futex.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  20. * enough at me, Linus for the original (flawed) idea, Matthew
  21. * Kirkwood for proof-of-concept implementation.
  22. *
  23. * "The futexes are also cursed."
  24. * "But they come in a choice of three flavours!"
  25. *
  26. * This program is free software; you can redistribute it and/or modify
  27. * it under the terms of the GNU General Public License as published by
  28. * the Free Software Foundation; either version 2 of the License, or
  29. * (at your option) any later version.
  30. *
  31. * This program is distributed in the hope that it will be useful,
  32. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  33. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  34. * GNU General Public License for more details.
  35. *
  36. * You should have received a copy of the GNU General Public License
  37. * along with this program; if not, write to the Free Software
  38. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  39. */
  40. #include <linux/slab.h>
  41. #include <linux/poll.h>
  42. #include <linux/fs.h>
  43. #include <linux/file.h>
  44. #include <linux/jhash.h>
  45. #include <linux/init.h>
  46. #include <linux/futex.h>
  47. #include <linux/mount.h>
  48. #include <linux/pagemap.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/signal.h>
  51. #include <asm/futex.h>
  52. #include "rtmutex_common.h"
  53. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  54. /*
  55. * Futexes are matched on equal values of this key.
  56. * The key type depends on whether it's a shared or private mapping.
  57. * Don't rearrange members without looking at hash_futex().
  58. *
  59. * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
  60. * We set bit 0 to indicate if it's an inode-based key.
  61. */
  62. union futex_key {
  63. struct {
  64. unsigned long pgoff;
  65. struct inode *inode;
  66. int offset;
  67. } shared;
  68. struct {
  69. unsigned long address;
  70. struct mm_struct *mm;
  71. int offset;
  72. } private;
  73. struct {
  74. unsigned long word;
  75. void *ptr;
  76. int offset;
  77. } both;
  78. };
  79. /*
  80. * Priority Inheritance state:
  81. */
  82. struct futex_pi_state {
  83. /*
  84. * list of 'owned' pi_state instances - these have to be
  85. * cleaned up in do_exit() if the task exits prematurely:
  86. */
  87. struct list_head list;
  88. /*
  89. * The PI object:
  90. */
  91. struct rt_mutex pi_mutex;
  92. struct task_struct *owner;
  93. atomic_t refcount;
  94. union futex_key key;
  95. };
  96. /*
  97. * We use this hashed waitqueue instead of a normal wait_queue_t, so
  98. * we can wake only the relevant ones (hashed queues may be shared).
  99. *
  100. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  101. * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
  102. * The order of wakup is always to make the first condition true, then
  103. * wake up q->waiters, then make the second condition true.
  104. */
  105. struct futex_q {
  106. struct list_head list;
  107. wait_queue_head_t waiters;
  108. /* Which hash list lock to use: */
  109. spinlock_t *lock_ptr;
  110. /* Key which the futex is hashed on: */
  111. union futex_key key;
  112. /* For fd, sigio sent using these: */
  113. int fd;
  114. struct file *filp;
  115. /* Optional priority inheritance state: */
  116. struct futex_pi_state *pi_state;
  117. struct task_struct *task;
  118. };
  119. /*
  120. * Split the global futex_lock into every hash list lock.
  121. */
  122. struct futex_hash_bucket {
  123. spinlock_t lock;
  124. struct list_head chain;
  125. };
  126. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  127. /* Futex-fs vfsmount entry: */
  128. static struct vfsmount *futex_mnt;
  129. /*
  130. * We hash on the keys returned from get_futex_key (see below).
  131. */
  132. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  133. {
  134. u32 hash = jhash2((u32*)&key->both.word,
  135. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  136. key->both.offset);
  137. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  138. }
  139. /*
  140. * Return 1 if two futex_keys are equal, 0 otherwise.
  141. */
  142. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  143. {
  144. return (key1->both.word == key2->both.word
  145. && key1->both.ptr == key2->both.ptr
  146. && key1->both.offset == key2->both.offset);
  147. }
  148. /*
  149. * Get parameters which are the keys for a futex.
  150. *
  151. * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
  152. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  153. * We can usually work out the index without swapping in the page.
  154. *
  155. * Returns: 0, or negative error code.
  156. * The key words are stored in *key on success.
  157. *
  158. * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
  159. */
  160. static int get_futex_key(u32 __user *uaddr, union futex_key *key)
  161. {
  162. unsigned long address = (unsigned long)uaddr;
  163. struct mm_struct *mm = current->mm;
  164. struct vm_area_struct *vma;
  165. struct page *page;
  166. int err;
  167. /*
  168. * The futex address must be "naturally" aligned.
  169. */
  170. key->both.offset = address % PAGE_SIZE;
  171. if (unlikely((key->both.offset % sizeof(u32)) != 0))
  172. return -EINVAL;
  173. address -= key->both.offset;
  174. /*
  175. * The futex is hashed differently depending on whether
  176. * it's in a shared or private mapping. So check vma first.
  177. */
  178. vma = find_extend_vma(mm, address);
  179. if (unlikely(!vma))
  180. return -EFAULT;
  181. /*
  182. * Permissions.
  183. */
  184. if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
  185. return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
  186. /*
  187. * Private mappings are handled in a simple way.
  188. *
  189. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  190. * it's a read-only handle, it's expected that futexes attach to
  191. * the object not the particular process. Therefore we use
  192. * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
  193. * mappings of _writable_ handles.
  194. */
  195. if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
  196. key->private.mm = mm;
  197. key->private.address = address;
  198. return 0;
  199. }
  200. /*
  201. * Linear file mappings are also simple.
  202. */
  203. key->shared.inode = vma->vm_file->f_dentry->d_inode;
  204. key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
  205. if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
  206. key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
  207. + vma->vm_pgoff);
  208. return 0;
  209. }
  210. /*
  211. * We could walk the page table to read the non-linear
  212. * pte, and get the page index without fetching the page
  213. * from swap. But that's a lot of code to duplicate here
  214. * for a rare case, so we simply fetch the page.
  215. */
  216. err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
  217. if (err >= 0) {
  218. key->shared.pgoff =
  219. page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  220. put_page(page);
  221. return 0;
  222. }
  223. return err;
  224. }
  225. /*
  226. * Take a reference to the resource addressed by a key.
  227. * Can be called while holding spinlocks.
  228. *
  229. * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
  230. * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
  231. */
  232. static inline void get_key_refs(union futex_key *key)
  233. {
  234. if (key->both.ptr != 0) {
  235. if (key->both.offset & 1)
  236. atomic_inc(&key->shared.inode->i_count);
  237. else
  238. atomic_inc(&key->private.mm->mm_count);
  239. }
  240. }
  241. /*
  242. * Drop a reference to the resource addressed by a key.
  243. * The hash bucket spinlock must not be held.
