filemap.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478
  1. /*
  2. * linux/mm/filemap.c
  3. *
  4. * Copyright (C) 1994-1999 Linus Torvalds
  5. */
  6. /*
  7. * This file handles the generic file mmap semantics used by
  8. * most "normal" filesystems (but you don't /have/ to use this:
  9. * the NFS filesystem used to do this differently, for example)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/compiler.h>
  14. #include <linux/fs.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/aio.h>
  17. #include <linux/capability.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <linux/mman.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/hash.h>
  26. #include <linux/writeback.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/security.h>
  30. #include <linux/syscalls.h>
  31. #include <linux/cpuset.h>
  32. #include "filemap.h"
  33. #include "internal.h"
  34. /*
  35. * FIXME: remove all knowledge of the buffer layer from the core VM
  36. */
  37. #include <linux/buffer_head.h> /* for generic_osync_inode */
  38. #include <asm/mman.h>
  39. static ssize_t
  40. generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
  41. loff_t offset, unsigned long nr_segs);
  42. /*
  43. * Shared mappings implemented 30.11.1994. It's not fully working yet,
  44. * though.
  45. *
  46. * Shared mappings now work. 15.8.1995 Bruno.
  47. *
  48. * finished 'unifying' the page and buffer cache and SMP-threaded the
  49. * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  50. *
  51. * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  52. */
  53. /*
  54. * Lock ordering:
  55. *
  56. * ->i_mmap_lock (vmtruncate)
  57. * ->private_lock (__free_pte->__set_page_dirty_buffers)
  58. * ->swap_lock (exclusive_swap_page, others)
  59. * ->mapping->tree_lock
  60. *
  61. * ->i_mutex
  62. * ->i_mmap_lock (truncate->unmap_mapping_range)
  63. *
  64. * ->mmap_sem
  65. * ->i_mmap_lock
  66. * ->page_table_lock or pte_lock (various, mainly in memory.c)
  67. * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
  68. *
  69. * ->mmap_sem
  70. * ->lock_page (access_process_vm)
  71. *
  72. * ->mmap_sem
  73. * ->i_mutex (msync)
  74. *
  75. * ->i_mutex
  76. * ->i_alloc_sem (various)
  77. *
  78. * ->inode_lock
  79. * ->sb_lock (fs/fs-writeback.c)
  80. * ->mapping->tree_lock (__sync_single_inode)
  81. *
  82. * ->i_mmap_lock
  83. * ->anon_vma.lock (vma_adjust)
  84. *
  85. * ->anon_vma.lock
  86. * ->page_table_lock or pte_lock (anon_vma_prepare and various)
  87. *
  88. * ->page_table_lock or pte_lock
  89. * ->swap_lock (try_to_unmap_one)
  90. * ->private_lock (try_to_unmap_one)
  91. * ->tree_lock (try_to_unmap_one)
  92. * ->zone.lru_lock (follow_page->mark_page_accessed)
  93. * ->zone.lru_lock (check_pte_range->isolate_lru_page)
  94. * ->private_lock (page_remove_rmap->set_page_dirty)
  95. * ->tree_lock (page_remove_rmap->set_page_dirty)
  96. * ->inode_lock (page_remove_rmap->set_page_dirty)
  97. * ->inode_lock (zap_pte_range->set_page_dirty)
  98. * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
  99. *
  100. * ->task->proc_lock
  101. * ->dcache_lock (proc_pid_lookup)
  102. */
  103. /*
  104. * Remove a page from the page cache and free it. Caller has to make
  105. * sure the page is locked and that nobody else uses it - or that usage
  106. * is safe. The caller must hold a write_lock on the mapping's tree_lock.
  107. */
  108. void __remove_from_page_cache(struct page *page)
  109. {
  110. struct address_space *mapping = page->mapping;
  111. radix_tree_delete(&mapping->page_tree, page->index);
  112. page->mapping = NULL;
  113. mapping->nrpages--;
  114. __dec_zone_page_state(page, NR_FILE_PAGES);
  115. }
  116. void remove_from_page_cache(struct page *page)
  117. {
  118. struct address_space *mapping = page->mapping;
  119. BUG_ON(!PageLocked(page));
  120. write_lock_irq(&mapping->tree_lock);
  121. __remove_from_page_cache(page);
  122. write_unlock_irq(&mapping->tree_lock);
  123. }
  124. static int sync_page(void *word)
  125. {
  126. struct address_space *mapping;
  127. struct page *page;
  128. page = container_of((unsigned long *)word, struct page, flags);
  129. /*
  130. * page_mapping() is being called without PG_locked held.
  131. * Some knowledge of the state and use of the page is used to
  132. * reduce the requirements down to a memory barrier.
  133. * The danger here is of a stale page_mapping() return value
  134. * indicating a struct address_space different from the one it's
  135. * associated with when it is associated with one.
  136. * After smp_mb(), it's either the correct page_mapping() for
  137. * the page, or an old page_mapping() and the page's own
  138. * page_mapping() has gone NULL.
  139. * The ->sync_page() address_space operation must tolerate
  140. * page_mapping() going NULL. By an amazing coincidence,
  141. * this comes about because none of the users of the page
  142. * in the ->sync_page() methods make essential use of the
  143. * page_mapping(), merely passing the page down to the backing
  144. * device's unplug functions when it's non-NULL, which in turn
  145. * ignore it for all cases but swap, where only page_private(page) is
  146. * of interest. When page_mapping() does go NULL, the entire
  147. * call stack gracefully ignores the page and returns.
  148. * -- wli
  149. */
  150. smp_mb();
  151. mapping = page_mapping(page);
  152. if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
  153. mapping->a_ops->sync_page(page);
  154. io_schedule();
  155. return 0;
  156. }
  157. /**
  158. * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  159. * @mapping: address space structure to write
  160. * @start: offset in bytes where the range starts
  161. * @end: offset in bytes where the range ends (inclusive)
  162. * @sync_mode: enable synchronous operation
  163. *
  164. * Start writeback against all of a mapping's dirty pages that lie
  165. * within the byte offsets <start, end> inclusive.
  166. *
  167. * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  168. * opposed to a regular memory cleansing writeback. The difference between
  169. * these two operations is that if a dirty page/buffer is encountered, it must
  170. * be waited upon, and not just skipped over.
  171. */
  172. int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  173. loff_t end, int sync_mode)
  174. {
  175. int ret;
  176. struct writeback_control wbc = {
  177. .sync_mode = sync_mode,
  178. .nr_to_write = mapping->nrpages * 2,
  179. .range_start = start,
  180. .range_end = end,
  181. };
  182. if (!mapping_cap_writeback_dirty(mapping))
  183. return 0;
  184. ret = do_writepages(mapping, &wbc);
  185. return ret;
  186. }
  187. static inline int __filemap_fdatawrite(struct address_space *mapping,
  188. int sync_mode)
  189. {
  190. return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
  191. }
  192. int filemap_fdatawrite(struct address_space *mapping)
  193. {
  194. return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
  195. }
  196. EXPORT_SYMBOL(filemap_fdatawrite);
  197. static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  198. loff_t end)
  199. {
  200. return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
  201. }
  202. /**
  203. * filemap_flush - mostly a non-blocking flush
  204. * @mapping: target address_space
  205. *
  206. * This is a mostly non-blocking flush. Not suitable for data-integrity
  207. * purposes - I/O may not be started against all dirty pages.
  208. */
  209. int filemap_flush(struct address_space *mapping)
  210. {
  211. return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
  212. }
  213. EXPORT_SYMBOL(filemap_flush);
  214. /**
  215. * wait_on_page_writeback_range - wait for writeback to complete
  216. * @mapping: target address_space
  217. * @start: beginning page index
  218. * @end: ending page index
  219. *
  220. * Wait for writeback to complete against pages indexed by start->end
  221. * inclusive
  222. */
  223. int wait_on_page_writeback_range(struct address_space *mapping,
  224. pgoff_t start, pgoff_t end)
  225. {
  226. struct pagevec pvec;
  227. int nr_pages;
  228. int ret = 0;
  229. pgoff_t index;
  230. if (end < start)
  231. return 0;
  232. pagevec_init(&pvec, 0);
  233. index = start;
  234. while ((index <= end) &&
  235. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  236. PAGECACHE_TAG_WRITEBACK,
  237. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  238. unsigned i;
  239. for (i = 0; i < nr_pages; i++) {
  240. struct page *page = pvec.pages[i];
  241. /* until radix tree lookup accepts end_index */
  242. if (page->index > end)
  243. continue;
  244. wait_on_page_writeback(page);
  245. if (PageError(page))
  246. ret = -EIO;
  247. }
  248. pagevec_release(&pvec);
  249. cond_resched();
  250. }
  251. /* Check for outstanding write errors */
  252. if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  253. ret = -ENOSPC;
  254. if (test_and_clear_bit(AS_EIO, &mapping->flags))
  255. ret = -EIO;
  256. return ret;
  257. }
  258. /**
  259. * sync_page_range - write and wait on all pages in the passed range
  260. * @inode: target inode
  261. * @mapping: target address_space
  262. * @pos: beginning offset in pages to write
  263. * @count: number of bytes to write
  264. *
  265. * Write and wait upon all the pages in the passed range. This is a "data
  266. * integrity" operation. It waits upon in-flight writeout before starting and
  267. * waiting upon new writeout. If there was an IO error, return it.
  268. *
  269. * We need to re-take i_mutex during the generic_osync_inode list walk because
  270. * it is otherwise livelockable.
