xfs_super.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_clnt.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_dir2.h"
  27. #include "xfs_alloc.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_quota.h"
  30. #include "xfs_mount.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_rtalloc.h"
  42. #include "xfs_error.h"
  43. #include "xfs_itable.h"
  44. #include "xfs_rw.h"
  45. #include "xfs_acl.h"
  46. #include "xfs_cap.h"
  47. #include "xfs_mac.h"
  48. #include "xfs_attr.h"
  49. #include "xfs_buf_item.h"
  50. #include "xfs_utils.h"
  51. #include "xfs_version.h"
  52. #include <linux/namei.h>
  53. #include <linux/init.h>
  54. #include <linux/mount.h>
  55. #include <linux/mempool.h>
  56. #include <linux/writeback.h>
  57. #include <linux/kthread.h>
  58. STATIC struct quotactl_ops xfs_quotactl_operations;
  59. STATIC struct super_operations xfs_super_operations;
  60. STATIC kmem_zone_t *xfs_vnode_zone;
  61. STATIC kmem_zone_t *xfs_ioend_zone;
  62. mempool_t *xfs_ioend_pool;
  63. STATIC struct xfs_mount_args *
  64. xfs_args_allocate(
  65. struct super_block *sb,
  66. int silent)
  67. {
  68. struct xfs_mount_args *args;
  69. args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
  70. args->logbufs = args->logbufsize = -1;
  71. strncpy(args->fsname, sb->s_id, MAXNAMELEN);
  72. /* Copy the already-parsed mount(2) flags we're interested in */
  73. if (sb->s_flags & MS_DIRSYNC)
  74. args->flags |= XFSMNT_DIRSYNC;
  75. if (sb->s_flags & MS_SYNCHRONOUS)
  76. args->flags |= XFSMNT_WSYNC;
  77. if (silent)
  78. args->flags |= XFSMNT_QUIET;
  79. args->flags |= XFSMNT_32BITINODES;
  80. return args;
  81. }
  82. __uint64_t
  83. xfs_max_file_offset(
  84. unsigned int blockshift)
  85. {
  86. unsigned int pagefactor = 1;
  87. unsigned int bitshift = BITS_PER_LONG - 1;
  88. /* Figure out maximum filesize, on Linux this can depend on
  89. * the filesystem blocksize (on 32 bit platforms).
  90. * __block_prepare_write does this in an [unsigned] long...
  91. * page->index << (PAGE_CACHE_SHIFT - bbits)
  92. * So, for page sized blocks (4K on 32 bit platforms),
  93. * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
  94. * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
  95. * but for smaller blocksizes it is less (bbits = log2 bsize).
  96. * Note1: get_block_t takes a long (implicit cast from above)
  97. * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
  98. * can optionally convert the [unsigned] long from above into
  99. * an [unsigned] long long.
  100. */
  101. #if BITS_PER_LONG == 32
  102. # if defined(CONFIG_LBD)
  103. ASSERT(sizeof(sector_t) == 8);
  104. pagefactor = PAGE_CACHE_SIZE;
  105. bitshift = BITS_PER_LONG;
  106. # else
  107. pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
  108. # endif
  109. #endif
  110. return (((__uint64_t)pagefactor) << bitshift) - 1;
  111. }
  112. STATIC __inline__ void
  113. xfs_set_inodeops(
  114. struct inode *inode)
  115. {
  116. switch (inode->i_mode & S_IFMT) {
  117. case S_IFREG:
  118. inode->i_op = &xfs_inode_operations;
  119. inode->i_fop = &xfs_file_operations;
  120. inode->i_mapping->a_ops = &xfs_address_space_operations;
  121. break;
  122. case S_IFDIR:
  123. inode->i_op = &xfs_dir_inode_operations;
  124. inode->i_fop = &xfs_dir_file_operations;
  125. break;
  126. case S_IFLNK:
  127. inode->i_op = &xfs_symlink_inode_operations;
  128. if (inode->i_blocks)
  129. inode->i_mapping->a_ops = &xfs_address_space_operations;
  130. break;
  131. default:
  132. inode->i_op = &xfs_inode_operations;
  133. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  134. break;
  135. }
  136. }
  137. STATIC __inline__ void
  138. xfs_revalidate_inode(
  139. xfs_mount_t *mp,
  140. bhv_vnode_t *vp,
  141. xfs_inode_t *ip)
  142. {
  143. struct inode *inode = vn_to_inode(vp);
