slab.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/poison.h>
  92. #include <linux/swap.h>
  93. #include <linux/cache.h>
  94. #include <linux/interrupt.h>
  95. #include <linux/init.h>
  96. #include <linux/compiler.h>
  97. #include <linux/cpuset.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/rtmutex.h>
  110. #include <asm/uaccess.h>
  111. #include <asm/cacheflush.h>
  112. #include <asm/tlbflush.h>
  113. #include <asm/page.h>
  114. /*
  115. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  116. * SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #ifndef cache_line_size
  136. #define cache_line_size() L1_CACHE_BYTES
  137. #endif
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. /*
  140. * Enforce a minimum alignment for the kmalloc caches.
  141. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  142. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  143. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  144. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  145. * Note that this flag disables some debug features.
  146. */
  147. #define ARCH_KMALLOC_MINALIGN 0
  148. #endif
  149. #ifndef ARCH_SLAB_MINALIGN
  150. /*
  151. * Enforce a minimum alignment for all caches.
  152. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  153. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  154. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  155. * some debug features.
  156. */
  157. #define ARCH_SLAB_MINALIGN 0
  158. #endif
  159. #ifndef ARCH_KMALLOC_FLAGS
  160. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  161. #endif
  162. /* Legal flag mask for kmem_cache_create(). */
  163. #if DEBUG
  164. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  166. SLAB_CACHE_DMA | \
  167. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  168. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  169. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  170. #else
  171. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  172. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  173. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  174. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  175. #endif
  176. /*
  177. * kmem_bufctl_t:
  178. *
  179. * Bufctl's are used for linking objs within a slab
  180. * linked offsets.
  181. *
  182. * This implementation relies on "struct page" for locating the cache &
  183. * slab an object belongs to.
  184. * This allows the bufctl structure to be small (one int), but limits
  185. * the number of objects a slab (not a cache) can contain when off-slab
  186. * bufctls are used. The limit is the size of the largest general cache
  187. * that does not use off-slab slabs.
  188. * For 32bit archs with 4 kB pages, is this 56.
  189. * This is not serious, as it is only for large objects, when it is unwise
  190. * to have too many per slab.
  191. * Note: This limit can be raised by introducing a general cache whose size
  192. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  193. */
  194. typedef unsigned int kmem_bufctl_t;
  195. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  196. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  197. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  198. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned int free_limit;
  278. unsigned int colour_next; /* Per-node cache coloring */
  279. spinlock_t list_lock;
  280. struct array_cache *shared; /* shared per node */
  281. struct array_cache **alien; /* on other nodes */
  282. unsigned long next_reap; /* updated without locking */
  283. int free_touched; /* updated without locking */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. static int drain_freelist(struct kmem_cache *cache,
  294. struct kmem_list3 *l3, int tofree);
  295. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  296. int node);
  297. static void enable_cpucache(struct kmem_cache *cachep);
  298. static void cache_reap(void *unused);
  299. /*
  300. * This function must be completely optimized away if a constant is passed to
  301. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  302. */
  303. static __always_inline int index_of(const size_t size)
  304. {
  305. extern void __bad_size(void);
  306. if (__builtin_constant_p(size)) {
  307. int i = 0;
  308. #define CACHE(x) \
  309. if (size <=x) \
  310. return i; \
  311. else \
  312. i++;
  313. #include "linux/kmalloc_sizes.h"
  314. #undef CACHE
  315. __bad_size();
  316. } else
  317. __bad_size();
  318. return 0;
  319. }
  320. static int slab_early_init = 1;
  321. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  322. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  323. static void kmem_list3_init(struct kmem_list3 *parent)
  324. {
  325. INIT_LIST_HEAD(&parent->slabs_full);
  326. INIT_LIST_HEAD(&parent->slabs_partial);
  327. INIT_LIST_HEAD(&parent->slabs_free);
  328. parent->shared = NULL;
  329. parent->alien = NULL;
  330. parent->colour_next = 0;
  331. spin_lock_init(&parent->list_lock);
  332. parent->free_objects = 0;
  333. parent->free_touched = 0;
  334. }
  335. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  336. do { \
  337. INIT_LIST_HEAD(listp); \
  338. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  339. } while (0)
  340. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  341. do { \
  342. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  345. } while (0)
  346. /*
  347. * struct kmem_cache
  348. *
  349. * manages a cache.
  350. */
  351. struct kmem_cache {
  352. /* 1) per-cpu data, touched during every alloc/free */
  353. struct array_cache *array[NR_CPUS];
  354. /* 2) Cache tunables. Protected by cache_chain_mutex */
  355. unsigned int batchcount;
  356. unsigned int limit;
  357. unsigned int shared;
  358. unsigned int buffer_size;
  359. /* 3) touched by every alloc & free from the backend */
  360. struct kmem_list3 *nodelists[MAX_NUMNODES];
  361. unsigned int flags; /* constant flags */
  362. unsigned int num; /* # of objs per slab */
  363. /* 4) cache_grow/shrink */
  364. /* order of pgs per slab (2^n) */
  365. unsigned int gfporder;
  366. /* force GFP flags, e.g. GFP_DMA */
  367. gfp_t gfpflags;
  368. size_t colour; /* cache colouring range */
  369. unsigned int colour_off; /* colour offset */
  370. struct kmem_cache *slabp_cache;
  371. unsigned int slab_size;
  372. unsigned int dflags; /* dynamic flags */
  373. /* constructor func */
  374. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  375. /* de-constructor func */
  376. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  377. /* 5) cache creation/removal */
  378. const char *name;
  379. struct list_head next;
  380. /* 6) statistics */
  381. #if STATS
  382. unsigned long num_active;
  383. unsigned long num_allocations;
  384. unsigned long high_mark;
  385. unsigned long grown;
  386. unsigned long reaped;
  387. unsigned long errors;
  388. unsigned long max_freeable;
  389. unsigned long node_allocs;
  390. unsigned long node_frees;
  391. unsigned long node_overflow;
  392. atomic_t allochit;
  393. atomic_t allocmiss;
  394. atomic_t freehit;
  395. atomic_t freemiss;
  396. #endif
  397. #if DEBUG
  398. /*
  399. * If debugging is enabled, then the allocator can add additional
  400. * fields and/or padding to every object. buffer_size contains the total
  401. * object size including these internal fields, the following two
  402. * variables contain the offset to the user object and its size.
  403. */
  404. int obj_offset;
  405. int obj_size;
  406. #endif
  407. };
  408. #define CFLGS_OFF_SLAB (0x80000000UL)
  409. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  410. #define BATCHREFILL_LIMIT 16
  411. /*
  412. * Optimization question: fewer reaps means less probability for unnessary
  413. * cpucache drain/refill cycles.
  414. *
  415. * OTOH the cpuarrays can contain lots of objects,
  416. * which could lock up otherwise freeable slabs.
  417. */
  418. #define REAPTIMEOUT_CPUC (2*HZ)
  419. #define REAPTIMEOUT_LIST3 (4*HZ)
  420. #if STATS
  421. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  422. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  423. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  424. #define STATS_INC_GROWN(x) ((x)->grown++)
  425. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  426. #define STATS_SET_HIGH(x) \
  427. do { \
  428. if ((x)->num_active > (x)->high_mark) \
  429. (x)->high_mark = (x)->num_active; \
  430. } while (0)
  431. #define STATS_INC_ERR(x) ((x)->errors++)
  432. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  433. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  434. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  435. #define STATS_SET_FREEABLE(x, i) \
  436. do { \
  437. if ((x)->max_freeable < i) \
  438. (x)->max_freeable = i; \
  439. } while (0)
  440. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  441. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  442. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  443. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  444. #else
  445. #define STATS_INC_ACTIVE(x) do { } while (0)
  446. #define STATS_DEC_ACTIVE(x) do { } while (0)
  447. #define STATS_INC_ALLOCED(x) do { } while (0)
  448. #define STATS_INC_GROWN(x) do { } while (0)
  449. #define STATS_ADD_REAPED(x,y) do { } while (0)
  450. #define STATS_SET_HIGH(x) do { } while (0)
  451. #define STATS_INC_ERR(x) do { } while (0)
  452. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  453. #define STATS_INC_NODEFREES(x) do { } while (0)
  454. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  455. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  456. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  457. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  458. #define STATS_INC_FREEHIT(x) do { } while (0)
  459. #define STATS_INC_FREEMISS(x) do { } while (0)
  460. #endif
  461. #if DEBUG
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. if (unlikely(PageCompound(page)))
  540. page = (struct page *)page_private(page);
  541. BUG_ON(!PageSlab(page));
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. BUG_ON(!PageSlab(page));
  553. return (struct slab *)page->lru.prev;
  554. }
  555. static inline struct kmem_cache *virt_to_cache(const void *obj)
  556. {
  557. struct page *page = virt_to_page(obj);
  558. return page_get_cache(page);
  559. }
  560. static inline struct slab *virt_to_slab(const void *obj)
  561. {
  562. struct page *page = virt_to_page(obj);
  563. return page_get_slab(page);
  564. }
  565. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  566. unsigned int idx)
  567. {
  568. return slab->s_mem + cache->buffer_size * idx;
  569. }
  570. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  571. struct slab *slab, void *obj)
  572. {
  573. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  574. }
  575. /*
  576. * These are the default caches for kmalloc. Custom caches can have other sizes.
  577. */
  578. struct cache_sizes malloc_sizes[] = {
  579. #define CACHE(x) { .cs_size = (x) },
  580. #include <linux/kmalloc_sizes.h>
  581. CACHE(ULONG_MAX)
  582. #undef CACHE
  583. };
  584. EXPORT_SYMBOL(malloc_sizes);
  585. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  586. struct cache_names {
  587. char *name;
  588. char *name_dma;
  589. };
  590. static struct cache_names __initdata cache_names[] = {
  591. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  592. #include <linux/kmalloc_sizes.h>
  593. {NULL,}
  594. #undef CACHE
  595. };
  596. static struct arraycache_init initarray_cache __initdata =
  597. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  598. static struct arraycache_init initarray_generic =
  599. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  600. /* internal cache of cache description objs */
  601. static struct kmem_cache cache_cache = {
  602. .batchcount = 1,
  603. .limit = BOOT_CPUCACHE_ENTRIES,
  604. .shared = 1,
  605. .buffer_size = sizeof(struct kmem_cache),
  606. .name = "kmem_cache",
  607. #if DEBUG
  608. .obj_size = sizeof(struct kmem_cache),
  609. #endif
  610. };
  611. /* Guard access to the cache-chain. */
  612. static DEFINE_MUTEX(cache_chain_mutex);
  613. static struct list_head cache_chain;
  614. /*
  615. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  616. * are possibly freeable under pressure
  617. *
  618. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  619. */
  620. atomic_t slab_reclaim_pages;
  621. /*
  622. * chicken and egg problem: delay the per-cpu array allocation
  623. * until the general caches are up.
  624. */
  625. static enum {
  626. NONE,
  627. PARTIAL_AC,
  628. PARTIAL_L3,
  629. FULL
  630. } g_cpucache_up;
  631. /*
  632. * used by boot code to determine if it can use slab based allocator
  633. */
  634. int slab_is_available(void)
  635. {
  636. return g_cpucache_up == FULL;
  637. }
  638. static DEFINE_PER_CPU(struct work_struct, reap_work);
  639. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  640. {
  641. return cachep->array[smp_processor_id()];
  642. }
  643. static inline struct kmem_cache *__find_general_cachep(size_t size,
  644. gfp_t gfpflags)
  645. {
  646. struct cache_sizes *csizep = malloc_sizes;
  647. #if DEBUG
  648. /* This happens if someone tries to call
  649. * kmem_cache_create(), or __kmalloc(), before
  650. * the generic caches are initialized.
  651. */
  652. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  653. #endif
  654. while (size > csizep->cs_size)
  655. csizep++;
  656. /*
  657. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  658. * has cs_{dma,}cachep==NULL. Thus no special case
  659. * for large kmalloc calls required.
  660. */
  661. if (unlikely(gfpflags & GFP_DMA))
  662. return csizep->cs_dmacachep;
  663. return csizep->cs_cachep;
  664. }
  665. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  666. {
  667. return __find_general_cachep(size, gfpflags);
  668. }
  669. EXPORT_SYMBOL(kmem_find_general_cachep);
  670. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  671. {
  672. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  673. }
  674. /*
  675. * Calculate the number of objects and left-over bytes for a given buffer size.
  676. */
  677. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  678. size_t align, int flags, size_t *left_over,
  679. unsigned int *num)
  680. {
  681. int nr_objs;
  682. size_t mgmt_size;
  683. size_t slab_size = PAGE_SIZE << gfporder;
  684. /*
  685. * The slab management structure can be either off the slab or
  686. * on it. For the latter case, the memory allocated for a
  687. * slab is used for:
  688. *
  689. * - The struct slab
  690. * - One kmem_bufctl_t for each object
  691. * - Padding to respect alignment of @align
  692. * - @buffer_size bytes for each object
  693. *
  694. * If the slab management structure is off the slab, then the
  695. * alignment will already be calculated into the size. Because
  696. * the slabs are all pages aligned, the objects will be at the
  697. * correct alignment when allocated.
  698. */
  699. if (flags & CFLGS_OFF_SLAB) {
  700. mgmt_size = 0;
  701. nr_objs = slab_size / buffer_size;
  702. if (nr_objs > SLAB_LIMIT)
  703. nr_objs = SLAB_LIMIT;
  704. } else {
  705. /*
  706. * Ignore padding for the initial guess. The padding
  707. * is at most @align-1 bytes, and @buffer_size is at
  708. * least @align. In the worst case, this result will
  709. * be one greater than the number of objects that fit
  710. * into the memory allocation when taking the padding
  711. * into account.
  712. */
  713. nr_objs = (slab_size - sizeof(struct slab)) /
  714. (buffer_size + sizeof(kmem_bufctl_t));
  715. /*
  716. * This calculated number will be either the right
  717. * amount, or one greater than what we want.
  718. */
  719. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  720. > slab_size)
  721. nr_objs--;
  722. if (nr_objs > SLAB_LIMIT)
  723. nr_objs = SLAB_LIMIT;
  724. mgmt_size = slab_mgmt_size(nr_objs, align);
  725. }
  726. *num = nr_objs;
  727. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  728. }
  729. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  730. static void __slab_error(const char *function, struct kmem_cache *cachep,
  731. char *msg)
  732. {
  733. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  734. function, cachep->name, msg);
  735. dump_stack();
  736. }
  737. #ifdef CONFIG_NUMA
  738. /*
  739. * Special reaping functions for NUMA systems called from cache_reap().
  740. * These take care of doing round robin flushing of alien caches (containing
  741. * objects freed on different nodes from which they were allocated) and the
  742. * flushing of remote pcps by calling drain_node_pages.
