tsc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. unsigned int cpu_khz; /* TSC clocks / usec, not used here */
  18. EXPORT_SYMBOL(cpu_khz);
  19. unsigned int tsc_khz;
  20. EXPORT_SYMBOL(tsc_khz);
  21. /*
  22. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  23. */
  24. static int tsc_unstable;
  25. /* native_sched_clock() is called before tsc_init(), so
  26. we must start with the TSC soft disabled to prevent
  27. erroneous rdtsc usage on !cpu_has_tsc processors */
  28. static int tsc_disabled = -1;
  29. /*
  30. * Scheduler clock - returns current time in nanosec units.
  31. */
  32. u64 native_sched_clock(void)
  33. {
  34. u64 this_offset;
  35. /*
  36. * Fall back to jiffies if there's no TSC available:
  37. * ( But note that we still use it if the TSC is marked
  38. * unstable. We do this because unlike Time Of Day,
  39. * the scheduler clock tolerates small errors and it's
  40. * very important for it to be as fast as the platform
  41. * can achive it. )
  42. */
  43. if (unlikely(tsc_disabled)) {
  44. /* No locking but a rare wrong value is not a big deal: */
  45. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  46. }
  47. /* read the Time Stamp Counter: */
  48. rdtscll(this_offset);
  49. /* return the value in ns */
  50. return cycles_2_ns(this_offset);
  51. }
  52. /* We need to define a real function for sched_clock, to override the
  53. weak default version */
  54. #ifdef CONFIG_PARAVIRT
  55. unsigned long long sched_clock(void)
  56. {
  57. return paravirt_sched_clock();
  58. }
  59. #else
  60. unsigned long long
  61. sched_clock(void) __attribute__((alias("native_sched_clock")));
  62. #endif
  63. int check_tsc_unstable(void)
  64. {
  65. return tsc_unstable;
  66. }
  67. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  68. #ifdef CONFIG_X86_TSC
  69. int __init notsc_setup(char *str)
  70. {
  71. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  72. "cannot disable TSC completely.\n");
  73. tsc_disabled = 1;
  74. return 1;
  75. }
  76. #else
  77. /*
  78. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  79. * in cpu/common.c
  80. */
  81. int __init notsc_setup(char *str)
  82. {
  83. setup_clear_cpu_cap(X86_FEATURE_TSC);
  84. return 1;
  85. }
  86. #endif
  87. __setup("notsc", notsc_setup);
  88. #define MAX_RETRIES 5
  89. #define SMI_TRESHOLD 50000
  90. /*
  91. * Read TSC and the reference counters. Take care of SMI disturbance
  92. */
  93. static u64 tsc_read_refs(u64 *p, int hpet)
  94. {
  95. u64 t1, t2;
  96. int i;
  97. for (i = 0; i < MAX_RETRIES; i++) {
  98. t1 = get_cycles();
  99. if (hpet)
  100. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  101. else
  102. *p = acpi_pm_read_early();
  103. t2 = get_cycles();
  104. if ((t2 - t1) < SMI_TRESHOLD)
  105. return t2;
  106. }
  107. return ULLONG_MAX;
  108. }
  109. /*
  110. * Calculate the TSC frequency from HPET reference
  111. */
  112. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  113. {
  114. u64 tmp;
  115. if (hpet2 < hpet1)
  116. hpet2 += 0x100000000ULL;
  117. hpet2 -= hpet1;
  118. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  119. do_div(tmp, 1000000);
  120. do_div(deltatsc, tmp);
  121. return (unsigned long) deltatsc;
  122. }
  123. /*
  124. * Calculate the TSC frequency from PMTimer reference
  125. */
  126. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  127. {
  128. u64 tmp;
  129. if (!pm1 && !pm2)
  130. return ULONG_MAX;
  131. if (pm2 < pm1)
  132. pm2 += (u64)ACPI_PM_OVRRUN;
  133. pm2 -= pm1;
  134. tmp = pm2 * 1000000000LL;
  135. do_div(tmp, PMTMR_TICKS_PER_SEC);
  136. do_div(deltatsc, tmp);
  137. return (unsigned long) deltatsc;
  138. }
  139. #define CAL_MS 10
  140. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  141. #define CAL_PIT_LOOPS 1000
  142. #define CAL2_MS 50
  143. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  144. #define CAL2_PIT_LOOPS 5000
  145. /*
  146. * Try to calibrate the TSC against the Programmable
  147. * Interrupt Timer and return the frequency of the TSC
  148. * in kHz.