  144. inode->i_mode = ip->i_d.di_mode;
  145. inode->i_nlink = ip->i_d.di_nlink;
  146. inode->i_uid = ip->i_d.di_uid;
  147. inode->i_gid = ip->i_d.di_gid;
  148. switch (inode->i_mode & S_IFMT) {
  149. case S_IFBLK:
  150. case S_IFCHR:
  151. inode->i_rdev =
  152. MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
  153. sysv_minor(ip->i_df.if_u2.if_rdev));
  154. break;
  155. default:
  156. inode->i_rdev = 0;
  157. break;
  158. }
  159. inode->i_blksize = xfs_preferred_iosize(mp);
  160. inode->i_generation = ip->i_d.di_gen;
  161. i_size_write(inode, ip->i_d.di_size);
  162. inode->i_blocks =
  163. XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
  164. inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
  165. inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
  166. inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
  167. inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
  168. inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
  169. inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
  170. if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
  171. inode->i_flags |= S_IMMUTABLE;
  172. else
  173. inode->i_flags &= ~S_IMMUTABLE;
  174. if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
  175. inode->i_flags |= S_APPEND;
  176. else
  177. inode->i_flags &= ~S_APPEND;
  178. if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
  179. inode->i_flags |= S_SYNC;
  180. else
  181. inode->i_flags &= ~S_SYNC;
  182. if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
  183. inode->i_flags |= S_NOATIME;
  184. else
  185. inode->i_flags &= ~S_NOATIME;
  186. vp->v_flag &= ~VMODIFIED;
  187. }
  188. void
  189. xfs_initialize_vnode(
  190. bhv_desc_t *bdp,
  191. bhv_vnode_t *vp,
  192. bhv_desc_t *inode_bhv,
  193. int unlock)
  194. {
  195. xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
  196. struct inode *inode = vn_to_inode(vp);
  197. if (!inode_bhv->bd_vobj) {
  198. vp->v_vfsp = bhvtovfs(bdp);
  199. bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
  200. bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
  201. }
  202. /*
  203. * We need to set the ops vectors, and unlock the inode, but if
  204. * we have been called during the new inode create process, it is
  205. * too early to fill in the Linux inode. We will get called a
  206. * second time once the inode is properly set up, and then we can
  207. * finish our work.
  208. */
  209. if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
  210. xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
  211. xfs_set_inodeops(inode);
  212. ip->i_flags &= ~XFS_INEW;
  213. barrier();
  214. unlock_new_inode(inode);
  215. }
  216. }
  217. int
  218. xfs_blkdev_get(
  219. xfs_mount_t *mp,
  220. const char *name,
  221. struct block_device **bdevp)
  222. {
  223. int error = 0;
  224. *bdevp = open_bdev_excl(name, 0, mp);
  225. if (IS_ERR(*bdevp)) {
  226. error = PTR_ERR(*bdevp);
  227. printk("XFS: Invalid device [%s], error=%d\n", name, error);
  228. }
  229. return -error;
  230. }
  231. void
  232. xfs_blkdev_put(
  233. struct block_device *bdev)
  234. {
  235. if (bdev)
  236. close_bdev_excl(bdev);
  237. }
  238. /*
  239. * Try to write out the superblock using barriers.
  240. */
  241. STATIC int
  242. xfs_barrier_test(
  243. xfs_mount_t *mp)
  244. {
  245. xfs_buf_t *sbp = xfs_getsb(mp, 0);
  246. int error;
  247. XFS_BUF_UNDONE(sbp);
  248. XFS_BUF_UNREAD(sbp);
  249. XFS_BUF_UNDELAYWRITE(sbp);
  250. XFS_BUF_WRITE(sbp);
  251. XFS_BUF_UNASYNC(sbp);
  252. XFS_BUF_ORDERED(sbp);
  253. xfsbdstrat(mp, sbp);
  254. error = xfs_iowait(sbp);
  255. /*
  256. * Clear all the flags we set and possible error state in the
  257. * buffer. We only did the write to try out whether barriers
  258. * worked and shouldn't leave any traces in the superblock
  259. * buffer.