  743. */
  744. static DEFINE_PER_CPU(unsigned long, reap_node);
  745. static void init_reap_node(int cpu)
  746. {
  747. int node;
  748. node = next_node(cpu_to_node(cpu), node_online_map);
  749. if (node == MAX_NUMNODES)
  750. node = first_node(node_online_map);
  751. __get_cpu_var(reap_node) = node;
  752. }
  753. static void next_reap_node(void)
  754. {
  755. int node = __get_cpu_var(reap_node);
  756. /*
  757. * Also drain per cpu pages on remote zones
  758. */
  759. if (node != numa_node_id())
  760. drain_node_pages(node);
  761. node = next_node(node, node_online_map);
  762. if (unlikely(node >= MAX_NUMNODES))
  763. node = first_node(node_online_map);
  764. __get_cpu_var(reap_node) = node;
  765. }
  766. #else
  767. #define init_reap_node(cpu) do { } while (0)
  768. #define next_reap_node(void) do { } while (0)
  769. #endif
  770. /*
  771. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  772. * via the workqueue/eventd.
  773. * Add the CPU number into the expiration time to minimize the possibility of
  774. * the CPUs getting into lockstep and contending for the global cache chain
  775. * lock.
  776. */
  777. static void __devinit start_cpu_timer(int cpu)
  778. {
  779. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  780. /*
  781. * When this gets called from do_initcalls via cpucache_init(),
  782. * init_workqueues() has already run, so keventd will be setup
  783. * at that time.
  784. */
  785. if (keventd_up() && reap_work->func == NULL) {
  786. init_reap_node(cpu);
  787. INIT_WORK(reap_work, cache_reap, NULL);
  788. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  789. }
  790. }
  791. static struct array_cache *alloc_arraycache(int node, int entries,
  792. int batchcount)
  793. {
  794. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  795. struct array_cache *nc = NULL;
  796. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  797. if (nc) {
  798. nc->avail = 0;
  799. nc->limit = entries;
  800. nc->batchcount = batchcount;
  801. nc->touched = 0;
  802. spin_lock_init(&nc->lock);
  803. }
  804. return nc;
  805. }
  806. /*
  807. * Transfer objects in one arraycache to another.
  808. * Locking must be handled by the caller.
  809. *
  810. * Return the number of entries transferred.
  811. */
  812. static int transfer_objects(struct array_cache *to,
  813. struct array_cache *from, unsigned int max)
  814. {
  815. /* Figure out how many entries to transfer */
  816. int nr = min(min(from->avail, max), to->limit - to->avail);
  817. if (!nr)
  818. return 0;
  819. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  820. sizeof(void *) *nr);
  821. from->avail -= nr;
  822. to->avail += nr;
  823. to->touched = 1;
  824. return nr;
  825. }
  826. #ifdef CONFIG_NUMA
  827. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  828. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  829. static struct array_cache **alloc_alien_cache(int node, int limit)
  830. {
  831. struct array_cache **ac_ptr;
  832. int memsize = sizeof(void *) * MAX_NUMNODES;
  833. int i;
  834. if (limit > 1)
  835. limit = 12;
  836. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  837. if (ac_ptr) {
  838. for_each_node(i) {
  839. if (i == node || !node_online(i)) {
  840. ac_ptr[i] = NULL;
  841. continue;
  842. }
  843. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  844. if (!ac_ptr[i]) {
  845. for (i--; i <= 0; i--)
  846. kfree(ac_ptr[i]);
  847. kfree(ac_ptr);
  848. return NULL;
  849. }
  850. }
  851. }
  852. return ac_ptr;
  853. }
  854. static void free_alien_cache(struct array_cache **ac_ptr)
  855. {
  856. int i;
  857. if (!ac_ptr)
  858. return;
  859. for_each_node(i)
  860. kfree(ac_ptr[i]);
  861. kfree(ac_ptr);
  862. }
  863. static void __drain_alien_cache(struct kmem_cache *cachep,
  864. struct array_cache *ac, int node)
  865. {
  866. struct kmem_list3 *rl3 = cachep->nodelists[node];
  867. if (ac->avail) {
  868. spin_lock(&rl3->list_lock);
  869. /*
  870. * Stuff objects into the remote nodes shared array first.
  871. * That way we could avoid the overhead of putting the objects
  872. * into the free lists and getting them back later.
  873. */
  874. if (rl3->shared)
  875. transfer_objects(rl3->shared, ac, ac->limit);
  876. free_block(cachep, ac->entry, ac->avail, node);
  877. ac->avail = 0;
  878. spin_unlock(&rl3->list_lock);
  879. }
  880. }
  881. /*
  882. * Called from cache_reap() to regularly drain alien caches round robin.
  883. */
  884. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  885. {
  886. int node = __get_cpu_var(reap_node);
  887. if (l3->alien) {
  888. struct array_cache *ac = l3->alien[node];
  889. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  890. __drain_alien_cache(cachep, ac, node);
  891. spin_unlock_irq(&ac->lock);
  892. }
  893. }
  894. }
  895. static void drain_alien_cache(struct kmem_cache *cachep,
  896. struct array_cache **alien)
  897. {
  898. int i = 0;
  899. struct array_cache *ac;
  900. unsigned long flags;
  901. for_each_online_node(i) {
  902. ac = alien[i];
  903. if (ac) {
  904. spin_lock_irqsave(&ac->lock, flags);
  905. __drain_alien_cache(cachep, ac, i);
  906. spin_unlock_irqrestore(&ac->lock, flags);
  907. }
  908. }
  909. }
  910. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp,
  911. int nesting)
  912. {
  913. struct slab *slabp = virt_to_slab(objp);
  914. int nodeid = slabp->nodeid;
  915. struct kmem_list3 *l3;
  916. struct array_cache *alien = NULL;
  917. /*
  918. * Make sure we are not freeing a object from another node to the array
  919. * cache on this cpu.
  920. */
  921. if (likely(slabp->nodeid == numa_node_id()))
  922. return 0;
  923. l3 = cachep->nodelists[numa_node_id()];
  924. STATS_INC_NODEFREES(cachep);
  925. if (l3->alien && l3->alien[nodeid]) {
  926. alien = l3->alien[nodeid];
  927. spin_lock_nested(&alien->lock, nesting);
  928. if (unlikely(alien->avail == alien->limit)) {
  929. STATS_INC_ACOVERFLOW(cachep);
  930. __drain_alien_cache(cachep, alien, nodeid);
  931. }
  932. alien->entry[alien->avail++] = objp;
  933. spin_unlock(&alien->lock);
  934. } else {
  935. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  936. free_block(cachep, &objp, 1, nodeid);
  937. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  938. }
  939. return 1;
  940. }
  941. #else
  942. #define drain_alien_cache(cachep, alien) do { } while (0)
  943. #define reap_alien(cachep, l3) do { } while (0)
  944. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  945. {
  946. return (struct array_cache **) 0x01020304ul;
  947. }
  948. static inline void free_alien_cache(struct array_cache **ac_ptr)
  949. {
  950. }
  951. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp,
  952. int nesting)
  953. {
  954. return 0;
  955. }
  956. #endif
  957. static int __devinit cpuup_callback(struct notifier_block *nfb,
  958. unsigned long action, void *hcpu)
  959. {
  960. long cpu = (long)hcpu;
  961. struct kmem_cache *cachep;
  962. struct kmem_list3 *l3 = NULL;
  963. int node = cpu_to_node(cpu);
  964. int memsize = sizeof(struct kmem_list3);
  965. switch (action) {
  966. case CPU_UP_PREPARE:
  967. mutex_lock(&cache_chain_mutex);
  968. /*
  969. * We need to do this right in the beginning since
  970. * alloc_arraycache's are going to use this list.
  971. * kmalloc_node allows us to add the slab to the right
  972. * kmem_list3 and not this cpu's kmem_list3
  973. */
  974. list_for_each_entry(cachep, &cache_chain, next) {
  975. /*
  976. * Set up the size64 kmemlist for cpu before we can
  977. * begin anything. Make sure some other cpu on this
  978. * node has not already allocated this
  979. */
  980. if (!cachep->nodelists[node]) {
  981. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  982. if (!l3)
  983. goto bad;
  984. kmem_list3_init(l3);
  985. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  986. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  987. /*
  988. * The l3s don't come and go as CPUs come and
  989. * go. cache_chain_mutex is sufficient
  990. * protection here.
  991. */
  992. cachep->nodelists[node] = l3;
  993. }
  994. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  995. cachep->nodelists[node]->free_limit =
  996. (1 + nr_cpus_node(node)) *
  997. cachep->batchcount + cachep->num;
  998. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  999. }
  1000. /*
  1001. * Now we can go ahead with allocating the shared arrays and
  1002. * array caches
  1003. */
  1004. list_for_each_entry(cachep, &cache_chain, next) {
  1005. struct array_cache *nc;
  1006. struct array_cache *shared;
  1007. struct array_cache **alien;
  1008. nc = alloc_arraycache(node, cachep->limit,
  1009. cachep->batchcount);
  1010. if (!nc)
  1011. goto bad;
  1012. shared = alloc_arraycache(node,
  1013. cachep->shared * cachep->batchcount,
  1014. 0xbaadf00d);
  1015. if (!shared)
  1016. goto bad;
  1017. alien = alloc_alien_cache(node, cachep->limit);
  1018. if (!alien)
  1019. goto bad;
  1020. cachep->array[cpu] = nc;
  1021. l3 = cachep->nodelists[node];
  1022. BUG_ON(!l3);
  1023. spin_lock_irq(&l3->list_lock);
  1024. if (!l3->shared) {
  1025. /*
  1026. * We are serialised from CPU_DEAD or
  1027. * CPU_UP_CANCELLED by the cpucontrol lock
  1028. */
  1029. l3->shared = shared;
  1030. shared = NULL;
  1031. }
  1032. #ifdef CONFIG_NUMA
  1033. if (!l3->alien) {
  1034. l3->alien = alien;
  1035. alien = NULL;
  1036. }
  1037. #endif
  1038. spin_unlock_irq(&l3->list_lock);
  1039. kfree(shared);
  1040. free_alien_cache(alien);
  1041. }
  1042. mutex_unlock(&cache_chain_mutex);
  1043. break;
  1044. case CPU_ONLINE:
  1045. start_cpu_timer(cpu);
  1046. break;
  1047. #ifdef CONFIG_HOTPLUG_CPU
  1048. case CPU_DEAD:
  1049. /*
  1050. * Even if all the cpus of a node are down, we don't free the
  1051. * kmem_list3 of any cache. This to avoid a race between
  1052. * cpu_down, and a kmalloc allocation from another cpu for
  1053. * memory from the node of the cpu going down. The list3
  1054. * structure is usually allocated from kmem_cache_create() and
  1055. * gets destroyed at kmem_cache_destroy().
  1056. */
  1057. /* fall thru */
  1058. case CPU_UP_CANCELED:
  1059. mutex_lock(&cache_chain_mutex);
  1060. list_for_each_entry(cachep, &cache_chain, next) {
  1061. struct array_cache *nc;
  1062. struct array_cache *shared;
  1063. struct array_cache **alien;
  1064. cpumask_t mask;
  1065. mask = node_to_cpumask(node);
  1066. /* cpu is dead; no one can alloc from it. */
  1067. nc = cachep->array[cpu];
  1068. cachep->array[cpu] = NULL;
  1069. l3 = cachep->nodelists[node];
  1070. if (!l3)
  1071. goto free_array_cache;
  1072. spin_lock_irq(&l3->list_lock);
  1073. /* Free limit for this kmem_list3 */
  1074. l3->free_limit -= cachep->batchcount;
  1075. if (nc)
  1076. free_block(cachep, nc->entry, nc->avail, node);
  1077. if (!cpus_empty(mask)) {
  1078. spin_unlock_irq(&l3->list_lock);
  1079. goto free_array_cache;
  1080. }
  1081. shared = l3->shared;
  1082. if (shared) {
  1083. free_block(cachep, l3->shared->entry,
  1084. l3->shared->avail, node);
  1085. l3->shared = NULL;
  1086. }
  1087. alien = l3->alien;
  1088. l3->alien = NULL;
  1089. spin_unlock_irq(&l3->list_lock);
  1090. kfree(shared);
  1091. if (alien) {
  1092. drain_alien_cache(cachep, alien);
  1093. free_alien_cache(alien);
  1094. }
  1095. free_array_cache:
  1096. kfree(nc);
  1097. }
  1098. /*
  1099. * In the previous loop, all the objects were freed to
  1100. * the respective cache's slabs, now we can go ahead and
  1101. * shrink each nodelist to its limit.
  1102. */
  1103. list_for_each_entry(cachep, &cache_chain, next) {
  1104. l3 = cachep->nodelists[node];
  1105. if (!l3)
  1106. continue;
  1107. drain_freelist(cachep, l3, l3->free_objects);
  1108. }
  1109. mutex_unlock(&cache_chain_mutex);
  1110. break;
  1111. #endif
  1112. }
  1113. return NOTIFY_OK;
  1114. bad:
  1115. mutex_unlock(&cache_chain_mutex);
  1116. return NOTIFY_BAD;
  1117. }
  1118. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1119. &cpuup_callback, NULL, 0
  1120. };
  1121. /*
  1122. * swap the static kmem_list3 with kmalloced memory
  1123. */
  1124. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1125. int nodeid)
  1126. {
  1127. struct kmem_list3 *ptr;
  1128. BUG_ON(cachep->nodelists[nodeid] != list);
  1129. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1130. BUG_ON(!ptr);
  1131. local_irq_disable();
  1132. memcpy(ptr, list, sizeof(struct kmem_list3));
  1133. /*
  1134. * Do not assume that spinlocks can be initialized via memcpy:
  1135. */
  1136. spin_lock_init(&ptr->list_lock);
  1137. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1138. cachep->nodelists[nodeid] = ptr;
  1139. local_irq_enable();
  1140. }
  1141. /*
  1142. * Initialisation. Called after the page allocator have been initialised and
  1143. * before smp_init().
  1144. */
  1145. void __init kmem_cache_init(void)
  1146. {
  1147. size_t left_over;
  1148. struct cache_sizes *sizes;
  1149. struct cache_names *names;
  1150. int i;
  1151. int order;
  1152. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1153. kmem_list3_init(&initkmem_list3[i]);
  1154. if (i < MAX_NUMNODES)
  1155. cache_cache.nodelists[i] = NULL;
  1156. }
  1157. /*
  1158. * Fragmentation resistance on low memory - only use bigger
  1159. * page orders on machines with more than 32MB of memory.
  1160. */
  1161. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1162. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1163. /* Bootstrap is tricky, because several objects are allocated
  1164. * from caches that do not exist yet:
  1165. * 1) initialize the cache_cache cache: it contains the struct
  1166. * kmem_cache structures of all caches, except cache_cache itself:
  1167. * cache_cache is statically allocated.
  1168. * Initially an __init data area is used for the head array and the
  1169. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1170. * array at the end of the bootstrap.