  149. *
  150. * Return ULONG_MAX on failure to calibrate.
  151. */
  152. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  153. {
  154. u64 tsc, t1, t2, delta;
  155. unsigned long tscmin, tscmax;
  156. int pitcnt;
  157. /* Set the Gate high, disable speaker */
  158. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  159. /*
  160. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  161. * count mode), binary count. Set the latch register to 50ms
  162. * (LSB then MSB) to begin countdown.
  163. */
  164. outb(0xb0, 0x43);
  165. outb(latch & 0xff, 0x42);
  166. outb(latch >> 8, 0x42);
  167. tsc = t1 = t2 = get_cycles();
  168. pitcnt = 0;
  169. tscmax = 0;
  170. tscmin = ULONG_MAX;
  171. while ((inb(0x61) & 0x20) == 0) {
  172. t2 = get_cycles();
  173. delta = t2 - tsc;
  174. tsc = t2;
  175. if ((unsigned long) delta < tscmin)
  176. tscmin = (unsigned int) delta;
  177. if ((unsigned long) delta > tscmax)
  178. tscmax = (unsigned int) delta;
  179. pitcnt++;
  180. }
  181. /*
  182. * Sanity checks:
  183. *
  184. * If we were not able to read the PIT more than loopmin
  185. * times, then we have been hit by a massive SMI
  186. *
  187. * If the maximum is 10 times larger than the minimum,
  188. * then we got hit by an SMI as well.
  189. */
  190. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  191. return ULONG_MAX;
  192. /* Calculate the PIT value */
  193. delta = t2 - t1;
  194. do_div(delta, ms);
  195. return delta;
  196. }
  197. /**
  198. * native_calibrate_tsc - calibrate the tsc on boot
  199. */
  200. unsigned long native_calibrate_tsc(void)
  201. {
  202. u64 tsc1, tsc2, delta, ref1, ref2;
  203. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  204. unsigned long flags, latch, ms;
  205. int hpet = is_hpet_enabled(), i, loopmin;
  206. /*
  207. * Run 5 calibration loops to get the lowest frequency value
  208. * (the best estimate). We use two different calibration modes
  209. * here:
  210. *
  211. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  212. * load a timeout of 50ms. We read the time right after we
  213. * started the timer and wait until the PIT count down reaches
  214. * zero. In each wait loop iteration we read the TSC and check
  215. * the delta to the previous read. We keep track of the min
  216. * and max values of that delta. The delta is mostly defined
  217. * by the IO time of the PIT access, so we can detect when a
  218. * SMI/SMM disturbance happend between the two reads. If the
  219. * maximum time is significantly larger than the minimum time,
  220. * then we discard the result and have another try.
  221. *
  222. * 2) Reference counter. If available we use the HPET or the
  223. * PMTIMER as a reference to check the sanity of that value.
  224. * We use separate TSC readouts and check inside of the
  225. * reference read for a SMI/SMM disturbance. We dicard
  226. * disturbed values here as well. We do that around the PIT
  227. * calibration delay loop as we have to wait for a certain
  228. * amount of time anyway.
  229. */
  230. /* Preset PIT loop values */
  231. latch = CAL_LATCH;
  232. ms = CAL_MS;
  233. loopmin = CAL_PIT_LOOPS;
  234. for (i = 0; i < 3; i++) {
  235. unsigned long tsc_pit_khz;
  236. /*
  237. * Read the start value and the reference count of
  238. * hpet/pmtimer when available. Then do the PIT
  239. * calibration, which will take at least 50ms, and
  240. * read the end value.