  271. */
  272. int sync_page_range(struct inode *inode, struct address_space *mapping,
  273. loff_t pos, loff_t count)
  274. {
  275. pgoff_t start = pos >> PAGE_CACHE_SHIFT;
  276. pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
  277. int ret;
  278. if (!mapping_cap_writeback_dirty(mapping) || !count)
  279. return 0;
  280. ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
  281. if (ret == 0) {
  282. mutex_lock(&inode->i_mutex);
  283. ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
  284. mutex_unlock(&inode->i_mutex);
  285. }
  286. if (ret == 0)
  287. ret = wait_on_page_writeback_range(mapping, start, end);
  288. return ret;
  289. }
  290. EXPORT_SYMBOL(sync_page_range);
  291. /**
  292. * sync_page_range_nolock
  293. * @inode: target inode
  294. * @mapping: target address_space
  295. * @pos: beginning offset in pages to write
  296. * @count: number of bytes to write
  297. *
  298. * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
  299. * as it forces O_SYNC writers to different parts of the same file
  300. * to be serialised right until io completion.
  301. */
  302. int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
  303. loff_t pos, loff_t count)
  304. {
  305. pgoff_t start = pos >> PAGE_CACHE_SHIFT;
  306. pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
  307. int ret;
  308. if (!mapping_cap_writeback_dirty(mapping) || !count)
  309. return 0;
  310. ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
  311. if (ret == 0)
  312. ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
  313. if (ret == 0)
  314. ret = wait_on_page_writeback_range(mapping, start, end);
  315. return ret;
  316. }
  317. EXPORT_SYMBOL(sync_page_range_nolock);
  318. /**
  319. * filemap_fdatawait - wait for all under-writeback pages to complete
  320. * @mapping: address space structure to wait for
  321. *
  322. * Walk the list of under-writeback pages of the given address space
  323. * and wait for all of them.
  324. */
  325. int filemap_fdatawait(struct address_space *mapping)
  326. {
  327. loff_t i_size = i_size_read(mapping->host);
  328. if (i_size == 0)
  329. return 0;
  330. return wait_on_page_writeback_range(mapping, 0,
  331. (i_size - 1) >> PAGE_CACHE_SHIFT);
  332. }
  333. EXPORT_SYMBOL(filemap_fdatawait);
  334. int filemap_write_and_wait(struct address_space *mapping)
  335. {
  336. int err = 0;
  337. if (mapping->nrpages) {
  338. err = filemap_fdatawrite(mapping);
  339. /*
  340. * Even if the above returned error, the pages may be
  341. * written partially (e.g. -ENOSPC), so we wait for it.
  342. * But the -EIO is special case, it may indicate the worst
  343. * thing (e.g. bug) happened, so we avoid waiting for it.
  344. */
  345. if (err != -EIO) {
  346. int err2 = filemap_fdatawait(mapping);
  347. if (!err)
  348. err = err2;
  349. }
  350. }
  351. return err;
  352. }
  353. EXPORT_SYMBOL(filemap_write_and_wait);
  354. /**
  355. * filemap_write_and_wait_range - write out & wait on a file range
  356. * @mapping: the address_space for the pages
  357. * @lstart: offset in bytes where the range starts
  358. * @lend: offset in bytes where the range ends (inclusive)
  359. *
  360. * Write out and wait upon file offsets lstart->lend, inclusive.
  361. *
  362. * Note that `lend' is inclusive (describes the last byte to be written) so
  363. * that this function can be used to write to the very end-of-file (end = -1).
  364. */
  365. int filemap_write_and_wait_range(struct address_space *mapping,
  366. loff_t lstart, loff_t lend)
  367. {
  368. int err = 0;
  369. if (mapping->nrpages) {
  370. err = __filemap_fdatawrite_range(mapping, lstart, lend,
  371. WB_SYNC_ALL);
  372. /* See comment of filemap_write_and_wait() */
  373. if (err != -EIO) {
  374. int err2 = wait_on_page_writeback_range(mapping,
  375. lstart >> PAGE_CACHE_SHIFT,
  376. lend >> PAGE_CACHE_SHIFT);
  377. if (!err)
  378. err = err2;
  379. }
  380. }
  381. return err;
  382. }
  383. /**
  384. * add_to_page_cache - add newly allocated pagecache pages
  385. * @page: page to add
  386. * @mapping: the page's address_space
  387. * @offset: page index
  388. * @gfp_mask: page allocation mode
  389. *
  390. * This function is used to add newly allocated pagecache pages;
  391. * the page is new, so we can just run SetPageLocked() against it.
  392. * The other page state flags were set by rmqueue().
  393. *
  394. * This function does not add the page to the LRU. The caller must do that.
  395. */
  396. int add_to_page_cache(struct page *page, struct address_space *mapping,
  397. pgoff_t offset, gfp_t gfp_mask)
  398. {
  399. int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  400. if (error == 0) {
  401. write_lock_irq(&mapping->tree_lock);
  402. error = radix_tree_insert(&mapping->page_tree, offset, page);
  403. if (!error) {
  404. page_cache_get(page);
  405. SetPageLocked(page);
  406. page->mapping = mapping;
  407. page->index = offset;
  408. mapping->nrpages++;
  409. __inc_zone_page_state(page, NR_FILE_PAGES);
  410. }
  411. write_unlock_irq(&mapping->tree_lock);
  412. radix_tree_preload_end();
  413. }
  414. return error;
  415. }
  416. EXPORT_SYMBOL(add_to_page_cache);
  417. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  418. pgoff_t offset, gfp_t gfp_mask)
  419. {
  420. int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
  421. if (ret == 0)
  422. lru_cache_add(page);
  423. return ret;
  424. }
  425. #ifdef CONFIG_NUMA
  426. struct page *page_cache_alloc(struct address_space *x)
  427. {
  428. if (cpuset_do_page_mem_spread()) {
  429. int n = cpuset_mem_spread_node();
  430. return alloc_pages_node(n, mapping_gfp_mask(x), 0);
  431. }
  432. return alloc_pages(mapping_gfp_mask(x), 0);
  433. }
  434. EXPORT_SYMBOL(page_cache_alloc);
  435. struct page *page_cache_alloc_cold(struct address_space *x)
  436. {
  437. if (cpuset_do_page_mem_spread()) {
  438. int n = cpuset_mem_spread_node();
  439. return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
  440. }
  441. return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
  442. }
  443. EXPORT_SYMBOL(page_cache_alloc_cold);
  444. #endif
  445. /*
  446. * In order to wait for pages to become available there must be
  447. * waitqueues associated with pages. By using a hash table of
  448. * waitqueues where the bucket discipline is to maintain all
  449. * waiters on the same queue and wake all when any of the pages
  450. * become available, and for the woken contexts to check to be
  451. * sure the appropriate page became available, this saves space
  452. * at a cost of "thundering herd" phenomena during rare hash
  453. * collisions.
  454. */
  455. static wait_queue_head_t *page_waitqueue(struct page *page)
  456. {
  457. const struct zone *zone = page_zone(page);
  458. return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
  459. }
  460. static inline void wake_up_page(struct page *page, int bit)
  461. {
  462. __wake_up_bit(page_waitqueue(page), &page->flags, bit);
  463. }
  464. void fastcall wait_on_page_bit(struct page *page, int bit_nr)
  465. {
  466. DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  467. if (test_bit(bit_nr, &page->flags))
  468. __wait_on_bit(page_waitqueue(page), &wait, sync_page,
  469. TASK_UNINTERRUPTIBLE);
  470. }
  471. EXPORT_SYMBOL(wait_on_page_bit);
  472. /**
  473. * unlock_page - unlock a locked page
  474. * @page: the page
  475. *
  476. * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
  477. * Also wakes sleepers in wait_on_page_writeback() because the wakeup
  478. * mechananism between PageLocked pages and PageWriteback pages is shared.
  479. * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
  480. *
  481. * The first mb is necessary to safely close the critical section opened by the
  482. * TestSetPageLocked(), the second mb is necessary to enforce ordering between
  483. * the clear_bit and the read of the waitqueue (to avoid SMP races with a
  484. * parallel wait_on_page_locked()).
  485. */
  486. void fastcall unlock_page(struct page *page)
  487. {
  488. smp_mb__before_clear_bit();
  489. if (!TestClearPageLocked(page))
  490. BUG();
  491. smp_mb__after_clear_bit();
  492. wake_up_page(page, PG_locked);
  493. }
  494. EXPORT_SYMBOL(unlock_page);
  495. /**
  496. * end_page_writeback - end writeback against a page
  497. * @page: the page
  498. */
  499. void end_page_writeback(struct page *page)
  500. {
  501. if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
  502. if (!test_clear_page_writeback(page))
  503. BUG();
  504. }
  505. smp_mb__after_clear_bit();
  506. wake_up_page(page, PG_writeback);
  507. }
  508. EXPORT_SYMBOL(end_page_writeback);
  509. /**
  510. * __lock_page - get a lock on the page, assuming we need to sleep to get it
  511. * @page: the page to lock
  512. *
  513. * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
  514. * random driver's requestfn sets TASK_RUNNING, we could busywait. However
  515. * chances are that on the second loop, the block layer's plug list is empty,
  516. * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
  517. */
  518. void fastcall __lock_page(struct page *page)
  519. {
  520. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  521. __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
  522. TASK_UNINTERRUPTIBLE);
  523. }
  524. EXPORT_SYMBOL(__lock_page);
  525. /**
  526. * find_get_page - find and get a page reference
  527. * @mapping: the address_space to search
  528. * @offset: the page index
  529. *
  530. * A rather lightweight function, finding and getting a reference to a
  531. * hashed page atomically.
  532. */
  533. struct page * find_get_page(struct address_space *mapping, unsigned long offset)
  534. {
  535. struct page *page;
  536. read_lock_irq(&mapping->tree_lock);
  537. page = radix_tree_lookup(&mapping->page_tree, offset);
  538. if (page)
  539. page_cache_get(page);
  540. read_unlock_irq(&mapping->tree_lock);
  541. return page;
  542. }
  543. EXPORT_SYMBOL(find_get_page);
  544. /**
  545. * find_trylock_page - find and lock a page
  546. * @mapping: the address_space to search
  547. * @offset: the page index
  548. *
  549. * Same as find_get_page(), but trylock it instead of incrementing the count.