  1171. * 2) Create the first kmalloc cache.
  1172. * The struct kmem_cache for the new cache is allocated normally.
  1173. * An __init data area is used for the head array.
  1174. * 3) Create the remaining kmalloc caches, with minimally sized
  1175. * head arrays.
  1176. * 4) Replace the __init data head arrays for cache_cache and the first
  1177. * kmalloc cache with kmalloc allocated arrays.
  1178. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1179. * the other cache's with kmalloc allocated memory.
  1180. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1181. */
  1182. /* 1) create the cache_cache */
  1183. INIT_LIST_HEAD(&cache_chain);
  1184. list_add(&cache_cache.next, &cache_chain);
  1185. cache_cache.colour_off = cache_line_size();
  1186. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1187. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1188. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1189. cache_line_size());
  1190. for (order = 0; order < MAX_ORDER; order++) {
  1191. cache_estimate(order, cache_cache.buffer_size,
  1192. cache_line_size(), 0, &left_over, &cache_cache.num);
  1193. if (cache_cache.num)
  1194. break;
  1195. }
  1196. BUG_ON(!cache_cache.num);
  1197. cache_cache.gfporder = order;
  1198. cache_cache.colour = left_over / cache_cache.colour_off;
  1199. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1200. sizeof(struct slab), cache_line_size());
  1201. /* 2+3) create the kmalloc caches */
  1202. sizes = malloc_sizes;
  1203. names = cache_names;
  1204. /*
  1205. * Initialize the caches that provide memory for the array cache and the
  1206. * kmem_list3 structures first. Without this, further allocations will
  1207. * bug.
  1208. */
  1209. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1210. sizes[INDEX_AC].cs_size,
  1211. ARCH_KMALLOC_MINALIGN,
  1212. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1213. NULL, NULL);
  1214. if (INDEX_AC != INDEX_L3) {
  1215. sizes[INDEX_L3].cs_cachep =
  1216. kmem_cache_create(names[INDEX_L3].name,
  1217. sizes[INDEX_L3].cs_size,
  1218. ARCH_KMALLOC_MINALIGN,
  1219. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1220. NULL, NULL);
  1221. }
  1222. slab_early_init = 0;
  1223. while (sizes->cs_size != ULONG_MAX) {
  1224. /*
  1225. * For performance, all the general caches are L1 aligned.
  1226. * This should be particularly beneficial on SMP boxes, as it
  1227. * eliminates "false sharing".
  1228. * Note for systems short on memory removing the alignment will
  1229. * allow tighter packing of the smaller caches.
  1230. */
  1231. if (!sizes->cs_cachep) {
  1232. sizes->cs_cachep = kmem_cache_create(names->name,
  1233. sizes->cs_size,
  1234. ARCH_KMALLOC_MINALIGN,
  1235. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1236. NULL, NULL);
  1237. }
  1238. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1239. sizes->cs_size,
  1240. ARCH_KMALLOC_MINALIGN,
  1241. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1242. SLAB_PANIC,
  1243. NULL, NULL);
  1244. sizes++;
  1245. names++;
  1246. }
  1247. /* 4) Replace the bootstrap head arrays */
  1248. {
  1249. struct array_cache *ptr;
  1250. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1251. local_irq_disable();
  1252. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1253. memcpy(ptr, cpu_cache_get(&cache_cache),
  1254. sizeof(struct arraycache_init));
  1255. /*
  1256. * Do not assume that spinlocks can be initialized via memcpy:
  1257. */
  1258. spin_lock_init(&ptr->lock);
  1259. cache_cache.array[smp_processor_id()] = ptr;
  1260. local_irq_enable();
  1261. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1262. local_irq_disable();
  1263. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1264. != &initarray_generic.cache);
  1265. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1266. sizeof(struct arraycache_init));
  1267. /*
  1268. * Do not assume that spinlocks can be initialized via memcpy:
  1269. */
  1270. spin_lock_init(&ptr->lock);
  1271. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1272. ptr;
  1273. local_irq_enable();
  1274. }
  1275. /* 5) Replace the bootstrap kmem_list3's */
  1276. {
  1277. int node;
  1278. /* Replace the static kmem_list3 structures for the boot cpu */
  1279. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1280. numa_node_id());
  1281. for_each_online_node(node) {
  1282. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1283. &initkmem_list3[SIZE_AC + node], node);
  1284. if (INDEX_AC != INDEX_L3) {
  1285. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1286. &initkmem_list3[SIZE_L3 + node],
  1287. node);
  1288. }
  1289. }
  1290. }
  1291. /* 6) resize the head arrays to their final sizes */
  1292. {
  1293. struct kmem_cache *cachep;
  1294. mutex_lock(&cache_chain_mutex);
  1295. list_for_each_entry(cachep, &cache_chain, next)
  1296. enable_cpucache(cachep);
  1297. mutex_unlock(&cache_chain_mutex);
  1298. }
  1299. /* Done! */
  1300. g_cpucache_up = FULL;
  1301. /*
  1302. * Register a cpu startup notifier callback that initializes
  1303. * cpu_cache_get for all new cpus
  1304. */
  1305. register_cpu_notifier(&cpucache_notifier);
  1306. /*
  1307. * The reap timers are started later, with a module init call: That part
  1308. * of the kernel is not yet operational.
  1309. */
  1310. }
  1311. static int __init cpucache_init(void)
  1312. {
  1313. int cpu;
  1314. /*
  1315. * Register the timers that return unneeded pages to the page allocator
  1316. */
  1317. for_each_online_cpu(cpu)
  1318. start_cpu_timer(cpu);
  1319. return 0;
  1320. }
  1321. __initcall(cpucache_init);
  1322. /*
  1323. * Interface to system's page allocator. No need to hold the cache-lock.
  1324. *
  1325. * If we requested dmaable memory, we will get it. Even if we
  1326. * did not request dmaable memory, we might get it, but that
  1327. * would be relatively rare and ignorable.
  1328. */
  1329. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1330. {
  1331. struct page *page;
  1332. int nr_pages;
  1333. int i;
  1334. #ifndef CONFIG_MMU
  1335. /*
  1336. * Nommu uses slab's for process anonymous memory allocations, and thus
  1337. * requires __GFP_COMP to properly refcount higher order allocations
  1338. */
  1339. flags |= __GFP_COMP;
  1340. #endif
  1341. flags |= cachep->gfpflags;
  1342. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1343. if (!page)
  1344. return NULL;
  1345. nr_pages = (1 << cachep->gfporder);
  1346. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1347. atomic_add(nr_pages, &slab_reclaim_pages);
  1348. add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
  1349. for (i = 0; i < nr_pages; i++)
  1350. __SetPageSlab(page + i);
  1351. return page_address(page);
  1352. }
  1353. /*
  1354. * Interface to system's page release.
  1355. */
  1356. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1357. {
  1358. unsigned long i = (1 << cachep->gfporder);
  1359. struct page *page = virt_to_page(addr);
  1360. const unsigned long nr_freed = i;
  1361. sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
  1362. while (i--) {
  1363. BUG_ON(!PageSlab(page));
  1364. __ClearPageSlab(page);
  1365. page++;
  1366. }
  1367. if (current->reclaim_state)
  1368. current->reclaim_state->reclaimed_slab += nr_freed;
  1369. free_pages((unsigned long)addr, cachep->gfporder);
  1370. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1371. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1372. }
  1373. static void kmem_rcu_free(struct rcu_head *head)
  1374. {
  1375. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1376. struct kmem_cache *cachep = slab_rcu->cachep;
  1377. kmem_freepages(cachep, slab_rcu->addr);
  1378. if (OFF_SLAB(cachep))
  1379. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1380. }
  1381. #if DEBUG
  1382. #ifdef CONFIG_DEBUG_PAGEALLOC
  1383. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1384. unsigned long caller)
  1385. {
  1386. int size = obj_size(cachep);
  1387. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1388. if (size < 5 * sizeof(unsigned long))
  1389. return;
  1390. *addr++ = 0x12345678;
  1391. *addr++ = caller;
  1392. *addr++ = smp_processor_id();
  1393. size -= 3 * sizeof(unsigned long);
  1394. {
  1395. unsigned long *sptr = &caller;
  1396. unsigned long svalue;
  1397. while (!kstack_end(sptr)) {
  1398. svalue = *sptr++;
  1399. if (kernel_text_address(svalue)) {
  1400. *addr++ = svalue;
  1401. size -= sizeof(unsigned long);
  1402. if (size <= sizeof(unsigned long))
  1403. break;
  1404. }
  1405. }
  1406. }
  1407. *addr++ = 0x87654321;
  1408. }
  1409. #endif
  1410. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1411. {
  1412. int size = obj_size(cachep);
  1413. addr = &((char *)addr)[obj_offset(cachep)];
  1414. memset(addr, val, size);
  1415. *(unsigned char *)(addr + size - 1) = POISON_END;
  1416. }
  1417. static void dump_line(char *data, int offset, int limit)
  1418. {
  1419. int i;
  1420. printk(KERN_ERR "%03x:", offset);
  1421. for (i = 0; i < limit; i++)
  1422. printk(" %02x", (unsigned char)data[offset + i]);
  1423. printk("\n");
  1424. }
  1425. #endif
  1426. #if DEBUG
  1427. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1428. {
  1429. int i, size;
  1430. char *realobj;
  1431. if (cachep->flags & SLAB_RED_ZONE) {
  1432. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1433. *dbg_redzone1(cachep, objp),
  1434. *dbg_redzone2(cachep, objp));
  1435. }
  1436. if (cachep->flags & SLAB_STORE_USER) {
  1437. printk(KERN_ERR "Last user: [<%p>]",
  1438. *dbg_userword(cachep, objp));
  1439. print_symbol("(%s)",
  1440. (unsigned long)*dbg_userword(cachep, objp));
  1441. printk("\n");
  1442. }
  1443. realobj = (char *)objp + obj_offset(cachep);
  1444. size = obj_size(cachep);
  1445. for (i = 0; i < size && lines; i += 16, lines--) {
  1446. int limit;
  1447. limit = 16;
  1448. if (i + limit > size)
  1449. limit = size - i;
  1450. dump_line(realobj, i, limit);
  1451. }
  1452. }
  1453. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1454. {
  1455. char *realobj;
  1456. int size, i;
  1457. int lines = 0;
  1458. realobj = (char *)objp + obj_offset(cachep);
  1459. size = obj_size(cachep);
  1460. for (i = 0; i < size; i++) {
  1461. char exp = POISON_FREE;
  1462. if (i == size - 1)
  1463. exp = POISON_END;
  1464. if (realobj[i] != exp) {
  1465. int limit;
  1466. /* Mismatch ! */
  1467. /* Print header */
  1468. if (lines == 0) {
  1469. printk(KERN_ERR
  1470. "Slab corruption: start=%p, len=%d\n",
  1471. realobj, size);
  1472. print_objinfo(cachep, objp, 0);
  1473. }
  1474. /* Hexdump the affected line */
  1475. i = (i / 16) * 16;
  1476. limit = 16;
  1477. if (i + limit > size)
  1478. limit = size - i;
  1479. dump_line(realobj, i, limit);
  1480. i += 16;
  1481. lines++;
  1482. /* Limit to 5 lines */
  1483. if (lines > 5)
  1484. break;
  1485. }
  1486. }
  1487. if (lines != 0) {
  1488. /* Print some data about the neighboring objects, if they
  1489. * exist:
  1490. */
  1491. struct slab *slabp = virt_to_slab(objp);
  1492. unsigned int objnr;
  1493. objnr = obj_to_index(cachep, slabp, objp);
  1494. if (objnr) {
  1495. objp = index_to_obj(cachep, slabp, objnr - 1);
  1496. realobj = (char *)objp + obj_offset(cachep);
  1497. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1498. realobj, size);
  1499. print_objinfo(cachep, objp, 2);
  1500. }
  1501. if (objnr + 1 < cachep->num) {
  1502. objp = index_to_obj(cachep, slabp, objnr + 1);
  1503. realobj = (char *)objp + obj_offset(cachep);
  1504. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1505. realobj, size);
  1506. print_objinfo(cachep, objp, 2);
  1507. }
  1508. }
  1509. }
  1510. #endif
  1511. #if DEBUG
  1512. /**
  1513. * slab_destroy_objs - destroy a slab and its objects
  1514. * @cachep: cache pointer being destroyed
  1515. * @slabp: slab pointer being destroyed
  1516. *
  1517. * Call the registered destructor for each object in a slab that is being
  1518. * destroyed.
  1519. */
  1520. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1521. {
  1522. int i;
  1523. for (i = 0; i < cachep->num; i++) {
  1524. void *objp = index_to_obj(cachep, slabp, i);
  1525. if (cachep->flags & SLAB_POISON) {
  1526. #ifdef CONFIG_DEBUG_PAGEALLOC
  1527. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1528. OFF_SLAB(cachep))
  1529. kernel_map_pages(virt_to_page(objp),
  1530. cachep->buffer_size / PAGE_SIZE, 1);
  1531. else
  1532. check_poison_obj(cachep, objp);
  1533. #else
  1534. check_poison_obj(cachep, objp);
  1535. #endif
  1536. }
  1537. if (cachep->flags & SLAB_RED_ZONE) {
  1538. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1539. slab_error(cachep, "start of a freed object "
  1540. "was overwritten");
  1541. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1542. slab_error(cachep, "end of a freed object "
  1543. "was overwritten");
  1544. }
  1545. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1546. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1547. }
  1548. }
  1549. #else
  1550. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1551. {
  1552. if (cachep->dtor) {
  1553. int i;
  1554. for (i = 0; i < cachep->num; i++) {
  1555. void *objp = index_to_obj(cachep, slabp, i);
  1556. (cachep->dtor) (objp, cachep, 0);
  1557. }
  1558. }
  1559. }
  1560. #endif
  1561. static void __cache_free(struct kmem_cache *cachep, void *objp, int nesting);
  1562. /**
  1563. * slab_destroy - destroy and release all objects in a slab
  1564. * @cachep: cache pointer being destroyed
  1565. * @slabp: slab pointer being destroyed
  1566. *
  1567. * Destroy all the objs in a slab, and release the mem back to the system.
  1568. * Before calling the slab must have been unlinked from the cache. The
  1569. * cache-lock is not held/needed.
  1570. */
  1571. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1572. {
  1573. void *addr = slabp->s_mem - slabp->colouroff;
  1574. slab_destroy_objs(cachep, slabp);
  1575. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1576. struct slab_rcu *slab_rcu;
  1577. slab_rcu = (struct slab_rcu *)slabp;
  1578. slab_rcu->cachep = cachep;
  1579. slab_rcu->addr = addr;
  1580. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1581. } else {
  1582. kmem_freepages(cachep, addr);
  1583. if (OFF_SLAB(cachep)) {
  1584. unsigned long flags;
  1585. /*
  1586. * lockdep: we may nest inside an already held
  1587. * ac->lock, so pass in a nesting flag:
  1588. */
  1589. local_irq_save(flags);
  1590. __cache_free(cachep->slabp_cache, slabp, 1);
  1591. local_irq_restore(flags);
  1592. }
  1593. }
  1594. }
  1595. /*
  1596. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1597. * size of kmem_list3.