  244. */
  245. static void drop_key_refs(union futex_key *key)
  246. {
  247. if (key->both.ptr != 0) {
  248. if (key->both.offset & 1)
  249. iput(key->shared.inode);
  250. else
  251. mmdrop(key->private.mm);
  252. }
  253. }
  254. static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
  255. {
  256. int ret;
  257. inc_preempt_count();
  258. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  259. dec_preempt_count();
  260. return ret ? -EFAULT : 0;
  261. }
  262. /*
  263. * Fault handling. Called with current->mm->mmap_sem held.
  264. */
  265. static int futex_handle_fault(unsigned long address, int attempt)
  266. {
  267. struct vm_area_struct * vma;
  268. struct mm_struct *mm = current->mm;
  269. if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
  270. vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
  271. return -EFAULT;
  272. switch (handle_mm_fault(mm, vma, address, 1)) {
  273. case VM_FAULT_MINOR:
  274. current->min_flt++;
  275. break;
  276. case VM_FAULT_MAJOR:
  277. current->maj_flt++;
  278. break;
  279. default:
  280. return -EFAULT;
  281. }
  282. return 0;
  283. }
  284. /*
  285. * PI code:
  286. */
  287. static int refill_pi_state_cache(void)
  288. {
  289. struct futex_pi_state *pi_state;
  290. if (likely(current->pi_state_cache))
  291. return 0;
  292. pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
  293. if (!pi_state)
  294. return -ENOMEM;
  295. memset(pi_state, 0, sizeof(*pi_state));
  296. INIT_LIST_HEAD(&pi_state->list);
  297. /* pi_mutex gets initialized later */
  298. pi_state->owner = NULL;
  299. atomic_set(&pi_state->refcount, 1);
  300. current->pi_state_cache = pi_state;
  301. return 0;
  302. }
  303. static struct futex_pi_state * alloc_pi_state(void)
  304. {
  305. struct futex_pi_state *pi_state = current->pi_state_cache;
  306. WARN_ON(!pi_state);
  307. current->pi_state_cache = NULL;
  308. return pi_state;
  309. }
  310. static void free_pi_state(struct futex_pi_state *pi_state)
  311. {
  312. if (!atomic_dec_and_test(&pi_state->refcount))
  313. return;
  314. /*
  315. * If pi_state->owner is NULL, the owner is most probably dying
  316. * and has cleaned up the pi_state already
  317. */
  318. if (pi_state->owner) {
  319. spin_lock_irq(&pi_state->owner->pi_lock);
  320. list_del_init(&pi_state->list);
  321. spin_unlock_irq(&pi_state->owner->pi_lock);
  322. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  323. }
  324. if (current->pi_state_cache)
  325. kfree(pi_state);
  326. else {
  327. /*
  328. * pi_state->list is already empty.
  329. * clear pi_state->owner.
  330. * refcount is at 0 - put it back to 1.
  331. */
  332. pi_state->owner = NULL;
  333. atomic_set(&pi_state->refcount, 1);
  334. current->pi_state_cache = pi_state;
  335. }
  336. }
  337. /*
  338. * Look up the task based on what TID userspace gave us.
  339. * We dont trust it.
  340. */
  341. static struct task_struct * futex_find_get_task(pid_t pid)
  342. {
  343. struct task_struct *p;
  344. read_lock(&tasklist_lock);
  345. p = find_task_by_pid(pid);
  346. if (!p)
  347. goto out_unlock;
  348. if ((current->euid != p->euid) && (current->euid != p->uid)) {
  349. p = NULL;
  350. goto out_unlock;
  351. }
  352. if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
  353. p = NULL;
  354. goto out_unlock;
  355. }
  356. get_task_struct(p);
  357. out_unlock:
  358. read_unlock(&tasklist_lock);
  359. return p;
  360. }
  361. /*
  362. * This task is holding PI mutexes at exit time => bad.
  363. * Kernel cleans up PI-state, but userspace is likely hosed.
  364. * (Robust-futex cleanup is separate and might save the day for userspace.)
  365. */
  366. void exit_pi_state_list(struct task_struct *curr)
  367. {
  368. struct futex_hash_bucket *hb;
  369. struct list_head *next, *head = &curr->pi_state_list;
  370. struct futex_pi_state *pi_state;
  371. union futex_key key;
  372. /*
  373. * We are a ZOMBIE and nobody can enqueue itself on
  374. * pi_state_list anymore, but we have to be careful
  375. * versus waiters unqueueing themselfs
  376. */
  377. spin_lock_irq(&curr->pi_lock);
  378. while (!list_empty(head)) {
  379. next = head->next;
  380. pi_state = list_entry(next, struct futex_pi_state, list);
  381. key = pi_state->key;
  382. spin_unlock_irq(&curr->pi_lock);
  383. hb = hash_futex(&key);
  384. spin_lock(&hb->lock);
  385. spin_lock_irq(&curr->pi_lock);
  386. if (head->next != next) {
  387. spin_unlock(&hb->lock);
  388. continue;
  389. }
  390. list_del_init(&pi_state->list);
  391. WARN_ON(pi_state->owner != curr);
  392. pi_state->owner = NULL;
  393. spin_unlock_irq(&curr->pi_lock);
  394. rt_mutex_unlock(&pi_state->pi_mutex);
  395. spin_unlock(&hb->lock);
  396. spin_lock_irq(&curr->pi_lock);
  397. }
  398. spin_unlock_irq(&curr->pi_lock);
  399. }
  400. static int
  401. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
  402. {
  403. struct futex_pi_state *pi_state = NULL;
  404. struct futex_q *this, *next;
  405. struct list_head *head;
  406. struct task_struct *p;
  407. pid_t pid;
  408. head = &hb->chain;
  409. list_for_each_entry_safe(this, next, head, list) {
  410. if (match_futex (&this->key, &me->key)) {
  411. /*
  412. * Another waiter already exists - bump up
  413. * the refcount and return its pi_state:
  414. */
  415. pi_state = this->pi_state;
  416. atomic_inc(&pi_state->refcount);
  417. me->pi_state = pi_state;
  418. return 0;
  419. }
  420. }
  421. /*
  422. * We are the first waiter - try to look up the real owner and
  423. * attach the new pi_state to it:
  424. */
  425. pid = uval & FUTEX_TID_MASK;
  426. p = futex_find_get_task(pid);
  427. if (!p)
  428. return -ESRCH;
  429. pi_state = alloc_pi_state();
  430. /*
  431. * Initialize the pi_mutex in locked state and make 'p'
  432. * the owner of it:
  433. */
  434. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  435. /* Store the key for possible exit cleanups: */
  436. pi_state->key = me->key;
  437. spin_lock_irq(&p->pi_lock);
  438. list_add(&pi_state->list, &p->pi_state_list);
  439. pi_state->owner = p;
  440. spin_unlock_irq(&p->pi_lock);
  441. put_task_struct(p);
  442. me->pi_state = pi_state;
  443. return 0;
  444. }
  445. /*
  446. * The hash bucket lock must be held when this is called.