  241. */
  242. local_irq_save(flags);
  243. tsc1 = tsc_read_refs(&ref1, hpet);
  244. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  245. tsc2 = tsc_read_refs(&ref2, hpet);
  246. local_irq_restore(flags);
  247. /* Pick the lowest PIT TSC calibration so far */
  248. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  249. /* hpet or pmtimer available ? */
  250. if (!hpet && !ref1 && !ref2)
  251. continue;
  252. /* Check, whether the sampling was disturbed by an SMI */
  253. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  254. continue;
  255. tsc2 = (tsc2 - tsc1) * 1000000LL;
  256. if (hpet)
  257. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  258. else
  259. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  260. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  261. /* Check the reference deviation */
  262. delta = ((u64) tsc_pit_min) * 100;
  263. do_div(delta, tsc_ref_min);
  264. /*
  265. * If both calibration results are inside a 10% window
  266. * then we can be sure, that the calibration
  267. * succeeded. We break out of the loop right away. We
  268. * use the reference value, as it is more precise.
  269. */
  270. if (delta >= 90 && delta <= 110) {
  271. printk(KERN_INFO
  272. "TSC: PIT calibration matches %s. %d loops\n",
  273. hpet ? "HPET" : "PMTIMER", i + 1);
  274. return tsc_ref_min;
  275. }
  276. /*
  277. * Check whether PIT failed more than once. This
  278. * happens in virtualized environments. We need to
  279. * give the virtual PC a slightly longer timeframe for
  280. * the HPET/PMTIMER to make the result precise.
  281. */
  282. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  283. latch = CAL2_LATCH;
  284. ms = CAL2_MS;
  285. loopmin = CAL2_PIT_LOOPS;
  286. }
  287. }
  288. /*
  289. * Now check the results.
  290. */
  291. if (tsc_pit_min == ULONG_MAX) {
  292. /* PIT gave no useful value */
  293. printk(KERN_WARNING "TSC: PIT calibration failed due to "
  294. "SMI disturbance.\n");
  295. /* We don't have an alternative source, disable TSC */
  296. if (!hpet && !ref1 && !ref2) {
  297. printk("TSC: No reference (HPET/PMTIMER) available\n");
  298. return 0;
  299. }
  300. /* The alternative source failed as well, disable TSC */
  301. if (tsc_ref_min == ULONG_MAX) {
  302. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  303. "failed.\n");
  304. return 0;
  305. }
  306. /* Use the alternative source */
  307. printk(KERN_INFO "TSC: using %s reference calibration\n",
  308. hpet ? "HPET" : "PMTIMER");
  309. return tsc_ref_min;
  310. }
  311. /* We don't have an alternative source, use the PIT calibration value */
  312. if (!hpet && !ref1 && !ref2) {
  313. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  314. return tsc_pit_min;
  315. }
  316. /* The alternative source failed, use the PIT calibration value */
  317. if (tsc_ref_min == ULONG_MAX) {
  318. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  319. "Using PIT calibration\n");
  320. return tsc_pit_min;
  321. }
  322. /*
  323. * The calibration values differ too much. In doubt, we use
  324. * the PIT value as we know that there are PMTIMERs around
  325. * running at double speed. At least we let the user know:
  326. */
  327. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  328. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  329. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  330. return tsc_pit_min;
  331. }
  332. #ifdef CONFIG_X86_32
  333. /* Only called from the Powernow K7 cpu freq driver */
  334. int recalibrate_cpu_khz(void)
  335. {
  336. #ifndef CONFIG_SMP
  337. unsigned long cpu_khz_old = cpu_khz;
  338. if (cpu_has_tsc) {
  339. tsc_khz = calibrate_tsc();
  340. cpu_khz = tsc_khz;
  341. cpu_data(0).loops_per_jiffy =
  342. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  343. cpu_khz_old, cpu_khz);
  344. return 0;
  345. } else
  346. return -ENODEV;
  347. #else
  348. return -ENODEV;
  349. #endif
  350. }
  351. EXPORT_SYMBOL(recalibrate_cpu_khz);
  352. #endif /* CONFIG_X86_32 */
  353. /* Accelerators for sched_clock()
  354. * convert from cycles(64bits) => nanoseconds (64bits)
  355. * basic equation:
  356. * ns = cycles / (freq / ns_per_sec)
  357. * ns = cycles * (ns_per_sec / freq)
  358. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  359. * ns = cycles * (10^6 / cpu_khz)
  360. *
  361. * Then we use scaling math (suggested by george@mvista.com) to get:
  362. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  363. * ns = cycles * cyc2ns_scale / SC
  364. *
  365. * And since SC is a constant power of two, we can convert the div
  366. * into a shift.