  1598. */
  1599. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1600. {
  1601. int node;
  1602. for_each_online_node(node) {
  1603. cachep->nodelists[node] = &initkmem_list3[index + node];
  1604. cachep->nodelists[node]->next_reap = jiffies +
  1605. REAPTIMEOUT_LIST3 +
  1606. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1607. }
  1608. }
  1609. /**
  1610. * calculate_slab_order - calculate size (page order) of slabs
  1611. * @cachep: pointer to the cache that is being created
  1612. * @size: size of objects to be created in this cache.
  1613. * @align: required alignment for the objects.
  1614. * @flags: slab allocation flags
  1615. *
  1616. * Also calculates the number of objects per slab.
  1617. *
  1618. * This could be made much more intelligent. For now, try to avoid using
  1619. * high order pages for slabs. When the gfp() functions are more friendly
  1620. * towards high-order requests, this should be changed.
  1621. */
  1622. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1623. size_t size, size_t align, unsigned long flags)
  1624. {
  1625. unsigned long offslab_limit;
  1626. size_t left_over = 0;
  1627. int gfporder;
  1628. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1629. unsigned int num;
  1630. size_t remainder;
  1631. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1632. if (!num)
  1633. continue;
  1634. if (flags & CFLGS_OFF_SLAB) {
  1635. /*
  1636. * Max number of objs-per-slab for caches which
  1637. * use off-slab slabs. Needed to avoid a possible
  1638. * looping condition in cache_grow().
  1639. */
  1640. offslab_limit = size - sizeof(struct slab);
  1641. offslab_limit /= sizeof(kmem_bufctl_t);
  1642. if (num > offslab_limit)
  1643. break;
  1644. }
  1645. /* Found something acceptable - save it away */
  1646. cachep->num = num;
  1647. cachep->gfporder = gfporder;
  1648. left_over = remainder;
  1649. /*
  1650. * A VFS-reclaimable slab tends to have most allocations
  1651. * as GFP_NOFS and we really don't want to have to be allocating
  1652. * higher-order pages when we are unable to shrink dcache.
  1653. */
  1654. if (flags & SLAB_RECLAIM_ACCOUNT)
  1655. break;
  1656. /*
  1657. * Large number of objects is good, but very large slabs are
  1658. * currently bad for the gfp()s.
  1659. */
  1660. if (gfporder >= slab_break_gfp_order)
  1661. break;
  1662. /*
  1663. * Acceptable internal fragmentation?
  1664. */
  1665. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1666. break;
  1667. }
  1668. return left_over;
  1669. }
  1670. static void setup_cpu_cache(struct kmem_cache *cachep)
  1671. {
  1672. if (g_cpucache_up == FULL) {
  1673. enable_cpucache(cachep);
  1674. return;
  1675. }
  1676. if (g_cpucache_up == NONE) {
  1677. /*
  1678. * Note: the first kmem_cache_create must create the cache
  1679. * that's used by kmalloc(24), otherwise the creation of
  1680. * further caches will BUG().
  1681. */
  1682. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1683. /*
  1684. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1685. * the first cache, then we need to set up all its list3s,
  1686. * otherwise the creation of further caches will BUG().
  1687. */
  1688. set_up_list3s(cachep, SIZE_AC);
  1689. if (INDEX_AC == INDEX_L3)
  1690. g_cpucache_up = PARTIAL_L3;
  1691. else
  1692. g_cpucache_up = PARTIAL_AC;
  1693. } else {
  1694. cachep->array[smp_processor_id()] =
  1695. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1696. if (g_cpucache_up == PARTIAL_AC) {
  1697. set_up_list3s(cachep, SIZE_L3);
  1698. g_cpucache_up = PARTIAL_L3;
  1699. } else {
  1700. int node;
  1701. for_each_online_node(node) {
  1702. cachep->nodelists[node] =
  1703. kmalloc_node(sizeof(struct kmem_list3),
  1704. GFP_KERNEL, node);
  1705. BUG_ON(!cachep->nodelists[node]);
  1706. kmem_list3_init(cachep->nodelists[node]);
  1707. }
  1708. }
  1709. }
  1710. cachep->nodelists[numa_node_id()]->next_reap =
  1711. jiffies + REAPTIMEOUT_LIST3 +
  1712. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1713. cpu_cache_get(cachep)->avail = 0;
  1714. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1715. cpu_cache_get(cachep)->batchcount = 1;
  1716. cpu_cache_get(cachep)->touched = 0;
  1717. cachep->batchcount = 1;
  1718. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1719. }
  1720. /**
  1721. * kmem_cache_create - Create a cache.
  1722. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1723. * @size: The size of objects to be created in this cache.
  1724. * @align: The required alignment for the objects.
  1725. * @flags: SLAB flags
  1726. * @ctor: A constructor for the objects.
  1727. * @dtor: A destructor for the objects.
  1728. *
  1729. * Returns a ptr to the cache on success, NULL on failure.
  1730. * Cannot be called within a int, but can be interrupted.
  1731. * The @ctor is run when new pages are allocated by the cache
  1732. * and the @dtor is run before the pages are handed back.
  1733. *
  1734. * @name must be valid until the cache is destroyed. This implies that
  1735. * the module calling this has to destroy the cache before getting unloaded.
  1736. *
  1737. * The flags are
  1738. *
  1739. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1740. * to catch references to uninitialised memory.
  1741. *
  1742. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1743. * for buffer overruns.
  1744. *
  1745. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1746. * cacheline. This can be beneficial if you're counting cycles as closely
  1747. * as davem.
  1748. */
  1749. struct kmem_cache *
  1750. kmem_cache_create (const char *name, size_t size, size_t align,
  1751. unsigned long flags,
  1752. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1753. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1754. {
  1755. size_t left_over, slab_size, ralign;
  1756. struct kmem_cache *cachep = NULL, *pc;
  1757. /*
  1758. * Sanity checks... these are all serious usage bugs.
  1759. */
  1760. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1761. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1762. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1763. name);
  1764. BUG();
  1765. }
  1766. /*
  1767. * Prevent CPUs from coming and going.
  1768. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1769. */
  1770. lock_cpu_hotplug();
  1771. mutex_lock(&cache_chain_mutex);
  1772. list_for_each_entry(pc, &cache_chain, next) {
  1773. mm_segment_t old_fs = get_fs();
  1774. char tmp;
  1775. int res;
  1776. /*
  1777. * This happens when the module gets unloaded and doesn't
  1778. * destroy its slab cache and no-one else reuses the vmalloc
  1779. * area of the module. Print a warning.
  1780. */
  1781. set_fs(KERNEL_DS);
  1782. res = __get_user(tmp, pc->name);
  1783. set_fs(old_fs);
  1784. if (res) {
  1785. printk("SLAB: cache with size %d has lost its name\n",
  1786. pc->buffer_size);
  1787. continue;
  1788. }
  1789. if (!strcmp(pc->name, name)) {
  1790. printk("kmem_cache_create: duplicate cache %s\n", name);
  1791. dump_stack();
  1792. goto oops;
  1793. }
  1794. }
  1795. #if DEBUG
  1796. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1797. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1798. /* No constructor, but inital state check requested */
  1799. printk(KERN_ERR "%s: No con, but init state check "
  1800. "requested - %s\n", __FUNCTION__, name);
  1801. flags &= ~SLAB_DEBUG_INITIAL;
  1802. }
  1803. #if FORCED_DEBUG
  1804. /*
  1805. * Enable redzoning and last user accounting, except for caches with
  1806. * large objects, if the increased size would increase the object size
  1807. * above the next power of two: caches with object sizes just above a
  1808. * power of two have a significant amount of internal fragmentation.
  1809. */
  1810. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1811. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1812. if (!(flags & SLAB_DESTROY_BY_RCU))
  1813. flags |= SLAB_POISON;
  1814. #endif
  1815. if (flags & SLAB_DESTROY_BY_RCU)
  1816. BUG_ON(flags & SLAB_POISON);
  1817. #endif
  1818. if (flags & SLAB_DESTROY_BY_RCU)
  1819. BUG_ON(dtor);
  1820. /*
  1821. * Always checks flags, a caller might be expecting debug support which
  1822. * isn't available.
  1823. */
  1824. BUG_ON(flags & ~CREATE_MASK);
  1825. /*
  1826. * Check that size is in terms of words. This is needed to avoid
  1827. * unaligned accesses for some archs when redzoning is used, and makes
  1828. * sure any on-slab bufctl's are also correctly aligned.
  1829. */
  1830. if (size & (BYTES_PER_WORD - 1)) {
  1831. size += (BYTES_PER_WORD - 1);
  1832. size &= ~(BYTES_PER_WORD - 1);
  1833. }
  1834. /* calculate the final buffer alignment: */
  1835. /* 1) arch recommendation: can be overridden for debug */
  1836. if (flags & SLAB_HWCACHE_ALIGN) {
  1837. /*
  1838. * Default alignment: as specified by the arch code. Except if
  1839. * an object is really small, then squeeze multiple objects into
  1840. * one cacheline.
  1841. */
  1842. ralign = cache_line_size();
  1843. while (size <= ralign / 2)
  1844. ralign /= 2;
  1845. } else {
  1846. ralign = BYTES_PER_WORD;
  1847. }
  1848. /* 2) arch mandated alignment: disables debug if necessary */
  1849. if (ralign < ARCH_SLAB_MINALIGN) {
  1850. ralign = ARCH_SLAB_MINALIGN;
  1851. if (ralign > BYTES_PER_WORD)
  1852. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1853. }
  1854. /* 3) caller mandated alignment: disables debug if necessary */
  1855. if (ralign < align) {
  1856. ralign = align;
  1857. if (ralign > BYTES_PER_WORD)
  1858. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1859. }
  1860. /*
  1861. * 4) Store it. Note that the debug code below can reduce
  1862. * the alignment to BYTES_PER_WORD.
  1863. */
  1864. align = ralign;
  1865. /* Get cache's description obj. */
  1866. cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
  1867. if (!cachep)
  1868. goto oops;
  1869. #if DEBUG
  1870. cachep->obj_size = size;
  1871. if (flags & SLAB_RED_ZONE) {
  1872. /* redzoning only works with word aligned caches */
  1873. align = BYTES_PER_WORD;
  1874. /* add space for red zone words */
  1875. cachep->obj_offset += BYTES_PER_WORD;
  1876. size += 2 * BYTES_PER_WORD;
  1877. }
  1878. if (flags & SLAB_STORE_USER) {
  1879. /* user store requires word alignment and
  1880. * one word storage behind the end of the real
  1881. * object.
  1882. */
  1883. align = BYTES_PER_WORD;
  1884. size += BYTES_PER_WORD;
  1885. }
  1886. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1887. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1888. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1889. cachep->obj_offset += PAGE_SIZE - size;
  1890. size = PAGE_SIZE;
  1891. }
  1892. #endif
  1893. #endif
  1894. /*
  1895. * Determine if the slab management is 'on' or 'off' slab.
  1896. * (bootstrapping cannot cope with offslab caches so don't do
  1897. * it too early on.)
  1898. */
  1899. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  1900. /*
  1901. * Size is large, assume best to place the slab management obj
  1902. * off-slab (should allow better packing of objs).
  1903. */
  1904. flags |= CFLGS_OFF_SLAB;
  1905. size = ALIGN(size, align);
  1906. left_over = calculate_slab_order(cachep, size, align, flags);
  1907. if (!cachep->num) {
  1908. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1909. kmem_cache_free(&cache_cache, cachep);
  1910. cachep = NULL;
  1911. goto oops;
  1912. }
  1913. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1914. + sizeof(struct slab), align);
  1915. /*
  1916. * If the slab has been placed off-slab, and we have enough space then
  1917. * move it on-slab. This is at the expense of any extra colouring.
  1918. */
  1919. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1920. flags &= ~CFLGS_OFF_SLAB;
  1921. left_over -= slab_size;
  1922. }
  1923. if (flags & CFLGS_OFF_SLAB) {
  1924. /* really off slab. No need for manual alignment */
  1925. slab_size =
  1926. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1927. }
  1928. cachep->colour_off = cache_line_size();
  1929. /* Offset must be a multiple of the alignment. */
  1930. if (cachep->colour_off < align)
  1931. cachep->colour_off = align;
  1932. cachep->colour = left_over / cachep->colour_off;
  1933. cachep->slab_size = slab_size;
  1934. cachep->flags = flags;
  1935. cachep->gfpflags = 0;
  1936. if (flags & SLAB_CACHE_DMA)
  1937. cachep->gfpflags |= GFP_DMA;
  1938. cachep->buffer_size = size;
  1939. if (flags & CFLGS_OFF_SLAB)
  1940. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1941. cachep->ctor = ctor;
  1942. cachep->dtor = dtor;
  1943. cachep->name = name;
  1944. setup_cpu_cache(cachep);
  1945. /* cache setup completed, link it into the list */
  1946. list_add(&cachep->next, &cache_chain);
  1947. oops:
  1948. if (!cachep && (flags & SLAB_PANIC))
  1949. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1950. name);
  1951. mutex_unlock(&cache_chain_mutex);
  1952. unlock_cpu_hotplug();
  1953. return cachep;
  1954. }
  1955. EXPORT_SYMBOL(kmem_cache_create);
  1956. #if DEBUG
  1957. static void check_irq_off(void)
  1958. {
  1959. BUG_ON(!irqs_disabled());
  1960. }
  1961. static void check_irq_on(void)
  1962. {
  1963. BUG_ON(irqs_disabled());
  1964. }
  1965. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1966. {
  1967. #ifdef CONFIG_SMP
  1968. check_irq_off();
  1969. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1970. #endif
  1971. }
  1972. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1973. {
  1974. #ifdef CONFIG_SMP
  1975. check_irq_off();
  1976. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1977. #endif
  1978. }
  1979. #else
  1980. #define check_irq_off() do { } while(0)
  1981. #define check_irq_on() do { } while(0)
  1982. #define check_spinlock_acquired(x) do { } while(0)
  1983. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1984. #endif
  1985. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1986. struct array_cache *ac,
  1987. int force, int node);
  1988. static void do_drain(void *arg)
  1989. {
  1990. struct kmem_cache *cachep = arg;
  1991. struct array_cache *ac;
  1992. int node = numa_node_id();
  1993. check_irq_off();
  1994. ac = cpu_cache_get(cachep);
  1995. spin_lock(&cachep->nodelists[node]->list_lock);
  1996. free_block(cachep, ac->entry, ac->avail, node);
  1997. spin_unlock(&cachep->nodelists[node]->list_lock);
  1998. ac->avail = 0;
  1999. }
  2000. static void drain_cpu_caches(struct kmem_cache *cachep)
  2001. {
  2002. struct kmem_list3 *l3;
  2003. int node;
  2004. on_each_cpu(do_drain, cachep, 1, 1);
  2005. check_irq_on();
  2006. for_each_online_node(node) {
  2007. l3 = cachep->nodelists[node];
  2008. if (l3 && l3->alien)
  2009. drain_alien_cache(cachep, l3->alien);
  2010. }
  2011. for_each_online_node(node) {
  2012. l3 = cachep->nodelists[node];
  2013. if (l3)
  2014. drain_array(cachep, l3, l3->shared, 1, node);
  2015. }
  2016. }
  2017. /*
  2018. * Remove slabs from the list of free slabs.