  447. * Afterwards, the futex_q must not be accessed.
  448. */
  449. static void wake_futex(struct futex_q *q)
  450. {
  451. list_del_init(&q->list);
  452. if (q->filp)
  453. send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
  454. /*
  455. * The lock in wake_up_all() is a crucial memory barrier after the
  456. * list_del_init() and also before assigning to q->lock_ptr.
  457. */
  458. wake_up_all(&q->waiters);
  459. /*
  460. * The waiting task can free the futex_q as soon as this is written,
  461. * without taking any locks. This must come last.
  462. *
  463. * A memory barrier is required here to prevent the following store
  464. * to lock_ptr from getting ahead of the wakeup. Clearing the lock
  465. * at the end of wake_up_all() does not prevent this store from
  466. * moving.
  467. */
  468. wmb();
  469. q->lock_ptr = NULL;
  470. }
  471. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  472. {
  473. struct task_struct *new_owner;
  474. struct futex_pi_state *pi_state = this->pi_state;
  475. u32 curval, newval;
  476. if (!pi_state)
  477. return -EINVAL;
  478. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  479. /*
  480. * This happens when we have stolen the lock and the original
  481. * pending owner did not enqueue itself back on the rt_mutex.
  482. * Thats not a tragedy. We know that way, that a lock waiter
  483. * is on the fly. We make the futex_q waiter the pending owner.
  484. */
  485. if (!new_owner)
  486. new_owner = this->task;
  487. /*
  488. * We pass it to the next owner. (The WAITERS bit is always
  489. * kept enabled while there is PI state around. We must also
  490. * preserve the owner died bit.)
  491. */
  492. newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
  493. inc_preempt_count();
  494. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  495. dec_preempt_count();
  496. if (curval == -EFAULT)
  497. return -EFAULT;
  498. if (curval != uval)
  499. return -EINVAL;
  500. list_del_init(&pi_state->owner->pi_state_list);
  501. list_add(&pi_state->list, &new_owner->pi_state_list);
  502. pi_state->owner = new_owner;
  503. rt_mutex_unlock(&pi_state->pi_mutex);
  504. return 0;
  505. }
  506. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  507. {
  508. u32 oldval;
  509. /*
  510. * There is no waiter, so we unlock the futex. The owner died
  511. * bit has not to be preserved here. We are the owner:
  512. */
  513. inc_preempt_count();
  514. oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
  515. dec_preempt_count();
  516. if (oldval == -EFAULT)
  517. return oldval;
  518. if (oldval != uval)
  519. return -EAGAIN;
  520. return 0;
  521. }
  522. /*
  523. * Express the locking dependencies for lockdep:
  524. */
  525. static inline void
  526. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  527. {
  528. if (hb1 <= hb2) {
  529. spin_lock(&hb1->lock);
  530. if (hb1 < hb2)
  531. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  532. } else { /* hb1 > hb2 */
  533. spin_lock(&hb2->lock);
  534. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  535. }
  536. }
  537. /*
  538. * Wake up all waiters hashed on the physical page that is mapped
  539. * to this virtual address:
  540. */
  541. static int futex_wake(u32 __user *uaddr, int nr_wake)
  542. {
  543. struct futex_hash_bucket *hb;
  544. struct futex_q *this, *next;
  545. struct list_head *head;
  546. union futex_key key;
  547. int ret;
  548. down_read(&current->mm->mmap_sem);
  549. ret = get_futex_key(uaddr, &key);
  550. if (unlikely(ret != 0))
  551. goto out;
  552. hb = hash_futex(&key);
  553. spin_lock(&hb->lock);
  554. head = &hb->chain;
  555. list_for_each_entry_safe(this, next, head, list) {
  556. if (match_futex (&this->key, &key)) {
  557. if (this->pi_state) {
  558. ret = -EINVAL;
  559. break;
  560. }
  561. wake_futex(this);
  562. if (++ret >= nr_wake)
  563. break;
  564. }
  565. }
  566. spin_unlock(&hb->lock);
  567. out:
  568. up_read(&current->mm->mmap_sem);
  569. return ret;
  570. }
  571. /*
  572. * Wake up all waiters hashed on the physical page that is mapped
  573. * to this virtual address:
  574. */
  575. static int
  576. futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
  577. int nr_wake, int nr_wake2, int op)
  578. {
  579. union futex_key key1, key2;
  580. struct futex_hash_bucket *hb1, *hb2;
  581. struct list_head *head;
  582. struct futex_q *this, *next;
  583. int ret, op_ret, attempt = 0;
  584. retryfull:
  585. down_read(&current->mm->mmap_sem);
  586. ret = get_futex_key(uaddr1, &key1);
  587. if (unlikely(ret != 0))
  588. goto out;
  589. ret = get_futex_key(uaddr2, &key2);
  590. if (unlikely(ret != 0))
  591. goto out;
  592. hb1 = hash_futex(&key1);
  593. hb2 = hash_futex(&key2);
  594. retry:
  595. double_lock_hb(hb1, hb2);
  596. op_ret = futex_atomic_op_inuser(op, uaddr2);
  597. if (unlikely(op_ret < 0)) {
  598. u32 dummy;
  599. spin_unlock(&hb1->lock);
  600. if (hb1 != hb2)
  601. spin_unlock(&hb2->lock);
  602. #ifndef CONFIG_MMU
  603. /*
  604. * we don't get EFAULT from MMU faults if we don't have an MMU,
  605. * but we might get them from range checking
  606. */
  607. ret = op_ret;
  608. goto out;
  609. #endif
  610. if (unlikely(op_ret != -EFAULT)) {
  611. ret = op_ret;
  612. goto out;
  613. }
  614. /*
  615. * futex_atomic_op_inuser needs to both read and write
  616. * *(int __user *)uaddr2, but we can't modify it
  617. * non-atomically. Therefore, if get_user below is not
  618. * enough, we need to handle the fault ourselves, while
  619. * still holding the mmap_sem.
  620. */
  621. if (attempt++) {
  622. if (futex_handle_fault((unsigned long)uaddr2,
  623. attempt))
  624. goto out;
  625. goto retry;
  626. }
  627. /*
  628. * If we would have faulted, release mmap_sem,
  629. * fault it in and start all over again.
  630. */
  631. up_read(&current->mm->mmap_sem);
  632. ret = get_user(dummy, uaddr2);
  633. if (ret)
  634. return ret;
  635. goto retryfull;
  636. }
  637. head = &hb1->chain;
  638. list_for_each_entry_safe(this, next, head, list) {
  639. if (match_futex (&this->key, &key1)) {
  640. wake_futex(this);
  641. if (++ret >= nr_wake)
  642. break;
  643. }
  644. }
  645. if (op_ret > 0) {
  646. head = &hb2->chain;
  647. op_ret = 0;
  648. list_for_each_entry_safe(this, next, head, list) {
  649. if (match_futex (&this->key, &key2)) {
  650. wake_futex(this);
  651. if (++op_ret >= nr_wake2)
  652. break;
  653. }
  654. }
  655. ret += op_ret;
  656. }
  657. spin_unlock(&hb1->lock);
  658. if (hb1 != hb2)
  659. spin_unlock(&hb2->lock);
  660. out:
  661. up_read(&current->mm->mmap_sem);
  662. return ret;
  663. }
  664. /*
  665. * Requeue all waiters hashed on one physical page to another
  666. * physical page.
