x86.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "segment_descriptor.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/clocksource.h>
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <linux/mman.h>
  26. #include <linux/highmem.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/msr.h>
  29. #define MAX_IO_MSRS 256
  30. #define CR0_RESERVED_BITS \
  31. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  32. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  33. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  34. #define CR4_RESERVED_BITS \
  35. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  36. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  37. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  38. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  39. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  40. /* EFER defaults:
  41. * - enable syscall per default because its emulated by KVM
  42. * - enable LME and LMA per default on 64 bit KVM
  43. */
  44. #ifdef CONFIG_X86_64
  45. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  46. #else
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  48. #endif
  49. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  50. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  51. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  52. struct kvm_cpuid_entry2 __user *entries);
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kvm_stats_debugfs_item debugfs_entries[] = {
  55. { "pf_fixed", VCPU_STAT(pf_fixed) },
  56. { "pf_guest", VCPU_STAT(pf_guest) },
  57. { "tlb_flush", VCPU_STAT(tlb_flush) },
  58. { "invlpg", VCPU_STAT(invlpg) },
  59. { "exits", VCPU_STAT(exits) },
  60. { "io_exits", VCPU_STAT(io_exits) },
  61. { "mmio_exits", VCPU_STAT(mmio_exits) },
  62. { "signal_exits", VCPU_STAT(signal_exits) },
  63. { "irq_window", VCPU_STAT(irq_window_exits) },
  64. { "halt_exits", VCPU_STAT(halt_exits) },
  65. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  66. { "request_irq", VCPU_STAT(request_irq_exits) },
  67. { "irq_exits", VCPU_STAT(irq_exits) },
  68. { "host_state_reload", VCPU_STAT(host_state_reload) },
  69. { "efer_reload", VCPU_STAT(efer_reload) },
  70. { "fpu_reload", VCPU_STAT(fpu_reload) },
  71. { "insn_emulation", VCPU_STAT(insn_emulation) },
  72. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  73. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  74. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  75. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  76. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  77. { "mmu_flooded", VM_STAT(mmu_flooded) },
  78. { "mmu_recycled", VM_STAT(mmu_recycled) },
  79. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  80. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  81. { NULL }
  82. };
  83. unsigned long segment_base(u16 selector)
  84. {
  85. struct descriptor_table gdt;
  86. struct segment_descriptor *d;
  87. unsigned long table_base;
  88. unsigned long v;
  89. if (selector == 0)
  90. return 0;
  91. asm("sgdt %0" : "=m"(gdt));
  92. table_base = gdt.base;
  93. if (selector & 4) { /* from ldt */
  94. u16 ldt_selector;
  95. asm("sldt %0" : "=g"(ldt_selector));
  96. table_base = segment_base(ldt_selector);
  97. }
  98. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  99. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  100. ((unsigned long)d->base_high << 24);
  101. #ifdef CONFIG_X86_64
  102. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  103. v |= ((unsigned long) \
  104. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  105. #endif
  106. return v;
  107. }
  108. EXPORT_SYMBOL_GPL(segment_base);
  109. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  110. {
  111. if (irqchip_in_kernel(vcpu->kvm))
  112. return vcpu->arch.apic_base;
  113. else
  114. return vcpu->arch.apic_base;
  115. }
  116. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  117. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  118. {
  119. /* TODO: reserve bits check */
  120. if (irqchip_in_kernel(vcpu->kvm))
  121. kvm_lapic_set_base(vcpu, data);
  122. else
  123. vcpu->arch.apic_base = data;
  124. }
  125. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  126. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  127. {
  128. WARN_ON(vcpu->arch.exception.pending);
  129. vcpu->arch.exception.pending = true;
  130. vcpu->arch.exception.has_error_code = false;
  131. vcpu->arch.exception.nr = nr;
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  134. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  135. u32 error_code)
  136. {
  137. ++vcpu->stat.pf_guest;
  138. if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
  139. printk(KERN_DEBUG "kvm: inject_page_fault:"
  140. " double fault 0x%lx\n", addr);
  141. vcpu->arch.exception.nr = DF_VECTOR;
  142. vcpu->arch.exception.error_code = 0;
  143. return;
  144. }
  145. vcpu->arch.cr2 = addr;
  146. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  147. }
  148. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = true;
  153. vcpu->arch.exception.nr = nr;
  154. vcpu->arch.exception.error_code = error_code;
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  157. static void __queue_exception(struct kvm_vcpu *vcpu)
  158. {
  159. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  160. vcpu->arch.exception.has_error_code,
  161. vcpu->arch.exception.error_code);
  162. }
  163. /*
  164. * Load the pae pdptrs. Return true is they are all valid.
  165. */
  166. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  167. {
  168. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  169. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  170. int i;
  171. int ret;
  172. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  173. down_read(&vcpu->kvm->slots_lock);
  174. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  175. offset * sizeof(u64), sizeof(pdpte));
  176. if (ret < 0) {
  177. ret = 0;
  178. goto out;
  179. }
  180. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  181. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  182. ret = 0;
  183. goto out;
  184. }
  185. }
  186. ret = 1;
  187. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  188. out:
  189. up_read(&vcpu->kvm->slots_lock);
  190. return ret;
  191. }
  192. EXPORT_SYMBOL_GPL(load_pdptrs);
  193. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  194. {
  195. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  196. bool changed = true;
  197. int r;
  198. if (is_long_mode(vcpu) || !is_pae(vcpu))
  199. return false;
  200. down_read(&vcpu->kvm->slots_lock);
  201. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  202. if (r < 0)
  203. goto out;
  204. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  205. out:
  206. up_read(&vcpu->kvm->slots_lock);
  207. return changed;
  208. }
  209. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  210. {
  211. if (cr0 & CR0_RESERVED_BITS) {
  212. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  213. cr0, vcpu->arch.cr0);
  214. kvm_inject_gp(vcpu, 0);
  215. return;
  216. }
  217. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  218. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  219. kvm_inject_gp(vcpu, 0);
  220. return;
  221. }
  222. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  223. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  224. "and a clear PE flag\n");
  225. kvm_inject_gp(vcpu, 0);
  226. return;
  227. }
  228. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  229. #ifdef CONFIG_X86_64
  230. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  231. int cs_db, cs_l;
  232. if (!is_pae(vcpu)) {
  233. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  234. "in long mode while PAE is disabled\n");
  235. kvm_inject_gp(vcpu, 0);
  236. return;
  237. }
  238. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  239. if (cs_l) {
  240. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  241. "in long mode while CS.L == 1\n");
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. } else
  246. #endif
  247. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  248. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  249. "reserved bits\n");
  250. kvm_inject_gp(vcpu, 0);
  251. return;
  252. }
  253. }
  254. kvm_x86_ops->set_cr0(vcpu, cr0);
  255. vcpu->arch.cr0 = cr0;
  256. kvm_mmu_reset_context(vcpu);
  257. return;
  258. }
  259. EXPORT_SYMBOL_GPL(set_cr0);
  260. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  261. {
  262. set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  263. }
  264. EXPORT_SYMBOL_GPL(lmsw);
  265. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  266. {
  267. if (cr4 & CR4_RESERVED_BITS) {
  268. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  269. kvm_inject_gp(vcpu, 0);
  270. return;
  271. }
  272. if (is_long_mode(vcpu)) {
  273. if (!(cr4 & X86_CR4_PAE)) {
  274. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  275. "in long mode\n");
  276. kvm_inject_gp(vcpu, 0);
  277. return;
  278. }
  279. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  280. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  281. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  282. kvm_inject_gp(vcpu, 0);
  283. return;
  284. }
  285. if (cr4 & X86_CR4_VMXE) {
  286. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  287. kvm_inject_gp(vcpu, 0);
  288. return;
  289. }
  290. kvm_x86_ops->set_cr4(vcpu, cr4);
  291. vcpu->arch.cr4 = cr4;
  292. kvm_mmu_reset_context(vcpu);
  293. }
  294. EXPORT_SYMBOL_GPL(set_cr4);
  295. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  296. {
  297. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  298. kvm_mmu_flush_tlb(vcpu);
  299. return;
  300. }
  301. if (is_long_mode(vcpu)) {
  302. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  303. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. } else {
  308. if (is_pae(vcpu)) {
  309. if (cr3 & CR3_PAE_RESERVED_BITS) {
  310. printk(KERN_DEBUG
  311. "set_cr3: #GP, reserved bits\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  316. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  317. "reserved bits\n");
  318. kvm_inject_gp(vcpu, 0);
  319. return;
  320. }
  321. }
  322. /*
  323. * We don't check reserved bits in nonpae mode, because
  324. * this isn't enforced, and VMware depends on this.
  325. */
  326. }
  327. down_read(&vcpu->kvm->slots_lock);
  328. /*
  329. * Does the new cr3 value map to physical memory? (Note, we
  330. * catch an invalid cr3 even in real-mode, because it would
  331. * cause trouble later on when we turn on paging anyway.)
  332. *
  333. * A real CPU would silently accept an invalid cr3 and would
  334. * attempt to use it - with largely undefined (and often hard
  335. * to debug) behavior on the guest side.
  336. */
  337. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  338. kvm_inject_gp(vcpu, 0);
  339. else {
  340. vcpu->arch.cr3 = cr3;
  341. vcpu->arch.mmu.new_cr3(vcpu);
  342. }
  343. up_read(&vcpu->kvm->slots_lock);
  344. }
  345. EXPORT_SYMBOL_GPL(set_cr3);
  346. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  347. {
  348. if (cr8 & CR8_RESERVED_BITS) {
  349. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  350. kvm_inject_gp(vcpu, 0);
  351. return;
  352. }
  353. if (irqchip_in_kernel(vcpu->kvm))
  354. kvm_lapic_set_tpr(vcpu, cr8);
  355. else
  356. vcpu->arch.cr8 = cr8;
  357. }
  358. EXPORT_SYMBOL_GPL(set_cr8);
  359. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  360. {
  361. if (irqchip_in_kernel(vcpu->kvm))
  362. return kvm_lapic_get_cr8(vcpu);
  363. else
  364. return vcpu->arch.cr8;
  365. }
  366. EXPORT_SYMBOL_GPL(get_cr8);
  367. /*
  368. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  369. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  370. *
  371. * This list is modified at module load time to reflect the
  372. * capabilities of the host cpu.
  373. */
  374. static u32 msrs_to_save[] = {
  375. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  376. MSR_K6_STAR,
  377. #ifdef CONFIG_X86_64
  378. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  379. #endif
  380. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  381. };
  382. static unsigned num_msrs_to_save;
  383. static u32 emulated_msrs[] = {
  384. MSR_IA32_MISC_ENABLE,
  385. };
  386. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  387. {
  388. if (efer & efer_reserved_bits) {
  389. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  390. efer);
  391. kvm_inject_gp(vcpu, 0);
  392. return;
  393. }
  394. if (is_paging(vcpu)
  395. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  396. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. kvm_x86_ops->set_efer(vcpu, efer);
  401. efer &= ~EFER_LMA;
  402. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  403. vcpu->arch.shadow_efer = efer;
  404. }
  405. void kvm_enable_efer_bits(u64 mask)
  406. {
  407. efer_reserved_bits &= ~mask;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  410. /*
  411. * Writes msr value into into the appropriate "register".
  412. * Returns 0 on success, non-0 otherwise.
  413. * Assumes vcpu_load() was already called.