  260. */
  261. XFS_BUF_DONE(sbp);
  262. XFS_BUF_ERROR(sbp, 0);
  263. XFS_BUF_UNORDERED(sbp);
  264. xfs_buf_relse(sbp);
  265. return error;
  266. }
  267. void
  268. xfs_mountfs_check_barriers(xfs_mount_t *mp)
  269. {
  270. int error;
  271. if (mp->m_logdev_targp != mp->m_ddev_targp) {
  272. xfs_fs_cmn_err(CE_NOTE, mp,
  273. "Disabling barriers, not supported with external log device");
  274. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  275. return;
  276. }
  277. if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
  278. QUEUE_ORDERED_NONE) {
  279. xfs_fs_cmn_err(CE_NOTE, mp,
  280. "Disabling barriers, not supported by the underlying device");
  281. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  282. return;
  283. }
  284. error = xfs_barrier_test(mp);
  285. if (error) {
  286. xfs_fs_cmn_err(CE_NOTE, mp,
  287. "Disabling barriers, trial barrier write failed");
  288. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  289. return;
  290. }
  291. }
  292. void
  293. xfs_blkdev_issue_flush(
  294. xfs_buftarg_t *buftarg)
  295. {
  296. blkdev_issue_flush(buftarg->bt_bdev, NULL);
  297. }
  298. STATIC struct inode *
  299. xfs_fs_alloc_inode(
  300. struct super_block *sb)
  301. {
  302. bhv_vnode_t *vp;
  303. vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
  304. if (unlikely(!vp))
  305. return NULL;
  306. return vn_to_inode(vp);
  307. }
  308. STATIC void
  309. xfs_fs_destroy_inode(
  310. struct inode *inode)
  311. {
  312. kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
  313. }
  314. STATIC void
  315. xfs_fs_inode_init_once(
  316. void *vnode,
  317. kmem_zone_t *zonep,
  318. unsigned long flags)
  319. {
  320. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  321. SLAB_CTOR_CONSTRUCTOR)
  322. inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
  323. }
  324. STATIC int
  325. xfs_init_zones(void)
  326. {
  327. xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
  328. KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
  329. KM_ZONE_SPREAD,
  330. xfs_fs_inode_init_once);
  331. if (!xfs_vnode_zone)
  332. goto out;
  333. xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
  334. if (!xfs_ioend_zone)
  335. goto out_destroy_vnode_zone;
  336. xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
  337. xfs_ioend_zone);
  338. if (!xfs_ioend_pool)
  339. goto out_free_ioend_zone;
  340. return 0;
  341. out_free_ioend_zone:
  342. kmem_zone_destroy(xfs_ioend_zone);
  343. out_destroy_vnode_zone:
  344. kmem_zone_destroy(xfs_vnode_zone);
  345. out:
  346. return -ENOMEM;
  347. }
  348. STATIC void
  349. xfs_destroy_zones(void)
  350. {
  351. mempool_destroy(xfs_ioend_pool);
  352. kmem_zone_destroy(xfs_vnode_zone);
  353. kmem_zone_destroy(xfs_ioend_zone);
  354. }
  355. /*
  356. * Attempt to flush the inode, this will actually fail
  357. * if the inode is pinned, but we dirty the inode again
  358. * at the point when it is unpinned after a log write,
  359. * since this is when the inode itself becomes flushable.
