; class = class->next)
  1963. if (class->load_balance(this_rq, this_cpu, busiest,
  1964. 1, ULONG_MAX, sd, idle, NULL,
  1965. &this_best_prio))
  1966. return 1;
  1967. return 0;
  1968. }
  1969. /*
  1970. * find_busiest_group finds and returns the busiest CPU group within the
  1971. * domain. It calculates and returns the amount of weighted load which
  1972. * should be moved to restore balance via the imbalance parameter.
  1973. */
  1974. static struct sched_group *
  1975. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1976. unsigned long *imbalance, enum cpu_idle_type idle,
  1977. int *sd_idle, cpumask_t *cpus, int *balance)
  1978. {
  1979. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1980. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1981. unsigned long max_pull;
  1982. unsigned long busiest_load_per_task, busiest_nr_running;
  1983. unsigned long this_load_per_task, this_nr_running;
  1984. int load_idx;
  1985. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1986. int power_savings_balance = 1;
  1987. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1988. unsigned long min_nr_running = ULONG_MAX;
  1989. struct sched_group *group_min = NULL, *group_leader = NULL;
  1990. #endif
  1991. max_load = this_load = total_load = total_pwr = 0;
  1992. busiest_load_per_task = busiest_nr_running = 0;
  1993. this_load_per_task = this_nr_running = 0;
  1994. if (idle == CPU_NOT_IDLE)
  1995. load_idx = sd->busy_idx;
  1996. else if (idle == CPU_NEWLY_IDLE)
  1997. load_idx = sd->newidle_idx;
  1998. else
  1999. load_idx = sd->idle_idx;
  2000. do {
  2001. unsigned long load, group_capacity;
  2002. int local_group;
  2003. int i;
  2004. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2005. unsigned long sum_nr_running, sum_weighted_load;
  2006. local_group = cpu_isset(this_cpu, group->cpumask);
  2007. if (local_group)
  2008. balance_cpu = first_cpu(group->cpumask);
  2009. /* Tally up the load of all CPUs in the group */
  2010. sum_weighted_load = sum_nr_running = avg_load = 0;
  2011. for_each_cpu_mask(i, group->cpumask) {
  2012. struct rq *rq;
  2013. if (!cpu_isset(i, *cpus))
  2014. continue;
  2015. rq = cpu_rq(i);
  2016. if (*sd_idle && rq->nr_running)
  2017. *sd_idle = 0;
  2018. /* Bias balancing toward cpus of our domain */
  2019. if (local_group) {
  2020. if (idle_cpu(i) && !first_idle_cpu) {
  2021. first_idle_cpu = 1;
  2022. balance_cpu = i;
  2023. }
  2024. load = target_load(i, load_idx);
  2025. } else
  2026. load = source_load(i, load_idx);
  2027. avg_load += load;
  2028. sum_nr_running += rq->nr_running;
  2029. sum_weighted_load += weighted_cpuload(i);
  2030. }
  2031. /*
  2032. * First idle cpu or the first cpu(busiest) in this sched group
  2033. * is eligible for doing load balancing at this and above
  2034. * domains. In the newly idle case, we will allow all the cpu's
  2035. * to do the newly idle load balance.
  2036. */
  2037. if (idle != CPU_NEWLY_IDLE && local_group &&
  2038. balance_cpu != this_cpu && balance) {
  2039. *balance = 0;
  2040. goto ret;
  2041. }
  2042. total_load += avg_load;
  2043. total_pwr += group->__cpu_power;
  2044. /* Adjust by relative CPU power of the group */
  2045. avg_load = sg_div_cpu_power(group,
  2046. avg_load * SCHED_LOAD_SCALE);
  2047. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2048. if (local_group) {
  2049. this_load = avg_load;
  2050. this = group;
  2051. this_nr_running = sum_nr_running;
  2052. this_load_per_task = sum_weighted_load;
  2053. } else if (avg_load > max_load &&
  2054. sum_nr_running > group_capacity) {
  2055. max_load = avg_load;
  2056. busiest = group;
  2057. busiest_nr_running = sum_nr_running;
  2058. busiest_load_per_task = sum_weighted_load;
  2059. }
  2060. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2061. /*
  2062. * Busy processors will not participate in power savings
  2063. * balance.
  2064. */
  2065. if (idle == CPU_NOT_IDLE ||
  2066. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2067. goto group_next;
  2068. /*
  2069. * If the local group is idle or completely loaded
  2070. * no need to do power savings balance at this domain
  2071. */
  2072. if (local_group && (this_nr_running >= group_capacity ||
  2073. !this_nr_running))
  2074. power_savings_balance = 0;
  2075. /*
  2076. * If a group is already running at full capacity or idle,
  2077. * don't include that group in power savings calculations
  2078. */
  2079. if (!power_savings_balance || sum_nr_running >= group_capacity
  2080. || !sum_nr_running)
  2081. goto group_next;
  2082. /*
  2083. * Calculate the group which has the least non-idle load.
  2084. * This is the group from where we need to pick up the load
  2085. * for saving power
  2086. */
  2087. if ((sum_nr_running < min_nr_running) ||
  2088. (sum_nr_running == min_nr_running &&
  2089. first_cpu(group->cpumask) <
  2090. first_cpu(group_min->cpumask))) {
  2091. group_min = group;
  2092. min_nr_running = sum_nr_running;
  2093. min_load_per_task = sum_weighted_load /
  2094. sum_nr_running;
  2095. }
  2096. /*
  2097. * Calculate the group which is almost near its
  2098. * capacity but still has some space to pick up some load
  2099. * from other group and save more power
  2100. */
  2101. if (sum_nr_running <= group_capacity - 1) {
  2102. if (sum_nr_running > leader_nr_running ||
  2103. (sum_nr_running == leader_nr_running &&
  2104. first_cpu(group->cpumask) >
  2105. first_cpu(group_leader->cpumask))) {
  2106. group_leader = group;
  2107. leader_nr_running = sum_nr_running;
  2108. }
  2109. }
  2110. group_next:
  2111. #endif
  2112. group = group->next;
  2113. } while (group != sd->groups);
  2114. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2115. goto out_balanced;
  2116. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2117. if (this_load >= avg_load ||
  2118. 100*max_load <= sd->imbalance_pct*this_load)
  2119. goto out_balanced;
  2120. busiest_load_per_task /= busiest_nr_running;
  2121. /*
  2122. * We're trying to get all the cpus to the average_load, so we don't
  2123. * want to push ourselves above the average load, nor do we wish to
  2124. * reduce the max loaded cpu below the average load, as either of these
  2125. * actions would just result in more rebalancing later, and ping-pong
  2126. * tasks around. Thus we look for the minimum possible imbalance.
  2127. * Negative imbalances (*we* are more loaded than anyone else) will
  2128. * be counted as no imbalance for these purposes -- we can't fix that
  2129. * by pulling tasks to us. Be careful of negative numbers as they'll
  2130. * appear as very large values with unsigned longs.
  2131. */
  2132. if (max_load <= busiest_load_per_task)
  2133. goto out_balanced;
  2134. /*
  2135. * In the presence of smp nice balancing, certain scenarios can have
  2136. * max load less than avg load(as we skip the groups at or below
  2137. * its cpu_power, while calculating max_load..)
  2138. */
  2139. if (max_load < avg_load) {
  2140. *imbalance = 0;
  2141. goto small_imbalance;
  2142. }
  2143. /* Don't want to pull so many tasks that a group would go idle */
  2144. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2145. /* How much load to actually move to equalise the imbalance */
  2146. *imbalance = min(max_pull * busiest->__cpu_power,
  2147. (avg_load - this_load) * this->__cpu_power)
  2148. / SCHED_LOAD_SCALE;
  2149. /*
  2150. * if *imbalance is less than the average load per runnable task
  2151. * there is no gaurantee that any tasks will be moved so we'll have
  2152. * a think about bumping its value to force at least one task to be
  2153. * moved
  2154. */
  2155. if (*imbalance < busiest_load_per_task) {
  2156. unsigned long tmp, pwr_now, pwr_move;
  2157. unsigned int imbn;
  2158. small_imbalance:
  2159. pwr_move = pwr_now = 0;
  2160. imbn = 2;
  2161. if (this_nr_running) {
  2162. this_load_per_task /= this_nr_running;
  2163. if (busiest_load_per_task > this_load_per_task)
  2164. imbn = 1;
  2165. } else
  2166. this_load_per_task = SCHED_LOAD_SCALE;
  2167. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2168. busiest_load_per_task * imbn) {
  2169. *imbalance = busiest_load_per_task;
  2170. return busiest;
  2171. }
  2172. /*
  2173. * OK, we don't have enough imbalance to justify moving tasks,
  2174. * however we may be able to increase total CPU power used by
  2175. * moving them.
  2176. */
  2177. pwr_now += busiest->__cpu_power *
  2178. min(busiest_load_per_task, max_load);
  2179. pwr_now += this->__cpu_power *
  2180. min(this_load_per_task, this_load);
  2181. pwr_now /= SCHED_LOAD_SCALE;
  2182. /* Amount of load we'd subtract */
  2183. tmp = sg_div_cpu_power(busiest,
  2184. busiest_load_per_task * SCHED_LOAD_SCALE);
  2185. if (max_load > tmp)
  2186. pwr_move += busiest->__cpu_power *
  2187. min(busiest_load_per_task, max_load - tmp);
  2188. /* Amount of load we'd add */
  2189. if (max_load * busiest->__cpu_power <
  2190. busiest_load_per_task * SCHED_LOAD_SCALE)
  2191. tmp = sg_div_cpu_power(this,
  2192. max_load * busiest->__cpu_power);
  2193. else
  2194. tmp = sg_div_cpu_power(this,
  2195. busiest_load_per_task * SCHED_LOAD_SCALE);
  2196. pwr_move += this->__cpu_power *
  2197. min(this_load_per_task, this_load + tmp);
  2198. pwr_move /= SCHED_LOAD_SCALE;
  2199. /* Move if we gain throughput */
  2200. if (pwr_move > pwr_now)
  2201. *imbalance = busiest_load_per_task;
  2202. }
  2203. return busiest;
  2204. out_balanced:
  2205. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2206. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2207. goto ret;
  2208. if (this == group_leader && group_leader != group_min) {
  2209. *imbalance = min_load_per_task;
  2210. return group_min;
  2211. }
  2212. #endif
  2213. ret:
  2214. *imbalance = 0;
  2215. return NULL;
  2216. }
  2217. /*
  2218. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2219. */
  2220. static struct rq *
  2221. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2222. unsigned long imbalance, cpumask_t *cpus)
  2223. {
  2224. struct rq *busiest = NULL, *rq;
  2225. unsigned long max_load = 0;
  2226. int i;
  2227. for_each_cpu_mask(i, group->cpumask) {
  2228. unsigned long wl;
  2229. if (!cpu_isset(i, *cpus))
  2230. continue;
  2231. rq = cpu_rq(i);
  2232. wl = weighted_cpuload(i);
  2233. if (rq->nr_running == 1 && wl > imbalance)
  2234. continue;
  2235. if (wl > max_load) {
  2236. max_load = wl;
  2237. busiest = rq;
  2238. }
  2239. }
  2240. return busiest;
  2241. }
  2242. /*
  2243. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2244. * so long as it is large enough.
  2245. */
  2246. #define MAX_PINNED_INTERVAL 512
  2247. /*
  2248. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2249. * tasks if there is an imbalance.
  2250. */
  2251. static int load_balance(int this_cpu, struct rq *this_rq,
  2252. struct sched_domain *sd, enum cpu_idle_type idle,
  2253. int *balance)
  2254. {
  2255. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2256. struct sched_group *group;
  2257. unsigned long imbalance;
  2258. struct rq *busiest;
  2259. cpumask_t cpus = CPU_MASK_ALL;
  2260. unsigned long flags;
  2261. /*
  2262. * When power savings policy is enabled for the parent domain, idle
  2263. * sibling can pick up load irrespective of busy siblings. In this case,
  2264. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2265. * portraying it as CPU_NOT_IDLE.
  2266. */
  2267. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2268. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2269. sd_idle = 1;
  2270. schedstat_inc(sd, lb_count[idle]);
  2271. redo:
  2272. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2273. &cpus, balance);
  2274. if (*balance == 0)
  2275. goto out_balanced;
  2276. if (!group) {
  2277. schedstat_inc(sd, lb_nobusyg[idle]);
  2278. goto out_balanced;
  2279. }
  2280. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2281. if (!busiest) {
  2282. schedstat_inc(sd, lb_nobusyq[idle]);
  2283. goto out_balanced;
  2284. }
  2285. BUG_ON(busiest == this_rq);
  2286. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2287. ld_moved = 0;
  2288. if (busiest->nr_running > 1) {
  2289. /*
  2290. * Attempt to move tasks. If find_busiest_group has found
  2291. * an imbalance but busiest->nr_running <= 1, the group is
  2292. * still unbalanced. ld_moved simply stays zero, so it is
  2293. * correctly treated as an imbalance.
  2294. */
  2295. local_irq_save(flags);
  2296. double_rq_lock(this_rq, busiest);
  2297. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2298. imbalance, sd, idle, &all_pinned);
  2299. double_rq_unlock(this_rq, busiest);
  2300. local_irq_restore(flags);
  2301. /*
  2302. * some other cpu did the load balance for us.
  2303. */
  2304. if (ld_moved && this_cpu != smp_processor_id())
  2305. resched_cpu(this_cpu);
  2306. /* All tasks on this runqueue were pinned by CPU affinity */
  2307. if (unlikely(all_pinned)) {
  2308. cpu_clear(cpu_of(busiest), cpus);
  2309. if (!cpus_empty(cpus))
  2310. goto redo;
  2311. goto out_balanced;
  2312. }
  2313. }
  2314. if (!ld_moved) {
  2315. schedstat_inc(sd, lb_failed[idle]);
  2316. sd->nr_balance_failed++;
  2317. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2318. spin_lock_irqsave(&busiest->lock, flags);
  2319. /* don't kick the migration_thread, if the curr
  2320. * task on busiest cpu can't be moved to this_cpu
  2321. */
  2322. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2323. spin_unlock_irqrestore(&busiest->lock, flags);
  2324. all_pinned = 1;
  2325. goto out_one_pinned;
  2326. }
  2327. if (!busiest->active_balance) {
  2328. busiest->active_balance = 1;
  2329. busiest->push_cpu = this_cpu;
  2330. active_balance = 1;
  2331. }
  2332. spin_unlock_irqrestore(&busiest->lock, flags);
  2333. if (active_balance)
  2334. wake_up_process(busiest->migration_thread);
  2335. /*
  2336. * We've kicked active balancing, reset the failure
  2337. * counter.
  2338. */
  2339. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2340. }
  2341. } else
  2342. sd->nr_balance_failed = 0;
  2343. if (likely(!active_balance)) {
  2344. /* We were unbalanced, so reset the balancing interval */
  2345. sd->balance_interval = sd->min_interval;
  2346. } else {
  2347. /*
  2348. * If we've begun active balancing, start to back off. This
  2349. * case may not be covered by the all_pinned logic if there
  2350. * is only 1 task on the busy runqueue (because we don't call
  2351. * move_tasks).
  2352. */
  2353. if (sd->balance_interval < sd->max_interval)
  2354. sd->balance_interval *= 2;
  2355. }
  2356. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2357. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2358. return -1;
  2359. return ld_moved;
  2360. out_balanced:
  2361. schedstat_inc(sd, lb_balanced[idle]);
  2362. sd->nr_balance_failed = 0;
  2363. out_one_pinned:
  2364. /* tune up the balancing interval */
  2365. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2366. (sd->balance_interval < sd->max_interval))
  2367. sd->balance_interval *= 2;
  2368. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2369. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2370. return -1;
  2371. return 0;
  2372. }
  2373. /*
  2374. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2375. * tasks if there is an imbalance.
  2376. *
  2377. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2378. * this_rq is locked.
  2379. */
  2380. static int
  2381. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2382. {
  2383. struct sched_group *group;
  2384. struct rq *busiest = NULL;
  2385. unsigned long imbalance;
  2386. int ld_moved = 0;
  2387. int sd_idle = 0;
  2388. int all_pinned = 0;
  2389. cpumask_t cpus = CPU_MASK_ALL;
  2390. /*
  2391. * When power savings policy is enabled for the parent domain, idle
  2392. * sibling can pick up load irrespective of busy siblings. In this case,
  2393. * let the state of idle sibling percolate up as IDLE, instead of
  2394. * portraying it as CPU_NOT_IDLE.
  2395. */
  2396. if (sd->flags & SD_SHARE_CPUPOWER &&
  2397. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2398. sd_idle = 1;
  2399. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2400. redo:
  2401. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2402. &sd_idle, &cpus, NULL);
  2403. if (!group) {
  2404. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2405. goto out_balanced;
  2406. }
  2407. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2408. &cpus);
  2409. if (!busiest) {
  2410. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2411. goto out_balanced;
  2412. }
  2413. BUG_ON(busiest == this_rq);
  2414. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2415. ld_moved = 0;
  2416. if (busiest->nr_running > 1) {
  2417. /* Attempt to move tasks */
  2418. double_lock_balance(this_rq, busiest);
  2419. /* this_rq->clock is already updated */
  2420. update_rq_clock(busiest);
  2421. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2422. imbalance, sd, CPU_NEWLY_IDLE,
  2423. &all_pinned);
  2424. spin_unlock(&busiest->lock);
  2425. if (unlikely(all_pinned)) {
  2426. cpu_clear(cpu_of(busiest), cpus);
  2427. if (!cpus_empty(cpus))
  2428. goto redo;
  2429. }
  2430. }
  2431. if (!ld_moved) {
  2432. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2433. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2434. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2435. return -1;
  2436. } else
  2437. sd->nr_balance_failed = 0;
  2438. return ld_moved;
  2439. out_balanced:
  2440. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2441. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2442. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2443. return -1;
  2444. sd->nr_balance_failed = 0;
  2445. return 0;
  2446. }
  2447. /*
  2448. * idle_balance is called by schedule() if this_cpu is about to become
  2449. * idle. Attempts to pull tasks from other CPUs.