  414. */
  415. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  416. {
  417. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  418. }
  419. /*
  420. * Adapt set_msr() to msr_io()'s calling convention
  421. */
  422. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  423. {
  424. return kvm_set_msr(vcpu, index, *data);
  425. }
  426. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  427. {
  428. static int version;
  429. struct kvm_wall_clock wc;
  430. struct timespec wc_ts;
  431. if (!wall_clock)
  432. return;
  433. version++;
  434. down_read(&kvm->slots_lock);
  435. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  436. wc_ts = current_kernel_time();
  437. wc.wc_sec = wc_ts.tv_sec;
  438. wc.wc_nsec = wc_ts.tv_nsec;
  439. wc.wc_version = version;
  440. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  441. version++;
  442. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  443. up_read(&kvm->slots_lock);
  444. }
  445. static void kvm_write_guest_time(struct kvm_vcpu *v)
  446. {
  447. struct timespec ts;
  448. unsigned long flags;
  449. struct kvm_vcpu_arch *vcpu = &v->arch;
  450. void *shared_kaddr;
  451. if ((!vcpu->time_page))
  452. return;
  453. /* Keep irq disabled to prevent changes to the clock */
  454. local_irq_save(flags);
  455. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  456. &vcpu->hv_clock.tsc_timestamp);
  457. ktime_get_ts(&ts);
  458. local_irq_restore(flags);
  459. /* With all the info we got, fill in the values */
  460. vcpu->hv_clock.system_time = ts.tv_nsec +
  461. (NSEC_PER_SEC * (u64)ts.tv_sec);
  462. /*
  463. * The interface expects us to write an even number signaling that the
  464. * update is finished. Since the guest won't see the intermediate
  465. * state, we just write "2" at the end
  466. */
  467. vcpu->hv_clock.version = 2;
  468. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  469. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  470. sizeof(vcpu->hv_clock));
  471. kunmap_atomic(shared_kaddr, KM_USER0);
  472. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  473. }
  474. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  475. {
  476. switch (msr) {
  477. case MSR_EFER:
  478. set_efer(vcpu, data);
  479. break;
  480. case MSR_IA32_MC0_STATUS:
  481. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  482. __FUNCTION__, data);
  483. break;
  484. case MSR_IA32_MCG_STATUS:
  485. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  486. __FUNCTION__, data);
  487. break;
  488. case MSR_IA32_MCG_CTL:
  489. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  490. __FUNCTION__, data);
  491. break;
  492. case MSR_IA32_UCODE_REV:
  493. case MSR_IA32_UCODE_WRITE:
  494. case 0x200 ... 0x2ff: /* MTRRs */
  495. break;
  496. case MSR_IA32_APICBASE:
  497. kvm_set_apic_base(vcpu, data);
  498. break;
  499. case MSR_IA32_MISC_ENABLE:
  500. vcpu->arch.ia32_misc_enable_msr = data;
  501. break;
  502. case MSR_KVM_WALL_CLOCK:
  503. vcpu->kvm->arch.wall_clock = data;
  504. kvm_write_wall_clock(vcpu->kvm, data);
  505. break;
  506. case MSR_KVM_SYSTEM_TIME: {
  507. if (vcpu->arch.time_page) {
  508. kvm_release_page_dirty(vcpu->arch.time_page);
  509. vcpu->arch.time_page = NULL;
  510. }
  511. vcpu->arch.time = data;
  512. /* we verify if the enable bit is set... */
  513. if (!(data & 1))
  514. break;
  515. /* ...but clean it before doing the actual write */
  516. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  517. vcpu->arch.hv_clock.tsc_to_system_mul =
  518. clocksource_khz2mult(tsc_khz, 22);
  519. vcpu->arch.hv_clock.tsc_shift = 22;
  520. down_read(&current->mm->mmap_sem);
  521. down_read(&vcpu->kvm->slots_lock);
  522. vcpu->arch.time_page =
  523. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  524. up_read(&vcpu->kvm->slots_lock);
  525. up_read(&current->mm->mmap_sem);
  526. if (is_error_page(vcpu->arch.time_page)) {
  527. kvm_release_page_clean(vcpu->arch.time_page);
  528. vcpu->arch.time_page = NULL;
  529. }
  530. kvm_write_guest_time(vcpu);
  531. break;
  532. }
  533. default:
  534. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  535. return 1;
  536. }
  537. return 0;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  540. /*
  541. * Reads an msr value (of 'msr_index') into 'pdata'.
  542. * Returns 0 on success, non-0 otherwise.
  543. * Assumes vcpu_load() was already called.
  544. */
  545. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  546. {
  547. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  548. }
  549. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  550. {
  551. u64 data;
  552. switch (msr) {
  553. case 0xc0010010: /* SYSCFG */
  554. case 0xc0010015: /* HWCR */
  555. case MSR_IA32_PLATFORM_ID:
  556. case MSR_IA32_P5_MC_ADDR:
  557. case MSR_IA32_P5_MC_TYPE:
  558. case MSR_IA32_MC0_CTL:
  559. case MSR_IA32_MCG_STATUS:
  560. case MSR_IA32_MCG_CAP:
  561. case MSR_IA32_MCG_CTL:
  562. case MSR_IA32_MC0_MISC:
  563. case MSR_IA32_MC0_MISC+4:
  564. case MSR_IA32_MC0_MISC+8:
  565. case MSR_IA32_MC0_MISC+12:
  566. case MSR_IA32_MC0_MISC+16:
  567. case MSR_IA32_UCODE_REV:
  568. case MSR_IA32_PERF_STATUS:
  569. case MSR_IA32_EBL_CR_POWERON:
  570. /* MTRR registers */
  571. case 0xfe:
  572. case 0x200 ... 0x2ff:
  573. data = 0;
  574. break;
  575. case 0xcd: /* fsb frequency */
  576. data = 3;
  577. break;
  578. case MSR_IA32_APICBASE:
  579. data = kvm_get_apic_base(vcpu);
  580. break;
  581. case MSR_IA32_MISC_ENABLE:
  582. data = vcpu->arch.ia32_misc_enable_msr;
  583. break;
  584. case MSR_EFER:
  585. data = vcpu->arch.shadow_efer;
  586. break;
  587. case MSR_KVM_WALL_CLOCK:
  588. data = vcpu->kvm->arch.wall_clock;
  589. break;
  590. case MSR_KVM_SYSTEM_TIME:
  591. data = vcpu->arch.time;
  592. break;
  593. default:
  594. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  595. return 1;
  596. }
  597. *pdata = data;
  598. return 0;
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  601. /*
  602. * Read or write a bunch of msrs. All parameters are kernel addresses.
  603. *
  604. * @return number of msrs set successfully.
  605. */
  606. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  607. struct kvm_msr_entry *entries,
  608. int (*do_msr)(struct kvm_vcpu *vcpu,
  609. unsigned index, u64 *data))
  610. {
  611. int i;
  612. vcpu_load(vcpu);
  613. for (i = 0; i < msrs->nmsrs; ++i)
  614. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  615. break;
  616. vcpu_put(vcpu);
  617. return i;
  618. }
  619. /*
  620. * Read or write a bunch of msrs. Parameters are user addresses.
  621. *
  622. * @return number of msrs set successfully.
  623. */
  624. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  625. int (*do_msr)(struct kvm_vcpu *vcpu,
  626. unsigned index, u64 *data),
  627. int writeback)
  628. {
  629. struct kvm_msrs msrs;
  630. struct kvm_msr_entry *entries;
  631. int r, n;
  632. unsigned size;
  633. r = -EFAULT;
  634. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  635. goto out;
  636. r = -E2BIG;
  637. if (msrs.nmsrs >= MAX_IO_MSRS)
  638. goto out;
  639. r = -ENOMEM;
  640. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  641. entries = vmalloc(size);
  642. if (!entries)
  643. goto out;
  644. r = -EFAULT;
  645. if (copy_from_user(entries, user_msrs->entries, size))
  646. goto out_free;
  647. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  648. if (r < 0)
  649. goto out_free;
  650. r = -EFAULT;
  651. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  652. goto out_free;
  653. r = n;
  654. out_free:
  655. vfree(entries);
  656. out:
  657. return r;
  658. }
  659. /*
  660. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  661. * cached on it.
  662. */
  663. void decache_vcpus_on_cpu(int cpu)
  664. {
  665. struct kvm *vm;
  666. struct kvm_vcpu *vcpu;
  667. int i;
  668. spin_lock(&kvm_lock);
  669. list_for_each_entry(vm, &vm_list, vm_list)
  670. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  671. vcpu = vm->vcpus[i];
  672. if (!vcpu)
  673. continue;
  674. /*
  675. * If the vcpu is locked, then it is running on some
  676. * other cpu and therefore it is not cached on the
  677. * cpu in question.
  678. *
  679. * If it's not locked, check the last cpu it executed
  680. * on.