  550. */
  551. struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
  552. {
  553. struct page *page;
  554. read_lock_irq(&mapping->tree_lock);
  555. page = radix_tree_lookup(&mapping->page_tree, offset);
  556. if (page && TestSetPageLocked(page))
  557. page = NULL;
  558. read_unlock_irq(&mapping->tree_lock);
  559. return page;
  560. }
  561. EXPORT_SYMBOL(find_trylock_page);
  562. /**
  563. * find_lock_page - locate, pin and lock a pagecache page
  564. * @mapping: the address_space to search
  565. * @offset: the page index
  566. *
  567. * Locates the desired pagecache page, locks it, increments its reference
  568. * count and returns its address.
  569. *
  570. * Returns zero if the page was not present. find_lock_page() may sleep.
  571. */
  572. struct page *find_lock_page(struct address_space *mapping,
  573. unsigned long offset)
  574. {
  575. struct page *page;
  576. read_lock_irq(&mapping->tree_lock);
  577. repeat:
  578. page = radix_tree_lookup(&mapping->page_tree, offset);
  579. if (page) {
  580. page_cache_get(page);
  581. if (TestSetPageLocked(page)) {
  582. read_unlock_irq(&mapping->tree_lock);
  583. __lock_page(page);
  584. read_lock_irq(&mapping->tree_lock);
  585. /* Has the page been truncated while we slept? */
  586. if (unlikely(page->mapping != mapping ||
  587. page->index != offset)) {
  588. unlock_page(page);
  589. page_cache_release(page);
  590. goto repeat;
  591. }
  592. }
  593. }
  594. read_unlock_irq(&mapping->tree_lock);
  595. return page;
  596. }
  597. EXPORT_SYMBOL(find_lock_page);
  598. /**
  599. * find_or_create_page - locate or add a pagecache page
  600. * @mapping: the page's address_space
  601. * @index: the page's index into the mapping
  602. * @gfp_mask: page allocation mode
  603. *
  604. * Locates a page in the pagecache. If the page is not present, a new page
  605. * is allocated using @gfp_mask and is added to the pagecache and to the VM's
  606. * LRU list. The returned page is locked and has its reference count
  607. * incremented.
  608. *
  609. * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
  610. * allocation!
  611. *
  612. * find_or_create_page() returns the desired page's address, or zero on
  613. * memory exhaustion.
  614. */
  615. struct page *find_or_create_page(struct address_space *mapping,
  616. unsigned long index, gfp_t gfp_mask)
  617. {
  618. struct page *page, *cached_page = NULL;
  619. int err;
  620. repeat:
  621. page = find_lock_page(mapping, index);
  622. if (!page) {
  623. if (!cached_page) {
  624. cached_page = alloc_page(gfp_mask);
  625. if (!cached_page)
  626. return NULL;
  627. }
  628. err = add_to_page_cache_lru(cached_page, mapping,
  629. index, gfp_mask);
  630. if (!err) {
  631. page = cached_page;
  632. cached_page = NULL;
  633. } else if (err == -EEXIST)
  634. goto repeat;
  635. }
  636. if (cached_page)
  637. page_cache_release(cached_page);
  638. return page;
  639. }
  640. EXPORT_SYMBOL(find_or_create_page);
  641. /**
  642. * find_get_pages - gang pagecache lookup
  643. * @mapping: The address_space to search
  644. * @start: The starting page index
  645. * @nr_pages: The maximum number of pages
  646. * @pages: Where the resulting pages are placed
  647. *
  648. * find_get_pages() will search for and return a group of up to
  649. * @nr_pages pages in the mapping. The pages are placed at @pages.
  650. * find_get_pages() takes a reference against the returned pages.
  651. *
  652. * The search returns a group of mapping-contiguous pages with ascending
  653. * indexes. There may be holes in the indices due to not-present pages.
  654. *
  655. * find_get_pages() returns the number of pages which were found.
  656. */
  657. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  658. unsigned int nr_pages, struct page **pages)
  659. {
  660. unsigned int i;
  661. unsigned int ret;
  662. read_lock_irq(&mapping->tree_lock);
  663. ret = radix_tree_gang_lookup(&mapping->page_tree,
  664. (void **)pages, start, nr_pages);
  665. for (i = 0; i < ret; i++)
  666. page_cache_get(pages[i]);
  667. read_unlock_irq(&mapping->tree_lock);
  668. return ret;
  669. }
  670. /**
  671. * find_get_pages_contig - gang contiguous pagecache lookup
  672. * @mapping: The address_space to search
  673. * @index: The starting page index
  674. * @nr_pages: The maximum number of pages
  675. * @pages: Where the resulting pages are placed
  676. *
  677. * find_get_pages_contig() works exactly like find_get_pages(), except
  678. * that the returned number of pages are guaranteed to be contiguous.
  679. *
  680. * find_get_pages_contig() returns the number of pages which were found.
  681. */
  682. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
  683. unsigned int nr_pages, struct page **pages)
  684. {
  685. unsigned int i;
  686. unsigned int ret;
  687. read_lock_irq(&mapping->tree_lock);
  688. ret = radix_tree_gang_lookup(&mapping->page_tree,
  689. (void **)pages, index, nr_pages);
  690. for (i = 0; i < ret; i++) {
  691. if (pages[i]->mapping == NULL || pages[i]->index != index)
  692. break;
  693. page_cache_get(pages[i]);
  694. index++;
  695. }
  696. read_unlock_irq(&mapping->tree_lock);
  697. return i;
  698. }
  699. /**
  700. * find_get_pages_tag - find and return pages that match @tag
  701. * @mapping: the address_space to search
  702. * @index: the starting page index
  703. * @tag: the tag index
  704. * @nr_pages: the maximum number of pages
  705. * @pages: where the resulting pages are placed
  706. *
  707. * Like find_get_pages, except we only return pages which are tagged with
  708. * @tag. We update @index to index the next page for the traversal.
  709. */
  710. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  711. int tag, unsigned int nr_pages, struct page **pages)
  712. {
  713. unsigned int i;
  714. unsigned int ret;
  715. read_lock_irq(&mapping->tree_lock);
  716. ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
  717. (void **)pages, *index, nr_pages, tag);
  718. for (i = 0; i < ret; i++)
  719. page_cache_get(pages[i]);
  720. if (ret)
  721. *index = pages[ret - 1]->index + 1;
  722. read_unlock_irq(&mapping->tree_lock);
  723. return ret;
  724. }
  725. /**
  726. * grab_cache_page_nowait - returns locked page at given index in given cache
  727. * @mapping: target address_space
  728. * @index: the page index
  729. *
  730. * Same as grab_cache_page, but do not wait if the page is unavailable.
  731. * This is intended for speculative data generators, where the data can
  732. * be regenerated if the page couldn't be grabbed. This routine should
  733. * be safe to call while holding the lock for another page.
  734. *
  735. * Clear __GFP_FS when allocating the page to avoid recursion into the fs
  736. * and deadlock against the caller's locked page.
  737. */
  738. struct page *
  739. grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
  740. {
  741. struct page *page = find_get_page(mapping, index);
  742. gfp_t gfp_mask;
  743. if (page) {
  744. if (!TestSetPageLocked(page))
  745. return page;
  746. page_cache_release(page);
  747. return NULL;
  748. }
  749. gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
  750. page = alloc_pages(gfp_mask, 0);
  751. if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
  752. page_cache_release(page);
  753. page = NULL;
  754. }
  755. return page;
  756. }
  757. EXPORT_SYMBOL(grab_cache_page_nowait);
  758. /*
  759. * CD/DVDs are error prone. When a medium error occurs, the driver may fail
  760. * a _large_ part of the i/o request. Imagine the worst scenario:
  761. *
  762. * ---R__________________________________________B__________
  763. * ^ reading here ^ bad block(assume 4k)
  764. *
  765. * read(R) => miss => readahead(R...B) => media error => frustrating retries
  766. * => failing the whole request => read(R) => read(R+1) =>
  767. * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
  768. * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
  769. * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
  770. *
  771. * It is going insane. Fix it by quickly scaling down the readahead size.
  772. */
  773. static void shrink_readahead_size_eio(struct file *filp,
  774. struct file_ra_state *ra)
  775. {
  776. if (!ra->ra_pages)
  777. return;
  778. ra->ra_pages /= 4;
  779. printk(KERN_WARNING "Reducing readahead size to %luK\n",
  780. ra->ra_pages << (PAGE_CACHE_SHIFT - 10));
  781. }
  782. /**
  783. * do_generic_mapping_read - generic file read routine
  784. * @mapping: address_space to be read
  785. * @_ra: file's readahead state
  786. * @filp: the file to read
  787. * @ppos: current file position
  788. * @desc: read_descriptor
  789. * @actor: read method
  790. *
  791. * This is a generic file read routine, and uses the
  792. * mapping->a_ops->readpage() function for the actual low-level stuff.
  793. *
  794. * This is really ugly. But the goto's actually try to clarify some
  795. * of the logic when it comes to error handling etc.
  796. *
  797. * Note the struct file* is only passed for the use of readpage.
  798. * It may be NULL.