  2450. */
  2451. static void idle_balance(int this_cpu, struct rq *this_rq)
  2452. {
  2453. struct sched_domain *sd;
  2454. int pulled_task = -1;
  2455. unsigned long next_balance = jiffies + HZ;
  2456. for_each_domain(this_cpu, sd) {
  2457. unsigned long interval;
  2458. if (!(sd->flags & SD_LOAD_BALANCE))
  2459. continue;
  2460. if (sd->flags & SD_BALANCE_NEWIDLE)
  2461. /* If we've pulled tasks over stop searching: */
  2462. pulled_task = load_balance_newidle(this_cpu,
  2463. this_rq, sd);
  2464. interval = msecs_to_jiffies(sd->balance_interval);
  2465. if (time_after(next_balance, sd->last_balance + interval))
  2466. next_balance = sd->last_balance + interval;
  2467. if (pulled_task)
  2468. break;
  2469. }
  2470. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2471. /*
  2472. * We are going idle. next_balance may be set based on
  2473. * a busy processor. So reset next_balance.
  2474. */
  2475. this_rq->next_balance = next_balance;
  2476. }
  2477. }
  2478. /*
  2479. * active_load_balance is run by migration threads. It pushes running tasks
  2480. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2481. * running on each physical CPU where possible, and avoids physical /
  2482. * logical imbalances.
  2483. *
  2484. * Called with busiest_rq locked.
  2485. */
  2486. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2487. {
  2488. int target_cpu = busiest_rq->push_cpu;
  2489. struct sched_domain *sd;
  2490. struct rq *target_rq;
  2491. /* Is there any task to move? */
  2492. if (busiest_rq->nr_running <= 1)
  2493. return;
  2494. target_rq = cpu_rq(target_cpu);
  2495. /*
  2496. * This condition is "impossible", if it occurs
  2497. * we need to fix it. Originally reported by
  2498. * Bjorn Helgaas on a 128-cpu setup.
  2499. */
  2500. BUG_ON(busiest_rq == target_rq);
  2501. /* move a task from busiest_rq to target_rq */
  2502. double_lock_balance(busiest_rq, target_rq);
  2503. update_rq_clock(busiest_rq);
  2504. update_rq_clock(target_rq);
  2505. /* Search for an sd spanning us and the target CPU. */
  2506. for_each_domain(target_cpu, sd) {
  2507. if ((sd->flags & SD_LOAD_BALANCE) &&
  2508. cpu_isset(busiest_cpu, sd->span))
  2509. break;
  2510. }
  2511. if (likely(sd)) {
  2512. schedstat_inc(sd, alb_count);
  2513. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2514. sd, CPU_IDLE))
  2515. schedstat_inc(sd, alb_pushed);
  2516. else
  2517. schedstat_inc(sd, alb_failed);
  2518. }
  2519. spin_unlock(&target_rq->lock);
  2520. }
  2521. #ifdef CONFIG_NO_HZ
  2522. static struct {
  2523. atomic_t load_balancer;
  2524. cpumask_t cpu_mask;
  2525. } nohz ____cacheline_aligned = {
  2526. .load_balancer = ATOMIC_INIT(-1),
  2527. .cpu_mask = CPU_MASK_NONE,
  2528. };
  2529. /*
  2530. * This routine will try to nominate the ilb (idle load balancing)
  2531. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2532. * load balancing on behalf of all those cpus. If all the cpus in the system
  2533. * go into this tickless mode, then there will be no ilb owner (as there is
  2534. * no need for one) and all the cpus will sleep till the next wakeup event
  2535. * arrives...
  2536. *
  2537. * For the ilb owner, tick is not stopped. And this tick will be used
  2538. * for idle load balancing. ilb owner will still be part of
  2539. * nohz.cpu_mask..
  2540. *
  2541. * While stopping the tick, this cpu will become the ilb owner if there
  2542. * is no other owner. And will be the owner till that cpu becomes busy
  2543. * or if all cpus in the system stop their ticks at which point
  2544. * there is no need for ilb owner.
  2545. *
  2546. * When the ilb owner becomes busy, it nominates another owner, during the
  2547. * next busy scheduler_tick()
  2548. */
  2549. int select_nohz_load_balancer(int stop_tick)
  2550. {
  2551. int cpu = smp_processor_id();
  2552. if (stop_tick) {
  2553. cpu_set(cpu, nohz.cpu_mask);
  2554. cpu_rq(cpu)->in_nohz_recently = 1;
  2555. /*
  2556. * If we are going offline and still the leader, give up!
  2557. */
  2558. if (cpu_is_offline(cpu) &&
  2559. atomic_read(&nohz.load_balancer) == cpu) {
  2560. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2561. BUG();
  2562. return 0;
  2563. }
  2564. /* time for ilb owner also to sleep */
  2565. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2566. if (atomic_read(&nohz.load_balancer) == cpu)
  2567. atomic_set(&nohz.load_balancer, -1);
  2568. return 0;
  2569. }
  2570. if (atomic_read(&nohz.load_balancer) == -1) {
  2571. /* make me the ilb owner */
  2572. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2573. return 1;
  2574. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2575. return 1;
  2576. } else {
  2577. if (!cpu_isset(cpu, nohz.cpu_mask))
  2578. return 0;
  2579. cpu_clear(cpu, nohz.cpu_mask);
  2580. if (atomic_read(&nohz.load_balancer) == cpu)
  2581. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2582. BUG();
  2583. }
  2584. return 0;
  2585. }
  2586. #endif
  2587. static DEFINE_SPINLOCK(balancing);
  2588. /*
  2589. * It checks each scheduling domain to see if it is due to be balanced,
  2590. * and initiates a balancing operation if so.
  2591. *
  2592. * Balancing parameters are set up in arch_init_sched_domains.
  2593. */
  2594. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2595. {
  2596. int balance = 1;
  2597. struct rq *rq = cpu_rq(cpu);
  2598. unsigned long interval;
  2599. struct sched_domain *sd;
  2600. /* Earliest time when we have to do rebalance again */
  2601. unsigned long next_balance = jiffies + 60*HZ;
  2602. int update_next_balance = 0;
  2603. for_each_domain(cpu, sd) {
  2604. if (!(sd->flags & SD_LOAD_BALANCE))
  2605. continue;
  2606. interval = sd->balance_interval;
  2607. if (idle != CPU_IDLE)
  2608. interval *= sd->busy_factor;
  2609. /* scale ms to jiffies */
  2610. interval = msecs_to_jiffies(interval);
  2611. if (unlikely(!interval))
  2612. interval = 1;
  2613. if (interval > HZ*NR_CPUS/10)
  2614. interval = HZ*NR_CPUS/10;
  2615. if (sd->flags & SD_SERIALIZE) {
  2616. if (!spin_trylock(&balancing))
  2617. goto out;
  2618. }
  2619. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2620. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2621. /*
  2622. * We've pulled tasks over so either we're no
  2623. * longer idle, or one of our SMT siblings is
  2624. * not idle.
  2625. */
  2626. idle = CPU_NOT_IDLE;
  2627. }
  2628. sd->last_balance = jiffies;
  2629. }
  2630. if (sd->flags & SD_SERIALIZE)
  2631. spin_unlock(&balancing);
  2632. out:
  2633. if (time_after(next_balance, sd->last_balance + interval)) {
  2634. next_balance = sd->last_balance + interval;
  2635. update_next_balance = 1;
  2636. }
  2637. /*
  2638. * Stop the load balance at this level. There is another
  2639. * CPU in our sched group which is doing load balancing more
  2640. * actively.
  2641. */
  2642. if (!balance)
  2643. break;
  2644. }
  2645. /*
  2646. * next_balance will be updated only when there is a need.
  2647. * When the cpu is attached to null domain for ex, it will not be
  2648. * updated.
  2649. */
  2650. if (likely(update_next_balance))
  2651. rq->next_balance = next_balance;
  2652. }
  2653. /*
  2654. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2655. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2656. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2657. */
  2658. static void run_rebalance_domains(struct softirq_action *h)
  2659. {
  2660. int this_cpu = smp_processor_id();
  2661. struct rq *this_rq = cpu_rq(this_cpu);
  2662. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2663. CPU_IDLE : CPU_NOT_IDLE;
  2664. rebalance_domains(this_cpu, idle);
  2665. #ifdef CONFIG_NO_HZ
  2666. /*
  2667. * If this cpu is the owner for idle load balancing, then do the
  2668. * balancing on behalf of the other idle cpus whose ticks are
  2669. * stopped.
  2670. */
  2671. if (this_rq->idle_at_tick &&
  2672. atomic_read(&nohz.load_balancer) == this_cpu) {
  2673. cpumask_t cpus = nohz.cpu_mask;
  2674. struct rq *rq;
  2675. int balance_cpu;
  2676. cpu_clear(this_cpu, cpus);
  2677. for_each_cpu_mask(balance_cpu, cpus) {
  2678. /*
  2679. * If this cpu gets work to do, stop the load balancing
  2680. * work being done for other cpus. Next load
  2681. * balancing owner will pick it up.
  2682. */
  2683. if (need_resched())
  2684. break;
  2685. rebalance_domains(balance_cpu, CPU_IDLE);
  2686. rq = cpu_rq(balance_cpu);
  2687. if (time_after(this_rq->next_balance, rq->next_balance))
  2688. this_rq->next_balance = rq->next_balance;
  2689. }
  2690. }
  2691. #endif
  2692. }
  2693. /*
  2694. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2695. *
  2696. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2697. * idle load balancing owner or decide to stop the periodic load balancing,
  2698. * if the whole system is idle.
  2699. */
  2700. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2701. {
  2702. #ifdef CONFIG_NO_HZ
  2703. /*
  2704. * If we were in the nohz mode recently and busy at the current
  2705. * scheduler tick, then check if we need to nominate new idle
  2706. * load balancer.
  2707. */
  2708. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2709. rq->in_nohz_recently = 0;
  2710. if (atomic_read(&nohz.load_balancer) == cpu) {
  2711. cpu_clear(cpu, nohz.cpu_mask);
  2712. atomic_set(&nohz.load_balancer, -1);
  2713. }
  2714. if (atomic_read(&nohz.load_balancer) == -1) {
  2715. /*
  2716. * simple selection for now: Nominate the
  2717. * first cpu in the nohz list to be the next
  2718. * ilb owner.
  2719. *
  2720. * TBD: Traverse the sched domains and nominate
  2721. * the nearest cpu in the nohz.cpu_mask.
  2722. */
  2723. int ilb = first_cpu(nohz.cpu_mask);
  2724. if (ilb != NR_CPUS)
  2725. resched_cpu(ilb);
  2726. }
  2727. }
  2728. /*
  2729. * If this cpu is idle and doing idle load balancing for all the
  2730. * cpus with ticks stopped, is it time for that to stop?
  2731. */
  2732. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2733. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2734. resched_cpu(cpu);
  2735. return;
  2736. }
  2737. /*
  2738. * If this cpu is idle and the idle load balancing is done by
  2739. * someone else, then no need raise the SCHED_SOFTIRQ
  2740. */
  2741. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2742. cpu_isset(cpu, nohz.cpu_mask))
  2743. return;
  2744. #endif
  2745. if (time_after_eq(jiffies, rq->next_balance))
  2746. raise_softirq(SCHED_SOFTIRQ);
  2747. }
  2748. #else /* CONFIG_SMP */
  2749. /*
  2750. * on UP we do not need to balance between CPUs:
  2751. */
  2752. static inline void idle_balance(int cpu, struct rq *rq)
  2753. {
  2754. }
  2755. /* Avoid "used but not defined" warning on UP */
  2756. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2757. unsigned long max_nr_move, unsigned long max_load_move,
  2758. struct sched_domain *sd, enum cpu_idle_type idle,
  2759. int *all_pinned, unsigned long *load_moved,
  2760. int *this_best_prio, struct rq_iterator *iterator)
  2761. {
  2762. *load_moved = 0;
  2763. return 0;
  2764. }
  2765. #endif
  2766. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2767. EXPORT_PER_CPU_SYMBOL(kstat);
  2768. /*
  2769. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2770. * that have not yet been banked in case the task is currently running.
  2771. */
  2772. unsigned long long task_sched_runtime(struct task_struct *p)
  2773. {
  2774. unsigned long flags;
  2775. u64 ns, delta_exec;
  2776. struct rq *rq;
  2777. rq = task_rq_lock(p, &flags);
  2778. ns = p->se.sum_exec_runtime;
  2779. if (rq->curr == p) {
  2780. update_rq_clock(rq);
  2781. delta_exec = rq->clock - p->se.exec_start;
  2782. if ((s64)delta_exec > 0)
  2783. ns += delta_exec;
  2784. }
  2785. task_rq_unlock(rq, &flags);
  2786. return ns;
  2787. }
  2788. /*
  2789. * Account user cpu time to a process.
  2790. * @p: the process that the cpu time gets accounted to
  2791. * @hardirq_offset: the offset to subtract from hardirq_count()
  2792. * @cputime: the cpu time spent in user space since the last update
  2793. */
  2794. void account_user_time(struct task_struct *p, cputime_t cputime)
  2795. {
  2796. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2797. cputime64_t tmp;
  2798. p->utime = cputime_add(p->utime, cputime);
  2799. /* Add user time to cpustat. */
  2800. tmp = cputime_to_cputime64(cputime);
  2801. if (TASK_NICE(p) > 0)
  2802. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2803. else
  2804. cpustat->user = cputime64_add(cpustat->user, tmp);
  2805. }
  2806. /*
  2807. * Account system cpu time to a process.
  2808. * @p: the process that the cpu time gets accounted to
  2809. * @hardirq_offset: the offset to subtract from hardirq_count()
  2810. * @cputime: the cpu time spent in kernel space since the last update
  2811. */
  2812. void account_system_time(struct task_struct *p, int hardirq_offset,
  2813. cputime_t cputime)
  2814. {
  2815. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2816. struct rq *rq = this_rq();
  2817. cputime64_t tmp;
  2818. p->stime = cputime_add(p->stime, cputime);
  2819. /* Add system time to cpustat. */
  2820. tmp = cputime_to_cputime64(cputime);
  2821. if (hardirq_count() - hardirq_offset)
  2822. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2823. else if (softirq_count())
  2824. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2825. else if (p != rq->idle)
  2826. cpustat->system = cputime64_add(cpustat->system, tmp);
  2827. else if (atomic_read(&rq->nr_iowait) > 0)
  2828. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2829. else
  2830. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2831. /* Account for system time used */
  2832. acct_update_integrals(p);
  2833. }
  2834. /*
  2835. * Account for involuntary wait time.
  2836. * @p: the process from which the cpu time has been stolen
  2837. * @steal: the cpu time spent in involuntary wait
  2838. */
  2839. void account_steal_time(struct task_struct *p, cputime_t steal)
  2840. {
  2841. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2842. cputime64_t tmp = cputime_to_cputime64(steal);
  2843. struct rq *rq = this_rq();
  2844. if (p == rq->idle) {
  2845. p->stime = cputime_add(p->stime, steal);
  2846. if (atomic_read(&rq->nr_iowait) > 0)
  2847. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2848. else
  2849. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2850. } else
  2851. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2852. }
  2853. /*
  2854. * This function gets called by the timer code, with HZ frequency.
  2855. * We call it with interrupts disabled.
  2856. *
  2857. * It also gets called by the fork code, when changing the parent's
  2858. * timeslices.
  2859. */
  2860. void scheduler_tick(void)
  2861. {
  2862. int cpu = smp_processor_id();
  2863. struct rq *rq = cpu_rq(cpu);
  2864. struct task_struct *curr = rq->curr;
  2865. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2866. spin_lock(&rq->lock);
  2867. __update_rq_clock(rq);
  2868. /*
  2869. * Let rq->clock advance by at least TICK_NSEC:
  2870. */
  2871. if (unlikely(rq->clock < next_tick))
  2872. rq->clock = next_tick;
  2873. rq->tick_timestamp = rq->clock;
  2874. update_cpu_load(rq);
  2875. if (curr != rq->idle) /* FIXME: needed? */
  2876. curr->sched_class->task_tick(rq, curr);
  2877. spin_unlock(&rq->lock);
  2878. #ifdef CONFIG_SMP
  2879. rq->idle_at_tick = idle_cpu(cpu);
  2880. trigger_load_balance(rq, cpu);
  2881. #endif
  2882. }
  2883. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2884. void fastcall add_preempt_count(int val)
  2885. {
  2886. /*
  2887. * Underflow?
  2888. */
  2889. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2890. return;
  2891. preempt_count() += val;
  2892. /*
  2893. * Spinlock count overflowing soon?
  2894. */
  2895. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2896. PREEMPT_MASK - 10);
  2897. }
  2898. EXPORT_SYMBOL(add_preempt_count);
  2899. void fastcall sub_preempt_count(int val)
  2900. {
  2901. /*
  2902. * Underflow?
  2903. */
  2904. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2905. return;
  2906. /*
  2907. * Is the spinlock portion underflowing?
  2908. */
  2909. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2910. !(preempt_count() & PREEMPT_MASK)))
  2911. return;
  2912. preempt_count() -= val;
  2913. }
  2914. EXPORT_SYMBOL(sub_preempt_count);
  2915. #endif
  2916. /*
  2917. * Print scheduling while atomic bug:
  2918. */
  2919. static noinline void __schedule_bug(struct task_struct *prev)
  2920. {
  2921. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2922. prev->comm, preempt_count(), prev->pid);
  2923. debug_show_held_locks(prev);
  2924. if (irqs_disabled())
  2925. print_irqtrace_events(prev);
  2926. dump_stack();
  2927. }
  2928. /*
  2929. * Various schedule()-time debugging checks and statistics:
  2930. */
  2931. static inline void schedule_debug(struct task_struct *prev)
  2932. {
  2933. /*
  2934. * Test if we are atomic. Since do_exit() needs to call into
  2935. * schedule() atomically, we ignore that path for now.
  2936. * Otherwise, whine if we are scheduling when we should not be.