  667. */
  668. static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
  669. int nr_wake, int nr_requeue, u32 *cmpval)
  670. {
  671. union futex_key key1, key2;
  672. struct futex_hash_bucket *hb1, *hb2;
  673. struct list_head *head1;
  674. struct futex_q *this, *next;
  675. int ret, drop_count = 0;
  676. retry:
  677. down_read(&current->mm->mmap_sem);
  678. ret = get_futex_key(uaddr1, &key1);
  679. if (unlikely(ret != 0))
  680. goto out;
  681. ret = get_futex_key(uaddr2, &key2);
  682. if (unlikely(ret != 0))
  683. goto out;
  684. hb1 = hash_futex(&key1);
  685. hb2 = hash_futex(&key2);
  686. double_lock_hb(hb1, hb2);
  687. if (likely(cmpval != NULL)) {
  688. u32 curval;
  689. ret = get_futex_value_locked(&curval, uaddr1);
  690. if (unlikely(ret)) {
  691. spin_unlock(&hb1->lock);
  692. if (hb1 != hb2)
  693. spin_unlock(&hb2->lock);
  694. /*
  695. * If we would have faulted, release mmap_sem, fault
  696. * it in and start all over again.
  697. */
  698. up_read(&current->mm->mmap_sem);
  699. ret = get_user(curval, uaddr1);
  700. if (!ret)
  701. goto retry;
  702. return ret;
  703. }
  704. if (curval != *cmpval) {
  705. ret = -EAGAIN;
  706. goto out_unlock;
  707. }
  708. }
  709. head1 = &hb1->chain;
  710. list_for_each_entry_safe(this, next, head1, list) {
  711. if (!match_futex (&this->key, &key1))
  712. continue;
  713. if (++ret <= nr_wake) {
  714. wake_futex(this);
  715. } else {
  716. /*
  717. * If key1 and key2 hash to the same bucket, no need to
  718. * requeue.
  719. */
  720. if (likely(head1 != &hb2->chain)) {
  721. list_move_tail(&this->list, &hb2->chain);
  722. this->lock_ptr = &hb2->lock;
  723. }
  724. this->key = key2;
  725. get_key_refs(&key2);
  726. drop_count++;
  727. if (ret - nr_wake >= nr_requeue)
  728. break;
  729. }
  730. }
  731. out_unlock:
  732. spin_unlock(&hb1->lock);
  733. if (hb1 != hb2)
  734. spin_unlock(&hb2->lock);
  735. /* drop_key_refs() must be called outside the spinlocks. */
  736. while (--drop_count >= 0)
  737. drop_key_refs(&key1);
  738. out:
  739. up_read(&current->mm->mmap_sem);
  740. return ret;
  741. }
  742. /* The key must be already stored in q->key. */
  743. static inline struct futex_hash_bucket *
  744. queue_lock(struct futex_q *q, int fd, struct file *filp)
  745. {
  746. struct futex_hash_bucket *hb;
  747. q->fd = fd;
  748. q->filp = filp;
  749. init_waitqueue_head(&q->waiters);
  750. get_key_refs(&q->key);
  751. hb = hash_futex(&q->key);
  752. q->lock_ptr = &hb->lock;
  753. spin_lock(&hb->lock);
  754. return hb;
  755. }
  756. static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  757. {
  758. list_add_tail(&q->list, &hb->chain);
  759. q->task = current;
  760. spin_unlock(&hb->lock);
  761. }
  762. static inline void
  763. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  764. {
  765. spin_unlock(&hb->lock);
  766. drop_key_refs(&q->key);
  767. }
  768. /*
  769. * queue_me and unqueue_me must be called as a pair, each
  770. * exactly once. They are called with the hashed spinlock held.
  771. */
  772. /* The key must be already stored in q->key. */
  773. static void queue_me(struct futex_q *q, int fd, struct file *filp)
  774. {
  775. struct futex_hash_bucket *hb;
  776. hb = queue_lock(q, fd, filp);
  777. __queue_me(q, hb);
  778. }
  779. /* Return 1 if we were still queued (ie. 0 means we were woken) */
  780. static int unqueue_me(struct futex_q *q)
  781. {
  782. spinlock_t *lock_ptr;
  783. int ret = 0;
  784. /* In the common case we don't take the spinlock, which is nice. */
  785. retry:
  786. lock_ptr = q->lock_ptr;
  787. if (lock_ptr != 0) {
  788. spin_lock(lock_ptr);
  789. /*
  790. * q->lock_ptr can change between reading it and
  791. * spin_lock(), causing us to take the wrong lock. This
  792. * corrects the race condition.
  793. *
  794. * Reasoning goes like this: if we have the wrong lock,
  795. * q->lock_ptr must have changed (maybe several times)
  796. * between reading it and the spin_lock(). It can
  797. * change again after the spin_lock() but only if it was
  798. * already changed before the spin_lock(). It cannot,
  799. * however, change back to the original value. Therefore
  800. * we can detect whether we acquired the correct lock.
  801. */
  802. if (unlikely(lock_ptr != q->lock_ptr)) {
  803. spin_unlock(lock_ptr);
  804. goto retry;
  805. }
  806. WARN_ON(list_empty(&q->list));
  807. list_del(&q->list);
  808. BUG_ON(q->pi_state);
  809. spin_unlock(lock_ptr);
  810. ret = 1;
  811. }
  812. drop_key_refs(&q->key);
  813. return ret;
  814. }
  815. /*
  816. * PI futexes can not be requeued and must remove themself from the
  817. * hash bucket. The hash bucket lock is held on entry and dropped here.
  818. */
  819. static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
  820. {
  821. WARN_ON(list_empty(&q->list));
  822. list_del(&q->list);
  823. BUG_ON(!q->pi_state);
  824. free_pi_state(q->pi_state);
  825. q->pi_state = NULL;
  826. spin_unlock(&hb->lock);
  827. drop_key_refs(&q->key);
  828. }
  829. static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
  830. {
  831. struct task_struct *curr = current;
  832. DECLARE_WAITQUEUE(wait, curr);
  833. struct futex_hash_bucket *hb;
  834. struct futex_q q;
  835. u32 uval;
  836. int ret;
  837. q.pi_state = NULL;
  838. retry:
  839. down_read(&curr->mm->mmap_sem);
  840. ret = get_futex_key(uaddr, &q.key);
  841. if (unlikely(ret != 0))
  842. goto out_release_sem;
  843. hb = queue_lock(&q, -1, NULL);
  844. /*
  845. * Access the page AFTER the futex is queued.