  799. */
  800. void do_generic_mapping_read(struct address_space *mapping,
  801. struct file_ra_state *_ra,
  802. struct file *filp,
  803. loff_t *ppos,
  804. read_descriptor_t *desc,
  805. read_actor_t actor)
  806. {
  807. struct inode *inode = mapping->host;
  808. unsigned long index;
  809. unsigned long end_index;
  810. unsigned long offset;
  811. unsigned long last_index;
  812. unsigned long next_index;
  813. unsigned long prev_index;
  814. loff_t isize;
  815. struct page *cached_page;
  816. int error;
  817. struct file_ra_state ra = *_ra;
  818. cached_page = NULL;
  819. index = *ppos >> PAGE_CACHE_SHIFT;
  820. next_index = index;
  821. prev_index = ra.prev_page;
  822. last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  823. offset = *ppos & ~PAGE_CACHE_MASK;
  824. isize = i_size_read(inode);
  825. if (!isize)
  826. goto out;
  827. end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
  828. for (;;) {
  829. struct page *page;
  830. unsigned long nr, ret;
  831. /* nr is the maximum number of bytes to copy from this page */
  832. nr = PAGE_CACHE_SIZE;
  833. if (index >= end_index) {
  834. if (index > end_index)
  835. goto out;
  836. nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
  837. if (nr <= offset) {
  838. goto out;
  839. }
  840. }
  841. nr = nr - offset;
  842. cond_resched();
  843. if (index == next_index)
  844. next_index = page_cache_readahead(mapping, &ra, filp,
  845. index, last_index - index);
  846. find_page:
  847. page = find_get_page(mapping, index);
  848. if (unlikely(page == NULL)) {
  849. handle_ra_miss(mapping, &ra, index);
  850. goto no_cached_page;
  851. }
  852. if (!PageUptodate(page))
  853. goto page_not_up_to_date;
  854. page_ok:
  855. /* If users can be writing to this page using arbitrary
  856. * virtual addresses, take care about potential aliasing
  857. * before reading the page on the kernel side.
  858. */
  859. if (mapping_writably_mapped(mapping))
  860. flush_dcache_page(page);
  861. /*
  862. * When (part of) the same page is read multiple times
  863. * in succession, only mark it as accessed the first time.
  864. */
  865. if (prev_index != index)
  866. mark_page_accessed(page);
  867. prev_index = index;
  868. /*
  869. * Ok, we have the page, and it's up-to-date, so
  870. * now we can copy it to user space...
  871. *
  872. * The actor routine returns how many bytes were actually used..
  873. * NOTE! This may not be the same as how much of a user buffer
  874. * we filled up (we may be padding etc), so we can only update
  875. * "pos" here (the actor routine has to update the user buffer
  876. * pointers and the remaining count).
  877. */
  878. ret = actor(desc, page, offset, nr);
  879. offset += ret;
  880. index += offset >> PAGE_CACHE_SHIFT;
  881. offset &= ~PAGE_CACHE_MASK;
  882. page_cache_release(page);
  883. if (ret == nr && desc->count)
  884. continue;
  885. goto out;
  886. page_not_up_to_date:
  887. /* Get exclusive access to the page ... */
  888. lock_page(page);
  889. /* Did it get unhashed before we got the lock? */
  890. if (!page->mapping) {
  891. unlock_page(page);
  892. page_cache_release(page);
  893. continue;
  894. }
  895. /* Did somebody else fill it already? */
  896. if (PageUptodate(page)) {
  897. unlock_page(page);
  898. goto page_ok;
  899. }
  900. readpage:
  901. /* Start the actual read. The read will unlock the page. */
  902. error = mapping->a_ops->readpage(filp, page);
  903. if (unlikely(error)) {
  904. if (error == AOP_TRUNCATED_PAGE) {
  905. page_cache_release(page);
  906. goto find_page;
  907. }
  908. goto readpage_error;
  909. }
  910. if (!PageUptodate(page)) {
  911. lock_page(page);
  912. if (!PageUptodate(page)) {
  913. if (page->mapping == NULL) {
  914. /*
  915. * invalidate_inode_pages got it
  916. */
  917. unlock_page(page);
  918. page_cache_release(page);
  919. goto find_page;
  920. }
  921. unlock_page(page);
  922. error = -EIO;
  923. shrink_readahead_size_eio(filp, &ra);
  924. goto readpage_error;
  925. }
  926. unlock_page(page);
  927. }
  928. /*
  929. * i_size must be checked after we have done ->readpage.
  930. *
  931. * Checking i_size after the readpage allows us to calculate
  932. * the correct value for "nr", which means the zero-filled
  933. * part of the page is not copied back to userspace (unless
  934. * another truncate extends the file - this is desired though).
  935. */
  936. isize = i_size_read(inode);
  937. end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
  938. if (unlikely(!isize || index > end_index)) {
  939. page_cache_release(page);
  940. goto out;
  941. }
  942. /* nr is the maximum number of bytes to copy from this page */
  943. nr = PAGE_CACHE_SIZE;
  944. if (index == end_index) {
  945. nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
  946. if (nr <= offset) {
  947. page_cache_release(page);
  948. goto out;
  949. }
  950. }
  951. nr = nr - offset;
  952. goto page_ok;
  953. readpage_error:
  954. /* UHHUH! A synchronous read error occurred. Report it */
  955. desc->error = error;
  956. page_cache_release(page);
  957. goto out;
  958. no_cached_page:
  959. /*
  960. * Ok, it wasn't cached, so we need to create a new
  961. * page..
  962. */
  963. if (!cached_page) {
  964. cached_page = page_cache_alloc_cold(mapping);
  965. if (!cached_page) {
  966. desc->error = -ENOMEM;
  967. goto out;
  968. }
  969. }
  970. error = add_to_page_cache_lru(cached_page, mapping,
  971. index, GFP_KERNEL);
  972. if (error) {
  973. if (error == -EEXIST)
  974. goto find_page;
  975. desc->error = error;
  976. goto out;
  977. }
  978. page = cached_page;
  979. cached_page = NULL;
  980. goto readpage;
  981. }
  982. out:
  983. *_ra = ra;
  984. *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
  985. if (cached_page)
  986. page_cache_release(cached_page);
  987. if (filp)
  988. file_accessed(filp);
  989. }
  990. EXPORT_SYMBOL(do_generic_mapping_read);
  991. int file_read_actor(read_descriptor_t *desc, struct page *page,
  992. unsigned long offset, unsigned long size)
  993. {
  994. char *kaddr;
  995. unsigned long left, count = desc->count;
  996. if (size > count)
  997. size = count;
  998. /*
  999. * Faults on the destination of a read are common, so do it before
  1000. * taking the kmap.
  1001. */
  1002. if (!fault_in_pages_writeable(desc->arg.buf, size)) {
  1003. kaddr = kmap_atomic(page, KM_USER0);
  1004. left = __copy_to_user_inatomic(desc->arg.buf,
  1005. kaddr + offset, size);
  1006. kunmap_atomic(kaddr, KM_USER0);
  1007. if (left == 0)
  1008. goto success;
  1009. }
  1010. /* Do it the slow way */
  1011. kaddr = kmap(page);
  1012. left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
  1013. kunmap(page);
  1014. if (left) {
  1015. size -= left;
  1016. desc->error = -EFAULT;
  1017. }
  1018. success:
  1019. desc->count = count - size;
  1020. desc->written += size;
  1021. desc->arg.buf += size;
  1022. return size;
  1023. }
  1024. /**
  1025. * __generic_file_aio_read - generic filesystem read routine
  1026. * @iocb: kernel I/O control block
  1027. * @iov: io vector request
  1028. * @nr_segs: number of segments in the iovec
  1029. * @ppos: current file position
  1030. *
  1031. * This is the "read()" routine for all filesystems
  1032. * that can use the page cache directly.
  1033. */
  1034. ssize_t
  1035. __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
  1036. unsigned long nr_segs, loff_t *ppos)
  1037. {
  1038. struct file *filp = iocb->ki_filp;
  1039. ssize_t retval;
  1040. unsigned long seg;
  1041. size_t count;
  1042. count = 0;
  1043. for (seg = 0; seg < nr_segs; seg++) {
  1044. const struct iovec *iv = &iov[seg];
  1045. /*
  1046. * If any segment has a negative length, or the cumulative
  1047. * length ever wraps negative then return -EINVAL.