  681. */
  682. if (mutex_trylock(&vcpu->mutex)) {
  683. if (vcpu->cpu == cpu) {
  684. kvm_x86_ops->vcpu_decache(vcpu);
  685. vcpu->cpu = -1;
  686. }
  687. mutex_unlock(&vcpu->mutex);
  688. }
  689. }
  690. spin_unlock(&kvm_lock);
  691. }
  692. int kvm_dev_ioctl_check_extension(long ext)
  693. {
  694. int r;
  695. switch (ext) {
  696. case KVM_CAP_IRQCHIP:
  697. case KVM_CAP_HLT:
  698. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  699. case KVM_CAP_USER_MEMORY:
  700. case KVM_CAP_SET_TSS_ADDR:
  701. case KVM_CAP_EXT_CPUID:
  702. case KVM_CAP_CLOCKSOURCE:
  703. r = 1;
  704. break;
  705. case KVM_CAP_VAPIC:
  706. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  707. break;
  708. case KVM_CAP_NR_VCPUS:
  709. r = KVM_MAX_VCPUS;
  710. break;
  711. case KVM_CAP_NR_MEMSLOTS:
  712. r = KVM_MEMORY_SLOTS;
  713. break;
  714. default:
  715. r = 0;
  716. break;
  717. }
  718. return r;
  719. }
  720. long kvm_arch_dev_ioctl(struct file *filp,
  721. unsigned int ioctl, unsigned long arg)
  722. {
  723. void __user *argp = (void __user *)arg;
  724. long r;
  725. switch (ioctl) {
  726. case KVM_GET_MSR_INDEX_LIST: {
  727. struct kvm_msr_list __user *user_msr_list = argp;
  728. struct kvm_msr_list msr_list;
  729. unsigned n;
  730. r = -EFAULT;
  731. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  732. goto out;
  733. n = msr_list.nmsrs;
  734. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  735. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  736. goto out;
  737. r = -E2BIG;
  738. if (n < num_msrs_to_save)
  739. goto out;
  740. r = -EFAULT;
  741. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  742. num_msrs_to_save * sizeof(u32)))
  743. goto out;
  744. if (copy_to_user(user_msr_list->indices
  745. + num_msrs_to_save * sizeof(u32),
  746. &emulated_msrs,
  747. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  748. goto out;
  749. r = 0;
  750. break;
  751. }
  752. case KVM_GET_SUPPORTED_CPUID: {
  753. struct kvm_cpuid2 __user *cpuid_arg = argp;
  754. struct kvm_cpuid2 cpuid;
  755. r = -EFAULT;
  756. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  757. goto out;
  758. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  759. cpuid_arg->entries);
  760. if (r)
  761. goto out;
  762. r = -EFAULT;
  763. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  764. goto out;
  765. r = 0;
  766. break;
  767. }
  768. default:
  769. r = -EINVAL;
  770. }
  771. out:
  772. return r;
  773. }
  774. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  775. {
  776. kvm_x86_ops->vcpu_load(vcpu, cpu);
  777. kvm_write_guest_time(vcpu);
  778. }
  779. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  780. {
  781. kvm_x86_ops->vcpu_put(vcpu);
  782. kvm_put_guest_fpu(vcpu);
  783. }
  784. static int is_efer_nx(void)
  785. {
  786. u64 efer;
  787. rdmsrl(MSR_EFER, efer);
  788. return efer & EFER_NX;
  789. }
  790. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  791. {
  792. int i;
  793. struct kvm_cpuid_entry2 *e, *entry;
  794. entry = NULL;
  795. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  796. e = &vcpu->arch.cpuid_entries[i];
  797. if (e->function == 0x80000001) {
  798. entry = e;
  799. break;
  800. }
  801. }
  802. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  803. entry->edx &= ~(1 << 20);
  804. printk(KERN_INFO "kvm: guest NX capability removed\n");
  805. }
  806. }
  807. /* when an old userspace process fills a new kernel module */
  808. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  809. struct kvm_cpuid *cpuid,
  810. struct kvm_cpuid_entry __user *entries)
  811. {
  812. int r, i;
  813. struct kvm_cpuid_entry *cpuid_entries;
  814. r = -E2BIG;
  815. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  816. goto out;
  817. r = -ENOMEM;
  818. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  819. if (!cpuid_entries)
  820. goto out;
  821. r = -EFAULT;
  822. if (copy_from_user(cpuid_entries, entries,
  823. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  824. goto out_free;
  825. for (i = 0; i < cpuid->nent; i++) {
  826. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  827. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  828. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  829. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  830. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  831. vcpu->arch.cpuid_entries[i].index = 0;
  832. vcpu->arch.cpuid_entries[i].flags = 0;
  833. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  834. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  835. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  836. }
  837. vcpu->arch.cpuid_nent = cpuid->nent;
  838. cpuid_fix_nx_cap(vcpu);
  839. r = 0;
  840. out_free:
  841. vfree(cpuid_entries);
  842. out:
  843. return r;
  844. }
  845. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  846. struct kvm_cpuid2 *cpuid,
  847. struct kvm_cpuid_entry2 __user *entries)
  848. {
  849. int r;
  850. r = -E2BIG;
  851. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  852. goto out;
  853. r = -EFAULT;
  854. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  855. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  856. goto out;
  857. vcpu->arch.cpuid_nent = cpuid->nent;
  858. return 0;
  859. out:
  860. return r;
  861. }
  862. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  863. struct kvm_cpuid2 *cpuid,
  864. struct kvm_cpuid_entry2 __user *entries)
  865. {
  866. int r;
  867. r = -E2BIG;
  868. if (cpuid->nent < vcpu->arch.cpuid_nent)
  869. goto out;
  870. r = -EFAULT;
  871. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  872. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  873. goto out;
  874. return 0;
  875. out:
  876. cpuid->nent = vcpu->arch.cpuid_nent;
  877. return r;
  878. }
  879. static inline u32 bit(int bitno)
  880. {
  881. return 1 << (bitno & 31);
  882. }
  883. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  884. u32 index)
  885. {
  886. entry->function = function;
  887. entry->index = index;
  888. cpuid_count(entry->function, entry->index,
  889. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  890. entry->flags = 0;
  891. }
  892. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  893. u32 index, int *nent, int maxnent)
  894. {
  895. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  896. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  897. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  898. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  899. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  900. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  901. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  902. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  903. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  904. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  905. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  906. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  907. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  908. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  909. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  910. bit(X86_FEATURE_PGE) |
  911. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  912. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  913. bit(X86_FEATURE_SYSCALL) |
  914. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  915. #ifdef CONFIG_X86_64
  916. bit(X86_FEATURE_LM) |
  917. #endif
  918. bit(X86_FEATURE_MMXEXT) |
  919. bit(X86_FEATURE_3DNOWEXT) |
  920. bit(X86_FEATURE_3DNOW);
  921. const u32 kvm_supported_word3_x86_features =
  922. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  923. const u32 kvm_supported_word6_x86_features =
  924. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  925. /* all func 2 cpuid_count() should be called on the same cpu */
  926. get_cpu();
  927. do_cpuid_1_ent(entry, function, index);
  928. ++*nent;
  929. switch (function) {
  930. case 0:
  931. entry->eax = min(entry->eax, (u32)0xb);
  932. break;
  933. case 1:
  934. entry->edx &= kvm_supported_word0_x86_features;
  935. entry->ecx &= kvm_supported_word3_x86_features;
  936. break;
  937. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  938. * may return different values. This forces us to get_cpu() before
  939. * issuing the first command, and also to emulate this annoying behavior
  940. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  941. case 2: {
  942. int t, times = entry->eax & 0xff;
  943. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  944. for (t = 1; t < times && *nent < maxnent; ++t) {
  945. do_cpuid_1_ent(&entry[t], function, 0);
  946. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  947. ++*nent;
  948. }
  949. break;
  950. }
  951. /* function 4 and 0xb have additional index. */
  952. case 4: {
  953. int index, cache_type;
  954. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  955. /* read more entries until cache_type is zero */
  956. for (index = 1; *nent < maxnent; ++index) {
  957. cache_type = entry[index - 1].eax & 0x1f;
  958. if (!cache_type)
  959. break;
  960. do_cpuid_1_ent(&entry[index], function, index);
  961. entry[index].flags |=
  962. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  963. ++*nent;
  964. }
  965. break;
  966. }
  967. case 0xb: {
  968. int index, level_type;
  969. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  970. /* read more entries until level_type is zero */
  971. for (index = 1; *nent < maxnent; ++index) {
  972. level_type = entry[index - 1].ecx & 0xff;
  973. if (!level_type)
  974. break;
  975. do_cpuid_1_ent(&entry[index], function, index);
  976. entry[index].flags |=
  977. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  978. ++*nent;
  979. }
  980. break;
  981. }
  982. case 0x80000000:
  983. entry->eax = min(entry->eax, 0x8000001a);
  984. break;
  985. case 0x80000001:
  986. entry->edx &= kvm_supported_word1_x86_features;
  987. entry->ecx &= kvm_supported_word6_x86_features;
  988. break;
  989. }
  990. put_cpu();
  991. }
  992. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  993. struct kvm_cpuid_entry2 __user *entries)
  994. {
  995. struct kvm_cpuid_entry2 *cpuid_entries;
  996. int limit, nent = 0, r = -E2BIG;
  997. u32 func;
  998. if (cpuid->nent < 1)
  999. goto out;
  1000. r = -ENOMEM;
  1001. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1002. if (!cpuid_entries)
  1003. goto out;
  1004. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1005. limit = cpuid_entries[0].eax;
  1006. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1007. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1008. &nent, cpuid->nent);
  1009. r = -E2BIG;
  1010. if (nent >= cpuid->nent)
  1011. goto out_free;
  1012. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1013. limit = cpuid_entries[nent - 1].eax;
  1014. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1015. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1016. &nent, cpuid->nent);
  1017. r = -EFAULT;
  1018. if (copy_to_user(entries, cpuid_entries,
  1019. nent * sizeof(struct kvm_cpuid_entry2)))
  1020. goto out_free;
  1021. cpuid->nent = nent;
  1022. r = 0;
  1023. out_free:
  1024. vfree(cpuid_entries);
  1025. out:
  1026. return r;
  1027. }
  1028. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1029. struct kvm_lapic_state *s)
  1030. {
  1031. vcpu_load(vcpu);
  1032. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1033. vcpu_put(vcpu);
  1034. return 0;
  1035. }
  1036. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1037. struct kvm_lapic_state *s)
  1038. {
  1039. vcpu_load(vcpu);
  1040. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1041. kvm_apic_post_state_restore(vcpu);
  1042. vcpu_put(vcpu);
  1043. return 0;
  1044. }
  1045. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1046. struct kvm_interrupt *irq)
  1047. {
  1048. if (irq->irq < 0 || irq->irq >= 256)
  1049. return -EINVAL;
  1050. if (irqchip_in_kernel(vcpu->kvm))
  1051. return -ENXIO;
  1052. vcpu_load(vcpu);
  1053. set_bit(irq->irq, vcpu->arch.irq_pending);
  1054. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1055. vcpu_put(vcpu);
  1056. return 0;
  1057. }
  1058. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1059. struct kvm_tpr_access_ctl *tac)
  1060. {
  1061. if (tac->flags)
  1062. return -EINVAL;
  1063. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1064. return 0;
  1065. }
  1066. long kvm_arch_vcpu_ioctl(struct file *filp,
  1067. unsigned int ioctl, unsigned long arg)
  1068. {
  1069. struct kvm_vcpu *vcpu = filp->private_data;
  1070. void __user *argp = (void __user *)arg;
  1071. int r;
  1072. switch (ioctl) {
  1073. case KVM_GET_LAPIC: {
  1074. struct kvm_lapic_state lapic;
  1075. memset(&lapic, 0, sizeof lapic);
  1076. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1077. if (r)
  1078. goto out;
  1079. r = -EFAULT;
  1080. if (copy_to_user(argp, &lapic, sizeof lapic))
  1081. goto out;
  1082. r = 0;
  1083. break;
  1084. }
  1085. case KVM_SET_LAPIC: {
  1086. struct kvm_lapic_state lapic;
  1087. r = -EFAULT;
  1088. if (copy_from_user(&lapic, argp, sizeof lapic))
  1089. goto out;
  1090. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1091. if (r)
  1092. goto out;
  1093. r = 0;
  1094. break;
  1095. }
  1096. case KVM_INTERRUPT: {
  1097. struct kvm_interrupt irq;
  1098. r = -EFAULT;
  1099. if (copy_from_user(&irq, argp, sizeof irq))
  1100. goto out;
  1101. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1102. if (r)
  1103. goto out;
  1104. r = 0;
  1105. break;
  1106. }
  1107. case KVM_SET_CPUID: {
  1108. struct kvm_cpuid __user *cpuid_arg = argp;
  1109. struct kvm_cpuid cpuid;
  1110. r = -EFAULT;
  1111. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1112. goto out;
  1113. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1114. if (r)
  1115. goto out;
  1116. break;
  1117. }
  1118. case KVM_SET_CPUID2: {
  1119. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1120. struct kvm_cpuid2 cpuid;
  1121. r = -EFAULT;
  1122. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1123. goto out;
  1124. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1125. cpuid_arg->entries);
  1126. if (r)
  1127. goto out;
  1128. break;
  1129. }
  1130. case KVM_GET_CPUID2: {
  1131. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1132. struct kvm_cpuid2 cpuid;
  1133. r = -EFAULT;
  1134. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1135. goto out;
  1136. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1137. cpuid_arg->entries);
  1138. if (r)
  1139. goto out;
  1140. r = -EFAULT;
  1141. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1142. goto out;
  1143. r = 0;
  1144. break;
  1145. }
  1146. case KVM_GET_MSRS:
  1147. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1148. break;
  1149. case KVM_SET_MSRS:
  1150. r = msr_io(vcpu, argp, do_set_msr, 0);
  1151. break;
  1152. case KVM_TPR_ACCESS_REPORTING: {
  1153. struct kvm_tpr_access_ctl tac;
  1154. r = -EFAULT;
  1155. if (copy_from_user(&tac, argp, sizeof tac))
  1156. goto out;
  1157. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1158. if (r)
  1159. goto out;
  1160. r = -EFAULT;
  1161. if (copy_to_user(argp, &tac, sizeof tac))
  1162. goto out;
  1163. r = 0;
  1164. break;
  1165. };
  1166. case KVM_SET_VAPIC_ADDR: {
  1167. struct kvm_vapic_addr va;
  1168. r = -EINVAL;
  1169. if (!irqchip_in_kernel(vcpu->kvm))
  1170. goto out;
  1171. r = -EFAULT;
  1172. if (copy_from_user(&va, argp, sizeof va))
  1173. goto out;
  1174. r = 0;
  1175. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1176. break;
  1177. }
  1178. default:
  1179. r = -EINVAL;
  1180. }
  1181. out:
  1182. return r;
  1183. }
  1184. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1185. {
  1186. int ret;
  1187. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1188. return -1;
  1189. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1190. return ret;
  1191. }
  1192. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1193. u32 kvm_nr_mmu_pages)
  1194. {
  1195. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1196. return -EINVAL;
  1197. down_write(&kvm->slots_lock);
  1198. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1199. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1200. up_write(&kvm->slots_lock);
  1201. return 0;
  1202. }
  1203. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1204. {
  1205. return kvm->arch.n_alloc_mmu_pages;
  1206. }
  1207. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1208. {
  1209. int i;
  1210. struct kvm_mem_alias *alias;
  1211. for (i = 0; i < kvm->arch.naliases; ++i) {
  1212. alias = &kvm->arch.aliases[i];
  1213. if (gfn >= alias->base_gfn
  1214. && gfn < alias->base_gfn + alias->npages)
  1215. return alias->target_gfn + gfn - alias->base_gfn;
  1216. }
  1217. return gfn;
  1218. }
  1219. /*
  1220. * Set a new alias region. Aliases map a portion of physical memory into
  1221. * another portion. This is useful for memory windows, for example the PC
  1222. * VGA region.