  360. */
  361. STATIC int
  362. xfs_fs_write_inode(
  363. struct inode *inode,
  364. int sync)
  365. {
  366. bhv_vnode_t *vp = vn_from_inode(inode);
  367. int error = 0, flags = FLUSH_INODE;
  368. if (vp) {
  369. vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
  370. if (sync)
  371. flags |= FLUSH_SYNC;
  372. error = bhv_vop_iflush(vp, flags);
  373. if (error == EAGAIN)
  374. error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
  375. }
  376. return -error;
  377. }
  378. STATIC void
  379. xfs_fs_clear_inode(
  380. struct inode *inode)
  381. {
  382. bhv_vnode_t *vp = vn_from_inode(inode);
  383. vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
  384. XFS_STATS_INC(vn_rele);
  385. XFS_STATS_INC(vn_remove);
  386. XFS_STATS_INC(vn_reclaim);
  387. XFS_STATS_DEC(vn_active);
  388. /*
  389. * This can happen because xfs_iget_core calls xfs_idestroy if we
  390. * find an inode with di_mode == 0 but without IGET_CREATE set.
  391. */
  392. if (VNHEAD(vp))
  393. bhv_vop_inactive(vp, NULL);
  394. VN_LOCK(vp);
  395. vp->v_flag &= ~VMODIFIED;
  396. VN_UNLOCK(vp, 0);
  397. if (VNHEAD(vp))
  398. if (bhv_vop_reclaim(vp))
  399. panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
  400. ASSERT(VNHEAD(vp) == NULL);
  401. #ifdef XFS_VNODE_TRACE
  402. ktrace_free(vp->v_trace);
  403. #endif
  404. }
  405. /*
  406. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  407. * Doing this has two advantages:
  408. * - It saves on stack space, which is tight in certain situations
  409. * - It can be used (with care) as a mechanism to avoid deadlocks.
  410. * Flushing while allocating in a full filesystem requires both.
  411. */
  412. STATIC void
  413. xfs_syncd_queue_work(
  414. struct bhv_vfs *vfs,
  415. void *data,
  416. void (*syncer)(bhv_vfs_t *, void *))
  417. {
  418. struct bhv_vfs_sync_work *work;
  419. work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
  420. INIT_LIST_HEAD(&work->w_list);
  421. work->w_syncer = syncer;
  422. work->w_data = data;
  423. work->w_vfs = vfs;
  424. spin_lock(&vfs->vfs_sync_lock);
  425. list_add_tail(&work->w_list, &vfs->vfs_sync_list);
  426. spin_unlock(&vfs->vfs_sync_lock);
  427. wake_up_process(vfs->vfs_sync_task);
  428. }
  429. /*
  430. * Flush delayed allocate data, attempting to free up reserved space
  431. * from existing allocations. At this point a new allocation attempt
  432. * has failed with ENOSPC and we are in the process of scratching our
  433. * heads, looking about for more room...
  434. */
  435. STATIC void
  436. xfs_flush_inode_work(
  437. bhv_vfs_t *vfs,
  438. void *inode)
  439. {
  440. filemap_flush(((struct inode *)inode)->i_mapping);
  441. iput((struct inode *)inode);
  442. }
  443. void
  444. xfs_flush_inode(
  445. xfs_inode_t *ip)
  446. {
  447. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  448. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  449. igrab(inode);
  450. xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
  451. delay(msecs_to_jiffies(500));
  452. }
  453. /*
  454. * This is the "bigger hammer" version of xfs_flush_inode_work...
  455. * (IOW, "If at first you don't succeed, use a Bigger Hammer").