  367. *
  368. * We can use khz divisor instead of mhz to keep a better precision, since
  369. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  370. * (mathieu.desnoyers@polymtl.ca)
  371. *
  372. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  373. */
  374. DEFINE_PER_CPU(unsigned long, cyc2ns);
  375. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  376. {
  377. unsigned long long tsc_now, ns_now;
  378. unsigned long flags, *scale;
  379. local_irq_save(flags);
  380. sched_clock_idle_sleep_event();
  381. scale = &per_cpu(cyc2ns, cpu);
  382. rdtscll(tsc_now);
  383. ns_now = __cycles_2_ns(tsc_now);
  384. if (cpu_khz)
  385. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  386. sched_clock_idle_wakeup_event(0);
  387. local_irq_restore(flags);
  388. }
  389. #ifdef CONFIG_CPU_FREQ
  390. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  391. * changes.
  392. *
  393. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  394. * not that important because current Opteron setups do not support
  395. * scaling on SMP anyroads.
  396. *
  397. * Should fix up last_tsc too. Currently gettimeofday in the
  398. * first tick after the change will be slightly wrong.
  399. */
  400. static unsigned int ref_freq;
  401. static unsigned long loops_per_jiffy_ref;
  402. static unsigned long tsc_khz_ref;
  403. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  404. void *data)
  405. {
  406. struct cpufreq_freqs *freq = data;
  407. unsigned long *lpj, dummy;
  408. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  409. return 0;
  410. lpj = &dummy;
  411. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  412. #ifdef CONFIG_SMP
  413. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  414. #else
  415. lpj = &boot_cpu_data.loops_per_jiffy;
  416. #endif
  417. if (!ref_freq) {
  418. ref_freq = freq->old;
  419. loops_per_jiffy_ref = *lpj;
  420. tsc_khz_ref = tsc_khz;
  421. }
  422. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  423. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  424. (val == CPUFREQ_RESUMECHANGE)) {
  425. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  426. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  427. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  428. mark_tsc_unstable("cpufreq changes");
  429. }
  430. set_cyc2ns_scale(tsc_khz, freq->cpu);
  431. return 0;
  432. }
  433. static struct notifier_block time_cpufreq_notifier_block = {
  434. .notifier_call = time_cpufreq_notifier
  435. };
  436. static int __init cpufreq_tsc(void)
  437. {
  438. if (!cpu_has_tsc)
  439. return 0;
  440. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  441. return 0;
  442. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  443. CPUFREQ_TRANSITION_NOTIFIER);
  444. return 0;
  445. }
  446. core_initcall(cpufreq_tsc);
  447. #endif /* CONFIG_CPU_FREQ */
  448. /* clocksource code */
  449. static struct clocksource clocksource_tsc;
  450. /*
  451. * We compare the TSC to the cycle_last value in the clocksource
  452. * structure to avoid a nasty time-warp. This can be observed in a
  453. * very small window right after one CPU updated cycle_last under
  454. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  455. * is smaller than the cycle_last reference value due to a TSC which
  456. * is slighty behind. This delta is nowhere else observable, but in
  457. * that case it results in a forward time jump in the range of hours
  458. * due to the unsigned delta calculation of the time keeping core
  459. * code, which is necessary to support wrapping clocksources like pm
  460. * timer.
  461. */
  462. static cycle_t read_tsc(void)
  463. {
  464. cycle_t ret = (cycle_t)get_cycles();
  465. return ret >= clocksource_tsc.cycle_last ?