  1223. */
  1224. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1225. struct kvm_memory_alias *alias)
  1226. {
  1227. int r, n;
  1228. struct kvm_mem_alias *p;
  1229. r = -EINVAL;
  1230. /* General sanity checks */
  1231. if (alias->memory_size & (PAGE_SIZE - 1))
  1232. goto out;
  1233. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1234. goto out;
  1235. if (alias->slot >= KVM_ALIAS_SLOTS)
  1236. goto out;
  1237. if (alias->guest_phys_addr + alias->memory_size
  1238. < alias->guest_phys_addr)
  1239. goto out;
  1240. if (alias->target_phys_addr + alias->memory_size
  1241. < alias->target_phys_addr)
  1242. goto out;
  1243. down_write(&kvm->slots_lock);
  1244. p = &kvm->arch.aliases[alias->slot];
  1245. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1246. p->npages = alias->memory_size >> PAGE_SHIFT;
  1247. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1248. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1249. if (kvm->arch.aliases[n - 1].npages)
  1250. break;
  1251. kvm->arch.naliases = n;
  1252. kvm_mmu_zap_all(kvm);
  1253. up_write(&kvm->slots_lock);
  1254. return 0;
  1255. out:
  1256. return r;
  1257. }
  1258. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1259. {
  1260. int r;
  1261. r = 0;
  1262. switch (chip->chip_id) {
  1263. case KVM_IRQCHIP_PIC_MASTER:
  1264. memcpy(&chip->chip.pic,
  1265. &pic_irqchip(kvm)->pics[0],
  1266. sizeof(struct kvm_pic_state));
  1267. break;
  1268. case KVM_IRQCHIP_PIC_SLAVE:
  1269. memcpy(&chip->chip.pic,
  1270. &pic_irqchip(kvm)->pics[1],
  1271. sizeof(struct kvm_pic_state));
  1272. break;
  1273. case KVM_IRQCHIP_IOAPIC:
  1274. memcpy(&chip->chip.ioapic,
  1275. ioapic_irqchip(kvm),
  1276. sizeof(struct kvm_ioapic_state));
  1277. break;
  1278. default:
  1279. r = -EINVAL;
  1280. break;
  1281. }
  1282. return r;
  1283. }
  1284. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1285. {
  1286. int r;
  1287. r = 0;
  1288. switch (chip->chip_id) {
  1289. case KVM_IRQCHIP_PIC_MASTER:
  1290. memcpy(&pic_irqchip(kvm)->pics[0],
  1291. &chip->chip.pic,
  1292. sizeof(struct kvm_pic_state));
  1293. break;
  1294. case KVM_IRQCHIP_PIC_SLAVE:
  1295. memcpy(&pic_irqchip(kvm)->pics[1],
  1296. &chip->chip.pic,
  1297. sizeof(struct kvm_pic_state));
  1298. break;
  1299. case KVM_IRQCHIP_IOAPIC:
  1300. memcpy(ioapic_irqchip(kvm),
  1301. &chip->chip.ioapic,
  1302. sizeof(struct kvm_ioapic_state));
  1303. break;
  1304. default:
  1305. r = -EINVAL;
  1306. break;
  1307. }
  1308. kvm_pic_update_irq(pic_irqchip(kvm));
  1309. return r;
  1310. }
  1311. /*
  1312. * Get (and clear) the dirty memory log for a memory slot.
  1313. */
  1314. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1315. struct kvm_dirty_log *log)
  1316. {
  1317. int r;
  1318. int n;
  1319. struct kvm_memory_slot *memslot;
  1320. int is_dirty = 0;
  1321. down_write(&kvm->slots_lock);
  1322. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1323. if (r)
  1324. goto out;
  1325. /* If nothing is dirty, don't bother messing with page tables. */
  1326. if (is_dirty) {
  1327. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1328. kvm_flush_remote_tlbs(kvm);
  1329. memslot = &kvm->memslots[log->slot];
  1330. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1331. memset(memslot->dirty_bitmap, 0, n);
  1332. }
  1333. r = 0;
  1334. out:
  1335. up_write(&kvm->slots_lock);
  1336. return r;
  1337. }
  1338. long kvm_arch_vm_ioctl(struct file *filp,
  1339. unsigned int ioctl, unsigned long arg)
  1340. {
  1341. struct kvm *kvm = filp->private_data;
  1342. void __user *argp = (void __user *)arg;
  1343. int r = -EINVAL;
  1344. switch (ioctl) {
  1345. case KVM_SET_TSS_ADDR:
  1346. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1347. if (r < 0)
  1348. goto out;
  1349. break;
  1350. case KVM_SET_MEMORY_REGION: {
  1351. struct kvm_memory_region kvm_mem;
  1352. struct kvm_userspace_memory_region kvm_userspace_mem;
  1353. r = -EFAULT;
  1354. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1355. goto out;
  1356. kvm_userspace_mem.slot = kvm_mem.slot;
  1357. kvm_userspace_mem.flags = kvm_mem.flags;
  1358. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1359. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1360. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1361. if (r)
  1362. goto out;
  1363. break;
  1364. }
  1365. case KVM_SET_NR_MMU_PAGES:
  1366. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1367. if (r)
  1368. goto out;
  1369. break;
  1370. case KVM_GET_NR_MMU_PAGES:
  1371. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1372. break;
  1373. case KVM_SET_MEMORY_ALIAS: {
  1374. struct kvm_memory_alias alias;
  1375. r = -EFAULT;
  1376. if (copy_from_user(&alias, argp, sizeof alias))
  1377. goto out;
  1378. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1379. if (r)
  1380. goto out;
  1381. break;
  1382. }
  1383. case KVM_CREATE_IRQCHIP:
  1384. r = -ENOMEM;
  1385. kvm->arch.vpic = kvm_create_pic(kvm);
  1386. if (kvm->arch.vpic) {
  1387. r = kvm_ioapic_init(kvm);
  1388. if (r) {
  1389. kfree(kvm->arch.vpic);
  1390. kvm->arch.vpic = NULL;
  1391. goto out;
  1392. }
  1393. } else
  1394. goto out;
  1395. break;
  1396. case KVM_IRQ_LINE: {
  1397. struct kvm_irq_level irq_event;
  1398. r = -EFAULT;
  1399. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1400. goto out;
  1401. if (irqchip_in_kernel(kvm)) {
  1402. mutex_lock(&kvm->lock);
  1403. if (irq_event.irq < 16)
  1404. kvm_pic_set_irq(pic_irqchip(kvm),
  1405. irq_event.irq,
  1406. irq_event.level);
  1407. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1408. irq_event.irq,
  1409. irq_event.level);
  1410. mutex_unlock(&kvm->lock);
  1411. r = 0;
  1412. }
  1413. break;
  1414. }
  1415. case KVM_GET_IRQCHIP: {
  1416. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1417. struct kvm_irqchip chip;
  1418. r = -EFAULT;
  1419. if (copy_from_user(&chip, argp, sizeof chip))
  1420. goto out;
  1421. r = -ENXIO;
  1422. if (!irqchip_in_kernel(kvm))
  1423. goto out;
  1424. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1425. if (r)
  1426. goto out;
  1427. r = -EFAULT;
  1428. if (copy_to_user(argp, &chip, sizeof chip))
  1429. goto out;
  1430. r = 0;
  1431. break;
  1432. }
  1433. case KVM_SET_IRQCHIP: {
  1434. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1435. struct kvm_irqchip chip;
  1436. r = -EFAULT;
  1437. if (copy_from_user(&chip, argp, sizeof chip))
  1438. goto out;
  1439. r = -ENXIO;
  1440. if (!irqchip_in_kernel(kvm))
  1441. goto out;
  1442. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1443. if (r)
  1444. goto out;
  1445. r = 0;
  1446. break;
  1447. }
  1448. default:
  1449. ;
  1450. }
  1451. out:
  1452. return r;
  1453. }
  1454. static void kvm_init_msr_list(void)
  1455. {
  1456. u32 dummy[2];
  1457. unsigned i, j;
  1458. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1459. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1460. continue;
  1461. if (j < i)
  1462. msrs_to_save[j] = msrs_to_save[i];
  1463. j++;
  1464. }
  1465. num_msrs_to_save = j;
  1466. }
  1467. /*
  1468. * Only apic need an MMIO device hook, so shortcut now..
  1469. */
  1470. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1471. gpa_t addr)
  1472. {
  1473. struct kvm_io_device *dev;
  1474. if (vcpu->arch.apic) {
  1475. dev = &vcpu->arch.apic->dev;
  1476. if (dev->in_range(dev, addr))
  1477. return dev;
  1478. }
  1479. return NULL;
  1480. }
  1481. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1482. gpa_t addr)
  1483. {
  1484. struct kvm_io_device *dev;
  1485. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1486. if (dev == NULL)
  1487. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1488. return dev;
  1489. }
  1490. int emulator_read_std(unsigned long addr,
  1491. void *val,
  1492. unsigned int bytes,
  1493. struct kvm_vcpu *vcpu)
  1494. {
  1495. void *data = val;
  1496. int r = X86EMUL_CONTINUE;
  1497. down_read(&vcpu->kvm->slots_lock);
  1498. while (bytes) {
  1499. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1500. unsigned offset = addr & (PAGE_SIZE-1);
  1501. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1502. int ret;
  1503. if (gpa == UNMAPPED_GVA) {
  1504. r = X86EMUL_PROPAGATE_FAULT;
  1505. goto out;
  1506. }
  1507. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1508. if (ret < 0) {
  1509. r = X86EMUL_UNHANDLEABLE;
  1510. goto out;
  1511. }
  1512. bytes -= tocopy;
  1513. data += tocopy;
  1514. addr += tocopy;
  1515. }
  1516. out:
  1517. up_read(&vcpu->kvm->slots_lock);
  1518. return r;
  1519. }
  1520. EXPORT_SYMBOL_GPL(emulator_read_std);
  1521. static int emulator_read_emulated(unsigned long addr,
  1522. void *val,
  1523. unsigned int bytes,
  1524. struct kvm_vcpu *vcpu)
  1525. {
  1526. struct kvm_io_device *mmio_dev;
  1527. gpa_t gpa;
  1528. if (vcpu->mmio_read_completed) {
  1529. memcpy(val, vcpu->mmio_data, bytes);
  1530. vcpu->mmio_read_completed = 0;
  1531. return X86EMUL_CONTINUE;
  1532. }
  1533. down_read(&vcpu->kvm->slots_lock);
  1534. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1535. up_read(&vcpu->kvm->slots_lock);
  1536. /* For APIC access vmexit */
  1537. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1538. goto mmio;
  1539. if (emulator_read_std(addr, val, bytes, vcpu)
  1540. == X86EMUL_CONTINUE)
  1541. return X86EMUL_CONTINUE;
  1542. if (gpa == UNMAPPED_GVA)
  1543. return X86EMUL_PROPAGATE_FAULT;
  1544. mmio:
  1545. /*
  1546. * Is this MMIO handled locally?