  1048. */
  1049. count += iv->iov_len;
  1050. if (unlikely((ssize_t)(count|iv->iov_len) < 0))
  1051. return -EINVAL;
  1052. if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
  1053. continue;
  1054. if (seg == 0)
  1055. return -EFAULT;
  1056. nr_segs = seg;
  1057. count -= iv->iov_len; /* This segment is no good */
  1058. break;
  1059. }
  1060. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  1061. if (filp->f_flags & O_DIRECT) {
  1062. loff_t pos = *ppos, size;
  1063. struct address_space *mapping;
  1064. struct inode *inode;
  1065. mapping = filp->f_mapping;
  1066. inode = mapping->host;
  1067. retval = 0;
  1068. if (!count)
  1069. goto out; /* skip atime */
  1070. size = i_size_read(inode);
  1071. if (pos < size) {
  1072. retval = generic_file_direct_IO(READ, iocb,
  1073. iov, pos, nr_segs);
  1074. if (retval > 0 && !is_sync_kiocb(iocb))
  1075. retval = -EIOCBQUEUED;
  1076. if (retval > 0)
  1077. *ppos = pos + retval;
  1078. }
  1079. file_accessed(filp);
  1080. goto out;
  1081. }
  1082. retval = 0;
  1083. if (count) {
  1084. for (seg = 0; seg < nr_segs; seg++) {
  1085. read_descriptor_t desc;
  1086. desc.written = 0;
  1087. desc.arg.buf = iov[seg].iov_base;
  1088. desc.count = iov[seg].iov_len;
  1089. if (desc.count == 0)
  1090. continue;
  1091. desc.error = 0;
  1092. do_generic_file_read(filp,ppos,&desc,file_read_actor);
  1093. retval += desc.written;
  1094. if (desc.error) {
  1095. retval = retval ?: desc.error;
  1096. break;
  1097. }
  1098. }
  1099. }
  1100. out:
  1101. return retval;
  1102. }
  1103. EXPORT_SYMBOL(__generic_file_aio_read);
  1104. ssize_t
  1105. generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
  1106. {
  1107. struct iovec local_iov = { .iov_base = buf, .iov_len = count };
  1108. BUG_ON(iocb->ki_pos != pos);
  1109. return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
  1110. }
  1111. EXPORT_SYMBOL(generic_file_aio_read);
  1112. ssize_t
  1113. generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
  1114. {
  1115. struct iovec local_iov = { .iov_base = buf, .iov_len = count };
  1116. struct kiocb kiocb;
  1117. ssize_t ret;
  1118. init_sync_kiocb(&kiocb, filp);
  1119. ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
  1120. if (-EIOCBQUEUED == ret)
  1121. ret = wait_on_sync_kiocb(&kiocb);
  1122. return ret;
  1123. }
  1124. EXPORT_SYMBOL(generic_file_read);
  1125. int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
  1126. {
  1127. ssize_t written;
  1128. unsigned long count = desc->count;
  1129. struct file *file = desc->arg.data;
  1130. if (size > count)
  1131. size = count;
  1132. written = file->f_op->sendpage(file, page, offset,
  1133. size, &file->f_pos, size<count);
  1134. if (written < 0) {
  1135. desc->error = written;
  1136. written = 0;
  1137. }
  1138. desc->count = count - written;
  1139. desc->written += written;
  1140. return written;
  1141. }
  1142. ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
  1143. size_t count, read_actor_t actor, void *target)
  1144. {
  1145. read_descriptor_t desc;
  1146. if (!count)
  1147. return 0;
  1148. desc.written = 0;
  1149. desc.count = count;
  1150. desc.arg.data = target;
  1151. desc.error = 0;
  1152. do_generic_file_read(in_file, ppos, &desc, actor);
  1153. if (desc.written)
  1154. return desc.written;
  1155. return desc.error;
  1156. }
  1157. EXPORT_SYMBOL(generic_file_sendfile);
  1158. static ssize_t
  1159. do_readahead(struct address_space *mapping, struct file *filp,
  1160. unsigned long index, unsigned long nr)
  1161. {
  1162. if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
  1163. return -EINVAL;
  1164. force_page_cache_readahead(mapping, filp, index,
  1165. max_sane_readahead(nr));
  1166. return 0;
  1167. }
  1168. asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
  1169. {
  1170. ssize_t ret;
  1171. struct file *file;
  1172. ret = -EBADF;
  1173. file = fget(fd);
  1174. if (file) {
  1175. if (file->f_mode & FMODE_READ) {
  1176. struct address_space *mapping = file->f_mapping;
  1177. unsigned long start = offset >> PAGE_CACHE_SHIFT;
  1178. unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
  1179. unsigned long len = end - start + 1;
  1180. ret = do_readahead(mapping, file, start, len);
  1181. }
  1182. fput(file);
  1183. }
  1184. return ret;
  1185. }
  1186. #ifdef CONFIG_MMU
  1187. static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
  1188. /**
  1189. * page_cache_read - adds requested page to the page cache if not already there
  1190. * @file: file to read
  1191. * @offset: page index
  1192. *
  1193. * This adds the requested page to the page cache if it isn't already there,
  1194. * and schedules an I/O to read in its contents from disk.
  1195. */
  1196. static int fastcall page_cache_read(struct file * file, unsigned long offset)
  1197. {
  1198. struct address_space *mapping = file->f_mapping;
  1199. struct page *page;
  1200. int ret;
  1201. do {
  1202. page = page_cache_alloc_cold(mapping);
  1203. if (!page)
  1204. return -ENOMEM;
  1205. ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
  1206. if (ret == 0)
  1207. ret = mapping->a_ops->readpage(file, page);
  1208. else if (ret == -EEXIST)
  1209. ret = 0; /* losing race to add is OK */
  1210. page_cache_release(page);
  1211. } while (ret == AOP_TRUNCATED_PAGE);
  1212. return ret;
  1213. }
  1214. #define MMAP_LOTSAMISS (100)
  1215. /**
  1216. * filemap_nopage - read in file data for page fault handling
  1217. * @area: the applicable vm_area
  1218. * @address: target address to read in
  1219. * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
  1220. *
  1221. * filemap_nopage() is invoked via the vma operations vector for a
  1222. * mapped memory region to read in file data during a page fault.
  1223. *
  1224. * The goto's are kind of ugly, but this streamlines the normal case of having
  1225. * it in the page cache, and handles the special cases reasonably without
  1226. * having a lot of duplicated code.
  1227. */
  1228. struct page *filemap_nopage(struct vm_area_struct *area,
  1229. unsigned long address, int *type)
  1230. {
  1231. int error;
  1232. struct file *file = area->vm_file;
  1233. struct address_space *mapping = file->f_mapping;
  1234. struct file_ra_state *ra = &file->f_ra;
  1235. struct inode *inode = mapping->host;
  1236. struct page *page;
  1237. unsigned long size, pgoff;
  1238. int did_readaround = 0, majmin = VM_FAULT_MINOR;
  1239. pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
  1240. retry_all:
  1241. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1242. if (pgoff >= size)
  1243. goto outside_data_content;
  1244. /* If we don't want any read-ahead, don't bother */
  1245. if (VM_RandomReadHint(area))
  1246. goto no_cached_page;
  1247. /*
  1248. * The readahead code wants to be told about each and every page
  1249. * so it can build and shrink its windows appropriately
  1250. *
  1251. * For sequential accesses, we use the generic readahead logic.
  1252. */
  1253. if (VM_SequentialReadHint(area))
  1254. page_cache_readahead(mapping, ra, file, pgoff, 1);
  1255. /*
  1256. * Do we have something in the page cache already?
  1257. */
  1258. retry_find:
  1259. page = find_get_page(mapping, pgoff);
  1260. if (!page) {
  1261. unsigned long ra_pages;
  1262. if (VM_SequentialReadHint(area)) {
  1263. handle_ra_miss(mapping, ra, pgoff);
  1264. goto no_cached_page;
  1265. }
  1266. ra->mmap_miss++;
  1267. /*
  1268. * Do we miss much more than hit in this file? If so,
  1269. * stop bothering with read-ahead. It will only hurt.
  1270. */
  1271. if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
  1272. goto no_cached_page;
  1273. /*
  1274. * To keep the pgmajfault counter straight, we need to
  1275. * check did_readaround, as this is an inner loop.
  1276. */
  1277. if (!did_readaround) {
  1278. majmin = VM_FAULT_MAJOR;
  1279. count_vm_event(PGMAJFAULT);
  1280. }
  1281. did_readaround = 1;
  1282. ra_pages = max_sane_readahead(file->f_ra.ra_pages);
  1283. if (ra_pages) {
  1284. pgoff_t start = 0;
  1285. if (pgoff > ra_pages / 2)
  1286. start = pgoff - ra_pages / 2;
  1287. do_page_cache_readahead(mapping, file, start, ra_pages);
  1288. }
  1289. page = find_get_page(mapping, pgoff);
  1290. if (!page)
  1291. goto no_cached_page;
  1292. }
  1293. if (!did_readaround)
  1294. ra->mmap_hit++;
  1295. /*
  1296. * Ok, found a page in the page cache, now we need to check
  1297. * that it's up-to-date.
  1298. */
  1299. if (!PageUptodate(page))
  1300. goto page_not_uptodate;
  1301. success:
  1302. /*
  1303. * Found the page and have a reference on it.
  1304. */
  1305. mark_page_accessed(page);
  1306. if (type)
  1307. *type = majmin;
  1308. return page;
  1309. outside_data_content:
  1310. /*
  1311. * An external ptracer can access pages that normally aren't
  1312. * accessible..
  1313. */
  1314. if (area->vm_mm == current->mm)
  1315. return NULL;
  1316. /* Fall through to the non-read-ahead case */
  1317. no_cached_page:
  1318. /*
  1319. * We're only likely to ever get here if MADV_RANDOM is in
  1320. * effect.
  1321. */
  1322. error = page_cache_read(file, pgoff);
  1323. grab_swap_token();
  1324. /*
  1325. * The page we want has now been added to the page cache.
  1326. * In the unlikely event that someone removed it in the
  1327. * meantime, we'll just come back here and read it again.
  1328. */
  1329. if (error >= 0)
  1330. goto retry_find;
  1331. /*
  1332. * An error return from page_cache_read can result if the
  1333. * system is low on memory, or a problem occurs while trying
  1334. * to schedule I/O.
  1335. */
  1336. if (error == -ENOMEM)
  1337. return NOPAGE_OOM;
  1338. return NULL;
  1339. page_not_uptodate:
  1340. if (!did_readaround) {
  1341. majmin = VM_FAULT_MAJOR;
  1342. count_vm_event(PGMAJFAULT);
  1343. }
  1344. lock_page(page);
  1345. /* Did it get unhashed while we waited for it? */
  1346. if (!page->mapping) {
  1347. unlock_page(page);
  1348. page_cache_release(page);
  1349. goto retry_all;
  1350. }
  1351. /* Did somebody else get it up-to-date? */
  1352. if (PageUptodate(page)) {
  1353. unlock_page(page);
  1354. goto success;
  1355. }
  1356. error = mapping->a_ops->readpage(file, page);
  1357. if (!error) {
  1358. wait_on_page_locked(page);
  1359. if (PageUptodate(page))
  1360. goto success;
  1361. } else if (error == AOP_TRUNCATED_PAGE) {
  1362. page_cache_release(page);
  1363. goto retry_find;
  1364. }
  1365. /*
  1366. * Umm, take care of errors if the page isn't up-to-date.
  1367. * Try to re-read it _once_. We do this synchronously,
  1368. * because there really aren't any performance issues here
  1369. * and we need to check for errors.
  1370. */
  1371. lock_page(page);
  1372. /* Somebody truncated the page on us? */
  1373. if (!page->mapping) {
  1374. unlock_page(page);
  1375. page_cache_release(page);
  1376. goto retry_all;
  1377. }
  1378. /* Somebody else successfully read it in? */
  1379. if (PageUptodate(page)) {
  1380. unlock_page(page);
  1381. goto success;
  1382. }
  1383. ClearPageError(page);
  1384. error = mapping->a_ops->readpage(file, page);
  1385. if (!error) {
  1386. wait_on_page_locked(page);
  1387. if (PageUptodate(page))
  1388. goto success;
  1389. } else if (error == AOP_TRUNCATED_PAGE) {
  1390. page_cache_release(page);
  1391. goto retry_find;
  1392. }
  1393. /*
  1394. * Things didn't work out. Return zero to tell the
  1395. * mm layer so, possibly freeing the page cache page first.