  2937. */
  2938. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2939. __schedule_bug(prev);
  2940. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2941. schedstat_inc(this_rq(), sched_count);
  2942. #ifdef CONFIG_SCHEDSTATS
  2943. if (unlikely(prev->lock_depth >= 0)) {
  2944. schedstat_inc(this_rq(), bkl_count);
  2945. schedstat_inc(prev, sched_info.bkl_count);
  2946. }
  2947. #endif
  2948. }
  2949. /*
  2950. * Pick up the highest-prio task:
  2951. */
  2952. static inline struct task_struct *
  2953. pick_next_task(struct rq *rq, struct task_struct *prev)
  2954. {
  2955. const struct sched_class *class;
  2956. struct task_struct *p;
  2957. /*
  2958. * Optimization: we know that if all tasks are in
  2959. * the fair class we can call that function directly:
  2960. */
  2961. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2962. p = fair_sched_class.pick_next_task(rq);
  2963. if (likely(p))
  2964. return p;
  2965. }
  2966. class = sched_class_highest;
  2967. for ( ; ; ) {
  2968. p = class->pick_next_task(rq);
  2969. if (p)
  2970. return p;
  2971. /*
  2972. * Will never be NULL as the idle class always
  2973. * returns a non-NULL p:
  2974. */
  2975. class = class->next;
  2976. }
  2977. }
  2978. /*
  2979. * schedule() is the main scheduler function.
  2980. */
  2981. asmlinkage void __sched schedule(void)
  2982. {
  2983. struct task_struct *prev, *next;
  2984. long *switch_count;
  2985. struct rq *rq;
  2986. int cpu;
  2987. need_resched:
  2988. preempt_disable();
  2989. cpu = smp_processor_id();
  2990. rq = cpu_rq(cpu);
  2991. rcu_qsctr_inc(cpu);
  2992. prev = rq->curr;
  2993. switch_count = &prev->nivcsw;
  2994. release_kernel_lock(prev);
  2995. need_resched_nonpreemptible:
  2996. schedule_debug(prev);
  2997. /*
  2998. * Do the rq-clock update outside the rq lock:
  2999. */
  3000. local_irq_disable();
  3001. __update_rq_clock(rq);
  3002. spin_lock(&rq->lock);
  3003. clear_tsk_need_resched(prev);
  3004. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3005. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3006. unlikely(signal_pending(prev)))) {
  3007. prev->state = TASK_RUNNING;
  3008. } else {
  3009. deactivate_task(rq, prev, 1);
  3010. }
  3011. switch_count = &prev->nvcsw;
  3012. }
  3013. if (unlikely(!rq->nr_running))
  3014. idle_balance(cpu, rq);
  3015. prev->sched_class->put_prev_task(rq, prev);
  3016. next = pick_next_task(rq, prev);
  3017. sched_info_switch(prev, next);
  3018. if (likely(prev != next)) {
  3019. rq->nr_switches++;
  3020. rq->curr = next;
  3021. ++*switch_count;
  3022. context_switch(rq, prev, next); /* unlocks the rq */
  3023. } else
  3024. spin_unlock_irq(&rq->lock);
  3025. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3026. cpu = smp_processor_id();
  3027. rq = cpu_rq(cpu);
  3028. goto need_resched_nonpreemptible;
  3029. }
  3030. preempt_enable_no_resched();
  3031. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3032. goto need_resched;
  3033. }
  3034. EXPORT_SYMBOL(schedule);
  3035. #ifdef CONFIG_PREEMPT
  3036. /*
  3037. * this is the entry point to schedule() from in-kernel preemption
  3038. * off of preempt_enable. Kernel preemptions off return from interrupt
  3039. * occur there and call schedule directly.
  3040. */
  3041. asmlinkage void __sched preempt_schedule(void)
  3042. {
  3043. struct thread_info *ti = current_thread_info();
  3044. #ifdef CONFIG_PREEMPT_BKL
  3045. struct task_struct *task = current;
  3046. int saved_lock_depth;
  3047. #endif
  3048. /*
  3049. * If there is a non-zero preempt_count or interrupts are disabled,
  3050. * we do not want to preempt the current task. Just return..
  3051. */
  3052. if (likely(ti->preempt_count || irqs_disabled()))
  3053. return;
  3054. need_resched:
  3055. add_preempt_count(PREEMPT_ACTIVE);
  3056. /*
  3057. * We keep the big kernel semaphore locked, but we
  3058. * clear ->lock_depth so that schedule() doesnt
  3059. * auto-release the semaphore:
  3060. */
  3061. #ifdef CONFIG_PREEMPT_BKL
  3062. saved_lock_depth = task->lock_depth;
  3063. task->lock_depth = -1;
  3064. #endif
  3065. schedule();
  3066. #ifdef CONFIG_PREEMPT_BKL
  3067. task->lock_depth = saved_lock_depth;
  3068. #endif
  3069. sub_preempt_count(PREEMPT_ACTIVE);
  3070. /* we could miss a preemption opportunity between schedule and now */
  3071. barrier();
  3072. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3073. goto need_resched;
  3074. }
  3075. EXPORT_SYMBOL(preempt_schedule);
  3076. /*
  3077. * this is the entry point to schedule() from kernel preemption
  3078. * off of irq context.
  3079. * Note, that this is called and return with irqs disabled. This will
  3080. * protect us against recursive calling from irq.
  3081. */
  3082. asmlinkage void __sched preempt_schedule_irq(void)
  3083. {
  3084. struct thread_info *ti = current_thread_info();
  3085. #ifdef CONFIG_PREEMPT_BKL
  3086. struct task_struct *task = current;
  3087. int saved_lock_depth;
  3088. #endif
  3089. /* Catch callers which need to be fixed */
  3090. BUG_ON(ti->preempt_count || !irqs_disabled());
  3091. need_resched:
  3092. add_preempt_count(PREEMPT_ACTIVE);
  3093. /*
  3094. * We keep the big kernel semaphore locked, but we
  3095. * clear ->lock_depth so that schedule() doesnt
  3096. * auto-release the semaphore:
  3097. */
  3098. #ifdef CONFIG_PREEMPT_BKL
  3099. saved_lock_depth = task->lock_depth;
  3100. task->lock_depth = -1;
  3101. #endif
  3102. local_irq_enable();
  3103. schedule();
  3104. local_irq_disable();
  3105. #ifdef CONFIG_PREEMPT_BKL
  3106. task->lock_depth = saved_lock_depth;
  3107. #endif
  3108. sub_preempt_count(PREEMPT_ACTIVE);
  3109. /* we could miss a preemption opportunity between schedule and now */
  3110. barrier();
  3111. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3112. goto need_resched;
  3113. }
  3114. #endif /* CONFIG_PREEMPT */
  3115. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3116. void *key)
  3117. {
  3118. return try_to_wake_up(curr->private, mode, sync);
  3119. }
  3120. EXPORT_SYMBOL(default_wake_function);
  3121. /*
  3122. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3123. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3124. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3125. *
  3126. * There are circumstances in which we can try to wake a task which has already
  3127. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3128. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3129. */
  3130. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3131. int nr_exclusive, int sync, void *key)
  3132. {
  3133. wait_queue_t *curr, *next;
  3134. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3135. unsigned flags = curr->flags;
  3136. if (curr->func(curr, mode, sync, key) &&
  3137. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3138. break;
  3139. }
  3140. }
  3141. /**
  3142. * __wake_up - wake up threads blocked on a waitqueue.
  3143. * @q: the waitqueue
  3144. * @mode: which threads
  3145. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3146. * @key: is directly passed to the wakeup function
  3147. */
  3148. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3149. int nr_exclusive, void *key)
  3150. {
  3151. unsigned long flags;
  3152. spin_lock_irqsave(&q->lock, flags);
  3153. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3154. spin_unlock_irqrestore(&q->lock, flags);
  3155. }
  3156. EXPORT_SYMBOL(__wake_up);
  3157. /*
  3158. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3159. */
  3160. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3161. {
  3162. __wake_up_common(q, mode, 1, 0, NULL);
  3163. }
  3164. /**
  3165. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3166. * @q: the waitqueue
  3167. * @mode: which threads
  3168. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3169. *
  3170. * The sync wakeup differs that the waker knows that it will schedule
  3171. * away soon, so while the target thread will be woken up, it will not
  3172. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3173. * with each other. This can prevent needless bouncing between CPUs.
  3174. *
  3175. * On UP it can prevent extra preemption.
  3176. */
  3177. void fastcall
  3178. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3179. {
  3180. unsigned long flags;
  3181. int sync = 1;
  3182. if (unlikely(!q))
  3183. return;
  3184. if (unlikely(!nr_exclusive))
  3185. sync = 0;
  3186. spin_lock_irqsave(&q->lock, flags);
  3187. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3188. spin_unlock_irqrestore(&q->lock, flags);
  3189. }
  3190. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3191. void fastcall complete(struct completion *x)
  3192. {
  3193. unsigned long flags;
  3194. spin_lock_irqsave(&x->wait.lock, flags);
  3195. x->done++;
  3196. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3197. 1, 0, NULL);
  3198. spin_unlock_irqrestore(&x->wait.lock, flags);
  3199. }
  3200. EXPORT_SYMBOL(complete);
  3201. void fastcall complete_all(struct completion *x)
  3202. {
  3203. unsigned long flags;
  3204. spin_lock_irqsave(&x->wait.lock, flags);
  3205. x->done += UINT_MAX/2;
  3206. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3207. 0, 0, NULL);
  3208. spin_unlock_irqrestore(&x->wait.lock, flags);
  3209. }
  3210. EXPORT_SYMBOL(complete_all);
  3211. void fastcall __sched wait_for_completion(struct completion *x)
  3212. {
  3213. might_sleep();
  3214. spin_lock_irq(&x->wait.lock);
  3215. if (!x->done) {
  3216. DECLARE_WAITQUEUE(wait, current);
  3217. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3218. __add_wait_queue_tail(&x->wait, &wait);
  3219. do {
  3220. __set_current_state(TASK_UNINTERRUPTIBLE);
  3221. spin_unlock_irq(&x->wait.lock);
  3222. schedule();
  3223. spin_lock_irq(&x->wait.lock);
  3224. } while (!x->done);
  3225. __remove_wait_queue(&x->wait, &wait);
  3226. }
  3227. x->done--;
  3228. spin_unlock_irq(&x->wait.lock);
  3229. }
  3230. EXPORT_SYMBOL(wait_for_completion);
  3231. unsigned long fastcall __sched
  3232. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3233. {
  3234. might_sleep();
  3235. spin_lock_irq(&x->wait.lock);
  3236. if (!x->done) {
  3237. DECLARE_WAITQUEUE(wait, current);
  3238. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3239. __add_wait_queue_tail(&x->wait, &wait);
  3240. do {
  3241. __set_current_state(TASK_UNINTERRUPTIBLE);
  3242. spin_unlock_irq(&x->wait.lock);
  3243. timeout = schedule_timeout(timeout);
  3244. spin_lock_irq(&x->wait.lock);
  3245. if (!timeout) {
  3246. __remove_wait_queue(&x->wait, &wait);
  3247. goto out;
  3248. }
  3249. } while (!x->done);
  3250. __remove_wait_queue(&x->wait, &wait);
  3251. }
  3252. x->done--;
  3253. out:
  3254. spin_unlock_irq(&x->wait.lock);
  3255. return timeout;
  3256. }
  3257. EXPORT_SYMBOL(wait_for_completion_timeout);
  3258. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3259. {
  3260. int ret = 0;
  3261. might_sleep();
  3262. spin_lock_irq(&x->wait.lock);
  3263. if (!x->done) {
  3264. DECLARE_WAITQUEUE(wait, current);
  3265. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3266. __add_wait_queue_tail(&x->wait, &wait);
  3267. do {
  3268. if (signal_pending(current)) {
  3269. ret = -ERESTARTSYS;
  3270. __remove_wait_queue(&x->wait, &wait);
  3271. goto out;
  3272. }
  3273. __set_current_state(TASK_INTERRUPTIBLE);
  3274. spin_unlock_irq(&x->wait.lock);
  3275. schedule();
  3276. spin_lock_irq(&x->wait.lock);
  3277. } while (!x->done);
  3278. __remove_wait_queue(&x->wait, &wait);
  3279. }
  3280. x->done--;
  3281. out:
  3282. spin_unlock_irq(&x->wait.lock);
  3283. return ret;
  3284. }
  3285. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3286. unsigned long fastcall __sched
  3287. wait_for_completion_interruptible_timeout(struct completion *x,
  3288. unsigned long timeout)
  3289. {
  3290. might_sleep();
  3291. spin_lock_irq(&x->wait.lock);
  3292. if (!x->done) {
  3293. DECLARE_WAITQUEUE(wait, current);
  3294. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3295. __add_wait_queue_tail(&x->wait, &wait);
  3296. do {
  3297. if (signal_pending(current)) {
  3298. timeout = -ERESTARTSYS;
  3299. __remove_wait_queue(&x->wait, &wait);
  3300. goto out;
  3301. }
  3302. __set_current_state(TASK_INTERRUPTIBLE);
  3303. spin_unlock_irq(&x->wait.lock);
  3304. timeout = schedule_timeout(timeout);
  3305. spin_lock_irq(&x->wait.lock);
  3306. if (!timeout) {
  3307. __remove_wait_queue(&x->wait, &wait);
  3308. goto out;
  3309. }
  3310. } while (!x->done);
  3311. __remove_wait_queue(&x->wait, &wait);
  3312. }
  3313. x->done--;
  3314. out:
  3315. spin_unlock_irq(&x->wait.lock);
  3316. return timeout;
  3317. }
  3318. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3319. static inline void
  3320. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3321. {
  3322. spin_lock_irqsave(&q->lock, *flags);
  3323. __add_wait_queue(q, wait);
  3324. spin_unlock(&q->lock);
  3325. }
  3326. static inline void
  3327. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3328. {
  3329. spin_lock_irq(&q->lock);
  3330. __remove_wait_queue(q, wait);
  3331. spin_unlock_irqrestore(&q->lock, *flags);
  3332. }
  3333. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3334. {
  3335. unsigned long flags;
  3336. wait_queue_t wait;
  3337. init_waitqueue_entry(&wait, current);
  3338. current->state = TASK_INTERRUPTIBLE;
  3339. sleep_on_head(q, &wait, &flags);
  3340. schedule();
  3341. sleep_on_tail(q, &wait, &flags);
  3342. }
  3343. EXPORT_SYMBOL(interruptible_sleep_on);
  3344. long __sched
  3345. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3346. {
  3347. unsigned long flags;
  3348. wait_queue_t wait;
  3349. init_waitqueue_entry(&wait, current);
  3350. current->state = TASK_INTERRUPTIBLE;
  3351. sleep_on_head(q, &wait, &flags);
  3352. timeout = schedule_timeout(timeout);
  3353. sleep_on_tail(q, &wait, &flags);
  3354. return timeout;
  3355. }
  3356. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3357. void __sched sleep_on(wait_queue_head_t *q)
  3358. {
  3359. unsigned long flags;
  3360. wait_queue_t wait;
  3361. init_waitqueue_entry(&wait, current);
  3362. current->state = TASK_UNINTERRUPTIBLE;
  3363. sleep_on_head(q, &wait, &flags);
  3364. schedule();
  3365. sleep_on_tail(q, &wait, &flags);
  3366. }
  3367. EXPORT_SYMBOL(sleep_on);
  3368. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3369. {
  3370. unsigned long flags;
  3371. wait_queue_t wait;
  3372. init_waitqueue_entry(&wait, current);
  3373. current->state = TASK_UNINTERRUPTIBLE;
  3374. sleep_on_head(q, &wait, &flags);
  3375. timeout = schedule_timeout(timeout);
  3376. sleep_on_tail(q, &wait, &flags);
  3377. return timeout;
  3378. }
  3379. EXPORT_SYMBOL(sleep_on_timeout);
  3380. #ifdef CONFIG_RT_MUTEXES
  3381. /*
  3382. * rt_mutex_setprio - set the current priority of a task
  3383. * @p: task
  3384. * @prio: prio value (kernel-internal form)
  3385. *
  3386. * This function changes the 'effective' priority of a task. It does
  3387. * not touch ->normal_prio like __setscheduler().
  3388. *
  3389. * Used by the rt_mutex code to implement priority inheritance logic.
  3390. */
  3391. void rt_mutex_setprio(struct task_struct *p, int prio)
  3392. {
  3393. unsigned long flags;
  3394. int oldprio, on_rq, running;
  3395. struct rq *rq;
  3396. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3397. rq = task_rq_lock(p, &flags);
  3398. update_rq_clock(rq);
  3399. oldprio = p->prio;
  3400. on_rq = p->se.on_rq;
  3401. running = task_running(rq, p);
  3402. if (on_rq) {
  3403. dequeue_task(rq, p, 0);
  3404. if (running)
  3405. p->sched_class->put_prev_task(rq, p);
  3406. }
  3407. if (rt_prio(prio))
  3408. p->sched_class = &rt_sched_class;
  3409. else
  3410. p->sched_class = &fair_sched_class;
  3411. p->prio = prio;
  3412. if (on_rq) {
  3413. if (running)
  3414. p->sched_class->set_curr_task(rq);
  3415. enqueue_task(rq, p, 0);
  3416. /*
  3417. * Reschedule if we are currently running on this runqueue and
  3418. * our priority decreased, or if we are not currently running on
  3419. * this runqueue and our priority is higher than the current's
  3420. */
  3421. if (running) {
  3422. if (p->prio > oldprio)
  3423. resched_task(rq->curr);
  3424. } else {
  3425. check_preempt_curr(rq, p);
  3426. }
  3427. }
  3428. task_rq_unlock(rq, &flags);
  3429. }
  3430. #endif
  3431. void set_user_nice(struct task_struct *p, long nice)
  3432. {
  3433. int old_prio, delta, on_rq;
  3434. unsigned long flags;
  3435. struct rq *rq;
  3436. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3437. return;
  3438. /*
  3439. * We have to be careful, if called from sys_setpriority(),
  3440. * the task might be in the middle of scheduling on another CPU.