  846. * Order is important:
  847. *
  848. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  849. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  850. *
  851. * The basic logical guarantee of a futex is that it blocks ONLY
  852. * if cond(var) is known to be true at the time of blocking, for
  853. * any cond. If we queued after testing *uaddr, that would open
  854. * a race condition where we could block indefinitely with
  855. * cond(var) false, which would violate the guarantee.
  856. *
  857. * A consequence is that futex_wait() can return zero and absorb
  858. * a wakeup when *uaddr != val on entry to the syscall. This is
  859. * rare, but normal.
  860. *
  861. * We hold the mmap semaphore, so the mapping cannot have changed
  862. * since we looked it up in get_futex_key.
  863. */
  864. ret = get_futex_value_locked(&uval, uaddr);
  865. if (unlikely(ret)) {
  866. queue_unlock(&q, hb);
  867. /*
  868. * If we would have faulted, release mmap_sem, fault it in and
  869. * start all over again.
  870. */
  871. up_read(&curr->mm->mmap_sem);
  872. ret = get_user(uval, uaddr);
  873. if (!ret)
  874. goto retry;
  875. return ret;
  876. }
  877. ret = -EWOULDBLOCK;
  878. if (uval != val)
  879. goto out_unlock_release_sem;
  880. /* Only actually queue if *uaddr contained val. */
  881. __queue_me(&q, hb);
  882. /*
  883. * Now the futex is queued and we have checked the data, we
  884. * don't want to hold mmap_sem while we sleep.
  885. */
  886. up_read(&curr->mm->mmap_sem);
  887. /*
  888. * There might have been scheduling since the queue_me(), as we
  889. * cannot hold a spinlock across the get_user() in case it
  890. * faults, and we cannot just set TASK_INTERRUPTIBLE state when
  891. * queueing ourselves into the futex hash. This code thus has to
  892. * rely on the futex_wake() code removing us from hash when it
  893. * wakes us up.
  894. */
  895. /* add_wait_queue is the barrier after __set_current_state. */
  896. __set_current_state(TASK_INTERRUPTIBLE);
  897. add_wait_queue(&q.waiters, &wait);
  898. /*
  899. * !list_empty() is safe here without any lock.
  900. * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
  901. */
  902. if (likely(!list_empty(&q.list)))
  903. time = schedule_timeout(time);
  904. __set_current_state(TASK_RUNNING);
  905. /*
  906. * NOTE: we don't remove ourselves from the waitqueue because
  907. * we are the only user of it.
  908. */
  909. /* If we were woken (and unqueued), we succeeded, whatever. */
  910. if (!unqueue_me(&q))
  911. return 0;
  912. if (time == 0)
  913. return -ETIMEDOUT;
  914. /*
  915. * We expect signal_pending(current), but another thread may
  916. * have handled it for us already.
  917. */
  918. return -EINTR;
  919. out_unlock_release_sem:
  920. queue_unlock(&q, hb);
  921. out_release_sem:
  922. up_read(&curr->mm->mmap_sem);
  923. return ret;
  924. }
  925. /*
  926. * Userspace tried a 0 -> TID atomic transition of the futex value
  927. * and failed. The kernel side here does the whole locking operation:
  928. * if there are waiters then it will block, it does PI, etc. (Due to
  929. * races the kernel might see a 0 value of the futex too.)
  930. */
  931. static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
  932. struct hrtimer_sleeper *to)
  933. {
  934. struct task_struct *curr = current;
  935. struct futex_hash_bucket *hb;
  936. u32 uval, newval, curval;
  937. struct futex_q q;
  938. int ret, attempt = 0;
  939. if (refill_pi_state_cache())
  940. return -ENOMEM;
  941. q.pi_state = NULL;
  942. retry:
  943. down_read(&curr->mm->mmap_sem);
  944. ret = get_futex_key(uaddr, &q.key);
  945. if (unlikely(ret != 0))
  946. goto out_release_sem;
  947. hb = queue_lock(&q, -1, NULL);
  948. retry_locked:
  949. /*
  950. * To avoid races, we attempt to take the lock here again
  951. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  952. * the locks. It will most likely not succeed.
  953. */
  954. newval = current->pid;
  955. inc_preempt_count();
  956. curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
  957. dec_preempt_count();
  958. if (unlikely(curval == -EFAULT))
  959. goto uaddr_faulted;
  960. /* We own the lock already */
  961. if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
  962. if (!detect && 0)
  963. force_sig(SIGKILL, current);
  964. ret = -EDEADLK;
  965. goto out_unlock_release_sem;
  966. }
  967. /*
  968. * Surprise - we got the lock. Just return
  969. * to userspace:
  970. */
  971. if (unlikely(!curval))
  972. goto out_unlock_release_sem;
  973. uval = curval;
  974. newval = uval | FUTEX_WAITERS;
  975. inc_preempt_count();
  976. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  977. dec_preempt_count();
  978. if (unlikely(curval == -EFAULT))
  979. goto uaddr_faulted;
  980. if (unlikely(curval != uval))
  981. goto retry_locked;
  982. /*
  983. * We dont have the lock. Look up the PI state (or create it if
  984. * we are the first waiter):
  985. */
  986. ret = lookup_pi_state(uval, hb, &q);
  987. if (unlikely(ret)) {
  988. /*
  989. * There were no waiters and the owner task lookup
  990. * failed. When the OWNER_DIED bit is set, then we
  991. * know that this is a robust futex and we actually
  992. * take the lock. This is safe as we are protected by
  993. * the hash bucket lock. We also set the waiters bit
  994. * unconditionally here, to simplify glibc handling of
  995. * multiple tasks racing to acquire the lock and
  996. * cleanup the problems which were left by the dead
  997. * owner.
  998. */
  999. if (curval & FUTEX_OWNER_DIED) {
  1000. uval = newval;
  1001. newval = current->pid |
  1002. FUTEX_OWNER_DIED | FUTEX_WAITERS;
  1003. inc_preempt_count();
  1004. curval = futex_atomic_cmpxchg_inatomic(uaddr,
  1005. uval, newval);
  1006. dec_preempt_count();
  1007. if (unlikely(curval == -EFAULT))
  1008. goto uaddr_faulted;
  1009. if (unlikely(curval != uval))
  1010. goto retry_locked;
  1011. ret = 0;
  1012. }
  1013. goto out_unlock_release_sem;
  1014. }
  1015. /*
  1016. * Only actually queue now that the atomic ops are done:
  1017. */
  1018. __queue_me(&q, hb);
  1019. /*
  1020. * Now the futex is queued and we have checked the data, we
  1021. * don't want to hold mmap_sem while we sleep.