  1547. */
  1548. mutex_lock(&vcpu->kvm->lock);
  1549. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1550. if (mmio_dev) {
  1551. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1552. mutex_unlock(&vcpu->kvm->lock);
  1553. return X86EMUL_CONTINUE;
  1554. }
  1555. mutex_unlock(&vcpu->kvm->lock);
  1556. vcpu->mmio_needed = 1;
  1557. vcpu->mmio_phys_addr = gpa;
  1558. vcpu->mmio_size = bytes;
  1559. vcpu->mmio_is_write = 0;
  1560. return X86EMUL_UNHANDLEABLE;
  1561. }
  1562. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1563. const void *val, int bytes)
  1564. {
  1565. int ret;
  1566. down_read(&vcpu->kvm->slots_lock);
  1567. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1568. if (ret < 0) {
  1569. up_read(&vcpu->kvm->slots_lock);
  1570. return 0;
  1571. }
  1572. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1573. up_read(&vcpu->kvm->slots_lock);
  1574. return 1;
  1575. }
  1576. static int emulator_write_emulated_onepage(unsigned long addr,
  1577. const void *val,
  1578. unsigned int bytes,
  1579. struct kvm_vcpu *vcpu)
  1580. {
  1581. struct kvm_io_device *mmio_dev;
  1582. gpa_t gpa;
  1583. down_read(&vcpu->kvm->slots_lock);
  1584. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1585. up_read(&vcpu->kvm->slots_lock);
  1586. if (gpa == UNMAPPED_GVA) {
  1587. kvm_inject_page_fault(vcpu, addr, 2);
  1588. return X86EMUL_PROPAGATE_FAULT;
  1589. }
  1590. /* For APIC access vmexit */
  1591. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1592. goto mmio;
  1593. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1594. return X86EMUL_CONTINUE;
  1595. mmio:
  1596. /*
  1597. * Is this MMIO handled locally?
  1598. */
  1599. mutex_lock(&vcpu->kvm->lock);
  1600. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1601. if (mmio_dev) {
  1602. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1603. mutex_unlock(&vcpu->kvm->lock);
  1604. return X86EMUL_CONTINUE;
  1605. }
  1606. mutex_unlock(&vcpu->kvm->lock);
  1607. vcpu->mmio_needed = 1;
  1608. vcpu->mmio_phys_addr = gpa;
  1609. vcpu->mmio_size = bytes;
  1610. vcpu->mmio_is_write = 1;
  1611. memcpy(vcpu->mmio_data, val, bytes);
  1612. return X86EMUL_CONTINUE;
  1613. }
  1614. int emulator_write_emulated(unsigned long addr,
  1615. const void *val,
  1616. unsigned int bytes,
  1617. struct kvm_vcpu *vcpu)
  1618. {
  1619. /* Crossing a page boundary? */
  1620. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1621. int rc, now;
  1622. now = -addr & ~PAGE_MASK;
  1623. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1624. if (rc != X86EMUL_CONTINUE)
  1625. return rc;
  1626. addr += now;
  1627. val += now;
  1628. bytes -= now;
  1629. }
  1630. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1631. }
  1632. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1633. static int emulator_cmpxchg_emulated(unsigned long addr,
  1634. const void *old,
  1635. const void *new,
  1636. unsigned int bytes,
  1637. struct kvm_vcpu *vcpu)
  1638. {
  1639. static int reported;
  1640. if (!reported) {
  1641. reported = 1;
  1642. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1643. }
  1644. #ifndef CONFIG_X86_64
  1645. /* guests cmpxchg8b have to be emulated atomically */
  1646. if (bytes == 8) {
  1647. gpa_t gpa;
  1648. struct page *page;
  1649. char *kaddr;
  1650. u64 val;
  1651. down_read(&vcpu->kvm->slots_lock);
  1652. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1653. if (gpa == UNMAPPED_GVA ||
  1654. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1655. goto emul_write;
  1656. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1657. goto emul_write;
  1658. val = *(u64 *)new;
  1659. down_read(&current->mm->mmap_sem);
  1660. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1661. up_read(&current->mm->mmap_sem);
  1662. kaddr = kmap_atomic(page, KM_USER0);
  1663. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1664. kunmap_atomic(kaddr, KM_USER0);
  1665. kvm_release_page_dirty(page);
  1666. emul_write:
  1667. up_read(&vcpu->kvm->slots_lock);
  1668. }
  1669. #endif
  1670. return emulator_write_emulated(addr, new, bytes, vcpu);
  1671. }
  1672. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1673. {
  1674. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1675. }
  1676. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1677. {
  1678. return X86EMUL_CONTINUE;
  1679. }
  1680. int emulate_clts(struct kvm_vcpu *vcpu)
  1681. {
  1682. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1683. return X86EMUL_CONTINUE;
  1684. }
  1685. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1686. {
  1687. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1688. switch (dr) {
  1689. case 0 ... 3:
  1690. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1691. return X86EMUL_CONTINUE;
  1692. default:
  1693. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1694. return X86EMUL_UNHANDLEABLE;
  1695. }
  1696. }
  1697. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1698. {
  1699. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1700. int exception;
  1701. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1702. if (exception) {
  1703. /* FIXME: better handling */
  1704. return X86EMUL_UNHANDLEABLE;
  1705. }
  1706. return X86EMUL_CONTINUE;
  1707. }
  1708. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1709. {
  1710. static int reported;
  1711. u8 opcodes[4];
  1712. unsigned long rip = vcpu->arch.rip;
  1713. unsigned long rip_linear;
  1714. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1715. if (reported)
  1716. return;
  1717. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1718. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1719. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1720. reported = 1;
  1721. }
  1722. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1723. struct x86_emulate_ops emulate_ops = {
  1724. .read_std = emulator_read_std,
  1725. .read_emulated = emulator_read_emulated,
  1726. .write_emulated = emulator_write_emulated,
  1727. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1728. };
  1729. int emulate_instruction(struct kvm_vcpu *vcpu,
  1730. struct kvm_run *run,
  1731. unsigned long cr2,
  1732. u16 error_code,
  1733. int emulation_type)
  1734. {
  1735. int r;
  1736. struct decode_cache *c;
  1737. vcpu->arch.mmio_fault_cr2 = cr2;
  1738. kvm_x86_ops->cache_regs(vcpu);
  1739. vcpu->mmio_is_write = 0;
  1740. vcpu->arch.pio.string = 0;
  1741. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1742. int cs_db, cs_l;
  1743. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1744. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1745. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1746. vcpu->arch.emulate_ctxt.mode =
  1747. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1748. ? X86EMUL_MODE_REAL : cs_l
  1749. ? X86EMUL_MODE_PROT64 : cs_db
  1750. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1751. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1752. vcpu->arch.emulate_ctxt.cs_base = 0;
  1753. vcpu->arch.emulate_ctxt.ds_base = 0;
  1754. vcpu->arch.emulate_ctxt.es_base = 0;
  1755. vcpu->arch.emulate_ctxt.ss_base = 0;
  1756. } else {
  1757. vcpu->arch.emulate_ctxt.cs_base =
  1758. get_segment_base(vcpu, VCPU_SREG_CS);
  1759. vcpu->arch.emulate_ctxt.ds_base =
  1760. get_segment_base(vcpu, VCPU_SREG_DS);
  1761. vcpu->arch.emulate_ctxt.es_base =
  1762. get_segment_base(vcpu, VCPU_SREG_ES);
  1763. vcpu->arch.emulate_ctxt.ss_base =
  1764. get_segment_base(vcpu, VCPU_SREG_SS);
  1765. }
  1766. vcpu->arch.emulate_ctxt.gs_base =
  1767. get_segment_base(vcpu, VCPU_SREG_GS);
  1768. vcpu->arch.emulate_ctxt.fs_base =
  1769. get_segment_base(vcpu, VCPU_SREG_FS);
  1770. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1771. /* Reject the instructions other than VMCALL/VMMCALL when
  1772. * try to emulate invalid opcode */
  1773. c = &vcpu->arch.emulate_ctxt.decode;
  1774. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1775. (!(c->twobyte && c->b == 0x01 &&
  1776. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1777. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1778. return EMULATE_FAIL;
  1779. ++vcpu->stat.insn_emulation;
  1780. if (r) {
  1781. ++vcpu->stat.insn_emulation_fail;
  1782. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1783. return EMULATE_DONE;
  1784. return EMULATE_FAIL;
  1785. }
  1786. }
  1787. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1788. if (vcpu->arch.pio.string)
  1789. return EMULATE_DO_MMIO;
  1790. if ((r || vcpu->mmio_is_write) && run) {
  1791. run->exit_reason = KVM_EXIT_MMIO;
  1792. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1793. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1794. run->mmio.len = vcpu->mmio_size;
  1795. run->mmio.is_write = vcpu->mmio_is_write;
  1796. }
  1797. if (r) {
  1798. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1799. return EMULATE_DONE;
  1800. if (!vcpu->mmio_needed) {
  1801. kvm_report_emulation_failure(vcpu, "mmio");
  1802. return EMULATE_FAIL;
  1803. }
  1804. return EMULATE_DO_MMIO;
  1805. }
  1806. kvm_x86_ops->decache_regs(vcpu);
  1807. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1808. if (vcpu->mmio_is_write) {
  1809. vcpu->mmio_needed = 0;
  1810. return EMULATE_DO_MMIO;
  1811. }
  1812. return EMULATE_DONE;
  1813. }
  1814. EXPORT_SYMBOL_GPL(emulate_instruction);
  1815. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1816. {
  1817. int i;
  1818. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1819. if (vcpu->arch.pio.guest_pages[i]) {
  1820. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1821. vcpu->arch.pio.guest_pages[i] = NULL;
  1822. }
  1823. }
  1824. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1825. {
  1826. void *p = vcpu->arch.pio_data;
  1827. void *q;
  1828. unsigned bytes;
  1829. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1830. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1831. PAGE_KERNEL);
  1832. if (!q) {
  1833. free_pio_guest_pages(vcpu);
  1834. return -ENOMEM;
  1835. }
  1836. q += vcpu->arch.pio.guest_page_offset;
  1837. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1838. if (vcpu->arch.pio.in)
  1839. memcpy(q, p, bytes);
  1840. else
  1841. memcpy(p, q, bytes);
  1842. q -= vcpu->arch.pio.guest_page_offset;
  1843. vunmap(q);
  1844. free_pio_guest_pages(vcpu);
  1845. return 0;
  1846. }
  1847. int complete_pio(struct kvm_vcpu *vcpu)
  1848. {
  1849. struct kvm_pio_request *io = &vcpu->arch.pio;
  1850. long delta;
  1851. int r;
  1852. kvm_x86_ops->cache_regs(vcpu);
  1853. if (!io->string) {
  1854. if (io->in)
  1855. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1856. io->size);
  1857. } else {
  1858. if (io->in) {
  1859. r = pio_copy_data(vcpu);
  1860. if (r) {
  1861. kvm_x86_ops->cache_regs(vcpu);
  1862. return r;
  1863. }
  1864. }
  1865. delta = 1;
  1866. if (io->rep) {
  1867. delta *= io->cur_count;
  1868. /*
  1869. * The size of the register should really depend on
  1870. * current address size.