  3441. */
  3442. rq = task_rq_lock(p, &flags);
  3443. update_rq_clock(rq);
  3444. /*
  3445. * The RT priorities are set via sched_setscheduler(), but we still
  3446. * allow the 'normal' nice value to be set - but as expected
  3447. * it wont have any effect on scheduling until the task is
  3448. * SCHED_FIFO/SCHED_RR:
  3449. */
  3450. if (task_has_rt_policy(p)) {
  3451. p->static_prio = NICE_TO_PRIO(nice);
  3452. goto out_unlock;
  3453. }
  3454. on_rq = p->se.on_rq;
  3455. if (on_rq) {
  3456. dequeue_task(rq, p, 0);
  3457. dec_load(rq, p);
  3458. }
  3459. p->static_prio = NICE_TO_PRIO(nice);
  3460. set_load_weight(p);
  3461. old_prio = p->prio;
  3462. p->prio = effective_prio(p);
  3463. delta = p->prio - old_prio;
  3464. if (on_rq) {
  3465. enqueue_task(rq, p, 0);
  3466. inc_load(rq, p);
  3467. /*
  3468. * If the task increased its priority or is running and
  3469. * lowered its priority, then reschedule its CPU:
  3470. */
  3471. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3472. resched_task(rq->curr);
  3473. }
  3474. out_unlock:
  3475. task_rq_unlock(rq, &flags);
  3476. }
  3477. EXPORT_SYMBOL(set_user_nice);
  3478. /*
  3479. * can_nice - check if a task can reduce its nice value
  3480. * @p: task
  3481. * @nice: nice value
  3482. */
  3483. int can_nice(const struct task_struct *p, const int nice)
  3484. {
  3485. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3486. int nice_rlim = 20 - nice;
  3487. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3488. capable(CAP_SYS_NICE));
  3489. }
  3490. #ifdef __ARCH_WANT_SYS_NICE
  3491. /*
  3492. * sys_nice - change the priority of the current process.
  3493. * @increment: priority increment
  3494. *
  3495. * sys_setpriority is a more generic, but much slower function that
  3496. * does similar things.
  3497. */
  3498. asmlinkage long sys_nice(int increment)
  3499. {
  3500. long nice, retval;
  3501. /*
  3502. * Setpriority might change our priority at the same moment.
  3503. * We don't have to worry. Conceptually one call occurs first
  3504. * and we have a single winner.
  3505. */
  3506. if (increment < -40)
  3507. increment = -40;
  3508. if (increment > 40)
  3509. increment = 40;
  3510. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3511. if (nice < -20)
  3512. nice = -20;
  3513. if (nice > 19)
  3514. nice = 19;
  3515. if (increment < 0 && !can_nice(current, nice))
  3516. return -EPERM;
  3517. retval = security_task_setnice(current, nice);
  3518. if (retval)
  3519. return retval;
  3520. set_user_nice(current, nice);
  3521. return 0;
  3522. }
  3523. #endif
  3524. /**
  3525. * task_prio - return the priority value of a given task.
  3526. * @p: the task in question.
  3527. *
  3528. * This is the priority value as seen by users in /proc.
  3529. * RT tasks are offset by -200. Normal tasks are centered
  3530. * around 0, value goes from -16 to +15.
  3531. */
  3532. int task_prio(const struct task_struct *p)
  3533. {
  3534. return p->prio - MAX_RT_PRIO;
  3535. }
  3536. /**
  3537. * task_nice - return the nice value of a given task.
  3538. * @p: the task in question.
  3539. */
  3540. int task_nice(const struct task_struct *p)
  3541. {
  3542. return TASK_NICE(p);
  3543. }
  3544. EXPORT_SYMBOL_GPL(task_nice);
  3545. /**
  3546. * idle_cpu - is a given cpu idle currently?
  3547. * @cpu: the processor in question.
  3548. */
  3549. int idle_cpu(int cpu)
  3550. {
  3551. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3552. }
  3553. /**
  3554. * idle_task - return the idle task for a given cpu.
  3555. * @cpu: the processor in question.
  3556. */
  3557. struct task_struct *idle_task(int cpu)
  3558. {
  3559. return cpu_rq(cpu)->idle;
  3560. }
  3561. /**
  3562. * find_process_by_pid - find a process with a matching PID value.
  3563. * @pid: the pid in question.
  3564. */
  3565. static struct task_struct *find_process_by_pid(pid_t pid)
  3566. {
  3567. return pid ? find_task_by_pid(pid) : current;
  3568. }
  3569. /* Actually do priority change: must hold rq lock. */
  3570. static void
  3571. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3572. {
  3573. BUG_ON(p->se.on_rq);
  3574. p->policy = policy;
  3575. switch (p->policy) {
  3576. case SCHED_NORMAL:
  3577. case SCHED_BATCH:
  3578. case SCHED_IDLE:
  3579. p->sched_class = &fair_sched_class;
  3580. break;
  3581. case SCHED_FIFO:
  3582. case SCHED_RR:
  3583. p->sched_class = &rt_sched_class;
  3584. break;
  3585. }
  3586. p->rt_priority = prio;
  3587. p->normal_prio = normal_prio(p);
  3588. /* we are holding p->pi_lock already */
  3589. p->prio = rt_mutex_getprio(p);
  3590. set_load_weight(p);
  3591. }
  3592. /**
  3593. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3594. * @p: the task in question.
  3595. * @policy: new policy.
  3596. * @param: structure containing the new RT priority.
  3597. *
  3598. * NOTE that the task may be already dead.
  3599. */
  3600. int sched_setscheduler(struct task_struct *p, int policy,
  3601. struct sched_param *param)
  3602. {
  3603. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3604. unsigned long flags;
  3605. struct rq *rq;
  3606. /* may grab non-irq protected spin_locks */
  3607. BUG_ON(in_interrupt());
  3608. recheck:
  3609. /* double check policy once rq lock held */
  3610. if (policy < 0)
  3611. policy = oldpolicy = p->policy;
  3612. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3613. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3614. policy != SCHED_IDLE)
  3615. return -EINVAL;
  3616. /*
  3617. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3618. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3619. * SCHED_BATCH and SCHED_IDLE is 0.
  3620. */
  3621. if (param->sched_priority < 0 ||
  3622. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3623. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3624. return -EINVAL;
  3625. if (rt_policy(policy) != (param->sched_priority != 0))
  3626. return -EINVAL;
  3627. /*
  3628. * Allow unprivileged RT tasks to decrease priority:
  3629. */
  3630. if (!capable(CAP_SYS_NICE)) {
  3631. if (rt_policy(policy)) {
  3632. unsigned long rlim_rtprio;
  3633. if (!lock_task_sighand(p, &flags))
  3634. return -ESRCH;
  3635. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3636. unlock_task_sighand(p, &flags);
  3637. /* can't set/change the rt policy */
  3638. if (policy != p->policy && !rlim_rtprio)
  3639. return -EPERM;
  3640. /* can't increase priority */
  3641. if (param->sched_priority > p->rt_priority &&
  3642. param->sched_priority > rlim_rtprio)
  3643. return -EPERM;
  3644. }
  3645. /*
  3646. * Like positive nice levels, dont allow tasks to
  3647. * move out of SCHED_IDLE either:
  3648. */
  3649. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3650. return -EPERM;
  3651. /* can't change other user's priorities */
  3652. if ((current->euid != p->euid) &&
  3653. (current->euid != p->uid))
  3654. return -EPERM;
  3655. }
  3656. retval = security_task_setscheduler(p, policy, param);
  3657. if (retval)
  3658. return retval;
  3659. /*
  3660. * make sure no PI-waiters arrive (or leave) while we are
  3661. * changing the priority of the task:
  3662. */
  3663. spin_lock_irqsave(&p->pi_lock, flags);
  3664. /*
  3665. * To be able to change p->policy safely, the apropriate
  3666. * runqueue lock must be held.
  3667. */
  3668. rq = __task_rq_lock(p);
  3669. /* recheck policy now with rq lock held */
  3670. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3671. policy = oldpolicy = -1;
  3672. __task_rq_unlock(rq);
  3673. spin_unlock_irqrestore(&p->pi_lock, flags);
  3674. goto recheck;
  3675. }
  3676. update_rq_clock(rq);
  3677. on_rq = p->se.on_rq;
  3678. running = task_running(rq, p);
  3679. if (on_rq) {
  3680. deactivate_task(rq, p, 0);
  3681. if (running)
  3682. p->sched_class->put_prev_task(rq, p);
  3683. }
  3684. oldprio = p->prio;
  3685. __setscheduler(rq, p, policy, param->sched_priority);
  3686. if (on_rq) {
  3687. if (running)
  3688. p->sched_class->set_curr_task(rq);
  3689. activate_task(rq, p, 0);
  3690. /*
  3691. * Reschedule if we are currently running on this runqueue and
  3692. * our priority decreased, or if we are not currently running on
  3693. * this runqueue and our priority is higher than the current's
  3694. */
  3695. if (running) {
  3696. if (p->prio > oldprio)
  3697. resched_task(rq->curr);
  3698. } else {
  3699. check_preempt_curr(rq, p);
  3700. }
  3701. }
  3702. __task_rq_unlock(rq);
  3703. spin_unlock_irqrestore(&p->pi_lock, flags);
  3704. rt_mutex_adjust_pi(p);
  3705. return 0;
  3706. }
  3707. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3708. static int
  3709. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3710. {
  3711. struct sched_param lparam;
  3712. struct task_struct *p;
  3713. int retval;
  3714. if (!param || pid < 0)
  3715. return -EINVAL;
  3716. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3717. return -EFAULT;
  3718. rcu_read_lock();
  3719. retval = -ESRCH;
  3720. p = find_process_by_pid(pid);
  3721. if (p != NULL)
  3722. retval = sched_setscheduler(p, policy, &lparam);
  3723. rcu_read_unlock();
  3724. return retval;
  3725. }
  3726. /**
  3727. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3728. * @pid: the pid in question.
  3729. * @policy: new policy.
  3730. * @param: structure containing the new RT priority.
  3731. */
  3732. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3733. struct sched_param __user *param)
  3734. {
  3735. /* negative values for policy are not valid */
  3736. if (policy < 0)
  3737. return -EINVAL;
  3738. return do_sched_setscheduler(pid, policy, param);
  3739. }
  3740. /**
  3741. * sys_sched_setparam - set/change the RT priority of a thread
  3742. * @pid: the pid in question.
  3743. * @param: structure containing the new RT priority.
  3744. */
  3745. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3746. {
  3747. return do_sched_setscheduler(pid, -1, param);
  3748. }
  3749. /**
  3750. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3751. * @pid: the pid in question.
  3752. */
  3753. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3754. {
  3755. struct task_struct *p;
  3756. int retval = -EINVAL;
  3757. if (pid < 0)
  3758. goto out_nounlock;
  3759. retval = -ESRCH;
  3760. read_lock(&tasklist_lock);
  3761. p = find_process_by_pid(pid);
  3762. if (p) {
  3763. retval = security_task_getscheduler(p);
  3764. if (!retval)
  3765. retval = p->policy;
  3766. }
  3767. read_unlock(&tasklist_lock);
  3768. out_nounlock:
  3769. return retval;
  3770. }
  3771. /**
  3772. * sys_sched_getscheduler - get the RT priority of a thread
  3773. * @pid: the pid in question.
  3774. * @param: structure containing the RT priority.
  3775. */
  3776. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3777. {
  3778. struct sched_param lp;
  3779. struct task_struct *p;
  3780. int retval = -EINVAL;
  3781. if (!param || pid < 0)
  3782. goto out_nounlock;
  3783. read_lock(&tasklist_lock);
  3784. p = find_process_by_pid(pid);
  3785. retval = -ESRCH;
  3786. if (!p)
  3787. goto out_unlock;
  3788. retval = security_task_getscheduler(p);
  3789. if (retval)
  3790. goto out_unlock;
  3791. lp.sched_priority = p->rt_priority;
  3792. read_unlock(&tasklist_lock);
  3793. /*
  3794. * This one might sleep, we cannot do it with a spinlock held ...
  3795. */
  3796. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3797. out_nounlock:
  3798. return retval;
  3799. out_unlock:
  3800. read_unlock(&tasklist_lock);
  3801. return retval;
  3802. }
  3803. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3804. {
  3805. cpumask_t cpus_allowed;
  3806. struct task_struct *p;
  3807. int retval;
  3808. mutex_lock(&sched_hotcpu_mutex);
  3809. read_lock(&tasklist_lock);
  3810. p = find_process_by_pid(pid);
  3811. if (!p) {
  3812. read_unlock(&tasklist_lock);
  3813. mutex_unlock(&sched_hotcpu_mutex);
  3814. return -ESRCH;
  3815. }
  3816. /*
  3817. * It is not safe to call set_cpus_allowed with the
  3818. * tasklist_lock held. We will bump the task_struct's
  3819. * usage count and then drop tasklist_lock.
  3820. */
  3821. get_task_struct(p);
  3822. read_unlock(&tasklist_lock);
  3823. retval = -EPERM;
  3824. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3825. !capable(CAP_SYS_NICE))
  3826. goto out_unlock;
  3827. retval = security_task_setscheduler(p, 0, NULL);
  3828. if (retval)
  3829. goto out_unlock;
  3830. cpus_allowed = cpuset_cpus_allowed(p);
  3831. cpus_and(new_mask, new_mask, cpus_allowed);
  3832. retval = set_cpus_allowed(p, new_mask);
  3833. out_unlock:
  3834. put_task_struct(p);
  3835. mutex_unlock(&sched_hotcpu_mutex);
  3836. return retval;
  3837. }
  3838. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3839. cpumask_t *new_mask)
  3840. {
  3841. if (len < sizeof(cpumask_t)) {
  3842. memset(new_mask, 0, sizeof(cpumask_t));
  3843. } else if (len > sizeof(cpumask_t)) {
  3844. len = sizeof(cpumask_t);
  3845. }
  3846. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3847. }
  3848. /**
  3849. * sys_sched_setaffinity - set the cpu affinity of a process
  3850. * @pid: pid of the process
  3851. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3852. * @user_mask_ptr: user-space pointer to the new cpu mask
  3853. */
  3854. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3855. unsigned long __user *user_mask_ptr)
  3856. {
  3857. cpumask_t new_mask;
  3858. int retval;
  3859. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3860. if (retval)
  3861. return retval;
  3862. return sched_setaffinity(pid, new_mask);
  3863. }
  3864. /*
  3865. * Represents all cpu's present in the system
  3866. * In systems capable of hotplug, this map could dynamically grow
  3867. * as new cpu's are detected in the system via any platform specific
  3868. * method, such as ACPI for e.g.
  3869. */
  3870. cpumask_t cpu_present_map __read_mostly;
  3871. EXPORT_SYMBOL(cpu_present_map);
  3872. #ifndef CONFIG_SMP
  3873. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3874. EXPORT_SYMBOL(cpu_online_map);
  3875. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3876. EXPORT_SYMBOL(cpu_possible_map);
  3877. #endif
  3878. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3879. {
  3880. struct task_struct *p;
  3881. int retval;
  3882. mutex_lock(&sched_hotcpu_mutex);
  3883. read_lock(&tasklist_lock);
  3884. retval = -ESRCH;
  3885. p = find_process_by_pid(pid);
  3886. if (!p)
  3887. goto out_unlock;
  3888. retval = security_task_getscheduler(p);
  3889. if (retval)
  3890. goto out_unlock;
  3891. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3892. out_unlock:
  3893. read_unlock(&tasklist_lock);
  3894. mutex_unlock(&sched_hotcpu_mutex);
  3895. return retval;
  3896. }
  3897. /**
  3898. * sys_sched_getaffinity - get the cpu affinity of a process
  3899. * @pid: pid of the process
  3900. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3901. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3902. */
  3903. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3904. unsigned long __user *user_mask_ptr)
  3905. {
  3906. int ret;
  3907. cpumask_t mask;
  3908. if (len < sizeof(cpumask_t))
  3909. return -EINVAL;
  3910. ret = sched_getaffinity(pid, &mask);
  3911. if (ret < 0)
  3912. return ret;
  3913. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3914. return -EFAULT;
  3915. return sizeof(cpumask_t);
  3916. }
  3917. /**
  3918. * sys_sched_yield - yield the current processor to other threads.
  3919. *
  3920. * This function yields the current CPU to other tasks. If there are no
  3921. * other threads running on this CPU then this function will return.
  3922. */
  3923. asmlinkage long sys_sched_yield(void)
  3924. {
  3925. struct rq *rq = this_rq_lock();
  3926. schedstat_inc(rq, yld_count);
  3927. current->sched_class->yield_task(rq);
  3928. /*
  3929. * Since we are going to call schedule() anyway, there's
  3930. * no need to preempt or enable interrupts:
  3931. */
  3932. __release(rq->lock);
  3933. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3934. _raw_spin_unlock(&rq->lock);
  3935. preempt_enable_no_resched();
  3936. schedule();
  3937. return 0;
  3938. }
  3939. static void __cond_resched(void)
  3940. {
  3941. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3942. __might_sleep(__FILE__, __LINE__);
  3943. #endif
  3944. /*
  3945. * The BKS might be reacquired before we have dropped
  3946. * PREEMPT_ACTIVE, which could trigger a second
  3947. * cond_resched() call.
  3948. */
  3949. do {
  3950. add_preempt_count(PREEMPT_ACTIVE);
  3951. schedule();
  3952. sub_preempt_count(PREEMPT_ACTIVE);
  3953. } while (need_resched());
  3954. }
  3955. int __sched cond_resched(void)
  3956. {
  3957. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3958. system_state == SYSTEM_RUNNING) {
  3959. __cond_resched();
  3960. return 1;
  3961. }
  3962. return 0;
  3963. }
  3964. EXPORT_SYMBOL(cond_resched);
  3965. /*
  3966. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3967. * call schedule, and on return reacquire the lock.
  3968. *
  3969. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3970. * operations here to prevent schedule() from being called twice (once via
  3971. * spin_unlock(), once by hand).