  1022. */
  1023. up_read(&curr->mm->mmap_sem);
  1024. WARN_ON(!q.pi_state);
  1025. /*
  1026. * Block on the PI mutex:
  1027. */
  1028. if (!trylock)
  1029. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1030. else {
  1031. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1032. /* Fixup the trylock return value: */
  1033. ret = ret ? 0 : -EWOULDBLOCK;
  1034. }
  1035. down_read(&curr->mm->mmap_sem);
  1036. spin_lock(q.lock_ptr);
  1037. /*
  1038. * Got the lock. We might not be the anticipated owner if we
  1039. * did a lock-steal - fix up the PI-state in that case.
  1040. */
  1041. if (!ret && q.pi_state->owner != curr) {
  1042. u32 newtid = current->pid | FUTEX_WAITERS;
  1043. /* Owner died? */
  1044. if (q.pi_state->owner != NULL) {
  1045. spin_lock_irq(&q.pi_state->owner->pi_lock);
  1046. list_del_init(&q.pi_state->list);
  1047. spin_unlock_irq(&q.pi_state->owner->pi_lock);
  1048. } else
  1049. newtid |= FUTEX_OWNER_DIED;
  1050. q.pi_state->owner = current;
  1051. spin_lock_irq(&current->pi_lock);
  1052. list_add(&q.pi_state->list, &current->pi_state_list);
  1053. spin_unlock_irq(&current->pi_lock);
  1054. /* Unqueue and drop the lock */
  1055. unqueue_me_pi(&q, hb);
  1056. up_read(&curr->mm->mmap_sem);
  1057. /*
  1058. * We own it, so we have to replace the pending owner
  1059. * TID. This must be atomic as we have preserve the
  1060. * owner died bit here.
  1061. */
  1062. ret = get_user(uval, uaddr);
  1063. while (!ret) {
  1064. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1065. curval = futex_atomic_cmpxchg_inatomic(uaddr,
  1066. uval, newval);
  1067. if (curval == -EFAULT)
  1068. ret = -EFAULT;
  1069. if (curval == uval)
  1070. break;
  1071. uval = curval;
  1072. }
  1073. } else {
  1074. /*
  1075. * Catch the rare case, where the lock was released
  1076. * when we were on the way back before we locked
  1077. * the hash bucket.
  1078. */
  1079. if (ret && q.pi_state->owner == curr) {
  1080. if (rt_mutex_trylock(&q.pi_state->pi_mutex))
  1081. ret = 0;
  1082. }
  1083. /* Unqueue and drop the lock */
  1084. unqueue_me_pi(&q, hb);
  1085. up_read(&curr->mm->mmap_sem);
  1086. }
  1087. if (!detect && ret == -EDEADLK && 0)
  1088. force_sig(SIGKILL, current);
  1089. return ret;
  1090. out_unlock_release_sem:
  1091. queue_unlock(&q, hb);
  1092. out_release_sem:
  1093. up_read(&curr->mm->mmap_sem);
  1094. return ret;
  1095. uaddr_faulted:
  1096. /*
  1097. * We have to r/w *(int __user *)uaddr, but we can't modify it
  1098. * non-atomically. Therefore, if get_user below is not
  1099. * enough, we need to handle the fault ourselves, while
  1100. * still holding the mmap_sem.
  1101. */
  1102. if (attempt++) {
  1103. if (futex_handle_fault((unsigned long)uaddr, attempt))
  1104. goto out_unlock_release_sem;
  1105. goto retry_locked;
  1106. }
  1107. queue_unlock(&q, hb);
  1108. up_read(&curr->mm->mmap_sem);
  1109. ret = get_user(uval, uaddr);
  1110. if (!ret && (uval != -EFAULT))
  1111. goto retry;
  1112. return ret;
  1113. }
  1114. /*
  1115. * Restart handler
  1116. */
  1117. static long futex_lock_pi_restart(struct restart_block *restart)
  1118. {
  1119. struct hrtimer_sleeper timeout, *to = NULL;
  1120. int ret;
  1121. restart->fn = do_no_restart_syscall;
  1122. if (restart->arg2 || restart->arg3) {
  1123. to = &timeout;
  1124. hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
  1125. hrtimer_init_sleeper(to, current);
  1126. to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
  1127. (u64) restart->arg0;
  1128. }
  1129. pr_debug("lock_pi restart: %p, %d (%d)\n",
  1130. (u32 __user *)restart->arg0, current->pid);
  1131. ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
  1132. 0, to);
  1133. if (ret != -EINTR)
  1134. return ret;
  1135. restart->fn = futex_lock_pi_restart;
  1136. /* The other values are filled in */
  1137. return -ERESTART_RESTARTBLOCK;
  1138. }
  1139. /*
  1140. * Called from the syscall entry below.
  1141. */
  1142. static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
  1143. long nsec, int trylock)
  1144. {
  1145. struct hrtimer_sleeper timeout, *to = NULL;
  1146. struct restart_block *restart;
  1147. int ret;
  1148. if (sec != MAX_SCHEDULE_TIMEOUT) {
  1149. to = &timeout;
  1150. hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
  1151. hrtimer_init_sleeper(to, current);
  1152. to->timer.expires = ktime_set(sec, nsec);
  1153. }
  1154. ret = do_futex_lock_pi(uaddr, detect, trylock, to);
  1155. if (ret != -EINTR)
  1156. return ret;
  1157. pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
  1158. restart = &current_thread_info()->restart_block;
  1159. restart->fn = futex_lock_pi_restart;
  1160. restart->arg0 = (unsigned long) uaddr;
  1161. restart->arg1 = detect;
  1162. if (to) {
  1163. restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
  1164. restart->arg3 = to->timer.expires.tv64 >> 32;
  1165. } else
  1166. restart->arg2 = restart->arg3 = 0;
  1167. return -ERESTART_RESTARTBLOCK;
  1168. }
  1169. /*
  1170. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1171. * This is the in-kernel slowpath: we look up the PI state (if any),
  1172. * and do the rt-mutex unlock.