  1871. */
  1872. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1873. }
  1874. if (io->down)
  1875. delta = -delta;
  1876. delta *= io->size;
  1877. if (io->in)
  1878. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1879. else
  1880. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1881. }
  1882. kvm_x86_ops->decache_regs(vcpu);
  1883. io->count -= io->cur_count;
  1884. io->cur_count = 0;
  1885. return 0;
  1886. }
  1887. static void kernel_pio(struct kvm_io_device *pio_dev,
  1888. struct kvm_vcpu *vcpu,
  1889. void *pd)
  1890. {
  1891. /* TODO: String I/O for in kernel device */
  1892. mutex_lock(&vcpu->kvm->lock);
  1893. if (vcpu->arch.pio.in)
  1894. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1895. vcpu->arch.pio.size,
  1896. pd);
  1897. else
  1898. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1899. vcpu->arch.pio.size,
  1900. pd);
  1901. mutex_unlock(&vcpu->kvm->lock);
  1902. }
  1903. static void pio_string_write(struct kvm_io_device *pio_dev,
  1904. struct kvm_vcpu *vcpu)
  1905. {
  1906. struct kvm_pio_request *io = &vcpu->arch.pio;
  1907. void *pd = vcpu->arch.pio_data;
  1908. int i;
  1909. mutex_lock(&vcpu->kvm->lock);
  1910. for (i = 0; i < io->cur_count; i++) {
  1911. kvm_iodevice_write(pio_dev, io->port,
  1912. io->size,
  1913. pd);
  1914. pd += io->size;
  1915. }
  1916. mutex_unlock(&vcpu->kvm->lock);
  1917. }
  1918. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1919. gpa_t addr)
  1920. {
  1921. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1922. }
  1923. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1924. int size, unsigned port)
  1925. {
  1926. struct kvm_io_device *pio_dev;
  1927. vcpu->run->exit_reason = KVM_EXIT_IO;
  1928. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1929. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1930. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1931. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1932. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1933. vcpu->arch.pio.in = in;
  1934. vcpu->arch.pio.string = 0;
  1935. vcpu->arch.pio.down = 0;
  1936. vcpu->arch.pio.guest_page_offset = 0;
  1937. vcpu->arch.pio.rep = 0;
  1938. kvm_x86_ops->cache_regs(vcpu);
  1939. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1940. kvm_x86_ops->decache_regs(vcpu);
  1941. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1942. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1943. if (pio_dev) {
  1944. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  1945. complete_pio(vcpu);
  1946. return 1;
  1947. }
  1948. return 0;
  1949. }
  1950. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1951. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1952. int size, unsigned long count, int down,
  1953. gva_t address, int rep, unsigned port)
  1954. {
  1955. unsigned now, in_page;
  1956. int i, ret = 0;
  1957. int nr_pages = 1;
  1958. struct page *page;
  1959. struct kvm_io_device *pio_dev;
  1960. vcpu->run->exit_reason = KVM_EXIT_IO;
  1961. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1962. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1963. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1964. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  1965. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1966. vcpu->arch.pio.in = in;
  1967. vcpu->arch.pio.string = 1;
  1968. vcpu->arch.pio.down = down;
  1969. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  1970. vcpu->arch.pio.rep = rep;
  1971. if (!count) {
  1972. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1973. return 1;
  1974. }
  1975. if (!down)
  1976. in_page = PAGE_SIZE - offset_in_page(address);
  1977. else
  1978. in_page = offset_in_page(address) + size;
  1979. now = min(count, (unsigned long)in_page / size);
  1980. if (!now) {
  1981. /*
  1982. * String I/O straddles page boundary. Pin two guest pages
  1983. * so that we satisfy atomicity constraints. Do just one
  1984. * transaction to avoid complexity.
  1985. */
  1986. nr_pages = 2;
  1987. now = 1;
  1988. }
  1989. if (down) {
  1990. /*
  1991. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1992. */
  1993. pr_unimpl(vcpu, "guest string pio down\n");
  1994. kvm_inject_gp(vcpu, 0);
  1995. return 1;
  1996. }
  1997. vcpu->run->io.count = now;
  1998. vcpu->arch.pio.cur_count = now;
  1999. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2000. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2001. for (i = 0; i < nr_pages; ++i) {
  2002. down_read(&vcpu->kvm->slots_lock);
  2003. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2004. vcpu->arch.pio.guest_pages[i] = page;
  2005. up_read(&vcpu->kvm->slots_lock);
  2006. if (!page) {
  2007. kvm_inject_gp(vcpu, 0);
  2008. free_pio_guest_pages(vcpu);
  2009. return 1;
  2010. }
  2011. }
  2012. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2013. if (!vcpu->arch.pio.in) {
  2014. /* string PIO write */
  2015. ret = pio_copy_data(vcpu);
  2016. if (ret >= 0 && pio_dev) {
  2017. pio_string_write(pio_dev, vcpu);
  2018. complete_pio(vcpu);
  2019. if (vcpu->arch.pio.count == 0)
  2020. ret = 1;
  2021. }
  2022. } else if (pio_dev)
  2023. pr_unimpl(vcpu, "no string pio read support yet, "
  2024. "port %x size %d count %ld\n",
  2025. port, size, count);
  2026. return ret;
  2027. }
  2028. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2029. int kvm_arch_init(void *opaque)
  2030. {
  2031. int r;
  2032. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2033. if (kvm_x86_ops) {
  2034. printk(KERN_ERR "kvm: already loaded the other module\n");
  2035. r = -EEXIST;
  2036. goto out;
  2037. }
  2038. if (!ops->cpu_has_kvm_support()) {
  2039. printk(KERN_ERR "kvm: no hardware support\n");
  2040. r = -EOPNOTSUPP;
  2041. goto out;
  2042. }
  2043. if (ops->disabled_by_bios()) {
  2044. printk(KERN_ERR "kvm: disabled by bios\n");
  2045. r = -EOPNOTSUPP;
  2046. goto out;
  2047. }
  2048. r = kvm_mmu_module_init();
  2049. if (r)
  2050. goto out;
  2051. kvm_init_msr_list();
  2052. kvm_x86_ops = ops;
  2053. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2054. return 0;
  2055. out:
  2056. return r;
  2057. }
  2058. void kvm_arch_exit(void)
  2059. {
  2060. kvm_x86_ops = NULL;
  2061. kvm_mmu_module_exit();
  2062. }
  2063. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2064. {
  2065. ++vcpu->stat.halt_exits;
  2066. if (irqchip_in_kernel(vcpu->kvm)) {
  2067. vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
  2068. kvm_vcpu_block(vcpu);
  2069. if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
  2070. return -EINTR;
  2071. return 1;
  2072. } else {
  2073. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2074. return 0;
  2075. }
  2076. }
  2077. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2078. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2079. {
  2080. unsigned long nr, a0, a1, a2, a3, ret;
  2081. kvm_x86_ops->cache_regs(vcpu);
  2082. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2083. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2084. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2085. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2086. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2087. if (!is_long_mode(vcpu)) {
  2088. nr &= 0xFFFFFFFF;
  2089. a0 &= 0xFFFFFFFF;
  2090. a1 &= 0xFFFFFFFF;
  2091. a2 &= 0xFFFFFFFF;
  2092. a3 &= 0xFFFFFFFF;
  2093. }
  2094. switch (nr) {
  2095. case KVM_HC_VAPIC_POLL_IRQ:
  2096. ret = 0;
  2097. break;
  2098. default:
  2099. ret = -KVM_ENOSYS;
  2100. break;
  2101. }
  2102. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2103. kvm_x86_ops->decache_regs(vcpu);
  2104. return 0;
  2105. }
  2106. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2107. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2108. {
  2109. char instruction[3];
  2110. int ret = 0;
  2111. /*
  2112. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2113. * to ensure that the updated hypercall appears atomically across all
  2114. * VCPUs.
  2115. */
  2116. kvm_mmu_zap_all(vcpu->kvm);
  2117. kvm_x86_ops->cache_regs(vcpu);
  2118. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2119. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2120. != X86EMUL_CONTINUE)
  2121. ret = -EFAULT;
  2122. return ret;
  2123. }
  2124. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2125. {
  2126. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2127. }
  2128. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2129. {
  2130. struct descriptor_table dt = { limit, base };
  2131. kvm_x86_ops->set_gdt(vcpu, &dt);
  2132. }
  2133. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2134. {
  2135. struct descriptor_table dt = { limit, base };
  2136. kvm_x86_ops->set_idt(vcpu, &dt);
  2137. }
  2138. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2139. unsigned long *rflags)
  2140. {
  2141. lmsw(vcpu, msw);
  2142. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2143. }
  2144. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2145. {
  2146. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2147. switch (cr) {
  2148. case 0:
  2149. return vcpu->arch.cr0;
  2150. case 2:
  2151. return vcpu->arch.cr2;
  2152. case 3:
  2153. return vcpu->arch.cr3;
  2154. case 4:
  2155. return vcpu->arch.cr4;
  2156. case 8:
  2157. return get_cr8(vcpu);
  2158. default:
  2159. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2160. return 0;
  2161. }
  2162. }
  2163. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2164. unsigned long *rflags)
  2165. {
  2166. switch (cr) {
  2167. case 0:
  2168. set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2169. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2170. break;
  2171. case 2:
  2172. vcpu->arch.cr2 = val;
  2173. break;
  2174. case 3:
  2175. set_cr3(vcpu, val);
  2176. break;
  2177. case 4:
  2178. set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2179. break;
  2180. case 8:
  2181. set_cr8(vcpu, val & 0xfUL);
  2182. break;
  2183. default:
  2184. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2185. }
  2186. }
  2187. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2188. {
  2189. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2190. int j, nent = vcpu->arch.cpuid_nent;
  2191. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2192. /* when no next entry is found, the current entry[i] is reselected */
  2193. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2194. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2195. if (ej->function == e->function) {
  2196. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2197. return j;
  2198. }
  2199. }
  2200. return 0; /* silence gcc, even though control never reaches here */
  2201. }
  2202. /* find an entry with matching function, matching index (if needed), and that
  2203. * should be read next (if it's stateful) */
  2204. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2205. u32 function, u32 index)
  2206. {
  2207. if (e->function != function)
  2208. return 0;
  2209. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2210. return 0;
  2211. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2212. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2213. return 0;
  2214. return 1;
  2215. }
  2216. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2217. {
  2218. int i;
  2219. u32 function, index;
  2220. struct kvm_cpuid_entry2 *e, *best;
  2221. kvm_x86_ops->cache_regs(vcpu);
  2222. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2223. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2224. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2225. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2226. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2227. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2228. best = NULL;
  2229. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2230. e = &vcpu->arch.cpuid_entries[i];
  2231. if (is_matching_cpuid_entry(e, function, index)) {
  2232. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2233. move_to_next_stateful_cpuid_entry(vcpu, i);
  2234. best = e;
  2235. break;
  2236. }
  2237. /*
  2238. * Both basic or both extended?