  3972. */
  3973. int cond_resched_lock(spinlock_t *lock)
  3974. {
  3975. int ret = 0;
  3976. if (need_lockbreak(lock)) {
  3977. spin_unlock(lock);
  3978. cpu_relax();
  3979. ret = 1;
  3980. spin_lock(lock);
  3981. }
  3982. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3983. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3984. _raw_spin_unlock(lock);
  3985. preempt_enable_no_resched();
  3986. __cond_resched();
  3987. ret = 1;
  3988. spin_lock(lock);
  3989. }
  3990. return ret;
  3991. }
  3992. EXPORT_SYMBOL(cond_resched_lock);
  3993. int __sched cond_resched_softirq(void)
  3994. {
  3995. BUG_ON(!in_softirq());
  3996. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3997. local_bh_enable();
  3998. __cond_resched();
  3999. local_bh_disable();
  4000. return 1;
  4001. }
  4002. return 0;
  4003. }
  4004. EXPORT_SYMBOL(cond_resched_softirq);
  4005. /**
  4006. * yield - yield the current processor to other threads.
  4007. *
  4008. * This is a shortcut for kernel-space yielding - it marks the
  4009. * thread runnable and calls sys_sched_yield().
  4010. */
  4011. void __sched yield(void)
  4012. {
  4013. set_current_state(TASK_RUNNING);
  4014. sys_sched_yield();
  4015. }
  4016. EXPORT_SYMBOL(yield);
  4017. /*
  4018. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4019. * that process accounting knows that this is a task in IO wait state.
  4020. *
  4021. * But don't do that if it is a deliberate, throttling IO wait (this task
  4022. * has set its backing_dev_info: the queue against which it should throttle)
  4023. */
  4024. void __sched io_schedule(void)
  4025. {
  4026. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4027. delayacct_blkio_start();
  4028. atomic_inc(&rq->nr_iowait);
  4029. schedule();
  4030. atomic_dec(&rq->nr_iowait);
  4031. delayacct_blkio_end();
  4032. }
  4033. EXPORT_SYMBOL(io_schedule);
  4034. long __sched io_schedule_timeout(long timeout)
  4035. {
  4036. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4037. long ret;
  4038. delayacct_blkio_start();
  4039. atomic_inc(&rq->nr_iowait);
  4040. ret = schedule_timeout(timeout);
  4041. atomic_dec(&rq->nr_iowait);
  4042. delayacct_blkio_end();
  4043. return ret;
  4044. }
  4045. /**
  4046. * sys_sched_get_priority_max - return maximum RT priority.
  4047. * @policy: scheduling class.
  4048. *
  4049. * this syscall returns the maximum rt_priority that can be used
  4050. * by a given scheduling class.
  4051. */
  4052. asmlinkage long sys_sched_get_priority_max(int policy)
  4053. {
  4054. int ret = -EINVAL;
  4055. switch (policy) {
  4056. case SCHED_FIFO:
  4057. case SCHED_RR:
  4058. ret = MAX_USER_RT_PRIO-1;
  4059. break;
  4060. case SCHED_NORMAL:
  4061. case SCHED_BATCH:
  4062. case SCHED_IDLE:
  4063. ret = 0;
  4064. break;
  4065. }
  4066. return ret;
  4067. }
  4068. /**
  4069. * sys_sched_get_priority_min - return minimum RT priority.
  4070. * @policy: scheduling class.
  4071. *
  4072. * this syscall returns the minimum rt_priority that can be used
  4073. * by a given scheduling class.
  4074. */
  4075. asmlinkage long sys_sched_get_priority_min(int policy)
  4076. {
  4077. int ret = -EINVAL;
  4078. switch (policy) {
  4079. case SCHED_FIFO:
  4080. case SCHED_RR:
  4081. ret = 1;
  4082. break;
  4083. case SCHED_NORMAL:
  4084. case SCHED_BATCH:
  4085. case SCHED_IDLE:
  4086. ret = 0;
  4087. }
  4088. return ret;
  4089. }
  4090. /**
  4091. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4092. * @pid: pid of the process.
  4093. * @interval: userspace pointer to the timeslice value.
  4094. *
  4095. * this syscall writes the default timeslice value of a given process
  4096. * into the user-space timespec buffer. A value of '0' means infinity.
  4097. */
  4098. asmlinkage
  4099. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4100. {
  4101. struct task_struct *p;
  4102. int retval = -EINVAL;
  4103. struct timespec t;
  4104. if (pid < 0)
  4105. goto out_nounlock;
  4106. retval = -ESRCH;
  4107. read_lock(&tasklist_lock);
  4108. p = find_process_by_pid(pid);
  4109. if (!p)
  4110. goto out_unlock;
  4111. retval = security_task_getscheduler(p);
  4112. if (retval)
  4113. goto out_unlock;
  4114. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4115. 0 : static_prio_timeslice(p->static_prio), &t);
  4116. read_unlock(&tasklist_lock);
  4117. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4118. out_nounlock:
  4119. return retval;
  4120. out_unlock:
  4121. read_unlock(&tasklist_lock);
  4122. return retval;
  4123. }
  4124. static const char stat_nam[] = "RSDTtZX";
  4125. static void show_task(struct task_struct *p)
  4126. {
  4127. unsigned long free = 0;
  4128. unsigned state;
  4129. state = p->state ? __ffs(p->state) + 1 : 0;
  4130. printk("%-13.13s %c", p->comm,
  4131. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4132. #if BITS_PER_LONG == 32
  4133. if (state == TASK_RUNNING)
  4134. printk(" running ");
  4135. else
  4136. printk(" %08lx ", thread_saved_pc(p));
  4137. #else
  4138. if (state == TASK_RUNNING)
  4139. printk(" running task ");
  4140. else
  4141. printk(" %016lx ", thread_saved_pc(p));
  4142. #endif
  4143. #ifdef CONFIG_DEBUG_STACK_USAGE
  4144. {
  4145. unsigned long *n = end_of_stack(p);
  4146. while (!*n)
  4147. n++;
  4148. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4149. }
  4150. #endif
  4151. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4152. if (state != TASK_RUNNING)
  4153. show_stack(p, NULL);
  4154. }
  4155. void show_state_filter(unsigned long state_filter)
  4156. {
  4157. struct task_struct *g, *p;
  4158. #if BITS_PER_LONG == 32
  4159. printk(KERN_INFO
  4160. " task PC stack pid father\n");
  4161. #else
  4162. printk(KERN_INFO
  4163. " task PC stack pid father\n");
  4164. #endif
  4165. read_lock(&tasklist_lock);
  4166. do_each_thread(g, p) {
  4167. /*
  4168. * reset the NMI-timeout, listing all files on a slow
  4169. * console might take alot of time:
  4170. */
  4171. touch_nmi_watchdog();
  4172. if (!state_filter || (p->state & state_filter))
  4173. show_task(p);
  4174. } while_each_thread(g, p);
  4175. touch_all_softlockup_watchdogs();
  4176. #ifdef CONFIG_SCHED_DEBUG
  4177. sysrq_sched_debug_show();
  4178. #endif
  4179. read_unlock(&tasklist_lock);
  4180. /*
  4181. * Only show locks if all tasks are dumped:
  4182. */
  4183. if (state_filter == -1)
  4184. debug_show_all_locks();
  4185. }
  4186. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4187. {
  4188. idle->sched_class = &idle_sched_class;
  4189. }
  4190. /**
  4191. * init_idle - set up an idle thread for a given CPU
  4192. * @idle: task in question
  4193. * @cpu: cpu the idle task belongs to
  4194. *
  4195. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4196. * flag, to make booting more robust.
  4197. */
  4198. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4199. {
  4200. struct rq *rq = cpu_rq(cpu);
  4201. unsigned long flags;
  4202. __sched_fork(idle);
  4203. idle->se.exec_start = sched_clock();
  4204. idle->prio = idle->normal_prio = MAX_PRIO;
  4205. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4206. __set_task_cpu(idle, cpu);
  4207. spin_lock_irqsave(&rq->lock, flags);
  4208. rq->curr = rq->idle = idle;
  4209. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4210. idle->oncpu = 1;
  4211. #endif
  4212. spin_unlock_irqrestore(&rq->lock, flags);
  4213. /* Set the preempt count _outside_ the spinlocks! */
  4214. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4215. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4216. #else
  4217. task_thread_info(idle)->preempt_count = 0;
  4218. #endif
  4219. /*
  4220. * The idle tasks have their own, simple scheduling class:
  4221. */
  4222. idle->sched_class = &idle_sched_class;
  4223. }
  4224. /*
  4225. * In a system that switches off the HZ timer nohz_cpu_mask
  4226. * indicates which cpus entered this state. This is used
  4227. * in the rcu update to wait only for active cpus. For system
  4228. * which do not switch off the HZ timer nohz_cpu_mask should
  4229. * always be CPU_MASK_NONE.
  4230. */
  4231. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4232. #ifdef CONFIG_SMP
  4233. /*
  4234. * This is how migration works:
  4235. *
  4236. * 1) we queue a struct migration_req structure in the source CPU's
  4237. * runqueue and wake up that CPU's migration thread.
  4238. * 2) we down() the locked semaphore => thread blocks.
  4239. * 3) migration thread wakes up (implicitly it forces the migrated
  4240. * thread off the CPU)
  4241. * 4) it gets the migration request and checks whether the migrated
  4242. * task is still in the wrong runqueue.
  4243. * 5) if it's in the wrong runqueue then the migration thread removes
  4244. * it and puts it into the right queue.
  4245. * 6) migration thread up()s the semaphore.
  4246. * 7) we wake up and the migration is done.
  4247. */
  4248. /*
  4249. * Change a given task's CPU affinity. Migrate the thread to a
  4250. * proper CPU and schedule it away if the CPU it's executing on
  4251. * is removed from the allowed bitmask.
  4252. *
  4253. * NOTE: the caller must have a valid reference to the task, the
  4254. * task must not exit() & deallocate itself prematurely. The
  4255. * call is not atomic; no spinlocks may be held.
  4256. */
  4257. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4258. {
  4259. struct migration_req req;
  4260. unsigned long flags;
  4261. struct rq *rq;
  4262. int ret = 0;
  4263. rq = task_rq_lock(p, &flags);
  4264. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4265. ret = -EINVAL;
  4266. goto out;
  4267. }
  4268. p->cpus_allowed = new_mask;
  4269. /* Can the task run on the task's current CPU? If so, we're done */
  4270. if (cpu_isset(task_cpu(p), new_mask))
  4271. goto out;
  4272. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4273. /* Need help from migration thread: drop lock and wait. */
  4274. task_rq_unlock(rq, &flags);
  4275. wake_up_process(rq->migration_thread);
  4276. wait_for_completion(&req.done);
  4277. tlb_migrate_finish(p->mm);
  4278. return 0;
  4279. }
  4280. out:
  4281. task_rq_unlock(rq, &flags);
  4282. return ret;
  4283. }
  4284. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4285. /*
  4286. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4287. * this because either it can't run here any more (set_cpus_allowed()
  4288. * away from this CPU, or CPU going down), or because we're
  4289. * attempting to rebalance this task on exec (sched_exec).
  4290. *
  4291. * So we race with normal scheduler movements, but that's OK, as long
  4292. * as the task is no longer on this CPU.
  4293. *
  4294. * Returns non-zero if task was successfully migrated.
  4295. */
  4296. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4297. {
  4298. struct rq *rq_dest, *rq_src;
  4299. int ret = 0, on_rq;
  4300. if (unlikely(cpu_is_offline(dest_cpu)))
  4301. return ret;
  4302. rq_src = cpu_rq(src_cpu);
  4303. rq_dest = cpu_rq(dest_cpu);
  4304. double_rq_lock(rq_src, rq_dest);
  4305. /* Already moved. */
  4306. if (task_cpu(p) != src_cpu)
  4307. goto out;
  4308. /* Affinity changed (again). */
  4309. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4310. goto out;
  4311. on_rq = p->se.on_rq;
  4312. if (on_rq)
  4313. deactivate_task(rq_src, p, 0);
  4314. set_task_cpu(p, dest_cpu);
  4315. if (on_rq) {
  4316. activate_task(rq_dest, p, 0);
  4317. check_preempt_curr(rq_dest, p);
  4318. }
  4319. ret = 1;
  4320. out:
  4321. double_rq_unlock(rq_src, rq_dest);
  4322. return ret;
  4323. }
  4324. /*
  4325. * migration_thread - this is a highprio system thread that performs
  4326. * thread migration by bumping thread off CPU then 'pushing' onto
  4327. * another runqueue.
  4328. */
  4329. static int migration_thread(void *data)
  4330. {
  4331. int cpu = (long)data;
  4332. struct rq *rq;
  4333. rq = cpu_rq(cpu);
  4334. BUG_ON(rq->migration_thread != current);
  4335. set_current_state(TASK_INTERRUPTIBLE);
  4336. while (!kthread_should_stop()) {
  4337. struct migration_req *req;
  4338. struct list_head *head;
  4339. spin_lock_irq(&rq->lock);
  4340. if (cpu_is_offline(cpu)) {
  4341. spin_unlock_irq(&rq->lock);
  4342. goto wait_to_die;
  4343. }
  4344. if (rq->active_balance) {
  4345. active_load_balance(rq, cpu);
  4346. rq->active_balance = 0;
  4347. }
  4348. head = &rq->migration_queue;
  4349. if (list_empty(head)) {
  4350. spin_unlock_irq(&rq->lock);
  4351. schedule();
  4352. set_current_state(TASK_INTERRUPTIBLE);
  4353. continue;
  4354. }
  4355. req = list_entry(head->next, struct migration_req, list);
  4356. list_del_init(head->next);
  4357. spin_unlock(&rq->lock);
  4358. __migrate_task(req->task, cpu, req->dest_cpu);
  4359. local_irq_enable();
  4360. complete(&req->done);
  4361. }
  4362. __set_current_state(TASK_RUNNING);
  4363. return 0;
  4364. wait_to_die:
  4365. /* Wait for kthread_stop */
  4366. set_current_state(TASK_INTERRUPTIBLE);
  4367. while (!kthread_should_stop()) {
  4368. schedule();
  4369. set_current_state(TASK_INTERRUPTIBLE);
  4370. }
  4371. __set_current_state(TASK_RUNNING);
  4372. return 0;
  4373. }
  4374. #ifdef CONFIG_HOTPLUG_CPU
  4375. /*
  4376. * Figure out where task on dead CPU should go, use force if neccessary.
  4377. * NOTE: interrupts should be disabled by the caller
  4378. */
  4379. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4380. {
  4381. unsigned long flags;
  4382. cpumask_t mask;
  4383. struct rq *rq;
  4384. int dest_cpu;
  4385. restart:
  4386. /* On same node? */
  4387. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4388. cpus_and(mask, mask, p->cpus_allowed);
  4389. dest_cpu = any_online_cpu(mask);
  4390. /* On any allowed CPU? */
  4391. if (dest_cpu == NR_CPUS)
  4392. dest_cpu = any_online_cpu(p->cpus_allowed);
  4393. /* No more Mr. Nice Guy. */
  4394. if (dest_cpu == NR_CPUS) {
  4395. rq = task_rq_lock(p, &flags);
  4396. cpus_setall(p->cpus_allowed);
  4397. dest_cpu = any_online_cpu(p->cpus_allowed);
  4398. task_rq_unlock(rq, &flags);
  4399. /*
  4400. * Don't tell them about moving exiting tasks or
  4401. * kernel threads (both mm NULL), since they never
  4402. * leave kernel.
  4403. */
  4404. if (p->mm && printk_ratelimit())
  4405. printk(KERN_INFO "process %d (%s) no "
  4406. "longer affine to cpu%d\n",
  4407. p->pid, p->comm, dead_cpu);
  4408. }
  4409. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4410. goto restart;
  4411. }
  4412. /*
  4413. * While a dead CPU has no uninterruptible tasks queued at this point,
  4414. * it might still have a nonzero ->nr_uninterruptible counter, because
  4415. * for performance reasons the counter is not stricly tracking tasks to
  4416. * their home CPUs. So we just add the counter to another CPU's counter,
  4417. * to keep the global sum constant after CPU-down:
  4418. */
  4419. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4420. {
  4421. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4422. unsigned long flags;
  4423. local_irq_save(flags);
  4424. double_rq_lock(rq_src, rq_dest);
  4425. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4426. rq_src->nr_uninterruptible = 0;
  4427. double_rq_unlock(rq_src, rq_dest);
  4428. local_irq_restore(flags);
  4429. }
  4430. /* Run through task list and migrate tasks from the dead cpu. */
  4431. static void migrate_live_tasks(int src_cpu)
  4432. {
  4433. struct task_struct *p, *t;
  4434. write_lock_irq(&tasklist_lock);
  4435. do_each_thread(t, p) {
  4436. if (p == current)
  4437. continue;
  4438. if (task_cpu(p) == src_cpu)
  4439. move_task_off_dead_cpu(src_cpu, p);
  4440. } while_each_thread(t, p);
  4441. write_unlock_irq(&tasklist_lock);
  4442. }
  4443. /*
  4444. * activate_idle_task - move idle task to the _front_ of runqueue.
  4445. */
  4446. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4447. {
  4448. update_rq_clock(rq);
  4449. if (p->state == TASK_UNINTERRUPTIBLE)
  4450. rq->nr_uninterruptible--;
  4451. enqueue_task(rq, p, 0);
  4452. inc_nr_running(p, rq);
  4453. }
  4454. /*
  4455. * Schedules idle task to be the next runnable task on current CPU.
  4456. * It does so by boosting its priority to highest possible and adding it to
  4457. * the _front_ of the runqueue. Used by CPU offline code.
  4458. */
  4459. void sched_idle_next(void)
  4460. {
  4461. int this_cpu = smp_processor_id();
  4462. struct rq *rq = cpu_rq(this_cpu);
  4463. struct task_struct *p = rq->idle;
  4464. unsigned long flags;
  4465. /* cpu has to be offline */
  4466. BUG_ON(cpu_online(this_cpu));
  4467. /*
  4468. * Strictly not necessary since rest of the CPUs are stopped by now
  4469. * and interrupts disabled on the current cpu.
  4470. */
  4471. spin_lock_irqsave(&rq->lock, flags);
  4472. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4473. /* Add idle task to the _front_ of its priority queue: */
  4474. activate_idle_task(p, rq);
  4475. spin_unlock_irqrestore(&rq->lock, flags);
  4476. }
  4477. /*
  4478. * Ensures that the idle task is using init_mm right before its cpu goes
  4479. * offline.