  2019. * Specify the number of slabs to drain in tofree.
  2020. *
  2021. * Returns the actual number of slabs released.
  2022. */
  2023. static int drain_freelist(struct kmem_cache *cache,
  2024. struct kmem_list3 *l3, int tofree)
  2025. {
  2026. struct list_head *p;
  2027. int nr_freed;
  2028. struct slab *slabp;
  2029. nr_freed = 0;
  2030. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2031. spin_lock_irq(&l3->list_lock);
  2032. p = l3->slabs_free.prev;
  2033. if (p == &l3->slabs_free) {
  2034. spin_unlock_irq(&l3->list_lock);
  2035. goto out;
  2036. }
  2037. slabp = list_entry(p, struct slab, list);
  2038. #if DEBUG
  2039. BUG_ON(slabp->inuse);
  2040. #endif
  2041. list_del(&slabp->list);
  2042. /*
  2043. * Safe to drop the lock. The slab is no longer linked
  2044. * to the cache.
  2045. */
  2046. l3->free_objects -= cache->num;
  2047. spin_unlock_irq(&l3->list_lock);
  2048. slab_destroy(cache, slabp);
  2049. nr_freed++;
  2050. }
  2051. out:
  2052. return nr_freed;
  2053. }
  2054. static int __cache_shrink(struct kmem_cache *cachep)
  2055. {
  2056. int ret = 0, i = 0;
  2057. struct kmem_list3 *l3;
  2058. drain_cpu_caches(cachep);
  2059. check_irq_on();
  2060. for_each_online_node(i) {
  2061. l3 = cachep->nodelists[i];
  2062. if (!l3)
  2063. continue;
  2064. drain_freelist(cachep, l3, l3->free_objects);
  2065. ret += !list_empty(&l3->slabs_full) ||
  2066. !list_empty(&l3->slabs_partial);
  2067. }
  2068. return (ret ? 1 : 0);
  2069. }
  2070. /**
  2071. * kmem_cache_shrink - Shrink a cache.
  2072. * @cachep: The cache to shrink.
  2073. *
  2074. * Releases as many slabs as possible for a cache.
  2075. * To help debugging, a zero exit status indicates all slabs were released.
  2076. */
  2077. int kmem_cache_shrink(struct kmem_cache *cachep)
  2078. {
  2079. BUG_ON(!cachep || in_interrupt());
  2080. return __cache_shrink(cachep);
  2081. }
  2082. EXPORT_SYMBOL(kmem_cache_shrink);
  2083. /**
  2084. * kmem_cache_destroy - delete a cache
  2085. * @cachep: the cache to destroy
  2086. *
  2087. * Remove a struct kmem_cache object from the slab cache.
  2088. * Returns 0 on success.
  2089. *
  2090. * It is expected this function will be called by a module when it is
  2091. * unloaded. This will remove the cache completely, and avoid a duplicate
  2092. * cache being allocated each time a module is loaded and unloaded, if the
  2093. * module doesn't have persistent in-kernel storage across loads and unloads.
  2094. *
  2095. * The cache must be empty before calling this function.
  2096. *
  2097. * The caller must guarantee that noone will allocate memory from the cache
  2098. * during the kmem_cache_destroy().
  2099. */
  2100. int kmem_cache_destroy(struct kmem_cache *cachep)
  2101. {
  2102. int i;
  2103. struct kmem_list3 *l3;
  2104. BUG_ON(!cachep || in_interrupt());
  2105. /* Don't let CPUs to come and go */
  2106. lock_cpu_hotplug();
  2107. /* Find the cache in the chain of caches. */
  2108. mutex_lock(&cache_chain_mutex);
  2109. /*
  2110. * the chain is never empty, cache_cache is never destroyed
  2111. */
  2112. list_del(&cachep->next);
  2113. mutex_unlock(&cache_chain_mutex);
  2114. if (__cache_shrink(cachep)) {
  2115. slab_error(cachep, "Can't free all objects");
  2116. mutex_lock(&cache_chain_mutex);
  2117. list_add(&cachep->next, &cache_chain);
  2118. mutex_unlock(&cache_chain_mutex);
  2119. unlock_cpu_hotplug();
  2120. return 1;
  2121. }
  2122. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2123. synchronize_rcu();
  2124. for_each_online_cpu(i)
  2125. kfree(cachep->array[i]);
  2126. /* NUMA: free the list3 structures */
  2127. for_each_online_node(i) {
  2128. l3 = cachep->nodelists[i];
  2129. if (l3) {
  2130. kfree(l3->shared);
  2131. free_alien_cache(l3->alien);
  2132. kfree(l3);
  2133. }
  2134. }
  2135. kmem_cache_free(&cache_cache, cachep);
  2136. unlock_cpu_hotplug();
  2137. return 0;
  2138. }
  2139. EXPORT_SYMBOL(kmem_cache_destroy);
  2140. /* Get the memory for a slab management obj. */
  2141. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2142. int colour_off, gfp_t local_flags,
  2143. int nodeid)
  2144. {
  2145. struct slab *slabp;
  2146. if (OFF_SLAB(cachep)) {
  2147. /* Slab management obj is off-slab. */
  2148. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2149. local_flags, nodeid);
  2150. if (!slabp)
  2151. return NULL;
  2152. } else {
  2153. slabp = objp + colour_off;
  2154. colour_off += cachep->slab_size;
  2155. }
  2156. slabp->inuse = 0;
  2157. slabp->colouroff = colour_off;
  2158. slabp->s_mem = objp + colour_off;
  2159. slabp->nodeid = nodeid;
  2160. return slabp;
  2161. }
  2162. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2163. {
  2164. return (kmem_bufctl_t *) (slabp + 1);
  2165. }
  2166. static void cache_init_objs(struct kmem_cache *cachep,
  2167. struct slab *slabp, unsigned long ctor_flags)
  2168. {
  2169. int i;
  2170. for (i = 0; i < cachep->num; i++) {
  2171. void *objp = index_to_obj(cachep, slabp, i);
  2172. #if DEBUG
  2173. /* need to poison the objs? */
  2174. if (cachep->flags & SLAB_POISON)
  2175. poison_obj(cachep, objp, POISON_FREE);
  2176. if (cachep->flags & SLAB_STORE_USER)
  2177. *dbg_userword(cachep, objp) = NULL;
  2178. if (cachep->flags & SLAB_RED_ZONE) {
  2179. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2180. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2181. }
  2182. /*
  2183. * Constructors are not allowed to allocate memory from the same
  2184. * cache which they are a constructor for. Otherwise, deadlock.
  2185. * They must also be threaded.
  2186. */
  2187. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2188. cachep->ctor(objp + obj_offset(cachep), cachep,
  2189. ctor_flags);
  2190. if (cachep->flags & SLAB_RED_ZONE) {
  2191. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2192. slab_error(cachep, "constructor overwrote the"
  2193. " end of an object");
  2194. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2195. slab_error(cachep, "constructor overwrote the"
  2196. " start of an object");
  2197. }
  2198. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2199. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2200. kernel_map_pages(virt_to_page(objp),
  2201. cachep->buffer_size / PAGE_SIZE, 0);
  2202. #else
  2203. if (cachep->ctor)
  2204. cachep->ctor(objp, cachep, ctor_flags);
  2205. #endif
  2206. slab_bufctl(slabp)[i] = i + 1;
  2207. }
  2208. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2209. slabp->free = 0;
  2210. }
  2211. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2212. {
  2213. if (flags & SLAB_DMA)
  2214. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2215. else
  2216. BUG_ON(cachep->gfpflags & GFP_DMA);
  2217. }
  2218. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2219. int nodeid)
  2220. {
  2221. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2222. kmem_bufctl_t next;
  2223. slabp->inuse++;
  2224. next = slab_bufctl(slabp)[slabp->free];
  2225. #if DEBUG
  2226. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2227. WARN_ON(slabp->nodeid != nodeid);
  2228. #endif
  2229. slabp->free = next;
  2230. return objp;
  2231. }
  2232. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2233. void *objp, int nodeid)
  2234. {
  2235. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2236. #if DEBUG
  2237. /* Verify that the slab belongs to the intended node */
  2238. WARN_ON(slabp->nodeid != nodeid);
  2239. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2240. printk(KERN_ERR "slab: double free detected in cache "
  2241. "'%s', objp %p\n", cachep->name, objp);
  2242. BUG();
  2243. }
  2244. #endif
  2245. slab_bufctl(slabp)[objnr] = slabp->free;
  2246. slabp->free = objnr;
  2247. slabp->inuse--;
  2248. }
  2249. /*
  2250. * Map pages beginning at addr to the given cache and slab. This is required
  2251. * for the slab allocator to be able to lookup the cache and slab of a
  2252. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2253. */
  2254. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2255. void *addr)
  2256. {
  2257. int nr_pages;
  2258. struct page *page;
  2259. page = virt_to_page(addr);
  2260. nr_pages = 1;
  2261. if (likely(!PageCompound(page)))
  2262. nr_pages <<= cache->gfporder;
  2263. do {
  2264. page_set_cache(page, cache);
  2265. page_set_slab(page, slab);
  2266. page++;
  2267. } while (--nr_pages);
  2268. }
  2269. /*
  2270. * Grow (by 1) the number of slabs within a cache. This is called by
  2271. * kmem_cache_alloc() when there are no active objs left in a cache.
  2272. */
  2273. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2274. {
  2275. struct slab *slabp;
  2276. void *objp;
  2277. size_t offset;
  2278. gfp_t local_flags;
  2279. unsigned long ctor_flags;
  2280. struct kmem_list3 *l3;
  2281. /*
  2282. * Be lazy and only check for valid flags here, keeping it out of the
  2283. * critical path in kmem_cache_alloc().
  2284. */
  2285. BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
  2286. if (flags & SLAB_NO_GROW)
  2287. return 0;
  2288. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2289. local_flags = (flags & SLAB_LEVEL_MASK);
  2290. if (!(local_flags & __GFP_WAIT))
  2291. /*
  2292. * Not allowed to sleep. Need to tell a constructor about
  2293. * this - it might need to know...
  2294. */
  2295. ctor_flags |= SLAB_CTOR_ATOMIC;
  2296. /* Take the l3 list lock to change the colour_next on this node */
  2297. check_irq_off();
  2298. l3 = cachep->nodelists[nodeid];
  2299. spin_lock(&l3->list_lock);
  2300. /* Get colour for the slab, and cal the next value. */
  2301. offset = l3->colour_next;
  2302. l3->colour_next++;
  2303. if (l3->colour_next >= cachep->colour)
  2304. l3->colour_next = 0;
  2305. spin_unlock(&l3->list_lock);
  2306. offset *= cachep->colour_off;
  2307. if (local_flags & __GFP_WAIT)
  2308. local_irq_enable();
  2309. /*
  2310. * The test for missing atomic flag is performed here, rather than
  2311. * the more obvious place, simply to reduce the critical path length
  2312. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2313. * will eventually be caught here (where it matters).
  2314. */
  2315. kmem_flagcheck(cachep, flags);
  2316. /*
  2317. * Get mem for the objs. Attempt to allocate a physical page from
  2318. * 'nodeid'.
  2319. */
  2320. objp = kmem_getpages(cachep, flags, nodeid);
  2321. if (!objp)
  2322. goto failed;
  2323. /* Get slab management. */
  2324. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
  2325. if (!slabp)
  2326. goto opps1;
  2327. slabp->nodeid = nodeid;
  2328. slab_map_pages(cachep, slabp, objp);
  2329. cache_init_objs(cachep, slabp, ctor_flags);
  2330. if (local_flags & __GFP_WAIT)
  2331. local_irq_disable();
  2332. check_irq_off();
  2333. spin_lock(&l3->list_lock);
  2334. /* Make slab active. */
  2335. list_add_tail(&slabp->list, &(l3->slabs_free));
  2336. STATS_INC_GROWN(cachep);
  2337. l3->free_objects += cachep->num;
  2338. spin_unlock(&l3->list_lock);
  2339. return 1;
  2340. opps1:
  2341. kmem_freepages(cachep, objp);
  2342. failed:
  2343. if (local_flags & __GFP_WAIT)
  2344. local_irq_disable();
  2345. return 0;
  2346. }
  2347. #if DEBUG
  2348. /*
  2349. * Perform extra freeing checks:
  2350. * - detect bad pointers.
  2351. * - POISON/RED_ZONE checking
  2352. * - destructor calls, for caches with POISON+dtor
  2353. */
  2354. static void kfree_debugcheck(const void *objp)
  2355. {
  2356. struct page *page;
  2357. if (!virt_addr_valid(objp)) {
  2358. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2359. (unsigned long)objp);
  2360. BUG();
  2361. }
  2362. page = virt_to_page(objp);
  2363. if (!PageSlab(page)) {
  2364. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2365. (unsigned long)objp);
  2366. BUG();
  2367. }
  2368. }
  2369. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2370. {
  2371. unsigned long redzone1, redzone2;
  2372. redzone1 = *dbg_redzone1(cache, obj);
  2373. redzone2 = *dbg_redzone2(cache, obj);
  2374. /*
  2375. * Redzone is ok.
  2376. */
  2377. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2378. return;
  2379. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2380. slab_error(cache, "double free detected");
  2381. else
  2382. slab_error(cache, "memory outside object was overwritten");
  2383. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2384. obj, redzone1, redzone2);
  2385. }
  2386. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2387. void *caller)
  2388. {
  2389. struct page *page;
  2390. unsigned int objnr;
  2391. struct slab *slabp;
  2392. objp -= obj_offset(cachep);
  2393. kfree_debugcheck(objp);
  2394. page = virt_to_page(objp);
  2395. slabp = page_get_slab(page);
  2396. if (cachep->flags & SLAB_RED_ZONE) {
  2397. verify_redzone_free(cachep, objp);
  2398. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2399. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2400. }
  2401. if (cachep->flags & SLAB_STORE_USER)
  2402. *dbg_userword(cachep, objp) = caller;
  2403. objnr = obj_to_index(cachep, slabp, objp);
  2404. BUG_ON(objnr >= cachep->num);
  2405. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2406. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2407. /*
  2408. * Need to call the slab's constructor so the caller can
  2409. * perform a verify of its state (debugging). Called without
  2410. * the cache-lock held.