  2239. */
  2240. if (((e->function ^ function) & 0x80000000) == 0)
  2241. if (!best || e->function > best->function)
  2242. best = e;
  2243. }
  2244. if (best) {
  2245. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2246. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2247. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2248. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2249. }
  2250. kvm_x86_ops->decache_regs(vcpu);
  2251. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2252. }
  2253. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2254. /*
  2255. * Check if userspace requested an interrupt window, and that the
  2256. * interrupt window is open.
  2257. *
  2258. * No need to exit to userspace if we already have an interrupt queued.
  2259. */
  2260. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2261. struct kvm_run *kvm_run)
  2262. {
  2263. return (!vcpu->arch.irq_summary &&
  2264. kvm_run->request_interrupt_window &&
  2265. vcpu->arch.interrupt_window_open &&
  2266. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2267. }
  2268. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2269. struct kvm_run *kvm_run)
  2270. {
  2271. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2272. kvm_run->cr8 = get_cr8(vcpu);
  2273. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2274. if (irqchip_in_kernel(vcpu->kvm))
  2275. kvm_run->ready_for_interrupt_injection = 1;
  2276. else
  2277. kvm_run->ready_for_interrupt_injection =
  2278. (vcpu->arch.interrupt_window_open &&
  2279. vcpu->arch.irq_summary == 0);
  2280. }
  2281. static void vapic_enter(struct kvm_vcpu *vcpu)
  2282. {
  2283. struct kvm_lapic *apic = vcpu->arch.apic;
  2284. struct page *page;
  2285. if (!apic || !apic->vapic_addr)
  2286. return;
  2287. down_read(&current->mm->mmap_sem);
  2288. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2289. up_read(&current->mm->mmap_sem);
  2290. vcpu->arch.apic->vapic_page = page;
  2291. }
  2292. static void vapic_exit(struct kvm_vcpu *vcpu)
  2293. {
  2294. struct kvm_lapic *apic = vcpu->arch.apic;
  2295. if (!apic || !apic->vapic_addr)
  2296. return;
  2297. kvm_release_page_dirty(apic->vapic_page);
  2298. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2299. }
  2300. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2301. {
  2302. int r;
  2303. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2304. pr_debug("vcpu %d received sipi with vector # %x\n",
  2305. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2306. kvm_lapic_reset(vcpu);
  2307. r = kvm_x86_ops->vcpu_reset(vcpu);
  2308. if (r)
  2309. return r;
  2310. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2311. }
  2312. vapic_enter(vcpu);
  2313. preempted:
  2314. if (vcpu->guest_debug.enabled)
  2315. kvm_x86_ops->guest_debug_pre(vcpu);
  2316. again:
  2317. r = kvm_mmu_reload(vcpu);
  2318. if (unlikely(r))
  2319. goto out;
  2320. if (vcpu->requests) {
  2321. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2322. __kvm_migrate_apic_timer(vcpu);
  2323. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2324. &vcpu->requests)) {
  2325. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2326. r = 0;
  2327. goto out;
  2328. }
  2329. }
  2330. kvm_inject_pending_timer_irqs(vcpu);
  2331. preempt_disable();
  2332. kvm_x86_ops->prepare_guest_switch(vcpu);
  2333. kvm_load_guest_fpu(vcpu);
  2334. local_irq_disable();
  2335. if (need_resched()) {
  2336. local_irq_enable();
  2337. preempt_enable();
  2338. r = 1;
  2339. goto out;
  2340. }
  2341. if (signal_pending(current)) {
  2342. local_irq_enable();
  2343. preempt_enable();
  2344. r = -EINTR;
  2345. kvm_run->exit_reason = KVM_EXIT_INTR;
  2346. ++vcpu->stat.signal_exits;
  2347. goto out;
  2348. }
  2349. if (vcpu->arch.exception.pending)
  2350. __queue_exception(vcpu);
  2351. else if (irqchip_in_kernel(vcpu->kvm))
  2352. kvm_x86_ops->inject_pending_irq(vcpu);
  2353. else
  2354. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2355. kvm_lapic_sync_to_vapic(vcpu);
  2356. vcpu->guest_mode = 1;
  2357. kvm_guest_enter();
  2358. if (vcpu->requests)
  2359. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2360. kvm_x86_ops->tlb_flush(vcpu);
  2361. kvm_x86_ops->run(vcpu, kvm_run);
  2362. vcpu->guest_mode = 0;
  2363. local_irq_enable();
  2364. ++vcpu->stat.exits;
  2365. /*
  2366. * We must have an instruction between local_irq_enable() and
  2367. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2368. * the interrupt shadow. The stat.exits increment will do nicely.
  2369. * But we need to prevent reordering, hence this barrier():
  2370. */
  2371. barrier();
  2372. kvm_guest_exit();
  2373. preempt_enable();
  2374. /*
  2375. * Profile KVM exit RIPs:
  2376. */
  2377. if (unlikely(prof_on == KVM_PROFILING)) {
  2378. kvm_x86_ops->cache_regs(vcpu);
  2379. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2380. }
  2381. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2382. vcpu->arch.exception.pending = false;
  2383. kvm_lapic_sync_from_vapic(vcpu);
  2384. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2385. if (r > 0) {
  2386. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2387. r = -EINTR;
  2388. kvm_run->exit_reason = KVM_EXIT_INTR;
  2389. ++vcpu->stat.request_irq_exits;
  2390. goto out;
  2391. }
  2392. if (!need_resched())
  2393. goto again;
  2394. }
  2395. out:
  2396. if (r > 0) {
  2397. kvm_resched(vcpu);
  2398. goto preempted;
  2399. }
  2400. post_kvm_run_save(vcpu, kvm_run);
  2401. vapic_exit(vcpu);
  2402. return r;
  2403. }
  2404. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2405. {
  2406. int r;
  2407. sigset_t sigsaved;
  2408. vcpu_load(vcpu);
  2409. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2410. kvm_vcpu_block(vcpu);
  2411. vcpu_put(vcpu);
  2412. return -EAGAIN;
  2413. }
  2414. if (vcpu->sigset_active)
  2415. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2416. /* re-sync apic's tpr */
  2417. if (!irqchip_in_kernel(vcpu->kvm))
  2418. set_cr8(vcpu, kvm_run->cr8);
  2419. if (vcpu->arch.pio.cur_count) {
  2420. r = complete_pio(vcpu);
  2421. if (r)
  2422. goto out;
  2423. }
  2424. #if CONFIG_HAS_IOMEM
  2425. if (vcpu->mmio_needed) {
  2426. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2427. vcpu->mmio_read_completed = 1;
  2428. vcpu->mmio_needed = 0;
  2429. r = emulate_instruction(vcpu, kvm_run,
  2430. vcpu->arch.mmio_fault_cr2, 0,
  2431. EMULTYPE_NO_DECODE);
  2432. if (r == EMULATE_DO_MMIO) {
  2433. /*
  2434. * Read-modify-write. Back to userspace.
  2435. */
  2436. r = 0;
  2437. goto out;
  2438. }
  2439. }
  2440. #endif
  2441. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2442. kvm_x86_ops->cache_regs(vcpu);
  2443. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2444. kvm_x86_ops->decache_regs(vcpu);
  2445. }
  2446. r = __vcpu_run(vcpu, kvm_run);
  2447. out:
  2448. if (vcpu->sigset_active)
  2449. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2450. vcpu_put(vcpu);
  2451. return r;
  2452. }
  2453. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2454. {
  2455. vcpu_load(vcpu);
  2456. kvm_x86_ops->cache_regs(vcpu);
  2457. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2458. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2459. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2460. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2461. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2462. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2463. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2464. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2465. #ifdef CONFIG_X86_64
  2466. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2467. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2468. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2469. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2470. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2471. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2472. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2473. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2474. #endif
  2475. regs->rip = vcpu->arch.rip;
  2476. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2477. /*
  2478. * Don't leak debug flags in case they were set for guest debugging
  2479. */
  2480. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2481. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2482. vcpu_put(vcpu);
  2483. return 0;
  2484. }
  2485. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2486. {
  2487. vcpu_load(vcpu);
  2488. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2489. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2490. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2491. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2492. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2493. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2494. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2495. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2496. #ifdef CONFIG_X86_64
  2497. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2498. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2499. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2500. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2501. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2502. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2503. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2504. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2505. #endif
  2506. vcpu->arch.rip = regs->rip;
  2507. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2508. kvm_x86_ops->decache_regs(vcpu);
  2509. vcpu_put(vcpu);
  2510. return 0;
  2511. }
  2512. static void get_segment(struct kvm_vcpu *vcpu,
  2513. struct kvm_segment *var, int seg)
  2514. {
  2515. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2516. }
  2517. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2518. {
  2519. struct kvm_segment cs;
  2520. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2521. *db = cs.db;
  2522. *l = cs.l;
  2523. }
  2524. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2525. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2526. struct kvm_sregs *sregs)
  2527. {
  2528. struct descriptor_table dt;
  2529. int pending_vec;
  2530. vcpu_load(vcpu);
  2531. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2532. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2533. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2534. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2535. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2536. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2537. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2538. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2539. kvm_x86_ops->get_idt(vcpu, &dt);
  2540. sregs->idt.limit = dt.limit;
  2541. sregs->idt.base = dt.base;
  2542. kvm_x86_ops->get_gdt(vcpu, &dt);
  2543. sregs->gdt.limit = dt.limit;
  2544. sregs->gdt.base = dt.base;
  2545. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2546. sregs->cr0 = vcpu->arch.cr0;
  2547. sregs->cr2 = vcpu->arch.cr2;
  2548. sregs->cr3 = vcpu->arch.cr3;
  2549. sregs->cr4 = vcpu->arch.cr4;
  2550. sregs->cr8 = get_cr8(vcpu);
  2551. sregs->efer = vcpu->arch.shadow_efer;
  2552. sregs->apic_base = kvm_get_apic_base(vcpu);
  2553. if (irqchip_in_kernel(vcpu->kvm)) {
  2554. memset(sregs->interrupt_bitmap, 0,
  2555. sizeof sregs->interrupt_bitmap);
  2556. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2557. if (pending_vec >= 0)
  2558. set_bit(pending_vec,
  2559. (unsigned long *)sregs->interrupt_bitmap);
  2560. } else
  2561. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2562. sizeof sregs->interrupt_bitmap);
  2563. vcpu_put(vcpu);
  2564. return 0;
  2565. }
  2566. static void set_segment(struct kvm_vcpu *vcpu,
  2567. struct kvm_segment *var, int seg)
  2568. {
  2569. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2570. }
  2571. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2572. struct kvm_sregs *sregs)
  2573. {
  2574. int mmu_reset_needed = 0;
  2575. int i, pending_vec, max_bits;
  2576. struct descriptor_table dt;
  2577. vcpu_load(vcpu);
  2578. dt.limit = sregs->idt.limit;
  2579. dt.base = sregs->idt.base;
  2580. kvm_x86_ops->set_idt(vcpu, &dt);
  2581. dt.limit = sregs->gdt.limit;
  2582. dt.base = sregs->gdt.base;
  2583. kvm_x86_ops->set_gdt(vcpu, &dt);
  2584. vcpu->arch.cr2 = sregs->cr2;
  2585. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  2586. vcpu->arch.cr3 = sregs->cr3;
  2587. set_cr8(vcpu, sregs->cr8);
  2588. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  2589. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2590. kvm_set_apic_base(vcpu, sregs->apic_base);
  2591. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2592. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  2593. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2594. vcpu->arch.cr0 = sregs->cr0;
  2595. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  2596. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2597. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2598. load_pdptrs(vcpu, vcpu->arch.cr3);
  2599. if (mmu_reset_needed)
  2600. kvm_mmu_reset_context(vcpu);
  2601. if (!irqchip_in_kernel(vcpu->kvm)) {
  2602. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  2603. sizeof vcpu->arch.irq_pending);
  2604. vcpu->arch.irq_summary = 0;
  2605. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  2606. if (vcpu->arch.irq_pending[i])
  2607. __set_bit(i, &vcpu->arch.irq_summary);
  2608. } else {
  2609. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2610. pending_vec = find_first_bit(
  2611. (const unsigned long *)sregs->interrupt_bitmap,
  2612. max_bits);
  2613. /* Only pending external irq is handled here */
  2614. if (pending_vec < max_bits) {
  2615. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2616. pr_debug("Set back pending irq %d\n",
  2617. pending_vec);
  2618. }
  2619. }
  2620. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2621. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2622. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2623. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2624. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2625. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2626. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2627. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2628. vcpu_put(vcpu);
  2629. return 0;
  2630. }
  2631. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2632. struct kvm_debug_guest *dbg)
  2633. {
  2634. int r;
  2635. vcpu_load(vcpu);
  2636. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2637. vcpu_put(vcpu);
  2638. return r;
  2639. }
  2640. /*
  2641. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2642. * we have asm/x86/processor.h
  2643. */
  2644. struct fxsave {
  2645. u16 cwd;
  2646. u16 swd;
  2647. u16 twd;
  2648. u16 fop;
  2649. u64 rip;
  2650. u64 rdp;
  2651. u32 mxcsr;
  2652. u32 mxcsr_mask;
  2653. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2654. #ifdef CONFIG_X86_64
  2655. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2656. #else
  2657. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2658. #endif
  2659. };
  2660. /*
  2661. * Translate a guest virtual address to a guest physical address.