  4480. */
  4481. void idle_task_exit(void)
  4482. {
  4483. struct mm_struct *mm = current->active_mm;
  4484. BUG_ON(cpu_online(smp_processor_id()));
  4485. if (mm != &init_mm)
  4486. switch_mm(mm, &init_mm, current);
  4487. mmdrop(mm);
  4488. }
  4489. /* called under rq->lock with disabled interrupts */
  4490. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4491. {
  4492. struct rq *rq = cpu_rq(dead_cpu);
  4493. /* Must be exiting, otherwise would be on tasklist. */
  4494. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4495. /* Cannot have done final schedule yet: would have vanished. */
  4496. BUG_ON(p->state == TASK_DEAD);
  4497. get_task_struct(p);
  4498. /*
  4499. * Drop lock around migration; if someone else moves it,
  4500. * that's OK. No task can be added to this CPU, so iteration is
  4501. * fine.
  4502. * NOTE: interrupts should be left disabled --dev@
  4503. */
  4504. spin_unlock(&rq->lock);
  4505. move_task_off_dead_cpu(dead_cpu, p);
  4506. spin_lock(&rq->lock);
  4507. put_task_struct(p);
  4508. }
  4509. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4510. static void migrate_dead_tasks(unsigned int dead_cpu)
  4511. {
  4512. struct rq *rq = cpu_rq(dead_cpu);
  4513. struct task_struct *next;
  4514. for ( ; ; ) {
  4515. if (!rq->nr_running)
  4516. break;
  4517. update_rq_clock(rq);
  4518. next = pick_next_task(rq, rq->curr);
  4519. if (!next)
  4520. break;
  4521. migrate_dead(dead_cpu, next);
  4522. }
  4523. }
  4524. #endif /* CONFIG_HOTPLUG_CPU */
  4525. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4526. static struct ctl_table sd_ctl_dir[] = {
  4527. {
  4528. .procname = "sched_domain",
  4529. .mode = 0555,
  4530. },
  4531. {0,},
  4532. };
  4533. static struct ctl_table sd_ctl_root[] = {
  4534. {
  4535. .ctl_name = CTL_KERN,
  4536. .procname = "kernel",
  4537. .mode = 0555,
  4538. .child = sd_ctl_dir,
  4539. },
  4540. {0,},
  4541. };
  4542. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4543. {
  4544. struct ctl_table *entry =
  4545. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4546. BUG_ON(!entry);
  4547. memset(entry, 0, n * sizeof(struct ctl_table));
  4548. return entry;
  4549. }
  4550. static void
  4551. set_table_entry(struct ctl_table *entry,
  4552. const char *procname, void *data, int maxlen,
  4553. mode_t mode, proc_handler *proc_handler)
  4554. {
  4555. entry->procname = procname;
  4556. entry->data = data;
  4557. entry->maxlen = maxlen;
  4558. entry->mode = mode;
  4559. entry->proc_handler = proc_handler;
  4560. }
  4561. static struct ctl_table *
  4562. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4563. {
  4564. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4565. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4566. sizeof(long), 0644, proc_doulongvec_minmax);
  4567. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4568. sizeof(long), 0644, proc_doulongvec_minmax);
  4569. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4570. sizeof(int), 0644, proc_dointvec_minmax);
  4571. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4572. sizeof(int), 0644, proc_dointvec_minmax);
  4573. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4574. sizeof(int), 0644, proc_dointvec_minmax);
  4575. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4576. sizeof(int), 0644, proc_dointvec_minmax);
  4577. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4578. sizeof(int), 0644, proc_dointvec_minmax);
  4579. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4580. sizeof(int), 0644, proc_dointvec_minmax);
  4581. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4582. sizeof(int), 0644, proc_dointvec_minmax);
  4583. set_table_entry(&table[10], "cache_nice_tries",
  4584. &sd->cache_nice_tries,
  4585. sizeof(int), 0644, proc_dointvec_minmax);
  4586. set_table_entry(&table[12], "flags", &sd->flags,
  4587. sizeof(int), 0644, proc_dointvec_minmax);
  4588. return table;
  4589. }
  4590. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4591. {
  4592. struct ctl_table *entry, *table;
  4593. struct sched_domain *sd;
  4594. int domain_num = 0, i;
  4595. char buf[32];
  4596. for_each_domain(cpu, sd)
  4597. domain_num++;
  4598. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4599. i = 0;
  4600. for_each_domain(cpu, sd) {
  4601. snprintf(buf, 32, "domain%d", i);
  4602. entry->procname = kstrdup(buf, GFP_KERNEL);
  4603. entry->mode = 0555;
  4604. entry->child = sd_alloc_ctl_domain_table(sd);
  4605. entry++;
  4606. i++;
  4607. }
  4608. return table;
  4609. }
  4610. static struct ctl_table_header *sd_sysctl_header;
  4611. static void init_sched_domain_sysctl(void)
  4612. {
  4613. int i, cpu_num = num_online_cpus();
  4614. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4615. char buf[32];
  4616. sd_ctl_dir[0].child = entry;
  4617. for (i = 0; i < cpu_num; i++, entry++) {
  4618. snprintf(buf, 32, "cpu%d", i);
  4619. entry->procname = kstrdup(buf, GFP_KERNEL);
  4620. entry->mode = 0555;
  4621. entry->child = sd_alloc_ctl_cpu_table(i);
  4622. }
  4623. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4624. }
  4625. #else
  4626. static void init_sched_domain_sysctl(void)
  4627. {
  4628. }
  4629. #endif
  4630. /*
  4631. * migration_call - callback that gets triggered when a CPU is added.
  4632. * Here we can start up the necessary migration thread for the new CPU.
  4633. */
  4634. static int __cpuinit
  4635. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4636. {
  4637. struct task_struct *p;
  4638. int cpu = (long)hcpu;
  4639. unsigned long flags;
  4640. struct rq *rq;
  4641. switch (action) {
  4642. case CPU_LOCK_ACQUIRE:
  4643. mutex_lock(&sched_hotcpu_mutex);
  4644. break;
  4645. case CPU_UP_PREPARE:
  4646. case CPU_UP_PREPARE_FROZEN:
  4647. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4648. if (IS_ERR(p))
  4649. return NOTIFY_BAD;
  4650. kthread_bind(p, cpu);
  4651. /* Must be high prio: stop_machine expects to yield to it. */
  4652. rq = task_rq_lock(p, &flags);
  4653. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4654. task_rq_unlock(rq, &flags);
  4655. cpu_rq(cpu)->migration_thread = p;
  4656. break;
  4657. case CPU_ONLINE:
  4658. case CPU_ONLINE_FROZEN:
  4659. /* Strictly unneccessary, as first user will wake it. */
  4660. wake_up_process(cpu_rq(cpu)->migration_thread);
  4661. break;
  4662. #ifdef CONFIG_HOTPLUG_CPU
  4663. case CPU_UP_CANCELED:
  4664. case CPU_UP_CANCELED_FROZEN:
  4665. if (!cpu_rq(cpu)->migration_thread)
  4666. break;
  4667. /* Unbind it from offline cpu so it can run. Fall thru. */
  4668. kthread_bind(cpu_rq(cpu)->migration_thread,
  4669. any_online_cpu(cpu_online_map));
  4670. kthread_stop(cpu_rq(cpu)->migration_thread);
  4671. cpu_rq(cpu)->migration_thread = NULL;
  4672. break;
  4673. case CPU_DEAD:
  4674. case CPU_DEAD_FROZEN:
  4675. migrate_live_tasks(cpu);
  4676. rq = cpu_rq(cpu);
  4677. kthread_stop(rq->migration_thread);
  4678. rq->migration_thread = NULL;
  4679. /* Idle task back to normal (off runqueue, low prio) */
  4680. rq = task_rq_lock(rq->idle, &flags);
  4681. update_rq_clock(rq);
  4682. deactivate_task(rq, rq->idle, 0);
  4683. rq->idle->static_prio = MAX_PRIO;
  4684. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4685. rq->idle->sched_class = &idle_sched_class;
  4686. migrate_dead_tasks(cpu);
  4687. task_rq_unlock(rq, &flags);
  4688. migrate_nr_uninterruptible(rq);
  4689. BUG_ON(rq->nr_running != 0);
  4690. /* No need to migrate the tasks: it was best-effort if
  4691. * they didn't take sched_hotcpu_mutex. Just wake up
  4692. * the requestors. */
  4693. spin_lock_irq(&rq->lock);
  4694. while (!list_empty(&rq->migration_queue)) {
  4695. struct migration_req *req;
  4696. req = list_entry(rq->migration_queue.next,
  4697. struct migration_req, list);
  4698. list_del_init(&req->list);
  4699. complete(&req->done);
  4700. }
  4701. spin_unlock_irq(&rq->lock);
  4702. break;
  4703. #endif
  4704. case CPU_LOCK_RELEASE:
  4705. mutex_unlock(&sched_hotcpu_mutex);
  4706. break;
  4707. }
  4708. return NOTIFY_OK;
  4709. }
  4710. /* Register at highest priority so that task migration (migrate_all_tasks)
  4711. * happens before everything else.
  4712. */
  4713. static struct notifier_block __cpuinitdata migration_notifier = {
  4714. .notifier_call = migration_call,
  4715. .priority = 10
  4716. };
  4717. int __init migration_init(void)
  4718. {
  4719. void *cpu = (void *)(long)smp_processor_id();
  4720. int err;
  4721. /* Start one for the boot CPU: */
  4722. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4723. BUG_ON(err == NOTIFY_BAD);
  4724. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4725. register_cpu_notifier(&migration_notifier);
  4726. return 0;
  4727. }
  4728. #endif
  4729. #ifdef CONFIG_SMP
  4730. /* Number of possible processor ids */
  4731. int nr_cpu_ids __read_mostly = NR_CPUS;
  4732. EXPORT_SYMBOL(nr_cpu_ids);
  4733. #undef SCHED_DOMAIN_DEBUG
  4734. #ifdef SCHED_DOMAIN_DEBUG
  4735. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4736. {
  4737. int level = 0;
  4738. if (!sd) {
  4739. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4740. return;
  4741. }
  4742. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4743. do {
  4744. int i;
  4745. char str[NR_CPUS];
  4746. struct sched_group *group = sd->groups;
  4747. cpumask_t groupmask;
  4748. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4749. cpus_clear(groupmask);
  4750. printk(KERN_DEBUG);
  4751. for (i = 0; i < level + 1; i++)
  4752. printk(" ");
  4753. printk("domain %d: ", level);
  4754. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4755. printk("does not load-balance\n");
  4756. if (sd->parent)
  4757. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4758. " has parent");
  4759. break;
  4760. }
  4761. printk("span %s\n", str);
  4762. if (!cpu_isset(cpu, sd->span))
  4763. printk(KERN_ERR "ERROR: domain->span does not contain "
  4764. "CPU%d\n", cpu);
  4765. if (!cpu_isset(cpu, group->cpumask))
  4766. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4767. " CPU%d\n", cpu);
  4768. printk(KERN_DEBUG);
  4769. for (i = 0; i < level + 2; i++)
  4770. printk(" ");
  4771. printk("groups:");
  4772. do {
  4773. if (!group) {
  4774. printk("\n");
  4775. printk(KERN_ERR "ERROR: group is NULL\n");
  4776. break;
  4777. }
  4778. if (!group->__cpu_power) {
  4779. printk("\n");
  4780. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4781. "set\n");
  4782. }
  4783. if (!cpus_weight(group->cpumask)) {
  4784. printk("\n");
  4785. printk(KERN_ERR "ERROR: empty group\n");
  4786. }
  4787. if (cpus_intersects(groupmask, group->cpumask)) {
  4788. printk("\n");
  4789. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4790. }
  4791. cpus_or(groupmask, groupmask, group->cpumask);
  4792. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4793. printk(" %s", str);
  4794. group = group->next;
  4795. } while (group != sd->groups);
  4796. printk("\n");
  4797. if (!cpus_equal(sd->span, groupmask))
  4798. printk(KERN_ERR "ERROR: groups don't span "
  4799. "domain->span\n");
  4800. level++;
  4801. sd = sd->parent;
  4802. if (!sd)
  4803. continue;
  4804. if (!cpus_subset(groupmask, sd->span))
  4805. printk(KERN_ERR "ERROR: parent span is not a superset "
  4806. "of domain->span\n");
  4807. } while (sd);
  4808. }
  4809. #else
  4810. # define sched_domain_debug(sd, cpu) do { } while (0)
  4811. #endif
  4812. static int sd_degenerate(struct sched_domain *sd)
  4813. {
  4814. if (cpus_weight(sd->span) == 1)
  4815. return 1;
  4816. /* Following flags need at least 2 groups */
  4817. if (sd->flags & (SD_LOAD_BALANCE |
  4818. SD_BALANCE_NEWIDLE |
  4819. SD_BALANCE_FORK |
  4820. SD_BALANCE_EXEC |
  4821. SD_SHARE_CPUPOWER |
  4822. SD_SHARE_PKG_RESOURCES)) {
  4823. if (sd->groups != sd->groups->next)
  4824. return 0;
  4825. }
  4826. /* Following flags don't use groups */
  4827. if (sd->flags & (SD_WAKE_IDLE |
  4828. SD_WAKE_AFFINE |
  4829. SD_WAKE_BALANCE))
  4830. return 0;
  4831. return 1;
  4832. }
  4833. static int
  4834. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4835. {
  4836. unsigned long cflags = sd->flags, pflags = parent->flags;
  4837. if (sd_degenerate(parent))
  4838. return 1;
  4839. if (!cpus_equal(sd->span, parent->span))
  4840. return 0;
  4841. /* Does parent contain flags not in child? */
  4842. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4843. if (cflags & SD_WAKE_AFFINE)
  4844. pflags &= ~SD_WAKE_BALANCE;
  4845. /* Flags needing groups don't count if only 1 group in parent */
  4846. if (parent->groups == parent->groups->next) {
  4847. pflags &= ~(SD_LOAD_BALANCE |
  4848. SD_BALANCE_NEWIDLE |
  4849. SD_BALANCE_FORK |
  4850. SD_BALANCE_EXEC |
  4851. SD_SHARE_CPUPOWER |
  4852. SD_SHARE_PKG_RESOURCES);
  4853. }
  4854. if (~cflags & pflags)
  4855. return 0;
  4856. return 1;
  4857. }
  4858. /*
  4859. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4860. * hold the hotplug lock.
  4861. */
  4862. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4863. {
  4864. struct rq *rq = cpu_rq(cpu);
  4865. struct sched_domain *tmp;
  4866. /* Remove the sched domains which do not contribute to scheduling. */
  4867. for (tmp = sd; tmp; tmp = tmp->parent) {
  4868. struct sched_domain *parent = tmp->parent;
  4869. if (!parent)
  4870. break;
  4871. if (sd_parent_degenerate(tmp, parent)) {
  4872. tmp->parent = parent->parent;
  4873. if (parent->parent)
  4874. parent->parent->child = tmp;
  4875. }
  4876. }
  4877. if (sd && sd_degenerate(sd)) {
  4878. sd = sd->parent;
  4879. if (sd)
  4880. sd->child = NULL;
  4881. }
  4882. sched_domain_debug(sd, cpu);
  4883. rcu_assign_pointer(rq->sd, sd);
  4884. }
  4885. /* cpus with isolated domains */
  4886. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4887. /* Setup the mask of cpus configured for isolated domains */
  4888. static int __init isolated_cpu_setup(char *str)
  4889. {
  4890. int ints[NR_CPUS], i;
  4891. str = get_options(str, ARRAY_SIZE(ints), ints);
  4892. cpus_clear(cpu_isolated_map);
  4893. for (i = 1; i <= ints[0]; i++)
  4894. if (ints[i] < NR_CPUS)
  4895. cpu_set(ints[i], cpu_isolated_map);
  4896. return 1;
  4897. }
  4898. __setup ("isolcpus=", isolated_cpu_setup);
  4899. /*
  4900. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4901. * to a function which identifies what group(along with sched group) a CPU
  4902. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4903. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4904. *
  4905. * init_sched_build_groups will build a circular linked list of the groups
  4906. * covered by the given span, and will set each group's ->cpumask correctly,
  4907. * and ->cpu_power to 0.
  4908. */
  4909. static void
  4910. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4911. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4912. struct sched_group **sg))
  4913. {
  4914. struct sched_group *first = NULL, *last = NULL;
  4915. cpumask_t covered = CPU_MASK_NONE;
  4916. int i;
  4917. for_each_cpu_mask(i, span) {
  4918. struct sched_group *sg;
  4919. int group = group_fn(i, cpu_map, &sg);
  4920. int j;
  4921. if (cpu_isset(i, covered))
  4922. continue;
  4923. sg->cpumask = CPU_MASK_NONE;
  4924. sg->__cpu_power = 0;
  4925. for_each_cpu_mask(j, span) {
  4926. if (group_fn(j, cpu_map, NULL) != group)
  4927. continue;
  4928. cpu_set(j, covered);
  4929. cpu_set(j, sg->cpumask);
  4930. }
  4931. if (!first)
  4932. first = sg;
  4933. if (last)
  4934. last->next = sg;
  4935. last = sg;
  4936. }
  4937. last->next = first;
  4938. }
  4939. #define SD_NODES_PER_DOMAIN 16
  4940. #ifdef CONFIG_NUMA
  4941. /**
  4942. * find_next_best_node - find the next node to include in a sched_domain
  4943. * @node: node whose sched_domain we're building
  4944. * @used_nodes: nodes already in the sched_domain
  4945. *
  4946. * Find the next node to include in a given scheduling domain. Simply
  4947. * finds the closest node not already in the @used_nodes map.
  4948. *
  4949. * Should use nodemask_t.