  1173. */
  1174. static int futex_unlock_pi(u32 __user *uaddr)
  1175. {
  1176. struct futex_hash_bucket *hb;
  1177. struct futex_q *this, *next;
  1178. u32 uval;
  1179. struct list_head *head;
  1180. union futex_key key;
  1181. int ret, attempt = 0;
  1182. retry:
  1183. if (get_user(uval, uaddr))
  1184. return -EFAULT;
  1185. /*
  1186. * We release only a lock we actually own:
  1187. */
  1188. if ((uval & FUTEX_TID_MASK) != current->pid)
  1189. return -EPERM;
  1190. /*
  1191. * First take all the futex related locks:
  1192. */
  1193. down_read(&current->mm->mmap_sem);
  1194. ret = get_futex_key(uaddr, &key);
  1195. if (unlikely(ret != 0))
  1196. goto out;
  1197. hb = hash_futex(&key);
  1198. spin_lock(&hb->lock);
  1199. retry_locked:
  1200. /*
  1201. * To avoid races, try to do the TID -> 0 atomic transition
  1202. * again. If it succeeds then we can return without waking
  1203. * anyone else up:
  1204. */
  1205. inc_preempt_count();
  1206. uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
  1207. dec_preempt_count();
  1208. if (unlikely(uval == -EFAULT))
  1209. goto pi_faulted;
  1210. /*
  1211. * Rare case: we managed to release the lock atomically,
  1212. * no need to wake anyone else up:
  1213. */
  1214. if (unlikely(uval == current->pid))
  1215. goto out_unlock;
  1216. /*
  1217. * Ok, other tasks may need to be woken up - check waiters
  1218. * and do the wakeup if necessary:
  1219. */
  1220. head = &hb->chain;
  1221. list_for_each_entry_safe(this, next, head, list) {
  1222. if (!match_futex (&this->key, &key))
  1223. continue;
  1224. ret = wake_futex_pi(uaddr, uval, this);
  1225. /*
  1226. * The atomic access to the futex value
  1227. * generated a pagefault, so retry the
  1228. * user-access and the wakeup:
  1229. */
  1230. if (ret == -EFAULT)
  1231. goto pi_faulted;
  1232. goto out_unlock;
  1233. }
  1234. /*
  1235. * No waiters - kernel unlocks the futex:
  1236. */
  1237. ret = unlock_futex_pi(uaddr, uval);
  1238. if (ret == -EFAULT)
  1239. goto pi_faulted;
  1240. out_unlock:
  1241. spin_unlock(&hb->lock);
  1242. out:
  1243. up_read(&current->mm->mmap_sem);
  1244. return ret;
  1245. pi_faulted:
  1246. /*
  1247. * We have to r/w *(int __user *)uaddr, but we can't modify it
  1248. * non-atomically. Therefore, if get_user below is not
  1249. * enough, we need to handle the fault ourselves, while
  1250. * still holding the mmap_sem.
  1251. */
  1252. if (attempt++) {
  1253. if (futex_handle_fault((unsigned long)uaddr, attempt))
  1254. goto out_unlock;
  1255. goto retry_locked;
  1256. }
  1257. spin_unlock(&hb->lock);
  1258. up_read(&current->mm->mmap_sem);
  1259. ret = get_user(uval, uaddr);
  1260. if (!ret && (uval != -EFAULT))
  1261. goto retry;
  1262. return ret;
  1263. }
  1264. static int futex_close(struct inode *inode, struct file *filp)
  1265. {
  1266. struct futex_q *q = filp->private_data;
  1267. unqueue_me(q);
  1268. kfree(q);
  1269. return 0;
  1270. }
  1271. /* This is one-shot: once it's gone off you need a new fd */
  1272. static unsigned int futex_poll(struct file *filp,
  1273. struct poll_table_struct *wait)
  1274. {
  1275. struct futex_q *q = filp->private_data;
  1276. int ret = 0;
  1277. poll_wait(filp, &q->waiters, wait);
  1278. /*
  1279. * list_empty() is safe here without any lock.
  1280. * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
  1281. */
  1282. if (list_empty(&q->list))
  1283. ret = POLLIN | POLLRDNORM;
  1284. return ret;
  1285. }
  1286. static struct file_operations futex_fops = {
  1287. .release = futex_close,
  1288. .poll = futex_poll,
  1289. };
  1290. /*
  1291. * Signal allows caller to avoid the race which would occur if they
  1292. * set the sigio stuff up afterwards.
  1293. */
  1294. static int futex_fd(u32 __user *uaddr, int signal)
  1295. {
  1296. struct futex_q *q;
  1297. struct file *filp;
  1298. int ret, err;
  1299. ret = -EINVAL;
  1300. if (!valid_signal(signal))
  1301. goto out;
  1302. ret = get_unused_fd();
  1303. if (ret < 0)
  1304. goto out;
  1305. filp = get_empty_filp();
  1306. if (!filp) {
  1307. put_unused_fd(ret);
  1308. ret = -ENFILE;
  1309. goto out;
  1310. }
  1311. filp->f_op = &futex_fops;
  1312. filp->f_vfsmnt = mntget(futex_mnt);
  1313. filp->f_dentry = dget(futex_mnt->mnt_root);
  1314. filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
  1315. if (signal) {
  1316. err = f_setown(filp, current->pid, 1);
  1317. if (err < 0) {
  1318. goto error;
  1319. }
  1320. filp->f_owner.signum = signal;
  1321. }
  1322. q = kmalloc(sizeof(*q), GFP_KERNEL);
  1323. if (!q) {
  1324. err = -ENOMEM;
  1325. goto error;
  1326. }
  1327. q->pi_state = NULL;
  1328. down_read(&current->mm->mmap_sem);
  1329. err = get_futex_key(uaddr, &q->key);
  1330. if (unlikely(err != 0)) {
  1331. up_read(&current->mm->mmap_sem);
  1332. kfree(q);
  1333. goto error;
  1334. }
  1335. /*
  1336. * queue_me() must be called before releasing mmap_sem, because
  1337. * key->shared.inode needs to be referenced while holding it.
  1338. */
  1339. filp->private_data = q;
  1340. queue_me(q, ret, filp);
  1341. up_read(&current->mm->mmap_sem);
  1342. /* Now we map fd to filp, so userspace can access it */
  1343. fd_install(ret, filp);
  1344. out:
  1345. return ret;
  1346. error:
  1347. put_unused_fd(ret);
  1348. put_filp(filp);
  1349. ret = err;
  1350. goto out;
  1351. }
  1352. /*
  1353. * Support for robust futexes: the kernel cleans up held futexes at
  1354. * thread exit time.
  1355. *
  1356. * Implementation: user-space maintains a per-thread list of locks it
  1357. * is holding. Upon do_exit(), the kernel carefully walks this list,
  1358. * and marks all locks that are owned by this thread with the
  1359. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  1360. * always manipulated with the lock held, so the list is private and
  1361. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  1362. * field, to allow the kernel to clean up if the thread dies after
  1363. * acquiring the lock, but just before it could have added itself to
  1364. * the list. There can only be one such pending lock.