  2411. */
  2412. cachep->ctor(objp + obj_offset(cachep),
  2413. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2414. }
  2415. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2416. /* we want to cache poison the object,
  2417. * call the destruction callback
  2418. */
  2419. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2420. }
  2421. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2422. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2423. #endif
  2424. if (cachep->flags & SLAB_POISON) {
  2425. #ifdef CONFIG_DEBUG_PAGEALLOC
  2426. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2427. store_stackinfo(cachep, objp, (unsigned long)caller);
  2428. kernel_map_pages(virt_to_page(objp),
  2429. cachep->buffer_size / PAGE_SIZE, 0);
  2430. } else {
  2431. poison_obj(cachep, objp, POISON_FREE);
  2432. }
  2433. #else
  2434. poison_obj(cachep, objp, POISON_FREE);
  2435. #endif
  2436. }
  2437. return objp;
  2438. }
  2439. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2440. {
  2441. kmem_bufctl_t i;
  2442. int entries = 0;
  2443. /* Check slab's freelist to see if this obj is there. */
  2444. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2445. entries++;
  2446. if (entries > cachep->num || i >= cachep->num)
  2447. goto bad;
  2448. }
  2449. if (entries != cachep->num - slabp->inuse) {
  2450. bad:
  2451. printk(KERN_ERR "slab: Internal list corruption detected in "
  2452. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2453. cachep->name, cachep->num, slabp, slabp->inuse);
  2454. for (i = 0;
  2455. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2456. i++) {
  2457. if (i % 16 == 0)
  2458. printk("\n%03x:", i);
  2459. printk(" %02x", ((unsigned char *)slabp)[i]);
  2460. }
  2461. printk("\n");
  2462. BUG();
  2463. }
  2464. }
  2465. #else
  2466. #define kfree_debugcheck(x) do { } while(0)
  2467. #define cache_free_debugcheck(x,objp,z) (objp)
  2468. #define check_slabp(x,y) do { } while(0)
  2469. #endif
  2470. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2471. {
  2472. int batchcount;
  2473. struct kmem_list3 *l3;
  2474. struct array_cache *ac;
  2475. check_irq_off();
  2476. ac = cpu_cache_get(cachep);
  2477. retry:
  2478. batchcount = ac->batchcount;
  2479. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2480. /*
  2481. * If there was little recent activity on this cache, then
  2482. * perform only a partial refill. Otherwise we could generate
  2483. * refill bouncing.
  2484. */
  2485. batchcount = BATCHREFILL_LIMIT;
  2486. }
  2487. l3 = cachep->nodelists[numa_node_id()];
  2488. BUG_ON(ac->avail > 0 || !l3);
  2489. spin_lock(&l3->list_lock);
  2490. /* See if we can refill from the shared array */
  2491. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2492. goto alloc_done;
  2493. while (batchcount > 0) {
  2494. struct list_head *entry;
  2495. struct slab *slabp;
  2496. /* Get slab alloc is to come from. */
  2497. entry = l3->slabs_partial.next;
  2498. if (entry == &l3->slabs_partial) {
  2499. l3->free_touched = 1;
  2500. entry = l3->slabs_free.next;
  2501. if (entry == &l3->slabs_free)
  2502. goto must_grow;
  2503. }
  2504. slabp = list_entry(entry, struct slab, list);
  2505. check_slabp(cachep, slabp);
  2506. check_spinlock_acquired(cachep);
  2507. while (slabp->inuse < cachep->num && batchcount--) {
  2508. STATS_INC_ALLOCED(cachep);
  2509. STATS_INC_ACTIVE(cachep);
  2510. STATS_SET_HIGH(cachep);
  2511. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2512. numa_node_id());
  2513. }
  2514. check_slabp(cachep, slabp);
  2515. /* move slabp to correct slabp list: */
  2516. list_del(&slabp->list);
  2517. if (slabp->free == BUFCTL_END)
  2518. list_add(&slabp->list, &l3->slabs_full);
  2519. else
  2520. list_add(&slabp->list, &l3->slabs_partial);
  2521. }
  2522. must_grow:
  2523. l3->free_objects -= ac->avail;
  2524. alloc_done:
  2525. spin_unlock(&l3->list_lock);
  2526. if (unlikely(!ac->avail)) {
  2527. int x;
  2528. x = cache_grow(cachep, flags, numa_node_id());
  2529. /* cache_grow can reenable interrupts, then ac could change. */
  2530. ac = cpu_cache_get(cachep);
  2531. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2532. return NULL;
  2533. if (!ac->avail) /* objects refilled by interrupt? */
  2534. goto retry;
  2535. }
  2536. ac->touched = 1;
  2537. return ac->entry[--ac->avail];
  2538. }
  2539. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2540. gfp_t flags)
  2541. {
  2542. might_sleep_if(flags & __GFP_WAIT);
  2543. #if DEBUG
  2544. kmem_flagcheck(cachep, flags);
  2545. #endif
  2546. }
  2547. #if DEBUG
  2548. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2549. gfp_t flags, void *objp, void *caller)
  2550. {
  2551. if (!objp)
  2552. return objp;
  2553. if (cachep->flags & SLAB_POISON) {
  2554. #ifdef CONFIG_DEBUG_PAGEALLOC
  2555. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2556. kernel_map_pages(virt_to_page(objp),
  2557. cachep->buffer_size / PAGE_SIZE, 1);
  2558. else
  2559. check_poison_obj(cachep, objp);
  2560. #else
  2561. check_poison_obj(cachep, objp);
  2562. #endif
  2563. poison_obj(cachep, objp, POISON_INUSE);
  2564. }
  2565. if (cachep->flags & SLAB_STORE_USER)
  2566. *dbg_userword(cachep, objp) = caller;
  2567. if (cachep->flags & SLAB_RED_ZONE) {
  2568. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2569. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2570. slab_error(cachep, "double free, or memory outside"
  2571. " object was overwritten");
  2572. printk(KERN_ERR
  2573. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2574. objp, *dbg_redzone1(cachep, objp),
  2575. *dbg_redzone2(cachep, objp));
  2576. }
  2577. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2578. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2579. }
  2580. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2581. {
  2582. struct slab *slabp;
  2583. unsigned objnr;
  2584. slabp = page_get_slab(virt_to_page(objp));
  2585. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2586. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2587. }
  2588. #endif
  2589. objp += obj_offset(cachep);
  2590. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2591. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2592. if (!(flags & __GFP_WAIT))
  2593. ctor_flags |= SLAB_CTOR_ATOMIC;
  2594. cachep->ctor(objp, cachep, ctor_flags);
  2595. }
  2596. return objp;
  2597. }
  2598. #else
  2599. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2600. #endif
  2601. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2602. {
  2603. void *objp;
  2604. struct array_cache *ac;
  2605. #ifdef CONFIG_NUMA
  2606. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2607. objp = alternate_node_alloc(cachep, flags);
  2608. if (objp != NULL)
  2609. return objp;
  2610. }
  2611. #endif
  2612. check_irq_off();
  2613. ac = cpu_cache_get(cachep);
  2614. if (likely(ac->avail)) {
  2615. STATS_INC_ALLOCHIT(cachep);
  2616. ac->touched = 1;
  2617. objp = ac->entry[--ac->avail];
  2618. } else {
  2619. STATS_INC_ALLOCMISS(cachep);
  2620. objp = cache_alloc_refill(cachep, flags);
  2621. }
  2622. return objp;
  2623. }
  2624. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2625. gfp_t flags, void *caller)
  2626. {
  2627. unsigned long save_flags;
  2628. void *objp;
  2629. cache_alloc_debugcheck_before(cachep, flags);
  2630. local_irq_save(save_flags);
  2631. objp = ____cache_alloc(cachep, flags);
  2632. local_irq_restore(save_flags);
  2633. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2634. caller);
  2635. prefetchw(objp);
  2636. return objp;
  2637. }
  2638. #ifdef CONFIG_NUMA
  2639. /*
  2640. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2641. *
  2642. * If we are in_interrupt, then process context, including cpusets and
  2643. * mempolicy, may not apply and should not be used for allocation policy.
  2644. */
  2645. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2646. {
  2647. int nid_alloc, nid_here;
  2648. if (in_interrupt())
  2649. return NULL;
  2650. nid_alloc = nid_here = numa_node_id();
  2651. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2652. nid_alloc = cpuset_mem_spread_node();
  2653. else if (current->mempolicy)
  2654. nid_alloc = slab_node(current->mempolicy);
  2655. if (nid_alloc != nid_here)
  2656. return __cache_alloc_node(cachep, flags, nid_alloc);
  2657. return NULL;
  2658. }
  2659. /*
  2660. * A interface to enable slab creation on nodeid
  2661. */
  2662. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2663. int nodeid)
  2664. {
  2665. struct list_head *entry;
  2666. struct slab *slabp;
  2667. struct kmem_list3 *l3;
  2668. void *obj;
  2669. int x;
  2670. l3 = cachep->nodelists[nodeid];
  2671. BUG_ON(!l3);
  2672. retry:
  2673. check_irq_off();
  2674. spin_lock(&l3->list_lock);
  2675. entry = l3->slabs_partial.next;
  2676. if (entry == &l3->slabs_partial) {
  2677. l3->free_touched = 1;
  2678. entry = l3->slabs_free.next;
  2679. if (entry == &l3->slabs_free)
  2680. goto must_grow;
  2681. }
  2682. slabp = list_entry(entry, struct slab, list);
  2683. check_spinlock_acquired_node(cachep, nodeid);
  2684. check_slabp(cachep, slabp);
  2685. STATS_INC_NODEALLOCS(cachep);
  2686. STATS_INC_ACTIVE(cachep);
  2687. STATS_SET_HIGH(cachep);
  2688. BUG_ON(slabp->inuse == cachep->num);
  2689. obj = slab_get_obj(cachep, slabp, nodeid);
  2690. check_slabp(cachep, slabp);
  2691. l3->free_objects--;
  2692. /* move slabp to correct slabp list: */
  2693. list_del(&slabp->list);
  2694. if (slabp->free == BUFCTL_END)
  2695. list_add(&slabp->list, &l3->slabs_full);
  2696. else
  2697. list_add(&slabp->list, &l3->slabs_partial);
  2698. spin_unlock(&l3->list_lock);
  2699. goto done;
  2700. must_grow:
  2701. spin_unlock(&l3->list_lock);
  2702. x = cache_grow(cachep, flags, nodeid);
  2703. if (!x)
  2704. return NULL;
  2705. goto retry;
  2706. done:
  2707. return obj;
  2708. }
  2709. #endif
  2710. /*
  2711. * Caller needs to acquire correct kmem_list's list_lock
  2712. */
  2713. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2714. int node)
  2715. {
  2716. int i;
  2717. struct kmem_list3 *l3;
  2718. for (i = 0; i < nr_objects; i++) {
  2719. void *objp = objpp[i];
  2720. struct slab *slabp;
  2721. slabp = virt_to_slab(objp);
  2722. l3 = cachep->nodelists[node];
  2723. list_del(&slabp->list);
  2724. check_spinlock_acquired_node(cachep, node);
  2725. check_slabp(cachep, slabp);
  2726. slab_put_obj(cachep, slabp, objp, node);
  2727. STATS_DEC_ACTIVE(cachep);
  2728. l3->free_objects++;
  2729. check_slabp(cachep, slabp);
  2730. /* fixup slab chains */
  2731. if (slabp->inuse == 0) {
  2732. if (l3->free_objects > l3->free_limit) {
  2733. l3->free_objects -= cachep->num;
  2734. /*
  2735. * It is safe to drop the lock. The slab is
  2736. * no longer linked to the cache. cachep
  2737. * cannot disappear - we are using it and
  2738. * all destruction of caches must be
  2739. * serialized properly by the user.
  2740. */
  2741. spin_unlock(&l3->list_lock);
  2742. slab_destroy(cachep, slabp);
  2743. spin_lock(&l3->list_lock);
  2744. } else {
  2745. list_add(&slabp->list, &l3->slabs_free);
  2746. }
  2747. } else {
  2748. /* Unconditionally move a slab to the end of the
  2749. * partial list on free - maximum time for the
  2750. * other objects to be freed, too.
  2751. */
  2752. list_add_tail(&slabp->list, &l3->slabs_partial);
  2753. }
  2754. }
  2755. }
  2756. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2757. {
  2758. int batchcount;
  2759. struct kmem_list3 *l3;
  2760. int node = numa_node_id();
  2761. batchcount = ac->batchcount;
  2762. #if DEBUG
  2763. BUG_ON(!batchcount || batchcount > ac->avail);
  2764. #endif
  2765. check_irq_off();
  2766. l3 = cachep->nodelists[node];
  2767. spin_lock_nested(&l3->list_lock, SINGLE_DEPTH_NESTING);
  2768. if (l3->shared) {
  2769. struct array_cache *shared_array = l3->shared;
  2770. int max = shared_array->limit - shared_array->avail;
  2771. if (max) {
  2772. if (batchcount > max)
  2773. batchcount = max;
  2774. memcpy(&(shared_array->entry[shared_array->avail]),
  2775. ac->entry, sizeof(void *) * batchcount);
  2776. shared_array->avail += batchcount;
  2777. goto free_done;
  2778. }
  2779. }
  2780. free_block(cachep, ac->entry, batchcount, node);
  2781. free_done:
  2782. #if STATS
  2783. {
  2784. int i = 0;
  2785. struct list_head *p;
  2786. p = l3->slabs_free.next;
  2787. while (p != &(l3->slabs_free)) {
  2788. struct slab *slabp;
  2789. slabp = list_entry(p, struct slab, list);
  2790. BUG_ON(slabp->inuse);
  2791. i++;
  2792. p = p->next;
  2793. }
  2794. STATS_SET_FREEABLE(cachep, i);
  2795. }
  2796. #endif
  2797. spin_unlock(&l3->list_lock);
  2798. ac->avail -= batchcount;
  2799. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2800. }
  2801. /*
  2802. * Release an obj back to its cache. If the obj has a constructed state, it must
  2803. * be in this state _before_ it is released. Called with disabled ints.
  2804. */
  2805. static void __cache_free(struct kmem_cache *cachep, void *objp, int nesting)
  2806. {
  2807. struct array_cache *ac = cpu_cache_get(cachep);
  2808. check_irq_off();
  2809. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2810. if (cache_free_alien(cachep, objp, nesting))
  2811. return;
  2812. if (likely(ac->avail < ac->limit)) {
  2813. STATS_INC_FREEHIT(cachep);
  2814. ac->entry[ac->avail++] = objp;
  2815. return;
  2816. } else {
  2817. STATS_INC_FREEMISS(cachep);
  2818. cache_flusharray(cachep, ac);
  2819. ac->entry[ac->avail++] = objp;
  2820. }
  2821. }
  2822. /**
  2823. * kmem_cache_alloc - Allocate an object
  2824. * @cachep: The cache to allocate from.