  1396. */
  1397. shrink_readahead_size_eio(file, ra);
  1398. page_cache_release(page);
  1399. return NULL;
  1400. }
  1401. EXPORT_SYMBOL(filemap_nopage);
  1402. static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
  1403. int nonblock)
  1404. {
  1405. struct address_space *mapping = file->f_mapping;
  1406. struct page *page;
  1407. int error;
  1408. /*
  1409. * Do we have something in the page cache already?
  1410. */
  1411. retry_find:
  1412. page = find_get_page(mapping, pgoff);
  1413. if (!page) {
  1414. if (nonblock)
  1415. return NULL;
  1416. goto no_cached_page;
  1417. }
  1418. /*
  1419. * Ok, found a page in the page cache, now we need to check
  1420. * that it's up-to-date.
  1421. */
  1422. if (!PageUptodate(page)) {
  1423. if (nonblock) {
  1424. page_cache_release(page);
  1425. return NULL;
  1426. }
  1427. goto page_not_uptodate;
  1428. }
  1429. success:
  1430. /*
  1431. * Found the page and have a reference on it.
  1432. */
  1433. mark_page_accessed(page);
  1434. return page;
  1435. no_cached_page:
  1436. error = page_cache_read(file, pgoff);
  1437. /*
  1438. * The page we want has now been added to the page cache.
  1439. * In the unlikely event that someone removed it in the
  1440. * meantime, we'll just come back here and read it again.
  1441. */
  1442. if (error >= 0)
  1443. goto retry_find;
  1444. /*
  1445. * An error return from page_cache_read can result if the
  1446. * system is low on memory, or a problem occurs while trying
  1447. * to schedule I/O.
  1448. */
  1449. return NULL;
  1450. page_not_uptodate:
  1451. lock_page(page);
  1452. /* Did it get unhashed while we waited for it? */
  1453. if (!page->mapping) {
  1454. unlock_page(page);
  1455. goto err;
  1456. }
  1457. /* Did somebody else get it up-to-date? */
  1458. if (PageUptodate(page)) {
  1459. unlock_page(page);
  1460. goto success;
  1461. }
  1462. error = mapping->a_ops->readpage(file, page);
  1463. if (!error) {
  1464. wait_on_page_locked(page);
  1465. if (PageUptodate(page))
  1466. goto success;
  1467. } else if (error == AOP_TRUNCATED_PAGE) {
  1468. page_cache_release(page);
  1469. goto retry_find;
  1470. }
  1471. /*
  1472. * Umm, take care of errors if the page isn't up-to-date.
  1473. * Try to re-read it _once_. We do this synchronously,
  1474. * because there really aren't any performance issues here
  1475. * and we need to check for errors.
  1476. */
  1477. lock_page(page);
  1478. /* Somebody truncated the page on us? */
  1479. if (!page->mapping) {
  1480. unlock_page(page);
  1481. goto err;
  1482. }
  1483. /* Somebody else successfully read it in? */
  1484. if (PageUptodate(page)) {
  1485. unlock_page(page);
  1486. goto success;
  1487. }
  1488. ClearPageError(page);
  1489. error = mapping->a_ops->readpage(file, page);
  1490. if (!error) {
  1491. wait_on_page_locked(page);
  1492. if (PageUptodate(page))
  1493. goto success;
  1494. } else if (error == AOP_TRUNCATED_PAGE) {
  1495. page_cache_release(page);
  1496. goto retry_find;
  1497. }
  1498. /*
  1499. * Things didn't work out. Return zero to tell the
  1500. * mm layer so, possibly freeing the page cache page first.
  1501. */
  1502. err:
  1503. page_cache_release(page);
  1504. return NULL;
  1505. }
  1506. int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
  1507. unsigned long len, pgprot_t prot, unsigned long pgoff,
  1508. int nonblock)
  1509. {
  1510. struct file *file = vma->vm_file;
  1511. struct address_space *mapping = file->f_mapping;
  1512. struct inode *inode = mapping->host;
  1513. unsigned long size;
  1514. struct mm_struct *mm = vma->vm_mm;
  1515. struct page *page;
  1516. int err;
  1517. if (!nonblock)
  1518. force_page_cache_readahead(mapping, vma->vm_file,
  1519. pgoff, len >> PAGE_CACHE_SHIFT);
  1520. repeat:
  1521. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1522. if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
  1523. return -EINVAL;
  1524. page = filemap_getpage(file, pgoff, nonblock);
  1525. /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
  1526. * done in shmem_populate calling shmem_getpage */
  1527. if (!page && !nonblock)
  1528. return -ENOMEM;
  1529. if (page) {
  1530. err = install_page(mm, vma, addr, page, prot);
  1531. if (err) {
  1532. page_cache_release(page);
  1533. return err;
  1534. }
  1535. } else if (vma->vm_flags & VM_NONLINEAR) {
  1536. /* No page was found just because we can't read it in now (being
  1537. * here implies nonblock != 0), but the page may exist, so set
  1538. * the PTE to fault it in later. */
  1539. err = install_file_pte(mm, vma, addr, pgoff, prot);
  1540. if (err)
  1541. return err;
  1542. }
  1543. len -= PAGE_SIZE;
  1544. addr += PAGE_SIZE;
  1545. pgoff++;
  1546. if (len)
  1547. goto repeat;
  1548. return 0;
  1549. }
  1550. EXPORT_SYMBOL(filemap_populate);
  1551. struct vm_operations_struct generic_file_vm_ops = {
  1552. .nopage = filemap_nopage,
  1553. .populate = filemap_populate,
  1554. };
  1555. /* This is used for a general mmap of a disk file */
  1556. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1557. {
  1558. struct address_space *mapping = file->f_mapping;
  1559. if (!mapping->a_ops->readpage)
  1560. return -ENOEXEC;
  1561. file_accessed(file);
  1562. vma->vm_ops = &generic_file_vm_ops;
  1563. return 0;
  1564. }
  1565. /*
  1566. * This is for filesystems which do not implement ->writepage.
  1567. */
  1568. int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
  1569. {
  1570. if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
  1571. return -EINVAL;
  1572. return generic_file_mmap(file, vma);
  1573. }
  1574. #else
  1575. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1576. {
  1577. return -ENOSYS;
  1578. }
  1579. int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
  1580. {
  1581. return -ENOSYS;
  1582. }
  1583. #endif /* CONFIG_MMU */
  1584. EXPORT_SYMBOL(generic_file_mmap);
  1585. EXPORT_SYMBOL(generic_file_readonly_mmap);
  1586. static inline struct page *__read_cache_page(struct address_space *mapping,
  1587. unsigned long index,
  1588. int (*filler)(void *,struct page*),
  1589. void *data)
  1590. {
  1591. struct page *page, *cached_page = NULL;
  1592. int err;
  1593. repeat:
  1594. page = find_get_page(mapping, index);
  1595. if (!page) {
  1596. if (!cached_page) {
  1597. cached_page = page_cache_alloc_cold(mapping);
  1598. if (!cached_page)
  1599. return ERR_PTR(-ENOMEM);
  1600. }
  1601. err = add_to_page_cache_lru(cached_page, mapping,
  1602. index, GFP_KERNEL);
  1603. if (err == -EEXIST)
  1604. goto repeat;
  1605. if (err < 0) {
  1606. /* Presumably ENOMEM for radix tree node */
  1607. page_cache_release(cached_page);
  1608. return ERR_PTR(err);
  1609. }
  1610. page = cached_page;
  1611. cached_page = NULL;
  1612. err = filler(data, page);
  1613. if (err < 0) {
  1614. page_cache_release(page);
  1615. page = ERR_PTR(err);
  1616. }
  1617. }
  1618. if (cached_page)
  1619. page_cache_release(cached_page);
  1620. return page;
  1621. }
  1622. /**
  1623. * read_cache_page - read into page cache, fill it if needed
  1624. * @mapping: the page's address_space
  1625. * @index: the page index
  1626. * @filler: function to perform the read
  1627. * @data: destination for read data
  1628. *
  1629. * Read into the page cache. If a page already exists,
  1630. * and PageUptodate() is not set, try to fill the page.
  1631. */
  1632. struct page *read_cache_page(struct address_space *mapping,
  1633. unsigned long index,
  1634. int (*filler)(void *,struct page*),
  1635. void *data)
  1636. {
  1637. struct page *page;
  1638. int err;
  1639. retry:
  1640. page = __read_cache_page(mapping, index, filler, data);
  1641. if (IS_ERR(page))
  1642. goto out;
  1643. mark_page_accessed(page);
  1644. if (PageUptodate(page))
  1645. goto out;
  1646. lock_page(page);
  1647. if (!page->mapping) {
  1648. unlock_page(page);
  1649. page_cache_release(page);
  1650. goto retry;
  1651. }
  1652. if (PageUptodate(page)) {
  1653. unlock_page(page);
  1654. goto out;
  1655. }
  1656. err = filler(data, page);
  1657. if (err < 0) {
  1658. page_cache_release(page);
  1659. page = ERR_PTR(err);
  1660. }
  1661. out:
  1662. return page;
  1663. }
  1664. EXPORT_SYMBOL(read_cache_page);
  1665. /*
  1666. * If the page was newly created, increment its refcount and add it to the
  1667. * caller's lru-buffering pagevec. This function is specifically for
  1668. * generic_file_write().