  456. */
  457. STATIC void
  458. xfs_flush_device_work(
  459. bhv_vfs_t *vfs,
  460. void *inode)
  461. {
  462. sync_blockdev(vfs->vfs_super->s_bdev);
  463. iput((struct inode *)inode);
  464. }
  465. void
  466. xfs_flush_device(
  467. xfs_inode_t *ip)
  468. {
  469. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  470. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  471. igrab(inode);
  472. xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
  473. delay(msecs_to_jiffies(500));
  474. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  475. }
  476. STATIC void
  477. vfs_sync_worker(
  478. bhv_vfs_t *vfsp,
  479. void *unused)
  480. {
  481. int error;
  482. if (!(vfsp->vfs_flag & VFS_RDONLY))
  483. error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
  484. SYNC_ATTR | SYNC_REFCACHE, NULL);
  485. vfsp->vfs_sync_seq++;
  486. wmb();
  487. wake_up(&vfsp->vfs_wait_single_sync_task);
  488. }
  489. STATIC int
  490. xfssyncd(
  491. void *arg)
  492. {
  493. long timeleft;
  494. bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
  495. bhv_vfs_sync_work_t *work, *n;
  496. LIST_HEAD (tmp);
  497. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  498. for (;;) {
  499. timeleft = schedule_timeout_interruptible(timeleft);
  500. /* swsusp */
  501. try_to_freeze();
  502. if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
  503. break;
  504. spin_lock(&vfsp->vfs_sync_lock);
  505. /*
  506. * We can get woken by laptop mode, to do a sync -
  507. * that's the (only!) case where the list would be
  508. * empty with time remaining.
  509. */
  510. if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
  511. if (!timeleft)
  512. timeleft = xfs_syncd_centisecs *
  513. msecs_to_jiffies(10);
  514. INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
  515. list_add_tail(&vfsp->vfs_sync_work.w_list,
  516. &vfsp->vfs_sync_list);
  517. }
  518. list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
  519. list_move(&work->w_list, &tmp);
  520. spin_unlock(&vfsp->vfs_sync_lock);
  521. list_for_each_entry_safe(work, n, &tmp, w_list) {
  522. (*work->w_syncer)(vfsp, work->w_data);
  523. list_del(&work->w_list);
  524. if (work == &vfsp->vfs_sync_work)
  525. continue;
  526. kmem_free(work, sizeof(struct bhv_vfs_sync_work));
  527. }
  528. }
  529. return 0;
  530. }
  531. STATIC int
  532. xfs_fs_start_syncd(
  533. bhv_vfs_t *vfsp)
  534. {
  535. vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
  536. vfsp->vfs_sync_work.w_vfs = vfsp;
  537. vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
  538. if (IS_ERR(vfsp->vfs_sync_task))
  539. return -PTR_ERR(vfsp->vfs_sync_task);
  540. return 0;
  541. }
  542. STATIC void
  543. xfs_fs_stop_syncd(
  544. bhv_vfs_t *vfsp)
  545. {
  546. kthread_stop(vfsp->vfs_sync_task);
  547. }
  548. STATIC void
  549. xfs_fs_put_super(
  550. struct super_block *sb)
  551. {
  552. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  553. int error;
  554. xfs_fs_stop_syncd(vfsp);
  555. bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
  556. error = bhv_vfs_unmount(vfsp, 0, NULL);
  557. if (error) {
  558. printk("XFS: unmount got error=%d\n", error);
  559. printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
  560. } else {
  561. vfs_deallocate(vfsp);
  562. }
  563. }
  564. STATIC void
  565. xfs_fs_write_super(
  566. struct super_block *sb)
  567. {
  568. if (!(sb->s_flags & MS_RDONLY))
  569. bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
  570. sb->s_dirt = 0;
  571. }
  572. STATIC int
  573. xfs_fs_sync_super(
  574. struct super_block *sb,
  575. int wait)
  576. {
  577. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  578. int error;
  579. int flags;
  580. if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
  581. flags = SYNC_QUIESCE;
  582. else
  583. flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
  584. error = bhv_vfs_sync(vfsp, flags, NULL);
  585. sb->s_dirt = 0;
  586. if (unlikely(laptop_mode)) {
  587. int prev_sync_seq = vfsp->vfs_sync_seq;
  588. /*
  589. * The disk must be active because we're syncing.
  590. * We schedule xfssyncd now (now that the disk is
  591. * active) instead of later (when it might not be).
  592. */
  593. wake_up_process(vfsp->vfs_sync_task);
  594. /*
  595. * We have to wait for the sync iteration to complete.
  596. * If we don't, the disk activity caused by the sync
  597. * will come after the sync is completed, and that
  598. * triggers another sync from laptop mode.