  2825. * @flags: See kmalloc().
  2826. *
  2827. * Allocate an object from this cache. The flags are only relevant
  2828. * if the cache has no available objects.
  2829. */
  2830. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2831. {
  2832. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2833. }
  2834. EXPORT_SYMBOL(kmem_cache_alloc);
  2835. /**
  2836. * kmem_cache_alloc - Allocate an object. The memory is set to zero.
  2837. * @cache: The cache to allocate from.
  2838. * @flags: See kmalloc().
  2839. *
  2840. * Allocate an object from this cache and set the allocated memory to zero.
  2841. * The flags are only relevant if the cache has no available objects.
  2842. */
  2843. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  2844. {
  2845. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  2846. if (ret)
  2847. memset(ret, 0, obj_size(cache));
  2848. return ret;
  2849. }
  2850. EXPORT_SYMBOL(kmem_cache_zalloc);
  2851. /**
  2852. * kmem_ptr_validate - check if an untrusted pointer might
  2853. * be a slab entry.
  2854. * @cachep: the cache we're checking against
  2855. * @ptr: pointer to validate
  2856. *
  2857. * This verifies that the untrusted pointer looks sane:
  2858. * it is _not_ a guarantee that the pointer is actually
  2859. * part of the slab cache in question, but it at least
  2860. * validates that the pointer can be dereferenced and
  2861. * looks half-way sane.
  2862. *
  2863. * Currently only used for dentry validation.
  2864. */
  2865. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2866. {
  2867. unsigned long addr = (unsigned long)ptr;
  2868. unsigned long min_addr = PAGE_OFFSET;
  2869. unsigned long align_mask = BYTES_PER_WORD - 1;
  2870. unsigned long size = cachep->buffer_size;
  2871. struct page *page;
  2872. if (unlikely(addr < min_addr))
  2873. goto out;
  2874. if (unlikely(addr > (unsigned long)high_memory - size))
  2875. goto out;
  2876. if (unlikely(addr & align_mask))
  2877. goto out;
  2878. if (unlikely(!kern_addr_valid(addr)))
  2879. goto out;
  2880. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2881. goto out;
  2882. page = virt_to_page(ptr);
  2883. if (unlikely(!PageSlab(page)))
  2884. goto out;
  2885. if (unlikely(page_get_cache(page) != cachep))
  2886. goto out;
  2887. return 1;
  2888. out:
  2889. return 0;
  2890. }
  2891. #ifdef CONFIG_NUMA
  2892. /**
  2893. * kmem_cache_alloc_node - Allocate an object on the specified node
  2894. * @cachep: The cache to allocate from.
  2895. * @flags: See kmalloc().
  2896. * @nodeid: node number of the target node.
  2897. *
  2898. * Identical to kmem_cache_alloc, except that this function is slow
  2899. * and can sleep. And it will allocate memory on the given node, which
  2900. * can improve the performance for cpu bound structures.
  2901. * New and improved: it will now make sure that the object gets
  2902. * put on the correct node list so that there is no false sharing.
  2903. */
  2904. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2905. {
  2906. unsigned long save_flags;
  2907. void *ptr;
  2908. cache_alloc_debugcheck_before(cachep, flags);
  2909. local_irq_save(save_flags);
  2910. if (nodeid == -1 || nodeid == numa_node_id() ||
  2911. !cachep->nodelists[nodeid])
  2912. ptr = ____cache_alloc(cachep, flags);
  2913. else
  2914. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2915. local_irq_restore(save_flags);
  2916. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2917. __builtin_return_address(0));
  2918. return ptr;
  2919. }
  2920. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2921. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2922. {
  2923. struct kmem_cache *cachep;
  2924. cachep = kmem_find_general_cachep(size, flags);
  2925. if (unlikely(cachep == NULL))
  2926. return NULL;
  2927. return kmem_cache_alloc_node(cachep, flags, node);
  2928. }
  2929. EXPORT_SYMBOL(kmalloc_node);
  2930. #endif
  2931. /**
  2932. * __do_kmalloc - allocate memory
  2933. * @size: how many bytes of memory are required.
  2934. * @flags: the type of memory to allocate (see kmalloc).
  2935. * @caller: function caller for debug tracking of the caller
  2936. */
  2937. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2938. void *caller)
  2939. {
  2940. struct kmem_cache *cachep;
  2941. /* If you want to save a few bytes .text space: replace
  2942. * __ with kmem_.
  2943. * Then kmalloc uses the uninlined functions instead of the inline
  2944. * functions.
  2945. */
  2946. cachep = __find_general_cachep(size, flags);
  2947. if (unlikely(cachep == NULL))
  2948. return NULL;
  2949. return __cache_alloc(cachep, flags, caller);
  2950. }
  2951. void *__kmalloc(size_t size, gfp_t flags)
  2952. {
  2953. #ifndef CONFIG_DEBUG_SLAB
  2954. return __do_kmalloc(size, flags, NULL);
  2955. #else
  2956. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2957. #endif
  2958. }
  2959. EXPORT_SYMBOL(__kmalloc);
  2960. #ifdef CONFIG_DEBUG_SLAB
  2961. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2962. {
  2963. return __do_kmalloc(size, flags, caller);
  2964. }
  2965. EXPORT_SYMBOL(__kmalloc_track_caller);
  2966. #endif
  2967. #ifdef CONFIG_SMP
  2968. /**
  2969. * __alloc_percpu - allocate one copy of the object for every present
  2970. * cpu in the system, zeroing them.
  2971. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2972. *
  2973. * @size: how many bytes of memory are required.
  2974. */
  2975. void *__alloc_percpu(size_t size)
  2976. {
  2977. int i;
  2978. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2979. if (!pdata)
  2980. return NULL;
  2981. /*
  2982. * Cannot use for_each_online_cpu since a cpu may come online
  2983. * and we have no way of figuring out how to fix the array
  2984. * that we have allocated then....
  2985. */
  2986. for_each_possible_cpu(i) {
  2987. int node = cpu_to_node(i);
  2988. if (node_online(node))
  2989. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2990. else
  2991. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2992. if (!pdata->ptrs[i])
  2993. goto unwind_oom;
  2994. memset(pdata->ptrs[i], 0, size);
  2995. }
  2996. /* Catch derefs w/o wrappers */
  2997. return (void *)(~(unsigned long)pdata);
  2998. unwind_oom:
  2999. while (--i >= 0) {
  3000. if (!cpu_possible(i))
  3001. continue;
  3002. kfree(pdata->ptrs[i]);
  3003. }
  3004. kfree(pdata);
  3005. return NULL;
  3006. }
  3007. EXPORT_SYMBOL(__alloc_percpu);
  3008. #endif
  3009. /**
  3010. * kmem_cache_free - Deallocate an object
  3011. * @cachep: The cache the allocation was from.
  3012. * @objp: The previously allocated object.
  3013. *
  3014. * Free an object which was previously allocated from this
  3015. * cache.
  3016. */
  3017. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3018. {
  3019. unsigned long flags;
  3020. BUG_ON(virt_to_cache(objp) != cachep);
  3021. local_irq_save(flags);
  3022. __cache_free(cachep, objp, 0);
  3023. local_irq_restore(flags);
  3024. }
  3025. EXPORT_SYMBOL(kmem_cache_free);
  3026. /**
  3027. * kfree - free previously allocated memory
  3028. * @objp: pointer returned by kmalloc.
  3029. *
  3030. * If @objp is NULL, no operation is performed.
  3031. *
  3032. * Don't free memory not originally allocated by kmalloc()
  3033. * or you will run into trouble.
  3034. */
  3035. void kfree(const void *objp)
  3036. {
  3037. struct kmem_cache *c;
  3038. unsigned long flags;
  3039. if (unlikely(!objp))
  3040. return;
  3041. local_irq_save(flags);
  3042. kfree_debugcheck(objp);
  3043. c = virt_to_cache(objp);
  3044. debug_check_no_locks_freed(objp, obj_size(c));
  3045. __cache_free(c, (void *)objp, 0);
  3046. local_irq_restore(flags);
  3047. }
  3048. EXPORT_SYMBOL(kfree);
  3049. #ifdef CONFIG_SMP
  3050. /**
  3051. * free_percpu - free previously allocated percpu memory
  3052. * @objp: pointer returned by alloc_percpu.
  3053. *
  3054. * Don't free memory not originally allocated by alloc_percpu()
  3055. * The complemented objp is to check for that.
  3056. */
  3057. void free_percpu(const void *objp)
  3058. {
  3059. int i;
  3060. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  3061. /*
  3062. * We allocate for all cpus so we cannot use for online cpu here.
  3063. */
  3064. for_each_possible_cpu(i)
  3065. kfree(p->ptrs[i]);
  3066. kfree(p);
  3067. }
  3068. EXPORT_SYMBOL(free_percpu);
  3069. #endif
  3070. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3071. {
  3072. return obj_size(cachep);
  3073. }
  3074. EXPORT_SYMBOL(kmem_cache_size);
  3075. const char *kmem_cache_name(struct kmem_cache *cachep)
  3076. {
  3077. return cachep->name;
  3078. }
  3079. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3080. /*
  3081. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3082. */
  3083. static int alloc_kmemlist(struct kmem_cache *cachep)
  3084. {
  3085. int node;
  3086. struct kmem_list3 *l3;
  3087. struct array_cache *new_shared;
  3088. struct array_cache **new_alien;
  3089. for_each_online_node(node) {
  3090. new_alien = alloc_alien_cache(node, cachep->limit);
  3091. if (!new_alien)
  3092. goto fail;
  3093. new_shared = alloc_arraycache(node,
  3094. cachep->shared*cachep->batchcount,
  3095. 0xbaadf00d);
  3096. if (!new_shared) {
  3097. free_alien_cache(new_alien);
  3098. goto fail;
  3099. }
  3100. l3 = cachep->nodelists[node];
  3101. if (l3) {
  3102. struct array_cache *shared = l3->shared;
  3103. spin_lock_irq(&l3->list_lock);
  3104. if (shared)
  3105. free_block(cachep, shared->entry,
  3106. shared->avail, node);
  3107. l3->shared = new_shared;
  3108. if (!l3->alien) {
  3109. l3->alien = new_alien;
  3110. new_alien = NULL;
  3111. }
  3112. l3->free_limit = (1 + nr_cpus_node(node)) *
  3113. cachep->batchcount + cachep->num;
  3114. spin_unlock_irq(&l3->list_lock);
  3115. kfree(shared);
  3116. free_alien_cache(new_alien);
  3117. continue;
  3118. }
  3119. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3120. if (!l3) {
  3121. free_alien_cache(new_alien);
  3122. kfree(new_shared);
  3123. goto fail;
  3124. }
  3125. kmem_list3_init(l3);
  3126. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3127. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3128. l3->shared = new_shared;
  3129. l3->alien = new_alien;
  3130. l3->free_limit = (1 + nr_cpus_node(node)) *
  3131. cachep->batchcount + cachep->num;
  3132. cachep->nodelists[node] = l3;
  3133. }
  3134. return 0;
  3135. fail:
  3136. if (!cachep->next.next) {
  3137. /* Cache is not active yet. Roll back what we did */
  3138. node--;
  3139. while (node >= 0) {
  3140. if (cachep->nodelists[node]) {
  3141. l3 = cachep->nodelists[node];
  3142. kfree(l3->shared);
  3143. free_alien_cache(l3->alien);
  3144. kfree(l3);
  3145. cachep->nodelists[node] = NULL;
  3146. }
  3147. node--;
  3148. }
  3149. }
  3150. return -ENOMEM;
  3151. }
  3152. struct ccupdate_struct {
  3153. struct kmem_cache *cachep;
  3154. struct array_cache *new[NR_CPUS];
  3155. };
  3156. static void do_ccupdate_local(void *info)
  3157. {
  3158. struct ccupdate_struct *new = info;
  3159. struct array_cache *old;
  3160. check_irq_off();
  3161. old = cpu_cache_get(new->cachep);
  3162. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3163. new->new[smp_processor_id()] = old;
  3164. }
  3165. /* Always called with the cache_chain_mutex held */
  3166. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3167. int batchcount, int shared)
  3168. {
  3169. struct ccupdate_struct new;
  3170. int i, err;
  3171. memset(&new.new, 0, sizeof(new.new));
  3172. for_each_online_cpu(i) {
  3173. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3174. batchcount);
  3175. if (!new.new[i]) {
  3176. for (i--; i >= 0; i--)
  3177. kfree(new.new[i]);
  3178. return -ENOMEM;
  3179. }
  3180. }
  3181. new.cachep = cachep;
  3182. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3183. check_irq_on();
  3184. cachep->batchcount = batchcount;
  3185. cachep->limit = limit;
  3186. cachep->shared = shared;
  3187. for_each_online_cpu(i) {
  3188. struct array_cache *ccold = new.new[i];
  3189. if (!ccold)
  3190. continue;
  3191. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3192. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3193. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3194. kfree(ccold);
  3195. }
  3196. err = alloc_kmemlist(cachep);
  3197. if (err) {
  3198. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3199. cachep->name, -err);
  3200. BUG();
  3201. }
  3202. return 0;
  3203. }
  3204. /* Called with cache_chain_mutex held always */
  3205. static void enable_cpucache(struct kmem_cache *cachep)
  3206. {
  3207. int err;
  3208. int limit, shared;
  3209. /*
  3210. * The head array serves three purposes:
  3211. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3212. * - reduce the number of spinlock operations.
  3213. * - reduce the number of linked list operations on the slab and
  3214. * bufctl chains: array operations are cheaper.
  3215. * The numbers are guessed, we should auto-tune as described by
  3216. * Bonwick.
  3217. */
  3218. if (cachep->buffer_size > 131072)
  3219. limit = 1;
  3220. else if (cachep->buffer_size > PAGE_SIZE)
  3221. limit = 8;
  3222. else if (cachep->buffer_size > 1024)
  3223. limit = 24;
  3224. else if (cachep->buffer_size > 256)
  3225. limit = 54;
  3226. else
  3227. limit = 120;
  3228. /*
  3229. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3230. * allocation behaviour: Most allocs on one cpu, most free operations
  3231. * on another cpu. For these cases, an efficient object passing between
  3232. * cpus is necessary. This is provided by a shared array. The array
  3233. * replaces Bonwick's magazine layer.
  3234. * On uniprocessor, it's functionally equivalent (but less efficient)
  3235. * to a larger limit. Thus disabled by default.
  3236. */
  3237. shared = 0;
  3238. #ifdef CONFIG_SMP
  3239. if (cachep->buffer_size <= PAGE_SIZE)
  3240. shared = 8;
  3241. #endif
  3242. #if DEBUG
  3243. /*
  3244. * With debugging enabled, large batchcount lead to excessively long
  3245. * periods with disabled local interrupts. Limit the batchcount
  3246. */
  3247. if (limit > 32)
  3248. limit = 32;
  3249. #endif
  3250. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3251. if (err)
  3252. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3253. cachep->name, -err);
  3254. }
  3255. /*
  3256. * Drain an array if it contains any elements taking the l3 lock only if
  3257. * necessary. Note that the l3 listlock also protects the array_cache
  3258. * if drain_array() is used on the shared array.