  1669. */
  1670. static inline struct page *
  1671. __grab_cache_page(struct address_space *mapping, unsigned long index,
  1672. struct page **cached_page, struct pagevec *lru_pvec)
  1673. {
  1674. int err;
  1675. struct page *page;
  1676. repeat:
  1677. page = find_lock_page(mapping, index);
  1678. if (!page) {
  1679. if (!*cached_page) {
  1680. *cached_page = page_cache_alloc(mapping);
  1681. if (!*cached_page)
  1682. return NULL;
  1683. }
  1684. err = add_to_page_cache(*cached_page, mapping,
  1685. index, GFP_KERNEL);
  1686. if (err == -EEXIST)
  1687. goto repeat;
  1688. if (err == 0) {
  1689. page = *cached_page;
  1690. page_cache_get(page);
  1691. if (!pagevec_add(lru_pvec, page))
  1692. __pagevec_lru_add(lru_pvec);
  1693. *cached_page = NULL;
  1694. }
  1695. }
  1696. return page;
  1697. }
  1698. /*
  1699. * The logic we want is
  1700. *
  1701. * if suid or (sgid and xgrp)
  1702. * remove privs
  1703. */
  1704. int remove_suid(struct dentry *dentry)
  1705. {
  1706. mode_t mode = dentry->d_inode->i_mode;
  1707. int kill = 0;
  1708. int result = 0;
  1709. /* suid always must be killed */
  1710. if (unlikely(mode & S_ISUID))
  1711. kill = ATTR_KILL_SUID;
  1712. /*
  1713. * sgid without any exec bits is just a mandatory locking mark; leave
  1714. * it alone. If some exec bits are set, it's a real sgid; kill it.
  1715. */
  1716. if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
  1717. kill |= ATTR_KILL_SGID;
  1718. if (unlikely(kill && !capable(CAP_FSETID))) {
  1719. struct iattr newattrs;
  1720. newattrs.ia_valid = ATTR_FORCE | kill;
  1721. result = notify_change(dentry, &newattrs);
  1722. }
  1723. return result;
  1724. }
  1725. EXPORT_SYMBOL(remove_suid);
  1726. size_t
  1727. __filemap_copy_from_user_iovec_inatomic(char *vaddr,
  1728. const struct iovec *iov, size_t base, size_t bytes)
  1729. {
  1730. size_t copied = 0, left = 0;
  1731. while (bytes) {
  1732. char __user *buf = iov->iov_base + base;
  1733. int copy = min(bytes, iov->iov_len - base);
  1734. base = 0;
  1735. left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
  1736. copied += copy;
  1737. bytes -= copy;
  1738. vaddr += copy;
  1739. iov++;
  1740. if (unlikely(left))
  1741. break;
  1742. }
  1743. return copied - left;
  1744. }
  1745. /*
  1746. * Performs necessary checks before doing a write
  1747. *
  1748. * Can adjust writing position or amount of bytes to write.
  1749. * Returns appropriate error code that caller should return or
  1750. * zero in case that write should be allowed.
  1751. */
  1752. inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
  1753. {
  1754. struct inode *inode = file->f_mapping->host;
  1755. unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1756. if (unlikely(*pos < 0))
  1757. return -EINVAL;
  1758. if (!isblk) {
  1759. /* FIXME: this is for backwards compatibility with 2.4 */
  1760. if (file->f_flags & O_APPEND)
  1761. *pos = i_size_read(inode);
  1762. if (limit != RLIM_INFINITY) {
  1763. if (*pos >= limit) {
  1764. send_sig(SIGXFSZ, current, 0);
  1765. return -EFBIG;
  1766. }
  1767. if (*count > limit - (typeof(limit))*pos) {
  1768. *count = limit - (typeof(limit))*pos;
  1769. }
  1770. }
  1771. }
  1772. /*
  1773. * LFS rule
  1774. */
  1775. if (unlikely(*pos + *count > MAX_NON_LFS &&
  1776. !(file->f_flags & O_LARGEFILE))) {
  1777. if (*pos >= MAX_NON_LFS) {
  1778. send_sig(SIGXFSZ, current, 0);
  1779. return -EFBIG;
  1780. }
  1781. if (*count > MAX_NON_LFS - (unsigned long)*pos) {
  1782. *count = MAX_NON_LFS - (unsigned long)*pos;
  1783. }
  1784. }
  1785. /*
  1786. * Are we about to exceed the fs block limit ?
  1787. *
  1788. * If we have written data it becomes a short write. If we have
  1789. * exceeded without writing data we send a signal and return EFBIG.
  1790. * Linus frestrict idea will clean these up nicely..
  1791. */
  1792. if (likely(!isblk)) {
  1793. if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
  1794. if (*count || *pos > inode->i_sb->s_maxbytes) {
  1795. send_sig(SIGXFSZ, current, 0);
  1796. return -EFBIG;
  1797. }
  1798. /* zero-length writes at ->s_maxbytes are OK */
  1799. }
  1800. if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
  1801. *count = inode->i_sb->s_maxbytes - *pos;
  1802. } else {
  1803. loff_t isize;
  1804. if (bdev_read_only(I_BDEV(inode)))
  1805. return -EPERM;
  1806. isize = i_size_read(inode);
  1807. if (*pos >= isize) {
  1808. if (*count || *pos > isize)
  1809. return -ENOSPC;
  1810. }
  1811. if (*pos + *count > isize)
  1812. *count = isize - *pos;
  1813. }
  1814. return 0;
  1815. }
  1816. EXPORT_SYMBOL(generic_write_checks);
  1817. ssize_t
  1818. generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  1819. unsigned long *nr_segs, loff_t pos, loff_t *ppos,
  1820. size_t count, size_t ocount)
  1821. {
  1822. struct file *file = iocb->ki_filp;
  1823. struct address_space *mapping = file->f_mapping;
  1824. struct inode *inode = mapping->host;
  1825. ssize_t written;
  1826. if (count != ocount)
  1827. *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
  1828. written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
  1829. if (written > 0) {
  1830. loff_t end = pos + written;
  1831. if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
  1832. i_size_write(inode, end);
  1833. mark_inode_dirty(inode);
  1834. }
  1835. *ppos = end;
  1836. }
  1837. /*
  1838. * Sync the fs metadata but not the minor inode changes and
  1839. * of course not the data as we did direct DMA for the IO.
  1840. * i_mutex is held, which protects generic_osync_inode() from
  1841. * livelocking.
  1842. */
  1843. if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  1844. int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
  1845. if (err < 0)
  1846. written = err;
  1847. }
  1848. if (written == count && !is_sync_kiocb(iocb))
  1849. written = -EIOCBQUEUED;
  1850. return written;
  1851. }
  1852. EXPORT_SYMBOL(generic_file_direct_write);
  1853. ssize_t
  1854. generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
  1855. unsigned long nr_segs, loff_t pos, loff_t *ppos,
  1856. size_t count, ssize_t written)
  1857. {
  1858. struct file *file = iocb->ki_filp;
  1859. struct address_space * mapping = file->f_mapping;
  1860. const struct address_space_operations *a_ops = mapping->a_ops;
  1861. struct inode *inode = mapping->host;
  1862. long status = 0;
  1863. struct page *page;
  1864. struct page *cached_page = NULL;
  1865. size_t bytes;
  1866. struct pagevec lru_pvec;
  1867. const struct iovec *cur_iov = iov; /* current iovec */
  1868. size_t iov_base = 0; /* offset in the current iovec */
  1869. char __user *buf;
  1870. pagevec_init(&lru_pvec, 0);
  1871. /*
  1872. * handle partial DIO write. Adjust cur_iov if needed.
  1873. */
  1874. if (likely(nr_segs == 1))
  1875. buf = iov->iov_base + written;
  1876. else {
  1877. filemap_set_next_iovec(&cur_iov, &iov_base, written);
  1878. buf = cur_iov->iov_base + iov_base;
  1879. }
  1880. do {
  1881. unsigned long index;
  1882. unsigned long offset;
  1883. size_t copied;
  1884. offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
  1885. index = pos >> PAGE_CACHE_SHIFT;
  1886. bytes = PAGE_CACHE_SIZE - offset;
  1887. /* Limit the size of the copy to the caller's write size */
  1888. bytes = min(bytes, count);
  1889. /*
  1890. * Limit the size of the copy to that of the current segment,
  1891. * because fault_in_pages_readable() doesn't know how to walk
  1892. * segments.
  1893. */
  1894. bytes = min(bytes, cur_iov->iov_len - iov_base);
  1895. /*
  1896. * Bring in the user page that we will copy from _first_.
  1897. * Otherwise there's a nasty deadlock on copying from the
  1898. * same page as we're writing to, without it being marked
  1899. * up-to-date.
  1900. */
  1901. fault_in_pages_readable(buf, bytes);
  1902. page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
  1903. if (!page) {
  1904. status = -ENOMEM;
  1905. break;
  1906. }
  1907. if (unlikely(bytes == 0)) {
  1908. status = 0;
  1909. copied = 0;
  1910. goto zero_length_segment;
  1911. }
  1912. status = a_ops->prepare_write(file, page, offset, offset+bytes);
  1913. if (unlikely(status)) {
  1914. loff_t isize = i_size_read(inode);
  1915. if (status != AOP_TRUNCATED_PAGE)
  1916. unlock_page(page);
  1917. page_cache_release(page);
  1918. if (status == AOP_TRUNCATED_PAGE)
  1919. continue;
  1920. /*
  1921. * prepare_write() may have instantiated a few blocks
  1922. * outside i_size. Trim these off again.