  599. */
  600. wait_event(vfsp->vfs_wait_single_sync_task,
  601. vfsp->vfs_sync_seq != prev_sync_seq);
  602. }
  603. return -error;
  604. }
  605. STATIC int
  606. xfs_fs_statfs(
  607. struct dentry *dentry,
  608. struct kstatfs *statp)
  609. {
  610. return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
  611. vn_from_inode(dentry->d_inode));
  612. }
  613. STATIC int
  614. xfs_fs_remount(
  615. struct super_block *sb,
  616. int *flags,
  617. char *options)
  618. {
  619. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  620. struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
  621. int error;
  622. error = bhv_vfs_parseargs(vfsp, options, args, 1);
  623. if (!error)
  624. error = bhv_vfs_mntupdate(vfsp, flags, args);
  625. kmem_free(args, sizeof(*args));
  626. return -error;
  627. }
  628. STATIC void
  629. xfs_fs_lockfs(
  630. struct super_block *sb)
  631. {
  632. bhv_vfs_freeze(vfs_from_sb(sb));
  633. }
  634. STATIC int
  635. xfs_fs_show_options(
  636. struct seq_file *m,
  637. struct vfsmount *mnt)
  638. {
  639. return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
  640. }
  641. STATIC int
  642. xfs_fs_quotasync(
  643. struct super_block *sb,
  644. int type)
  645. {
  646. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
  647. }
  648. STATIC int
  649. xfs_fs_getxstate(
  650. struct super_block *sb,
  651. struct fs_quota_stat *fqs)
  652. {
  653. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
  654. }
  655. STATIC int
  656. xfs_fs_setxstate(
  657. struct super_block *sb,
  658. unsigned int flags,
  659. int op)
  660. {
  661. return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
  662. }
  663. STATIC int
  664. xfs_fs_getxquota(
  665. struct super_block *sb,
  666. int type,
  667. qid_t id,
  668. struct fs_disk_quota *fdq)
  669. {
  670. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  671. (type == USRQUOTA) ? Q_XGETQUOTA :
  672. ((type == GRPQUOTA) ? Q_XGETGQUOTA :
  673. Q_XGETPQUOTA), id, (caddr_t)fdq);
  674. }
  675. STATIC int
  676. xfs_fs_setxquota(
  677. struct super_block *sb,
  678. int type,
  679. qid_t id,
  680. struct fs_disk_quota *fdq)
  681. {
  682. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  683. (type == USRQUOTA) ? Q_XSETQLIM :
  684. ((type == GRPQUOTA) ? Q_XSETGQLIM :
  685. Q_XSETPQLIM), id, (caddr_t)fdq);
  686. }
  687. STATIC int
  688. xfs_fs_fill_super(
  689. struct super_block *sb,
  690. void *data,
  691. int silent)
  692. {
  693. struct bhv_vnode *rootvp;
  694. struct bhv_vfs *vfsp = vfs_allocate(sb);
  695. struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
  696. struct kstatfs statvfs;
  697. int error;
  698. bhv_insert_all_vfsops(vfsp);
  699. error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
  700. if (error) {
  701. bhv_remove_all_vfsops(vfsp, 1);
  702. goto fail_vfsop;
  703. }
  704. sb_min_blocksize(sb, BBSIZE);
  705. sb->s_export_op = &xfs_export_operations;
  706. sb->s_qcop = &xfs_quotactl_operations;
  707. sb->s_op = &xfs_super_operations;
  708. error = bhv_vfs_mount(vfsp, args, NULL);
  709. if (error) {
  710. bhv_remove_all_vfsops(vfsp, 1);
  711. goto fail_vfsop;
  712. }
  713. error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
  714. if (error)
  715. goto fail_unmount;
  716. sb->s_dirt = 1;
  717. sb->s_magic = statvfs.f_type;
  718. sb->s_blocksize = statvfs.f_bsize;
  719. sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