  2662. */
  2663. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2664. struct kvm_translation *tr)
  2665. {
  2666. unsigned long vaddr = tr->linear_address;
  2667. gpa_t gpa;
  2668. vcpu_load(vcpu);
  2669. down_read(&vcpu->kvm->slots_lock);
  2670. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  2671. up_read(&vcpu->kvm->slots_lock);
  2672. tr->physical_address = gpa;
  2673. tr->valid = gpa != UNMAPPED_GVA;
  2674. tr->writeable = 1;
  2675. tr->usermode = 0;
  2676. vcpu_put(vcpu);
  2677. return 0;
  2678. }
  2679. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2680. {
  2681. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2682. vcpu_load(vcpu);
  2683. memcpy(fpu->fpr, fxsave->st_space, 128);
  2684. fpu->fcw = fxsave->cwd;
  2685. fpu->fsw = fxsave->swd;
  2686. fpu->ftwx = fxsave->twd;
  2687. fpu->last_opcode = fxsave->fop;
  2688. fpu->last_ip = fxsave->rip;
  2689. fpu->last_dp = fxsave->rdp;
  2690. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2691. vcpu_put(vcpu);
  2692. return 0;
  2693. }
  2694. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2695. {
  2696. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2697. vcpu_load(vcpu);
  2698. memcpy(fxsave->st_space, fpu->fpr, 128);
  2699. fxsave->cwd = fpu->fcw;
  2700. fxsave->swd = fpu->fsw;
  2701. fxsave->twd = fpu->ftwx;
  2702. fxsave->fop = fpu->last_opcode;
  2703. fxsave->rip = fpu->last_ip;
  2704. fxsave->rdp = fpu->last_dp;
  2705. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2706. vcpu_put(vcpu);
  2707. return 0;
  2708. }
  2709. void fx_init(struct kvm_vcpu *vcpu)
  2710. {
  2711. unsigned after_mxcsr_mask;
  2712. /* Initialize guest FPU by resetting ours and saving into guest's */
  2713. preempt_disable();
  2714. fx_save(&vcpu->arch.host_fx_image);
  2715. fpu_init();
  2716. fx_save(&vcpu->arch.guest_fx_image);
  2717. fx_restore(&vcpu->arch.host_fx_image);
  2718. preempt_enable();
  2719. vcpu->arch.cr0 |= X86_CR0_ET;
  2720. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2721. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  2722. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  2723. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2724. }
  2725. EXPORT_SYMBOL_GPL(fx_init);
  2726. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2727. {
  2728. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2729. return;
  2730. vcpu->guest_fpu_loaded = 1;
  2731. fx_save(&vcpu->arch.host_fx_image);
  2732. fx_restore(&vcpu->arch.guest_fx_image);
  2733. }
  2734. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2735. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2736. {
  2737. if (!vcpu->guest_fpu_loaded)
  2738. return;
  2739. vcpu->guest_fpu_loaded = 0;
  2740. fx_save(&vcpu->arch.guest_fx_image);
  2741. fx_restore(&vcpu->arch.host_fx_image);
  2742. ++vcpu->stat.fpu_reload;
  2743. }
  2744. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2745. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2746. {
  2747. kvm_x86_ops->vcpu_free(vcpu);
  2748. }
  2749. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2750. unsigned int id)
  2751. {
  2752. return kvm_x86_ops->vcpu_create(kvm, id);
  2753. }
  2754. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2755. {
  2756. int r;
  2757. /* We do fxsave: this must be aligned. */
  2758. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  2759. vcpu_load(vcpu);
  2760. r = kvm_arch_vcpu_reset(vcpu);
  2761. if (r == 0)
  2762. r = kvm_mmu_setup(vcpu);
  2763. vcpu_put(vcpu);
  2764. if (r < 0)
  2765. goto free_vcpu;
  2766. return 0;
  2767. free_vcpu:
  2768. kvm_x86_ops->vcpu_free(vcpu);
  2769. return r;
  2770. }
  2771. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2772. {
  2773. vcpu_load(vcpu);
  2774. kvm_mmu_unload(vcpu);
  2775. vcpu_put(vcpu);
  2776. kvm_x86_ops->vcpu_free(vcpu);
  2777. }
  2778. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2779. {
  2780. return kvm_x86_ops->vcpu_reset(vcpu);
  2781. }
  2782. void kvm_arch_hardware_enable(void *garbage)
  2783. {
  2784. kvm_x86_ops->hardware_enable(garbage);
  2785. }
  2786. void kvm_arch_hardware_disable(void *garbage)
  2787. {
  2788. kvm_x86_ops->hardware_disable(garbage);
  2789. }
  2790. int kvm_arch_hardware_setup(void)
  2791. {
  2792. return kvm_x86_ops->hardware_setup();
  2793. }
  2794. void kvm_arch_hardware_unsetup(void)
  2795. {
  2796. kvm_x86_ops->hardware_unsetup();
  2797. }
  2798. void kvm_arch_check_processor_compat(void *rtn)
  2799. {
  2800. kvm_x86_ops->check_processor_compatibility(rtn);
  2801. }
  2802. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2803. {
  2804. struct page *page;
  2805. struct kvm *kvm;
  2806. int r;
  2807. BUG_ON(vcpu->kvm == NULL);
  2808. kvm = vcpu->kvm;
  2809. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2810. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2811. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2812. else
  2813. vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2814. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2815. if (!page) {
  2816. r = -ENOMEM;
  2817. goto fail;
  2818. }
  2819. vcpu->arch.pio_data = page_address(page);
  2820. r = kvm_mmu_create(vcpu);
  2821. if (r < 0)
  2822. goto fail_free_pio_data;
  2823. if (irqchip_in_kernel(kvm)) {
  2824. r = kvm_create_lapic(vcpu);
  2825. if (r < 0)
  2826. goto fail_mmu_destroy;
  2827. }
  2828. return 0;
  2829. fail_mmu_destroy:
  2830. kvm_mmu_destroy(vcpu);
  2831. fail_free_pio_data:
  2832. free_page((unsigned long)vcpu->arch.pio_data);
  2833. fail:
  2834. return r;
  2835. }
  2836. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2837. {
  2838. kvm_free_lapic(vcpu);
  2839. kvm_mmu_destroy(vcpu);
  2840. free_page((unsigned long)vcpu->arch.pio_data);
  2841. }
  2842. struct kvm *kvm_arch_create_vm(void)
  2843. {
  2844. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2845. if (!kvm)
  2846. return ERR_PTR(-ENOMEM);
  2847. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  2848. return kvm;
  2849. }
  2850. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2851. {
  2852. vcpu_load(vcpu);
  2853. kvm_mmu_unload(vcpu);
  2854. vcpu_put(vcpu);
  2855. }
  2856. static void kvm_free_vcpus(struct kvm *kvm)
  2857. {
  2858. unsigned int i;
  2859. /*
  2860. * Unpin any mmu pages first.
  2861. */
  2862. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2863. if (kvm->vcpus[i])
  2864. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2865. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2866. if (kvm->vcpus[i]) {
  2867. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2868. kvm->vcpus[i] = NULL;
  2869. }
  2870. }
  2871. }
  2872. void kvm_arch_destroy_vm(struct kvm *kvm)
  2873. {
  2874. kfree(kvm->arch.vpic);
  2875. kfree(kvm->arch.vioapic);
  2876. kvm_free_vcpus(kvm);
  2877. kvm_free_physmem(kvm);
  2878. kfree(kvm);
  2879. }
  2880. int kvm_arch_set_memory_region(struct kvm *kvm,
  2881. struct kvm_userspace_memory_region *mem,
  2882. struct kvm_memory_slot old,
  2883. int user_alloc)
  2884. {
  2885. int npages = mem->memory_size >> PAGE_SHIFT;
  2886. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2887. /*To keep backward compatibility with older userspace,
  2888. *x86 needs to hanlde !user_alloc case.
  2889. */
  2890. if (!user_alloc) {
  2891. if (npages && !old.rmap) {
  2892. down_write(&current->mm->mmap_sem);
  2893. memslot->userspace_addr = do_mmap(NULL, 0,
  2894. npages * PAGE_SIZE,
  2895. PROT_READ | PROT_WRITE,
  2896. MAP_SHARED | MAP_ANONYMOUS,
  2897. 0);
  2898. up_write(&current->mm->mmap_sem);
  2899. if (IS_ERR((void *)memslot->userspace_addr))
  2900. return PTR_ERR((void *)memslot->userspace_addr);
  2901. } else {
  2902. if (!old.user_alloc && old.rmap) {
  2903. int ret;
  2904. down_write(&current->mm->mmap_sem);
  2905. ret = do_munmap(current->mm, old.userspace_addr,
  2906. old.npages * PAGE_SIZE);
  2907. up_write(&current->mm->mmap_sem);
  2908. if (ret < 0)
  2909. printk(KERN_WARNING
  2910. "kvm_vm_ioctl_set_memory_region: "
  2911. "failed to munmap memory\n");
  2912. }
  2913. }
  2914. }
  2915. if (!kvm->arch.n_requested_mmu_pages) {
  2916. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2917. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2918. }
  2919. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2920. kvm_flush_remote_tlbs(kvm);
  2921. return 0;
  2922. }
  2923. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  2924. {
  2925. return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
  2926. || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
  2927. }
  2928. static void vcpu_kick_intr(void *info)
  2929. {
  2930. #ifdef DEBUG
  2931. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  2932. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  2933. #endif
  2934. }
  2935. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  2936. {
  2937. int ipi_pcpu = vcpu->cpu;
  2938. if (waitqueue_active(&vcpu->wq)) {
  2939. wake_up_interruptible(&vcpu->wq);
  2940. ++vcpu->stat.halt_wakeup;
  2941. }
  2942. if (vcpu->guest_mode)
  2943. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  2944. }