  466. ret : clocksource_tsc.cycle_last;
  467. }
  468. #ifdef CONFIG_X86_64
  469. static cycle_t __vsyscall_fn vread_tsc(void)
  470. {
  471. cycle_t ret = (cycle_t)vget_cycles();
  472. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  473. ret : __vsyscall_gtod_data.clock.cycle_last;
  474. }
  475. #endif
  476. static struct clocksource clocksource_tsc = {
  477. .name = "tsc",
  478. .rating = 300,
  479. .read = read_tsc,
  480. .mask = CLOCKSOURCE_MASK(64),
  481. .shift = 22,
  482. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  483. CLOCK_SOURCE_MUST_VERIFY,
  484. #ifdef CONFIG_X86_64
  485. .vread = vread_tsc,
  486. #endif
  487. };
  488. void mark_tsc_unstable(char *reason)
  489. {
  490. if (!tsc_unstable) {
  491. tsc_unstable = 1;
  492. printk("Marking TSC unstable due to %s\n", reason);
  493. /* Change only the rating, when not registered */
  494. if (clocksource_tsc.mult)
  495. clocksource_change_rating(&clocksource_tsc, 0);
  496. else
  497. clocksource_tsc.rating = 0;
  498. }
  499. }
  500. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  501. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  502. {
  503. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  504. d->ident);
  505. tsc_unstable = 1;
  506. return 0;
  507. }
  508. /* List of systems that have known TSC problems */
  509. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  510. {
  511. .callback = dmi_mark_tsc_unstable,
  512. .ident = "IBM Thinkpad 380XD",
  513. .matches = {
  514. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  515. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  516. },
  517. },
  518. {}
  519. };
  520. /*
  521. * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
  522. */
  523. #ifdef CONFIG_MGEODE_LX
  524. /* RTSC counts during suspend */
  525. #define RTSC_SUSP 0x100
  526. static void __init check_geode_tsc_reliable(void)
  527. {
  528. unsigned long res_low, res_high;
  529. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  530. if (res_low & RTSC_SUSP)
  531. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  532. }
  533. #else
  534. static inline void check_geode_tsc_reliable(void) { }
  535. #endif
  536. /*
  537. * Make an educated guess if the TSC is trustworthy and synchronized
  538. * over all CPUs.
  539. */
  540. __cpuinit int unsynchronized_tsc(void)
  541. {
  542. if (!cpu_has_tsc || tsc_unstable)
  543. return 1;
  544. #ifdef CONFIG_SMP
  545. if (apic_is_clustered_box())
  546. return 1;
  547. #endif
  548. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  549. return 0;
  550. /*
  551. * Intel systems are normally all synchronized.
  552. * Exceptions must mark TSC as unstable:
  553. */
  554. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  555. /* assume multi socket systems are not synchronized: */
  556. if (num_possible_cpus() > 1)
  557. tsc_unstable = 1;
  558. }
  559. return tsc_unstable;
  560. }
  561. static void __init init_tsc_clocksource(void)
  562. {
  563. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  564. clocksource_tsc.shift);
  565. /* lower the rating if we already know its unstable: */
  566. if (check_tsc_unstable()) {
  567. clocksource_tsc.rating = 0;
  568. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  569. }
  570. clocksource_register(&clocksource_tsc);
  571. }
  572. void __init tsc_init(void)
  573. {
  574. u64 lpj;
  575. int cpu;
  576. if (!cpu_has_tsc)
  577. return;
  578. tsc_khz = calibrate_tsc();
  579. cpu_khz = tsc_khz;
  580. if (!tsc_khz) {
  581. mark_tsc_unstable("could not calculate TSC khz");
  582. return;
  583. }
  584. #ifdef CONFIG_X86_64
  585. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  586. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  587. cpu_khz = calibrate_cpu();
  588. #endif
  589. lpj = ((u64)tsc_khz * 1000);
  590. do_div(lpj, HZ);
  591. lpj_fine = lpj;
  592. printk("Detected %lu.%03lu MHz processor.\n",
  593. (unsigned long)cpu_khz / 1000,
  594. (unsigned long)cpu_khz % 1000);
  595. /*
  596. * Secondary CPUs do not run through tsc_init(), so set up
  597. * all the scale factors for all CPUs, assuming the same
  598. * speed as the bootup CPU. (cpufreq notifiers will fix this
  599. * up if their speed diverges)
  600. */
  601. for_each_possible_cpu(cpu)
  602. set_cyc2ns_scale(cpu_khz, cpu);
  603. if (tsc_disabled > 0)
  604. return;
  605. /* now allow native_sched_clock() to use rdtsc */
  606. tsc_disabled = 0;
  607. use_tsc_delay();
  608. /* Check and install the TSC clocksource */
  609. dmi_check_system(bad_tsc_dmi_table);
  610. if (unsynchronized_tsc())
  611. mark_tsc_unstable("TSCs unsynchronized");
  612. check_geode_tsc_reliable();
  613. init_tsc_clocksource();
  614. }