  1365. */
  1366. /**
  1367. * sys_set_robust_list - set the robust-futex list head of a task
  1368. * @head: pointer to the list-head
  1369. * @len: length of the list-head, as userspace expects
  1370. */
  1371. asmlinkage long
  1372. sys_set_robust_list(struct robust_list_head __user *head,
  1373. size_t len)
  1374. {
  1375. /*
  1376. * The kernel knows only one size for now:
  1377. */
  1378. if (unlikely(len != sizeof(*head)))
  1379. return -EINVAL;
  1380. current->robust_list = head;
  1381. return 0;
  1382. }
  1383. /**
  1384. * sys_get_robust_list - get the robust-futex list head of a task
  1385. * @pid: pid of the process [zero for current task]
  1386. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  1387. * @len_ptr: pointer to a length field, the kernel fills in the header size
  1388. */
  1389. asmlinkage long
  1390. sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
  1391. size_t __user *len_ptr)
  1392. {
  1393. struct robust_list_head *head;
  1394. unsigned long ret;
  1395. if (!pid)
  1396. head = current->robust_list;
  1397. else {
  1398. struct task_struct *p;
  1399. ret = -ESRCH;
  1400. read_lock(&tasklist_lock);
  1401. p = find_task_by_pid(pid);
  1402. if (!p)
  1403. goto err_unlock;
  1404. ret = -EPERM;
  1405. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  1406. !capable(CAP_SYS_PTRACE))
  1407. goto err_unlock;
  1408. head = p->robust_list;
  1409. read_unlock(&tasklist_lock);
  1410. }
  1411. if (put_user(sizeof(*head), len_ptr))
  1412. return -EFAULT;
  1413. return put_user(head, head_ptr);
  1414. err_unlock:
  1415. read_unlock(&tasklist_lock);
  1416. return ret;
  1417. }
  1418. /*
  1419. * Process a futex-list entry, check whether it's owned by the
  1420. * dying task, and do notification if so:
  1421. */
  1422. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
  1423. {
  1424. u32 uval, nval;
  1425. retry:
  1426. if (get_user(uval, uaddr))
  1427. return -1;
  1428. if ((uval & FUTEX_TID_MASK) == curr->pid) {
  1429. /*
  1430. * Ok, this dying thread is truly holding a futex
  1431. * of interest. Set the OWNER_DIED bit atomically
  1432. * via cmpxchg, and if the value had FUTEX_WAITERS
  1433. * set, wake up a waiter (if any). (We have to do a
  1434. * futex_wake() even if OWNER_DIED is already set -
  1435. * to handle the rare but possible case of recursive
  1436. * thread-death.) The rest of the cleanup is done in
  1437. * userspace.
  1438. */
  1439. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
  1440. uval | FUTEX_OWNER_DIED);
  1441. if (nval == -EFAULT)
  1442. return -1;
  1443. if (nval != uval)
  1444. goto retry;
  1445. if (uval & FUTEX_WAITERS)
  1446. futex_wake(uaddr, 1);
  1447. }
  1448. return 0;
  1449. }
  1450. /*
  1451. * Walk curr->robust_list (very carefully, it's a userspace list!)
  1452. * and mark any locks found there dead, and notify any waiters.
  1453. *
  1454. * We silently return on any sign of list-walking problem.
  1455. */
  1456. void exit_robust_list(struct task_struct *curr)
  1457. {
  1458. struct robust_list_head __user *head = curr->robust_list;
  1459. struct robust_list __user *entry, *pending;
  1460. unsigned int limit = ROBUST_LIST_LIMIT;
  1461. unsigned long futex_offset;
  1462. /*
  1463. * Fetch the list head (which was registered earlier, via
  1464. * sys_set_robust_list()):
  1465. */
  1466. if (get_user(entry, &head->list.next))
  1467. return;
  1468. /*
  1469. * Fetch the relative futex offset:
  1470. */
  1471. if (get_user(futex_offset, &head->futex_offset))
  1472. return;
  1473. /*
  1474. * Fetch any possibly pending lock-add first, and handle it
  1475. * if it exists:
  1476. */
  1477. if (get_user(pending, &head->list_op_pending))
  1478. return;
  1479. if (pending)
  1480. handle_futex_death((void *)pending + futex_offset, curr);
  1481. while (entry != &head->list) {
  1482. /*
  1483. * A pending lock might already be on the list, so
  1484. * don't process it twice:
  1485. */
  1486. if (entry != pending)
  1487. if (handle_futex_death((void *)entry + futex_offset,
  1488. curr))
  1489. return;
  1490. /*
  1491. * Fetch the next entry in the list:
  1492. */
  1493. if (get_user(entry, &entry->next))
  1494. return;
  1495. /*
  1496. * Avoid excessively long or circular lists:
  1497. */
  1498. if (!--limit)
  1499. break;
  1500. cond_resched();
  1501. }
  1502. }
  1503. long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
  1504. u32 __user *uaddr2, u32 val2, u32 val3)
  1505. {
  1506. int ret;
  1507. switch (op) {
  1508. case FUTEX_WAIT:
  1509. ret = futex_wait(uaddr, val, timeout);
  1510. break;
  1511. case FUTEX_WAKE:
  1512. ret = futex_wake(uaddr, val);
  1513. break;
  1514. case FUTEX_FD:
  1515. /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
  1516. ret = futex_fd(uaddr, val);
  1517. break;
  1518. case FUTEX_REQUEUE:
  1519. ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
  1520. break;
  1521. case FUTEX_CMP_REQUEUE:
  1522. ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
  1523. break;
  1524. case FUTEX_WAKE_OP:
  1525. ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
  1526. break;
  1527. case FUTEX_LOCK_PI:
  1528. ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
  1529. break;
  1530. case FUTEX_UNLOCK_PI:
  1531. ret = futex_unlock_pi(uaddr);
  1532. break;
  1533. case FUTEX_TRYLOCK_PI:
  1534. ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
  1535. break;
  1536. default:
  1537. ret = -ENOSYS;
  1538. }
  1539. return ret;
  1540. }
  1541. asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
  1542. struct timespec __user *utime, u32 __user *uaddr2,
  1543. u32 val3)
  1544. {
  1545. struct timespec t;
  1546. unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
  1547. u32 val2 = 0;
  1548. if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
  1549. if (copy_from_user(&t, utime, sizeof(t)) != 0)
  1550. return -EFAULT;
  1551. if (!timespec_valid(&t))
  1552. return -EINVAL;
  1553. if (op == FUTEX_WAIT)
  1554. timeout = timespec_to_jiffies(&t) + 1;
  1555. else {
  1556. timeout = t.tv_sec;
  1557. val2 = t.tv_nsec;
  1558. }
  1559. }
  1560. /*
  1561. * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
  1562. */
  1563. if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
  1564. val2 = (u32) (unsigned long) utime;
  1565. return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
  1566. }
  1567. static int futexfs_get_sb(struct file_system_type *fs_type,
  1568. int flags, const char *dev_name, void *data,
  1569. struct vfsmount *mnt)
  1570. {
  1571. return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
  1572. }
  1573. static struct file_system_type futex_fs_type = {
  1574. .name = "futexfs",
  1575. .get_sb = futexfs_get_sb,
  1576. .kill_sb = kill_anon_super,
  1577. };
  1578. static int __init init(void)
  1579. {
  1580. unsigned int i;
  1581. register_filesystem(&futex_fs_type);
  1582. futex_mnt = kern_mount(&futex_fs_type);
  1583. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  1584. INIT_LIST_HEAD(&futex_queues[i].chain);
  1585. spin_lock_init(&futex_queues[i].lock);
  1586. }
  1587. return 0;
  1588. }
  1589. __initcall(init);