  3259. */
  3260. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3261. struct array_cache *ac, int force, int node)
  3262. {
  3263. int tofree;
  3264. if (!ac || !ac->avail)
  3265. return;
  3266. if (ac->touched && !force) {
  3267. ac->touched = 0;
  3268. } else {
  3269. spin_lock_irq(&l3->list_lock);
  3270. if (ac->avail) {
  3271. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3272. if (tofree > ac->avail)
  3273. tofree = (ac->avail + 1) / 2;
  3274. free_block(cachep, ac->entry, tofree, node);
  3275. ac->avail -= tofree;
  3276. memmove(ac->entry, &(ac->entry[tofree]),
  3277. sizeof(void *) * ac->avail);
  3278. }
  3279. spin_unlock_irq(&l3->list_lock);
  3280. }
  3281. }
  3282. /**
  3283. * cache_reap - Reclaim memory from caches.
  3284. * @unused: unused parameter
  3285. *
  3286. * Called from workqueue/eventd every few seconds.
  3287. * Purpose:
  3288. * - clear the per-cpu caches for this CPU.
  3289. * - return freeable pages to the main free memory pool.
  3290. *
  3291. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3292. * again on the next iteration.
  3293. */
  3294. static void cache_reap(void *unused)
  3295. {
  3296. struct kmem_cache *searchp;
  3297. struct kmem_list3 *l3;
  3298. int node = numa_node_id();
  3299. if (!mutex_trylock(&cache_chain_mutex)) {
  3300. /* Give up. Setup the next iteration. */
  3301. schedule_delayed_work(&__get_cpu_var(reap_work),
  3302. REAPTIMEOUT_CPUC);
  3303. return;
  3304. }
  3305. list_for_each_entry(searchp, &cache_chain, next) {
  3306. check_irq_on();
  3307. /*
  3308. * We only take the l3 lock if absolutely necessary and we
  3309. * have established with reasonable certainty that
  3310. * we can do some work if the lock was obtained.
  3311. */
  3312. l3 = searchp->nodelists[node];
  3313. reap_alien(searchp, l3);
  3314. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3315. /*
  3316. * These are racy checks but it does not matter
  3317. * if we skip one check or scan twice.
  3318. */
  3319. if (time_after(l3->next_reap, jiffies))
  3320. goto next;
  3321. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3322. drain_array(searchp, l3, l3->shared, 0, node);
  3323. if (l3->free_touched)
  3324. l3->free_touched = 0;
  3325. else {
  3326. int freed;
  3327. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3328. 5 * searchp->num - 1) / (5 * searchp->num));
  3329. STATS_ADD_REAPED(searchp, freed);
  3330. }
  3331. next:
  3332. cond_resched();
  3333. }
  3334. check_irq_on();
  3335. mutex_unlock(&cache_chain_mutex);
  3336. next_reap_node();
  3337. refresh_cpu_vm_stats(smp_processor_id());
  3338. /* Set up the next iteration */
  3339. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3340. }
  3341. #ifdef CONFIG_PROC_FS
  3342. static void print_slabinfo_header(struct seq_file *m)
  3343. {
  3344. /*
  3345. * Output format version, so at least we can change it
  3346. * without _too_ many complaints.
  3347. */
  3348. #if STATS
  3349. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3350. #else
  3351. seq_puts(m, "slabinfo - version: 2.1\n");
  3352. #endif
  3353. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3354. "<objperslab> <pagesperslab>");
  3355. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3356. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3357. #if STATS
  3358. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3359. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3360. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3361. #endif
  3362. seq_putc(m, '\n');
  3363. }
  3364. static void *s_start(struct seq_file *m, loff_t *pos)
  3365. {
  3366. loff_t n = *pos;
  3367. struct list_head *p;
  3368. mutex_lock(&cache_chain_mutex);
  3369. if (!n)
  3370. print_slabinfo_header(m);
  3371. p = cache_chain.next;
  3372. while (n--) {
  3373. p = p->next;
  3374. if (p == &cache_chain)
  3375. return NULL;
  3376. }
  3377. return list_entry(p, struct kmem_cache, next);
  3378. }
  3379. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3380. {
  3381. struct kmem_cache *cachep = p;
  3382. ++*pos;
  3383. return cachep->next.next == &cache_chain ?
  3384. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3385. }
  3386. static void s_stop(struct seq_file *m, void *p)
  3387. {
  3388. mutex_unlock(&cache_chain_mutex);
  3389. }
  3390. static int s_show(struct seq_file *m, void *p)
  3391. {
  3392. struct kmem_cache *cachep = p;
  3393. struct slab *slabp;
  3394. unsigned long active_objs;
  3395. unsigned long num_objs;
  3396. unsigned long active_slabs = 0;
  3397. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3398. const char *name;
  3399. char *error = NULL;
  3400. int node;
  3401. struct kmem_list3 *l3;
  3402. active_objs = 0;
  3403. num_slabs = 0;
  3404. for_each_online_node(node) {
  3405. l3 = cachep->nodelists[node];
  3406. if (!l3)
  3407. continue;
  3408. check_irq_on();
  3409. spin_lock_irq(&l3->list_lock);
  3410. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3411. if (slabp->inuse != cachep->num && !error)
  3412. error = "slabs_full accounting error";
  3413. active_objs += cachep->num;
  3414. active_slabs++;
  3415. }
  3416. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3417. if (slabp->inuse == cachep->num && !error)
  3418. error = "slabs_partial inuse accounting error";
  3419. if (!slabp->inuse && !error)
  3420. error = "slabs_partial/inuse accounting error";
  3421. active_objs += slabp->inuse;
  3422. active_slabs++;
  3423. }
  3424. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3425. if (slabp->inuse && !error)
  3426. error = "slabs_free/inuse accounting error";
  3427. num_slabs++;
  3428. }
  3429. free_objects += l3->free_objects;
  3430. if (l3->shared)
  3431. shared_avail += l3->shared->avail;
  3432. spin_unlock_irq(&l3->list_lock);
  3433. }
  3434. num_slabs += active_slabs;
  3435. num_objs = num_slabs * cachep->num;
  3436. if (num_objs - active_objs != free_objects && !error)
  3437. error = "free_objects accounting error";
  3438. name = cachep->name;
  3439. if (error)
  3440. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3441. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3442. name, active_objs, num_objs, cachep->buffer_size,
  3443. cachep->num, (1 << cachep->gfporder));
  3444. seq_printf(m, " : tunables %4u %4u %4u",
  3445. cachep->limit, cachep->batchcount, cachep->shared);
  3446. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3447. active_slabs, num_slabs, shared_avail);
  3448. #if STATS
  3449. { /* list3 stats */
  3450. unsigned long high = cachep->high_mark;
  3451. unsigned long allocs = cachep->num_allocations;
  3452. unsigned long grown = cachep->grown;
  3453. unsigned long reaped = cachep->reaped;
  3454. unsigned long errors = cachep->errors;
  3455. unsigned long max_freeable = cachep->max_freeable;
  3456. unsigned long node_allocs = cachep->node_allocs;
  3457. unsigned long node_frees = cachep->node_frees;
  3458. unsigned long overflows = cachep->node_overflow;
  3459. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3460. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3461. reaped, errors, max_freeable, node_allocs,
  3462. node_frees, overflows);
  3463. }
  3464. /* cpu stats */
  3465. {
  3466. unsigned long allochit = atomic_read(&cachep->allochit);
  3467. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3468. unsigned long freehit = atomic_read(&cachep->freehit);
  3469. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3470. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3471. allochit, allocmiss, freehit, freemiss);
  3472. }
  3473. #endif
  3474. seq_putc(m, '\n');
  3475. return 0;
  3476. }
  3477. /*
  3478. * slabinfo_op - iterator that generates /proc/slabinfo
  3479. *
  3480. * Output layout:
  3481. * cache-name
  3482. * num-active-objs
  3483. * total-objs
  3484. * object size
  3485. * num-active-slabs
  3486. * total-slabs
  3487. * num-pages-per-slab
  3488. * + further values on SMP and with statistics enabled
  3489. */
  3490. struct seq_operations slabinfo_op = {
  3491. .start = s_start,
  3492. .next = s_next,
  3493. .stop = s_stop,
  3494. .show = s_show,
  3495. };
  3496. #define MAX_SLABINFO_WRITE 128
  3497. /**
  3498. * slabinfo_write - Tuning for the slab allocator
  3499. * @file: unused
  3500. * @buffer: user buffer
  3501. * @count: data length
  3502. * @ppos: unused
  3503. */
  3504. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3505. size_t count, loff_t *ppos)
  3506. {
  3507. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3508. int limit, batchcount, shared, res;
  3509. struct kmem_cache *cachep;
  3510. if (count > MAX_SLABINFO_WRITE)
  3511. return -EINVAL;
  3512. if (copy_from_user(&kbuf, buffer, count))
  3513. return -EFAULT;
  3514. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3515. tmp = strchr(kbuf, ' ');
  3516. if (!tmp)
  3517. return -EINVAL;
  3518. *tmp = '\0';
  3519. tmp++;
  3520. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3521. return -EINVAL;
  3522. /* Find the cache in the chain of caches. */
  3523. mutex_lock(&cache_chain_mutex);
  3524. res = -EINVAL;
  3525. list_for_each_entry(cachep, &cache_chain, next) {
  3526. if (!strcmp(cachep->name, kbuf)) {
  3527. if (limit < 1 || batchcount < 1 ||
  3528. batchcount > limit || shared < 0) {
  3529. res = 0;
  3530. } else {
  3531. res = do_tune_cpucache(cachep, limit,
  3532. batchcount, shared);
  3533. }
  3534. break;
  3535. }
  3536. }
  3537. mutex_unlock(&cache_chain_mutex);
  3538. if (res >= 0)
  3539. res = count;
  3540. return res;
  3541. }
  3542. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3543. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3544. {
  3545. loff_t n = *pos;
  3546. struct list_head *p;
  3547. mutex_lock(&cache_chain_mutex);
  3548. p = cache_chain.next;
  3549. while (n--) {
  3550. p = p->next;
  3551. if (p == &cache_chain)
  3552. return NULL;
  3553. }
  3554. return list_entry(p, struct kmem_cache, next);
  3555. }
  3556. static inline int add_caller(unsigned long *n, unsigned long v)
  3557. {
  3558. unsigned long *p;
  3559. int l;
  3560. if (!v)
  3561. return 1;
  3562. l = n[1];
  3563. p = n + 2;
  3564. while (l) {
  3565. int i = l/2;
  3566. unsigned long *q = p + 2 * i;
  3567. if (*q == v) {
  3568. q[1]++;
  3569. return 1;
  3570. }
  3571. if (*q > v) {
  3572. l = i;
  3573. } else {
  3574. p = q + 2;
  3575. l -= i + 1;
  3576. }
  3577. }
  3578. if (++n[1] == n[0])
  3579. return 0;
  3580. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3581. p[0] = v;
  3582. p[1] = 1;
  3583. return 1;
  3584. }
  3585. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3586. {
  3587. void *p;
  3588. int i;
  3589. if (n[0] == n[1])
  3590. return;
  3591. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3592. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3593. continue;
  3594. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3595. return;
  3596. }
  3597. }
  3598. static void show_symbol(struct seq_file *m, unsigned long address)
  3599. {
  3600. #ifdef CONFIG_KALLSYMS
  3601. char *modname;
  3602. const char *name;
  3603. unsigned long offset, size;
  3604. char namebuf[KSYM_NAME_LEN+1];
  3605. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3606. if (name) {
  3607. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3608. if (modname)
  3609. seq_printf(m, " [%s]", modname);
  3610. return;
  3611. }
  3612. #endif
  3613. seq_printf(m, "%p", (void *)address);
  3614. }
  3615. static int leaks_show(struct seq_file *m, void *p)
  3616. {
  3617. struct kmem_cache *cachep = p;
  3618. struct slab *slabp;
  3619. struct kmem_list3 *l3;
  3620. const char *name;
  3621. unsigned long *n = m->private;
  3622. int node;
  3623. int i;
  3624. if (!(cachep->flags & SLAB_STORE_USER))
  3625. return 0;
  3626. if (!(cachep->flags & SLAB_RED_ZONE))
  3627. return 0;
  3628. /* OK, we can do it */
  3629. n[1] = 0;
  3630. for_each_online_node(node) {
  3631. l3 = cachep->nodelists[node];
  3632. if (!l3)
  3633. continue;
  3634. check_irq_on();
  3635. spin_lock_irq(&l3->list_lock);
  3636. list_for_each_entry(slabp, &l3->slabs_full, list)
  3637. handle_slab(n, cachep, slabp);
  3638. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3639. handle_slab(n, cachep, slabp);
  3640. spin_unlock_irq(&l3->list_lock);
  3641. }
  3642. name = cachep->name;
  3643. if (n[0] == n[1]) {
  3644. /* Increase the buffer size */
  3645. mutex_unlock(&cache_chain_mutex);
  3646. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3647. if (!m->private) {
  3648. /* Too bad, we are really out */
  3649. m->private = n;
  3650. mutex_lock(&cache_chain_mutex);
  3651. return -ENOMEM;
  3652. }
  3653. *(unsigned long *)m->private = n[0] * 2;
  3654. kfree(n);
  3655. mutex_lock(&cache_chain_mutex);
  3656. /* Now make sure this entry will be retried */
  3657. m->count = m->size;
  3658. return 0;
  3659. }
  3660. for (i = 0; i < n[1]; i++) {
  3661. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3662. show_symbol(m, n[2*i+2]);
  3663. seq_putc(m, '\n');
  3664. }
  3665. return 0;
  3666. }
  3667. struct seq_operations slabstats_op = {
  3668. .start = leaks_start,
  3669. .next = s_next,
  3670. .stop = s_stop,
  3671. .show = leaks_show,
  3672. };
  3673. #endif
  3674. #endif
  3675. /**
  3676. * ksize - get the actual amount of memory allocated for a given object
  3677. * @objp: Pointer to the object
  3678. *
  3679. * kmalloc may internally round up allocations and return more memory
  3680. * than requested. ksize() can be used to determine the actual amount of
  3681. * memory allocated. The caller may use this additional memory, even though
  3682. * a smaller amount of memory was initially specified with the kmalloc call.
  3683. * The caller must guarantee that objp points to a valid object previously
  3684. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3685. * must not be freed during the duration of the call.
  3686. */
  3687. unsigned int ksize(const void *objp)
  3688. {
  3689. if (unlikely(objp == NULL))
  3690. return 0;
  3691. return obj_size(virt_to_cache(objp));
  3692. }