  1923. */
  1924. if (pos + bytes > isize)
  1925. vmtruncate(inode, isize);
  1926. break;
  1927. }
  1928. if (likely(nr_segs == 1))
  1929. copied = filemap_copy_from_user(page, offset,
  1930. buf, bytes);
  1931. else
  1932. copied = filemap_copy_from_user_iovec(page, offset,
  1933. cur_iov, iov_base, bytes);
  1934. flush_dcache_page(page);
  1935. status = a_ops->commit_write(file, page, offset, offset+bytes);
  1936. if (status == AOP_TRUNCATED_PAGE) {
  1937. page_cache_release(page);
  1938. continue;
  1939. }
  1940. zero_length_segment:
  1941. if (likely(copied >= 0)) {
  1942. if (!status)
  1943. status = copied;
  1944. if (status >= 0) {
  1945. written += status;
  1946. count -= status;
  1947. pos += status;
  1948. buf += status;
  1949. if (unlikely(nr_segs > 1)) {
  1950. filemap_set_next_iovec(&cur_iov,
  1951. &iov_base, status);
  1952. if (count)
  1953. buf = cur_iov->iov_base +
  1954. iov_base;
  1955. } else {
  1956. iov_base += status;
  1957. }
  1958. }
  1959. }
  1960. if (unlikely(copied != bytes))
  1961. if (status >= 0)
  1962. status = -EFAULT;
  1963. unlock_page(page);
  1964. mark_page_accessed(page);
  1965. page_cache_release(page);
  1966. if (status < 0)
  1967. break;
  1968. balance_dirty_pages_ratelimited(mapping);
  1969. cond_resched();
  1970. } while (count);
  1971. *ppos = pos;
  1972. if (cached_page)
  1973. page_cache_release(cached_page);
  1974. /*
  1975. * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
  1976. */
  1977. if (likely(status >= 0)) {
  1978. if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  1979. if (!a_ops->writepage || !is_sync_kiocb(iocb))
  1980. status = generic_osync_inode(inode, mapping,
  1981. OSYNC_METADATA|OSYNC_DATA);
  1982. }
  1983. }
  1984. /*
  1985. * If we get here for O_DIRECT writes then we must have fallen through
  1986. * to buffered writes (block instantiation inside i_size). So we sync
  1987. * the file data here, to try to honour O_DIRECT expectations.
  1988. */
  1989. if (unlikely(file->f_flags & O_DIRECT) && written)
  1990. status = filemap_write_and_wait(mapping);
  1991. pagevec_lru_add(&lru_pvec);
  1992. return written ? written : status;
  1993. }
  1994. EXPORT_SYMBOL(generic_file_buffered_write);
  1995. static ssize_t
  1996. __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
  1997. unsigned long nr_segs, loff_t *ppos)
  1998. {
  1999. struct file *file = iocb->ki_filp;
  2000. const struct address_space * mapping = file->f_mapping;
  2001. size_t ocount; /* original count */
  2002. size_t count; /* after file limit checks */
  2003. struct inode *inode = mapping->host;
  2004. unsigned long seg;
  2005. loff_t pos;
  2006. ssize_t written;
  2007. ssize_t err;
  2008. ocount = 0;
  2009. for (seg = 0; seg < nr_segs; seg++) {
  2010. const struct iovec *iv = &iov[seg];
  2011. /*
  2012. * If any segment has a negative length, or the cumulative
  2013. * length ever wraps negative then return -EINVAL.
  2014. */
  2015. ocount += iv->iov_len;
  2016. if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
  2017. return -EINVAL;
  2018. if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
  2019. continue;
  2020. if (seg == 0)
  2021. return -EFAULT;
  2022. nr_segs = seg;
  2023. ocount -= iv->iov_len; /* This segment is no good */
  2024. break;
  2025. }
  2026. count = ocount;
  2027. pos = *ppos;
  2028. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  2029. /* We can write back this queue in page reclaim */
  2030. current->backing_dev_info = mapping->backing_dev_info;
  2031. written = 0;
  2032. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  2033. if (err)
  2034. goto out;
  2035. if (count == 0)
  2036. goto out;
  2037. err = remove_suid(file->f_dentry);
  2038. if (err)
  2039. goto out;
  2040. file_update_time(file);
  2041. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  2042. if (unlikely(file->f_flags & O_DIRECT)) {
  2043. written = generic_file_direct_write(iocb, iov,
  2044. &nr_segs, pos, ppos, count, ocount);
  2045. if (written < 0 || written == count)
  2046. goto out;
  2047. /*
  2048. * direct-io write to a hole: fall through to buffered I/O
  2049. * for completing the rest of the request.
  2050. */
  2051. pos += written;
  2052. count -= written;
  2053. }
  2054. written = generic_file_buffered_write(iocb, iov, nr_segs,
  2055. pos, ppos, count, written);
  2056. out:
  2057. current->backing_dev_info = NULL;
  2058. return written ? written : err;
  2059. }
  2060. EXPORT_SYMBOL(generic_file_aio_write_nolock);
  2061. ssize_t
  2062. generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
  2063. unsigned long nr_segs, loff_t *ppos)
  2064. {
  2065. struct file *file = iocb->ki_filp;
  2066. struct address_space *mapping = file->f_mapping;
  2067. struct inode *inode = mapping->host;
  2068. ssize_t ret;
  2069. loff_t pos = *ppos;
  2070. ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
  2071. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2072. int err;
  2073. err = sync_page_range_nolock(inode, mapping, pos, ret);
  2074. if (err < 0)
  2075. ret = err;
  2076. }
  2077. return ret;
  2078. }
  2079. static ssize_t
  2080. __generic_file_write_nolock(struct file *file, const struct iovec *iov,
  2081. unsigned long nr_segs, loff_t *ppos)
  2082. {
  2083. struct kiocb kiocb;
  2084. ssize_t ret;
  2085. init_sync_kiocb(&kiocb, file);
  2086. ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
  2087. if (ret == -EIOCBQUEUED)
  2088. ret = wait_on_sync_kiocb(&kiocb);
  2089. return ret;
  2090. }
  2091. ssize_t
  2092. generic_file_write_nolock(struct file *file, const struct iovec *iov,
  2093. unsigned long nr_segs, loff_t *ppos)
  2094. {
  2095. struct kiocb kiocb;
  2096. ssize_t ret;
  2097. init_sync_kiocb(&kiocb, file);
  2098. ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
  2099. if (-EIOCBQUEUED == ret)
  2100. ret = wait_on_sync_kiocb(&kiocb);
  2101. return ret;
  2102. }
  2103. EXPORT_SYMBOL(generic_file_write_nolock);
  2104. ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
  2105. size_t count, loff_t pos)
  2106. {
  2107. struct file *file = iocb->ki_filp;
  2108. struct address_space *mapping = file->f_mapping;
  2109. struct inode *inode = mapping->host;
  2110. ssize_t ret;
  2111. struct iovec local_iov = { .iov_base = (void __user *)buf,
  2112. .iov_len = count };
  2113. BUG_ON(iocb->ki_pos != pos);
  2114. mutex_lock(&inode->i_mutex);
  2115. ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
  2116. &iocb->ki_pos);
  2117. mutex_unlock(&inode->i_mutex);
  2118. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2119. ssize_t err;
  2120. err = sync_page_range(inode, mapping, pos, ret);
  2121. if (err < 0)
  2122. ret = err;
  2123. }
  2124. return ret;
  2125. }
  2126. EXPORT_SYMBOL(generic_file_aio_write);
  2127. ssize_t generic_file_write(struct file *file, const char __user *buf,
  2128. size_t count, loff_t *ppos)
  2129. {
  2130. struct address_space *mapping = file->f_mapping;
  2131. struct inode *inode = mapping->host;
  2132. ssize_t ret;
  2133. struct iovec local_iov = { .iov_base = (void __user *)buf,
  2134. .iov_len = count };
  2135. mutex_lock(&inode->i_mutex);
  2136. ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
  2137. mutex_unlock(&inode->i_mutex);
  2138. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2139. ssize_t err;
  2140. err = sync_page_range(inode, mapping, *ppos - ret, ret);
  2141. if (err < 0)
  2142. ret = err;
  2143. }
  2144. return ret;
  2145. }
  2146. EXPORT_SYMBOL(generic_file_write);
  2147. ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
  2148. unsigned long nr_segs, loff_t *ppos)
  2149. {
  2150. struct kiocb kiocb;
  2151. ssize_t ret;
  2152. init_sync_kiocb(&kiocb, filp);
  2153. ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
  2154. if (-EIOCBQUEUED == ret)
  2155. ret = wait_on_sync_kiocb(&kiocb);
  2156. return ret;
  2157. }
  2158. EXPORT_SYMBOL(generic_file_readv);
  2159. ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
  2160. unsigned long nr_segs, loff_t *ppos)
  2161. {
  2162. struct address_space *mapping = file->f_mapping;
  2163. struct inode *inode = mapping->host;
  2164. ssize_t ret;
  2165. mutex_lock(&inode->i_mutex);
  2166. ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
  2167. mutex_unlock(&inode->i_mutex);
  2168. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2169. int err;
  2170. err = sync_page_range(inode, mapping, *ppos - ret, ret);
  2171. if (err < 0)
  2172. ret = err;
  2173. }
  2174. return ret;
  2175. }
  2176. EXPORT_SYMBOL(generic_file_writev);
  2177. /*
  2178. * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
  2179. * went wrong during pagecache shootdown.
  2180. */
  2181. static ssize_t
  2182. generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
  2183. loff_t offset, unsigned long nr_segs)
  2184. {
  2185. struct file *file = iocb->ki_filp;
  2186. struct address_space *mapping = file->f_mapping;
  2187. ssize_t retval;
  2188. size_t write_len = 0;
  2189. /*
  2190. * If it's a write, unmap all mmappings of the file up-front. This
  2191. * will cause any pte dirty bits to be propagated into the pageframes
  2192. * for the subsequent filemap_write_and_wait().
  2193. */
  2194. if (rw == WRITE) {
  2195. write_len = iov_length(iov, nr_segs);
  2196. if (mapping_mapped(mapping))
  2197. unmap_mapping_range(mapping, offset, write_len, 0);
  2198. }
  2199. retval = filemap_write_and_wait(mapping);
  2200. if (retval == 0) {
  2201. retval = mapping->a_ops->direct_IO(rw, iocb, iov,
  2202. offset, nr_segs);
  2203. if (rw == WRITE && mapping->nrpages) {
  2204. pgoff_t end = (offset + write_len - 1)
  2205. >> PAGE_CACHE_SHIFT;
  2206. int err = invalidate_inode_pages2_range(mapping,
  2207. offset >> PAGE_CACHE_SHIFT, end);
  2208. if (err)
  2209. retval = err;
  2210. }
  2211. }
  2212. return retval;
  2213. }