  4950. */
  4951. static int find_next_best_node(int node, unsigned long *used_nodes)
  4952. {
  4953. int i, n, val, min_val, best_node = 0;
  4954. min_val = INT_MAX;
  4955. for (i = 0; i < MAX_NUMNODES; i++) {
  4956. /* Start at @node */
  4957. n = (node + i) % MAX_NUMNODES;
  4958. if (!nr_cpus_node(n))
  4959. continue;
  4960. /* Skip already used nodes */
  4961. if (test_bit(n, used_nodes))
  4962. continue;
  4963. /* Simple min distance search */
  4964. val = node_distance(node, n);
  4965. if (val < min_val) {
  4966. min_val = val;
  4967. best_node = n;
  4968. }
  4969. }
  4970. set_bit(best_node, used_nodes);
  4971. return best_node;
  4972. }
  4973. /**
  4974. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4975. * @node: node whose cpumask we're constructing
  4976. * @size: number of nodes to include in this span
  4977. *
  4978. * Given a node, construct a good cpumask for its sched_domain to span. It
  4979. * should be one that prevents unnecessary balancing, but also spreads tasks
  4980. * out optimally.
  4981. */
  4982. static cpumask_t sched_domain_node_span(int node)
  4983. {
  4984. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4985. cpumask_t span, nodemask;
  4986. int i;
  4987. cpus_clear(span);
  4988. bitmap_zero(used_nodes, MAX_NUMNODES);
  4989. nodemask = node_to_cpumask(node);
  4990. cpus_or(span, span, nodemask);
  4991. set_bit(node, used_nodes);
  4992. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4993. int next_node = find_next_best_node(node, used_nodes);
  4994. nodemask = node_to_cpumask(next_node);
  4995. cpus_or(span, span, nodemask);
  4996. }
  4997. return span;
  4998. }
  4999. #endif
  5000. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5001. /*
  5002. * SMT sched-domains:
  5003. */
  5004. #ifdef CONFIG_SCHED_SMT
  5005. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5006. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5007. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5008. struct sched_group **sg)
  5009. {
  5010. if (sg)
  5011. *sg = &per_cpu(sched_group_cpus, cpu);
  5012. return cpu;
  5013. }
  5014. #endif
  5015. /*
  5016. * multi-core sched-domains:
  5017. */
  5018. #ifdef CONFIG_SCHED_MC
  5019. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5020. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5021. #endif
  5022. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5023. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5024. struct sched_group **sg)
  5025. {
  5026. int group;
  5027. cpumask_t mask = cpu_sibling_map[cpu];
  5028. cpus_and(mask, mask, *cpu_map);
  5029. group = first_cpu(mask);
  5030. if (sg)
  5031. *sg = &per_cpu(sched_group_core, group);
  5032. return group;
  5033. }
  5034. #elif defined(CONFIG_SCHED_MC)
  5035. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5036. struct sched_group **sg)
  5037. {
  5038. if (sg)
  5039. *sg = &per_cpu(sched_group_core, cpu);
  5040. return cpu;
  5041. }
  5042. #endif
  5043. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5044. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5045. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5046. struct sched_group **sg)
  5047. {
  5048. int group;
  5049. #ifdef CONFIG_SCHED_MC
  5050. cpumask_t mask = cpu_coregroup_map(cpu);
  5051. cpus_and(mask, mask, *cpu_map);
  5052. group = first_cpu(mask);
  5053. #elif defined(CONFIG_SCHED_SMT)
  5054. cpumask_t mask = cpu_sibling_map[cpu];
  5055. cpus_and(mask, mask, *cpu_map);
  5056. group = first_cpu(mask);
  5057. #else
  5058. group = cpu;
  5059. #endif
  5060. if (sg)
  5061. *sg = &per_cpu(sched_group_phys, group);
  5062. return group;
  5063. }
  5064. #ifdef CONFIG_NUMA
  5065. /*
  5066. * The init_sched_build_groups can't handle what we want to do with node
  5067. * groups, so roll our own. Now each node has its own list of groups which
  5068. * gets dynamically allocated.
  5069. */
  5070. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5071. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5072. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5073. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5074. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5075. struct sched_group **sg)
  5076. {
  5077. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5078. int group;
  5079. cpus_and(nodemask, nodemask, *cpu_map);
  5080. group = first_cpu(nodemask);
  5081. if (sg)
  5082. *sg = &per_cpu(sched_group_allnodes, group);
  5083. return group;
  5084. }
  5085. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5086. {
  5087. struct sched_group *sg = group_head;
  5088. int j;
  5089. if (!sg)
  5090. return;
  5091. next_sg:
  5092. for_each_cpu_mask(j, sg->cpumask) {
  5093. struct sched_domain *sd;
  5094. sd = &per_cpu(phys_domains, j);
  5095. if (j != first_cpu(sd->groups->cpumask)) {
  5096. /*
  5097. * Only add "power" once for each
  5098. * physical package.
  5099. */
  5100. continue;
  5101. }
  5102. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5103. }
  5104. sg = sg->next;
  5105. if (sg != group_head)
  5106. goto next_sg;
  5107. }
  5108. #endif
  5109. #ifdef CONFIG_NUMA
  5110. /* Free memory allocated for various sched_group structures */
  5111. static void free_sched_groups(const cpumask_t *cpu_map)
  5112. {
  5113. int cpu, i;
  5114. for_each_cpu_mask(cpu, *cpu_map) {
  5115. struct sched_group **sched_group_nodes
  5116. = sched_group_nodes_bycpu[cpu];
  5117. if (!sched_group_nodes)
  5118. continue;
  5119. for (i = 0; i < MAX_NUMNODES; i++) {
  5120. cpumask_t nodemask = node_to_cpumask(i);
  5121. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5122. cpus_and(nodemask, nodemask, *cpu_map);
  5123. if (cpus_empty(nodemask))
  5124. continue;
  5125. if (sg == NULL)
  5126. continue;
  5127. sg = sg->next;
  5128. next_sg:
  5129. oldsg = sg;
  5130. sg = sg->next;
  5131. kfree(oldsg);
  5132. if (oldsg != sched_group_nodes[i])
  5133. goto next_sg;
  5134. }
  5135. kfree(sched_group_nodes);
  5136. sched_group_nodes_bycpu[cpu] = NULL;
  5137. }
  5138. }
  5139. #else
  5140. static void free_sched_groups(const cpumask_t *cpu_map)
  5141. {
  5142. }
  5143. #endif
  5144. /*
  5145. * Initialize sched groups cpu_power.
  5146. *
  5147. * cpu_power indicates the capacity of sched group, which is used while
  5148. * distributing the load between different sched groups in a sched domain.
  5149. * Typically cpu_power for all the groups in a sched domain will be same unless
  5150. * there are asymmetries in the topology. If there are asymmetries, group
  5151. * having more cpu_power will pickup more load compared to the group having
  5152. * less cpu_power.
  5153. *
  5154. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5155. * the maximum number of tasks a group can handle in the presence of other idle
  5156. * or lightly loaded groups in the same sched domain.
  5157. */
  5158. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5159. {
  5160. struct sched_domain *child;
  5161. struct sched_group *group;
  5162. WARN_ON(!sd || !sd->groups);
  5163. if (cpu != first_cpu(sd->groups->cpumask))
  5164. return;
  5165. child = sd->child;
  5166. sd->groups->__cpu_power = 0;
  5167. /*
  5168. * For perf policy, if the groups in child domain share resources
  5169. * (for example cores sharing some portions of the cache hierarchy
  5170. * or SMT), then set this domain groups cpu_power such that each group
  5171. * can handle only one task, when there are other idle groups in the
  5172. * same sched domain.
  5173. */
  5174. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5175. (child->flags &
  5176. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5177. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5178. return;
  5179. }
  5180. /*
  5181. * add cpu_power of each child group to this groups cpu_power
  5182. */
  5183. group = child->groups;
  5184. do {
  5185. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5186. group = group->next;
  5187. } while (group != child->groups);
  5188. }
  5189. /*
  5190. * Build sched domains for a given set of cpus and attach the sched domains
  5191. * to the individual cpus
  5192. */
  5193. static int build_sched_domains(const cpumask_t *cpu_map)
  5194. {
  5195. int i;
  5196. #ifdef CONFIG_NUMA
  5197. struct sched_group **sched_group_nodes = NULL;
  5198. int sd_allnodes = 0;
  5199. /*
  5200. * Allocate the per-node list of sched groups
  5201. */
  5202. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5203. GFP_KERNEL);
  5204. if (!sched_group_nodes) {
  5205. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5206. return -ENOMEM;
  5207. }
  5208. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5209. #endif
  5210. /*
  5211. * Set up domains for cpus specified by the cpu_map.
  5212. */
  5213. for_each_cpu_mask(i, *cpu_map) {
  5214. struct sched_domain *sd = NULL, *p;
  5215. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5216. cpus_and(nodemask, nodemask, *cpu_map);
  5217. #ifdef CONFIG_NUMA
  5218. if (cpus_weight(*cpu_map) >
  5219. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5220. sd = &per_cpu(allnodes_domains, i);
  5221. *sd = SD_ALLNODES_INIT;
  5222. sd->span = *cpu_map;
  5223. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5224. p = sd;
  5225. sd_allnodes = 1;
  5226. } else
  5227. p = NULL;
  5228. sd = &per_cpu(node_domains, i);
  5229. *sd = SD_NODE_INIT;
  5230. sd->span = sched_domain_node_span(cpu_to_node(i));
  5231. sd->parent = p;
  5232. if (p)
  5233. p->child = sd;
  5234. cpus_and(sd->span, sd->span, *cpu_map);
  5235. #endif
  5236. p = sd;
  5237. sd = &per_cpu(phys_domains, i);
  5238. *sd = SD_CPU_INIT;
  5239. sd->span = nodemask;
  5240. sd->parent = p;
  5241. if (p)
  5242. p->child = sd;
  5243. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5244. #ifdef CONFIG_SCHED_MC
  5245. p = sd;
  5246. sd = &per_cpu(core_domains, i);
  5247. *sd = SD_MC_INIT;
  5248. sd->span = cpu_coregroup_map(i);
  5249. cpus_and(sd->span, sd->span, *cpu_map);
  5250. sd->parent = p;
  5251. p->child = sd;
  5252. cpu_to_core_group(i, cpu_map, &sd->groups);
  5253. #endif
  5254. #ifdef CONFIG_SCHED_SMT
  5255. p = sd;
  5256. sd = &per_cpu(cpu_domains, i);
  5257. *sd = SD_SIBLING_INIT;
  5258. sd->span = cpu_sibling_map[i];
  5259. cpus_and(sd->span, sd->span, *cpu_map);
  5260. sd->parent = p;
  5261. p->child = sd;
  5262. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5263. #endif
  5264. }
  5265. #ifdef CONFIG_SCHED_SMT
  5266. /* Set up CPU (sibling) groups */
  5267. for_each_cpu_mask(i, *cpu_map) {
  5268. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5269. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5270. if (i != first_cpu(this_sibling_map))
  5271. continue;
  5272. init_sched_build_groups(this_sibling_map, cpu_map,
  5273. &cpu_to_cpu_group);
  5274. }
  5275. #endif
  5276. #ifdef CONFIG_SCHED_MC
  5277. /* Set up multi-core groups */
  5278. for_each_cpu_mask(i, *cpu_map) {
  5279. cpumask_t this_core_map = cpu_coregroup_map(i);
  5280. cpus_and(this_core_map, this_core_map, *cpu_map);
  5281. if (i != first_cpu(this_core_map))
  5282. continue;
  5283. init_sched_build_groups(this_core_map, cpu_map,
  5284. &cpu_to_core_group);
  5285. }
  5286. #endif
  5287. /* Set up physical groups */
  5288. for (i = 0; i < MAX_NUMNODES; i++) {
  5289. cpumask_t nodemask = node_to_cpumask(i);
  5290. cpus_and(nodemask, nodemask, *cpu_map);
  5291. if (cpus_empty(nodemask))
  5292. continue;
  5293. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5294. }
  5295. #ifdef CONFIG_NUMA
  5296. /* Set up node groups */
  5297. if (sd_allnodes)
  5298. init_sched_build_groups(*cpu_map, cpu_map,
  5299. &cpu_to_allnodes_group);
  5300. for (i = 0; i < MAX_NUMNODES; i++) {
  5301. /* Set up node groups */
  5302. struct sched_group *sg, *prev;
  5303. cpumask_t nodemask = node_to_cpumask(i);
  5304. cpumask_t domainspan;
  5305. cpumask_t covered = CPU_MASK_NONE;
  5306. int j;
  5307. cpus_and(nodemask, nodemask, *cpu_map);
  5308. if (cpus_empty(nodemask)) {
  5309. sched_group_nodes[i] = NULL;
  5310. continue;
  5311. }
  5312. domainspan = sched_domain_node_span(i);
  5313. cpus_and(domainspan, domainspan, *cpu_map);
  5314. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5315. if (!sg) {
  5316. printk(KERN_WARNING "Can not alloc domain group for "
  5317. "node %d\n", i);
  5318. goto error;
  5319. }
  5320. sched_group_nodes[i] = sg;
  5321. for_each_cpu_mask(j, nodemask) {
  5322. struct sched_domain *sd;
  5323. sd = &per_cpu(node_domains, j);
  5324. sd->groups = sg;
  5325. }
  5326. sg->__cpu_power = 0;
  5327. sg->cpumask = nodemask;
  5328. sg->next = sg;
  5329. cpus_or(covered, covered, nodemask);
  5330. prev = sg;
  5331. for (j = 0; j < MAX_NUMNODES; j++) {
  5332. cpumask_t tmp, notcovered;
  5333. int n = (i + j) % MAX_NUMNODES;
  5334. cpus_complement(notcovered, covered);
  5335. cpus_and(tmp, notcovered, *cpu_map);
  5336. cpus_and(tmp, tmp, domainspan);
  5337. if (cpus_empty(tmp))
  5338. break;
  5339. nodemask = node_to_cpumask(n);
  5340. cpus_and(tmp, tmp, nodemask);
  5341. if (cpus_empty(tmp))
  5342. continue;
  5343. sg = kmalloc_node(sizeof(struct sched_group),
  5344. GFP_KERNEL, i);
  5345. if (!sg) {
  5346. printk(KERN_WARNING
  5347. "Can not alloc domain group for node %d\n", j);
  5348. goto error;
  5349. }
  5350. sg->__cpu_power = 0;
  5351. sg->cpumask = tmp;
  5352. sg->next = prev->next;
  5353. cpus_or(covered, covered, tmp);
  5354. prev->next = sg;
  5355. prev = sg;
  5356. }
  5357. }
  5358. #endif
  5359. /* Calculate CPU power for physical packages and nodes */
  5360. #ifdef CONFIG_SCHED_SMT
  5361. for_each_cpu_mask(i, *cpu_map) {
  5362. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5363. init_sched_groups_power(i, sd);
  5364. }
  5365. #endif
  5366. #ifdef CONFIG_SCHED_MC
  5367. for_each_cpu_mask(i, *cpu_map) {
  5368. struct sched_domain *sd = &per_cpu(core_domains, i);
  5369. init_sched_groups_power(i, sd);
  5370. }
  5371. #endif
  5372. for_each_cpu_mask(i, *cpu_map) {
  5373. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5374. init_sched_groups_power(i, sd);
  5375. }
  5376. #ifdef CONFIG_NUMA
  5377. for (i = 0; i < MAX_NUMNODES; i++)
  5378. init_numa_sched_groups_power(sched_group_nodes[i]);
  5379. if (sd_allnodes) {
  5380. struct sched_group *sg;
  5381. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5382. init_numa_sched_groups_power(sg);
  5383. }
  5384. #endif
  5385. /* Attach the domains */
  5386. for_each_cpu_mask(i, *cpu_map) {
  5387. struct sched_domain *sd;
  5388. #ifdef CONFIG_SCHED_SMT
  5389. sd = &per_cpu(cpu_domains, i);
  5390. #elif defined(CONFIG_SCHED_MC)
  5391. sd = &per_cpu(core_domains, i);
  5392. #else
  5393. sd = &per_cpu(phys_domains, i);
  5394. #endif
  5395. cpu_attach_domain(sd, i);
  5396. }
  5397. return 0;
  5398. #ifdef CONFIG_NUMA
  5399. error:
  5400. free_sched_groups(cpu_map);
  5401. return -ENOMEM;
  5402. #endif
  5403. }
  5404. /*
  5405. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5406. */
  5407. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5408. {
  5409. cpumask_t cpu_default_map;
  5410. int err;
  5411. /*
  5412. * Setup mask for cpus without special case scheduling requirements.
  5413. * For now this just excludes isolated cpus, but could be used to
  5414. * exclude other special cases in the future.
  5415. */
  5416. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5417. err = build_sched_domains(&cpu_default_map);
  5418. return err;
  5419. }
  5420. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5421. {
  5422. free_sched_groups(cpu_map);
  5423. }
  5424. /*
  5425. * Detach sched domains from a group of cpus specified in cpu_map
  5426. * These cpus will now be attached to the NULL domain
  5427. */
  5428. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5429. {
  5430. int i;
  5431. for_each_cpu_mask(i, *cpu_map)
  5432. cpu_attach_domain(NULL, i);
  5433. synchronize_sched();
  5434. arch_destroy_sched_domains(cpu_map);
  5435. }
  5436. /*
  5437. * Partition sched domains as specified by the cpumasks below.