  720. sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
  721. sb->s_time_gran = 1;
  722. set_posix_acl_flag(sb);
  723. error = bhv_vfs_root(vfsp, &rootvp);
  724. if (error)
  725. goto fail_unmount;
  726. sb->s_root = d_alloc_root(vn_to_inode(rootvp));
  727. if (!sb->s_root) {
  728. error = ENOMEM;
  729. goto fail_vnrele;
  730. }
  731. if (is_bad_inode(sb->s_root->d_inode)) {
  732. error = EINVAL;
  733. goto fail_vnrele;
  734. }
  735. if ((error = xfs_fs_start_syncd(vfsp)))
  736. goto fail_vnrele;
  737. vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
  738. kmem_free(args, sizeof(*args));
  739. return 0;
  740. fail_vnrele:
  741. if (sb->s_root) {
  742. dput(sb->s_root);
  743. sb->s_root = NULL;
  744. } else {
  745. VN_RELE(rootvp);
  746. }
  747. fail_unmount:
  748. bhv_vfs_unmount(vfsp, 0, NULL);
  749. fail_vfsop:
  750. vfs_deallocate(vfsp);
  751. kmem_free(args, sizeof(*args));
  752. return -error;
  753. }
  754. STATIC int
  755. xfs_fs_get_sb(
  756. struct file_system_type *fs_type,
  757. int flags,
  758. const char *dev_name,
  759. void *data,
  760. struct vfsmount *mnt)
  761. {
  762. return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
  763. mnt);
  764. }
  765. STATIC struct super_operations xfs_super_operations = {
  766. .alloc_inode = xfs_fs_alloc_inode,
  767. .destroy_inode = xfs_fs_destroy_inode,
  768. .write_inode = xfs_fs_write_inode,
  769. .clear_inode = xfs_fs_clear_inode,
  770. .put_super = xfs_fs_put_super,
  771. .write_super = xfs_fs_write_super,
  772. .sync_fs = xfs_fs_sync_super,
  773. .write_super_lockfs = xfs_fs_lockfs,
  774. .statfs = xfs_fs_statfs,
  775. .remount_fs = xfs_fs_remount,
  776. .show_options = xfs_fs_show_options,
  777. };
  778. STATIC struct quotactl_ops xfs_quotactl_operations = {
  779. .quota_sync = xfs_fs_quotasync,
  780. .get_xstate = xfs_fs_getxstate,
  781. .set_xstate = xfs_fs_setxstate,
  782. .get_xquota = xfs_fs_getxquota,
  783. .set_xquota = xfs_fs_setxquota,
  784. };
  785. STATIC struct file_system_type xfs_fs_type = {
  786. .owner = THIS_MODULE,
  787. .name = "xfs",
  788. .get_sb = xfs_fs_get_sb,
  789. .kill_sb = kill_block_super,
  790. .fs_flags = FS_REQUIRES_DEV,
  791. };
  792. STATIC int __init
  793. init_xfs_fs( void )
  794. {
  795. int error;
  796. struct sysinfo si;
  797. static char message[] __initdata = KERN_INFO \
  798. XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
  799. printk(message);
  800. si_meminfo(&si);
  801. xfs_physmem = si.totalram;
  802. ktrace_init(64);
  803. error = xfs_init_zones();
  804. if (error < 0)
  805. goto undo_zones;
  806. error = xfs_buf_init();
  807. if (error < 0)
  808. goto undo_buffers;
  809. vn_init();
  810. xfs_init();
  811. uuid_init();
  812. vfs_initquota();
  813. error = register_filesystem(&xfs_fs_type);
  814. if (error)
  815. goto undo_register;
  816. return 0;
  817. undo_register:
  818. xfs_buf_terminate();
  819. undo_buffers:
  820. xfs_destroy_zones();
  821. undo_zones:
  822. return error;
  823. }
  824. STATIC void __exit
  825. exit_xfs_fs( void )
  826. {
  827. vfs_exitquota();
  828. unregister_filesystem(&xfs_fs_type);
  829. xfs_cleanup();
  830. xfs_buf_terminate();
  831. xfs_destroy_zones();
  832. ktrace_uninit();
  833. }
  834. module_init(init_xfs_fs);
  835. module_exit(exit_xfs_fs);
  836. MODULE_AUTHOR("Silicon Graphics, Inc.");
  837. MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
  838. MODULE_LICENSE("GPL");