  5438. * This attaches all cpus from the cpumasks to the NULL domain,
  5439. * waits for a RCU quiescent period, recalculates sched
  5440. * domain information and then attaches them back to the
  5441. * correct sched domains
  5442. * Call with hotplug lock held
  5443. */
  5444. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5445. {
  5446. cpumask_t change_map;
  5447. int err = 0;
  5448. cpus_and(*partition1, *partition1, cpu_online_map);
  5449. cpus_and(*partition2, *partition2, cpu_online_map);
  5450. cpus_or(change_map, *partition1, *partition2);
  5451. /* Detach sched domains from all of the affected cpus */
  5452. detach_destroy_domains(&change_map);
  5453. if (!cpus_empty(*partition1))
  5454. err = build_sched_domains(partition1);
  5455. if (!err && !cpus_empty(*partition2))
  5456. err = build_sched_domains(partition2);
  5457. return err;
  5458. }
  5459. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5460. static int arch_reinit_sched_domains(void)
  5461. {
  5462. int err;
  5463. mutex_lock(&sched_hotcpu_mutex);
  5464. detach_destroy_domains(&cpu_online_map);
  5465. err = arch_init_sched_domains(&cpu_online_map);
  5466. mutex_unlock(&sched_hotcpu_mutex);
  5467. return err;
  5468. }
  5469. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5470. {
  5471. int ret;
  5472. if (buf[0] != '0' && buf[0] != '1')
  5473. return -EINVAL;
  5474. if (smt)
  5475. sched_smt_power_savings = (buf[0] == '1');
  5476. else
  5477. sched_mc_power_savings = (buf[0] == '1');
  5478. ret = arch_reinit_sched_domains();
  5479. return ret ? ret : count;
  5480. }
  5481. #ifdef CONFIG_SCHED_MC
  5482. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5483. {
  5484. return sprintf(page, "%u\n", sched_mc_power_savings);
  5485. }
  5486. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5487. const char *buf, size_t count)
  5488. {
  5489. return sched_power_savings_store(buf, count, 0);
  5490. }
  5491. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5492. sched_mc_power_savings_store);
  5493. #endif
  5494. #ifdef CONFIG_SCHED_SMT
  5495. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5496. {
  5497. return sprintf(page, "%u\n", sched_smt_power_savings);
  5498. }
  5499. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5500. const char *buf, size_t count)
  5501. {
  5502. return sched_power_savings_store(buf, count, 1);
  5503. }
  5504. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5505. sched_smt_power_savings_store);
  5506. #endif
  5507. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5508. {
  5509. int err = 0;
  5510. #ifdef CONFIG_SCHED_SMT
  5511. if (smt_capable())
  5512. err = sysfs_create_file(&cls->kset.kobj,
  5513. &attr_sched_smt_power_savings.attr);
  5514. #endif
  5515. #ifdef CONFIG_SCHED_MC
  5516. if (!err && mc_capable())
  5517. err = sysfs_create_file(&cls->kset.kobj,
  5518. &attr_sched_mc_power_savings.attr);
  5519. #endif
  5520. return err;
  5521. }
  5522. #endif
  5523. /*
  5524. * Force a reinitialization of the sched domains hierarchy. The domains
  5525. * and groups cannot be updated in place without racing with the balancing
  5526. * code, so we temporarily attach all running cpus to the NULL domain
  5527. * which will prevent rebalancing while the sched domains are recalculated.
  5528. */
  5529. static int update_sched_domains(struct notifier_block *nfb,
  5530. unsigned long action, void *hcpu)
  5531. {
  5532. switch (action) {
  5533. case CPU_UP_PREPARE:
  5534. case CPU_UP_PREPARE_FROZEN:
  5535. case CPU_DOWN_PREPARE:
  5536. case CPU_DOWN_PREPARE_FROZEN:
  5537. detach_destroy_domains(&cpu_online_map);
  5538. return NOTIFY_OK;
  5539. case CPU_UP_CANCELED:
  5540. case CPU_UP_CANCELED_FROZEN:
  5541. case CPU_DOWN_FAILED:
  5542. case CPU_DOWN_FAILED_FROZEN:
  5543. case CPU_ONLINE:
  5544. case CPU_ONLINE_FROZEN:
  5545. case CPU_DEAD:
  5546. case CPU_DEAD_FROZEN:
  5547. /*
  5548. * Fall through and re-initialise the domains.
  5549. */
  5550. break;
  5551. default:
  5552. return NOTIFY_DONE;
  5553. }
  5554. /* The hotplug lock is already held by cpu_up/cpu_down */
  5555. arch_init_sched_domains(&cpu_online_map);
  5556. return NOTIFY_OK;
  5557. }
  5558. void __init sched_init_smp(void)
  5559. {
  5560. cpumask_t non_isolated_cpus;
  5561. mutex_lock(&sched_hotcpu_mutex);
  5562. arch_init_sched_domains(&cpu_online_map);
  5563. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5564. if (cpus_empty(non_isolated_cpus))
  5565. cpu_set(smp_processor_id(), non_isolated_cpus);
  5566. mutex_unlock(&sched_hotcpu_mutex);
  5567. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5568. hotcpu_notifier(update_sched_domains, 0);
  5569. init_sched_domain_sysctl();
  5570. /* Move init over to a non-isolated CPU */
  5571. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5572. BUG();
  5573. }
  5574. #else
  5575. void __init sched_init_smp(void)
  5576. {
  5577. }
  5578. #endif /* CONFIG_SMP */
  5579. int in_sched_functions(unsigned long addr)
  5580. {
  5581. /* Linker adds these: start and end of __sched functions */
  5582. extern char __sched_text_start[], __sched_text_end[];
  5583. return in_lock_functions(addr) ||
  5584. (addr >= (unsigned long)__sched_text_start
  5585. && addr < (unsigned long)__sched_text_end);
  5586. }
  5587. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5588. {
  5589. cfs_rq->tasks_timeline = RB_ROOT;
  5590. #ifdef CONFIG_FAIR_GROUP_SCHED
  5591. cfs_rq->rq = rq;
  5592. #endif
  5593. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5594. }
  5595. void __init sched_init(void)
  5596. {
  5597. int highest_cpu = 0;
  5598. int i, j;
  5599. for_each_possible_cpu(i) {
  5600. struct rt_prio_array *array;
  5601. struct rq *rq;
  5602. rq = cpu_rq(i);
  5603. spin_lock_init(&rq->lock);
  5604. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5605. rq->nr_running = 0;
  5606. rq->clock = 1;
  5607. init_cfs_rq(&rq->cfs, rq);
  5608. #ifdef CONFIG_FAIR_GROUP_SCHED
  5609. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5610. {
  5611. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5612. struct sched_entity *se =
  5613. &per_cpu(init_sched_entity, i);
  5614. init_cfs_rq_p[i] = cfs_rq;
  5615. init_cfs_rq(cfs_rq, rq);
  5616. cfs_rq->tg = &init_task_grp;
  5617. list_add(&cfs_rq->leaf_cfs_rq_list,
  5618. &rq->leaf_cfs_rq_list);
  5619. init_sched_entity_p[i] = se;
  5620. se->cfs_rq = &rq->cfs;
  5621. se->my_q = cfs_rq;
  5622. se->load.weight = init_task_grp_load;
  5623. se->load.inv_weight =
  5624. div64_64(1ULL<<32, init_task_grp_load);
  5625. se->parent = NULL;
  5626. }
  5627. init_task_grp.shares = init_task_grp_load;
  5628. #endif
  5629. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5630. rq->cpu_load[j] = 0;
  5631. #ifdef CONFIG_SMP
  5632. rq->sd = NULL;
  5633. rq->active_balance = 0;
  5634. rq->next_balance = jiffies;
  5635. rq->push_cpu = 0;
  5636. rq->cpu = i;
  5637. rq->migration_thread = NULL;
  5638. INIT_LIST_HEAD(&rq->migration_queue);
  5639. #endif
  5640. atomic_set(&rq->nr_iowait, 0);
  5641. array = &rq->rt.active;
  5642. for (j = 0; j < MAX_RT_PRIO; j++) {
  5643. INIT_LIST_HEAD(array->queue + j);
  5644. __clear_bit(j, array->bitmap);
  5645. }
  5646. highest_cpu = i;
  5647. /* delimiter for bitsearch: */
  5648. __set_bit(MAX_RT_PRIO, array->bitmap);
  5649. }
  5650. set_load_weight(&init_task);
  5651. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5652. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5653. #endif
  5654. #ifdef CONFIG_SMP
  5655. nr_cpu_ids = highest_cpu + 1;
  5656. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5657. #endif
  5658. #ifdef CONFIG_RT_MUTEXES
  5659. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5660. #endif
  5661. /*
  5662. * The boot idle thread does lazy MMU switching as well:
  5663. */
  5664. atomic_inc(&init_mm.mm_count);
  5665. enter_lazy_tlb(&init_mm, current);
  5666. /*
  5667. * Make us the idle thread. Technically, schedule() should not be
  5668. * called from this thread, however somewhere below it might be,
  5669. * but because we are the idle thread, we just pick up running again
  5670. * when this runqueue becomes "idle".
  5671. */
  5672. init_idle(current, smp_processor_id());
  5673. /*
  5674. * During early bootup we pretend to be a normal task:
  5675. */
  5676. current->sched_class = &fair_sched_class;
  5677. }
  5678. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5679. void __might_sleep(char *file, int line)
  5680. {
  5681. #ifdef in_atomic
  5682. static unsigned long prev_jiffy; /* ratelimiting */
  5683. if ((in_atomic() || irqs_disabled()) &&
  5684. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5685. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5686. return;
  5687. prev_jiffy = jiffies;
  5688. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5689. " context at %s:%d\n", file, line);
  5690. printk("in_atomic():%d, irqs_disabled():%d\n",
  5691. in_atomic(), irqs_disabled());
  5692. debug_show_held_locks(current);
  5693. if (irqs_disabled())
  5694. print_irqtrace_events(current);
  5695. dump_stack();
  5696. }
  5697. #endif
  5698. }
  5699. EXPORT_SYMBOL(__might_sleep);
  5700. #endif
  5701. #ifdef CONFIG_MAGIC_SYSRQ
  5702. void normalize_rt_tasks(void)
  5703. {
  5704. struct task_struct *g, *p;
  5705. unsigned long flags;
  5706. struct rq *rq;
  5707. int on_rq;
  5708. read_lock_irq(&tasklist_lock);
  5709. do_each_thread(g, p) {
  5710. p->se.exec_start = 0;
  5711. #ifdef CONFIG_SCHEDSTATS
  5712. p->se.wait_start = 0;
  5713. p->se.sleep_start = 0;
  5714. p->se.block_start = 0;
  5715. #endif
  5716. task_rq(p)->clock = 0;
  5717. if (!rt_task(p)) {
  5718. /*
  5719. * Renice negative nice level userspace
  5720. * tasks back to 0:
  5721. */
  5722. if (TASK_NICE(p) < 0 && p->mm)
  5723. set_user_nice(p, 0);
  5724. continue;
  5725. }
  5726. spin_lock_irqsave(&p->pi_lock, flags);
  5727. rq = __task_rq_lock(p);
  5728. #ifdef CONFIG_SMP
  5729. /*
  5730. * Do not touch the migration thread:
  5731. */
  5732. if (p == rq->migration_thread)
  5733. goto out_unlock;
  5734. #endif
  5735. update_rq_clock(rq);
  5736. on_rq = p->se.on_rq;
  5737. if (on_rq)
  5738. deactivate_task(rq, p, 0);
  5739. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5740. if (on_rq) {
  5741. activate_task(rq, p, 0);
  5742. resched_task(rq->curr);
  5743. }
  5744. #ifdef CONFIG_SMP
  5745. out_unlock:
  5746. #endif
  5747. __task_rq_unlock(rq);
  5748. spin_unlock_irqrestore(&p->pi_lock, flags);
  5749. } while_each_thread(g, p);
  5750. read_unlock_irq(&tasklist_lock);
  5751. }
  5752. #endif /* CONFIG_MAGIC_SYSRQ */
  5753. #ifdef CONFIG_IA64
  5754. /*
  5755. * These functions are only useful for the IA64 MCA handling.
  5756. *
  5757. * They can only be called when the whole system has been
  5758. * stopped - every CPU needs to be quiescent, and no scheduling
  5759. * activity can take place. Using them for anything else would
  5760. * be a serious bug, and as a result, they aren't even visible
  5761. * under any other configuration.
  5762. */
  5763. /**
  5764. * curr_task - return the current task for a given cpu.
  5765. * @cpu: the processor in question.
  5766. *
  5767. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5768. */
  5769. struct task_struct *curr_task(int cpu)
  5770. {
  5771. return cpu_curr(cpu);
  5772. }
  5773. /**
  5774. * set_curr_task - set the current task for a given cpu.
  5775. * @cpu: the processor in question.
  5776. * @p: the task pointer to set.
  5777. *
  5778. * Description: This function must only be used when non-maskable interrupts
  5779. * are serviced on a separate stack. It allows the architecture to switch the
  5780. * notion of the current task on a cpu in a non-blocking manner. This function
  5781. * must be called with all CPU's synchronized, and interrupts disabled, the
  5782. * and caller must save the original value of the current task (see
  5783. * curr_task() above) and restore that value before reenabling interrupts and
  5784. * re-starting the system.
  5785. *
  5786. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5787. */
  5788. void set_curr_task(int cpu, struct task_struct *p)
  5789. {
  5790. cpu_curr(cpu) = p;
  5791. }
  5792. #endif
  5793. #ifdef CONFIG_FAIR_GROUP_SCHED
  5794. /* allocate runqueue etc for a new task group */
  5795. struct task_grp *sched_create_group(void)
  5796. {
  5797. struct task_grp *tg;
  5798. struct cfs_rq *cfs_rq;
  5799. struct sched_entity *se;
  5800. struct rq *rq;
  5801. int i;
  5802. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5803. if (!tg)
  5804. return ERR_PTR(-ENOMEM);
  5805. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5806. if (!tg->cfs_rq)
  5807. goto err;
  5808. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5809. if (!tg->se)
  5810. goto err;
  5811. for_each_possible_cpu(i) {
  5812. rq = cpu_rq(i);
  5813. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5814. cpu_to_node(i));
  5815. if (!cfs_rq)
  5816. goto err;
  5817. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5818. cpu_to_node(i));
  5819. if (!se)
  5820. goto err;
  5821. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5822. memset(se, 0, sizeof(struct sched_entity));
  5823. tg->cfs_rq[i] = cfs_rq;
  5824. init_cfs_rq(cfs_rq, rq);
  5825. cfs_rq->tg = tg;
  5826. tg->se[i] = se;
  5827. se->cfs_rq = &rq->cfs;
  5828. se->my_q = cfs_rq;
  5829. se->load.weight = NICE_0_LOAD;
  5830. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  5831. se->parent = NULL;
  5832. }
  5833. for_each_possible_cpu(i) {
  5834. rq = cpu_rq(i);
  5835. cfs_rq = tg->cfs_rq[i];
  5836. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5837. }
  5838. tg->shares = NICE_0_LOAD;
  5839. return tg;
  5840. err:
  5841. for_each_possible_cpu(i) {
  5842. if (tg->cfs_rq && tg->cfs_rq[i])
  5843. kfree(tg->cfs_rq[i]);
  5844. if (tg->se && tg->se[i])
  5845. kfree(tg->se[i]);
  5846. }
  5847. if (tg->cfs_rq)
  5848. kfree(tg->cfs_rq);
  5849. if (tg->se)
  5850. kfree(tg->se);
  5851. if (tg)
  5852. kfree(tg);
  5853. return ERR_PTR(-ENOMEM);
  5854. }
  5855. /* rcu callback to free various structures associated with a task group */
  5856. static void free_sched_group(struct rcu_head *rhp)
  5857. {
  5858. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  5859. struct task_grp *tg = cfs_rq->tg;
  5860. struct sched_entity *se;
  5861. int i;
  5862. /* now it should be safe to free those cfs_rqs */
  5863. for_each_possible_cpu(i) {
  5864. cfs_rq = tg->cfs_rq[i];
  5865. kfree(cfs_rq);
  5866. se = tg->se[i];
  5867. kfree(se);
  5868. }
  5869. kfree(tg->cfs_rq);
  5870. kfree(tg->se);
  5871. kfree(tg);
  5872. }
  5873. /* Destroy runqueue etc associated with a task group */
  5874. void sched_destroy_group(struct task_grp *tg)
  5875. {
  5876. struct cfs_rq *cfs_rq;
  5877. int i;
  5878. for_each_possible_cpu(i) {
  5879. cfs_rq = tg->cfs_rq[i];
  5880. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  5881. }
  5882. cfs_rq = tg->cfs_rq[0];
  5883. /* wait for possible concurrent references to cfs_rqs complete */
  5884. call_rcu(&cfs_rq->rcu, free_sched_group);
  5885. }
  5886. /* change task's runqueue when it moves between groups.
  5887. * The caller of this function should have put the task in its new group
  5888. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5889. * reflect its new group.
  5890. */
  5891. void sched_move_task(struct task_struct *tsk)
  5892. {
  5893. int on_rq, running;
  5894. unsigned long flags;
  5895. struct rq *rq;
  5896. rq = task_rq_lock(tsk, &flags);
  5897. if (tsk->sched_class != &fair_sched_class)
  5898. goto done;
  5899. update_rq_clock(rq);
  5900. running = task_running(rq, tsk);
  5901. on_rq = tsk->se.on_rq;
  5902. if (on_rq) {
  5903. dequeue_task(rq, tsk, 0);
  5904. if (unlikely(running))
  5905. tsk->sched_class->put_prev_task(rq, tsk);
  5906. }
  5907. set_task_cfs_rq(tsk);
  5908. if (on_rq) {
  5909. if (unlikely(running))
  5910. tsk->sched_class->set_curr_task(rq);
  5911. enqueue_task(rq, tsk, 0);
  5912. }
  5913. done:
  5914. task_rq_unlock(rq, &flags);
  5915. }
  5916. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  5917. {
  5918. struct cfs_rq *cfs_rq = se->cfs_rq;
  5919. struct rq *rq = cfs_rq->rq;
  5920. int on_rq;
  5921. spin_lock_irq(&rq->lock);
  5922. on_rq = se->on_rq;
  5923. if (on_rq)
  5924. dequeue_entity(cfs_rq, se, 0);
  5925. se->load.weight = shares;
  5926. se->load.inv_weight = div64_64((1ULL<<32), shares);
  5927. if (on_rq)
  5928. enqueue_entity(cfs_rq, se, 0);
  5929. spin_unlock_irq(&rq->lock);
  5930. }
  5931. int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
  5932. {
  5933. int i;
  5934. if (tg->shares == shares)
  5935. return 0;
  5936. /* return -EINVAL if the new value is not sane */
  5937. tg->shares = shares;
  5938. for_each_possible_cpu(i)
  5939. set_se_shares(tg->se[i], shares);
  5940. return 0;
  5941. }
  5942. #endif /* CONFIG_FAIR_GROUP_SCHED */