inode.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/ufs_fs.h>
  32. #include <linux/time.h>
  33. #include <linux/stat.h>
  34. #include <linux/string.h>
  35. #include <linux/mm.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/buffer_head.h>
  38. #include "swab.h"
  39. #include "util.h"
  40. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  41. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  42. {
  43. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  44. int ptrs = uspi->s_apb;
  45. int ptrs_bits = uspi->s_apbshift;
  46. const long direct_blocks = UFS_NDADDR,
  47. indirect_blocks = ptrs,
  48. double_blocks = (1 << (ptrs_bits * 2));
  49. int n = 0;
  50. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  51. if (i_block < 0) {
  52. ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
  53. } else if (i_block < direct_blocks) {
  54. offsets[n++] = i_block;
  55. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  56. offsets[n++] = UFS_IND_BLOCK;
  57. offsets[n++] = i_block;
  58. } else if ((i_block -= indirect_blocks) < double_blocks) {
  59. offsets[n++] = UFS_DIND_BLOCK;
  60. offsets[n++] = i_block >> ptrs_bits;
  61. offsets[n++] = i_block & (ptrs - 1);
  62. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  63. offsets[n++] = UFS_TIND_BLOCK;
  64. offsets[n++] = i_block >> (ptrs_bits * 2);
  65. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  66. offsets[n++] = i_block & (ptrs - 1);
  67. } else {
  68. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  69. }
  70. return n;
  71. }
  72. /*
  73. * Returns the location of the fragment from
  74. * the begining of the filesystem.
  75. */
  76. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  77. {
  78. struct ufs_inode_info *ufsi = UFS_I(inode);
  79. struct super_block *sb = inode->i_sb;
  80. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  81. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  82. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  83. sector_t offsets[4], *p;
  84. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  85. u64 ret = 0L;
  86. __fs32 block;
  87. __fs64 u2_block = 0L;
  88. unsigned flags = UFS_SB(sb)->s_flags;
  89. u64 temp = 0L;
  90. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  91. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
  92. uspi->s_fpbshift, uspi->s_apbmask,
  93. (unsigned long long)mask);
  94. if (depth == 0)
  95. return 0;
  96. p = offsets;
  97. lock_kernel();
  98. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  99. goto ufs2;
  100. block = ufsi->i_u1.i_data[*p++];
  101. if (!block)
  102. goto out;
  103. while (--depth) {
  104. struct buffer_head *bh;
  105. sector_t n = *p++;
  106. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  107. if (!bh)
  108. goto out;
  109. block = ((__fs32 *) bh->b_data)[n & mask];
  110. brelse (bh);
  111. if (!block)
  112. goto out;
  113. }
  114. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  115. goto out;
  116. ufs2:
  117. u2_block = ufsi->i_u1.u2_i_data[*p++];
  118. if (!u2_block)
  119. goto out;
  120. while (--depth) {
  121. struct buffer_head *bh;
  122. sector_t n = *p++;
  123. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  124. bh = sb_bread(sb, temp +(u64) (n>>shift));
  125. if (!bh)
  126. goto out;
  127. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  128. brelse(bh);
  129. if (!u2_block)
  130. goto out;
  131. }
  132. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  133. ret = temp + (u64) (frag & uspi->s_fpbmask);
  134. out:
  135. unlock_kernel();
  136. return ret;
  137. }
  138. static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
  139. {
  140. lock_buffer(bh);
  141. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  142. set_buffer_uptodate(bh);
  143. mark_buffer_dirty(bh);
  144. unlock_buffer(bh);
  145. if (IS_SYNC(inode))
  146. sync_dirty_buffer(bh);
  147. }
  148. static struct buffer_head *
  149. ufs_clear_frags(struct inode *inode, sector_t beg,
  150. unsigned int n)
  151. {
  152. struct buffer_head *res, *bh;
  153. sector_t end = beg + n;
  154. res = sb_getblk(inode->i_sb, beg);
  155. ufs_clear_frag(inode, res);
  156. for (++beg; beg < end; ++beg) {
  157. bh = sb_getblk(inode->i_sb, beg);
  158. ufs_clear_frag(inode, bh);
  159. brelse(bh);
  160. }
  161. return res;
  162. }
  163. /**
  164. * ufs_inode_getfrag() - allocate new fragment(s)
  165. * @inode - pointer to inode
  166. * @fragment - number of `fragment' which hold pointer
  167. * to new allocated fragment(s)
  168. * @new_fragment - number of new allocated fragment(s)
  169. * @required - how many fragment(s) we require
  170. * @err - we set it if something wrong
  171. * @phys - pointer to where we save physical number of new allocated fragments,
  172. * NULL if we allocate not data(indirect blocks for example).
  173. * @new - we set it if we allocate new block
  174. * @locked_page - for ufs_new_fragments()
  175. */
  176. static struct buffer_head *
  177. ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
  178. sector_t new_fragment, unsigned int required, int *err,
  179. long *phys, int *new, struct page *locked_page)
  180. {
  181. struct ufs_inode_info *ufsi = UFS_I(inode);
  182. struct super_block *sb = inode->i_sb;
  183. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  184. struct buffer_head * result;
  185. unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
  186. unsigned tmp, goal;
  187. __fs32 * p, * p2;
  188. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
  189. "metadata %d\n", inode->i_ino, fragment,
  190. (unsigned long long)new_fragment, required, !phys);
  191. /* TODO : to be done for write support
  192. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  193. goto ufs2;
  194. */
  195. block = ufs_fragstoblks (fragment);
  196. blockoff = ufs_fragnum (fragment);
  197. p = ufsi->i_u1.i_data + block;
  198. goal = 0;
  199. repeat:
  200. tmp = fs32_to_cpu(sb, *p);
  201. lastfrag = ufsi->i_lastfrag;
  202. if (tmp && fragment < lastfrag) {
  203. if (!phys) {
  204. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  205. if (tmp == fs32_to_cpu(sb, *p)) {
  206. UFSD("EXIT, result %u\n", tmp + blockoff);
  207. return result;
  208. }
  209. brelse (result);
  210. goto repeat;
  211. } else {
  212. *phys = tmp + blockoff;
  213. return NULL;
  214. }
  215. }
  216. lastblock = ufs_fragstoblks (lastfrag);
  217. lastblockoff = ufs_fragnum (lastfrag);
  218. /*
  219. * We will extend file into new block beyond last allocated block
  220. */
  221. if (lastblock < block) {
  222. /*
  223. * We must reallocate last allocated block
  224. */
  225. if (lastblockoff) {
  226. p2 = ufsi->i_u1.i_data + lastblock;
  227. tmp = ufs_new_fragments (inode, p2, lastfrag,
  228. fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
  229. err, locked_page);
  230. if (!tmp) {
  231. if (lastfrag != ufsi->i_lastfrag)
  232. goto repeat;
  233. else
  234. return NULL;
  235. }
  236. lastfrag = ufsi->i_lastfrag;
  237. }
  238. goal = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]) + uspi->s_fpb;
  239. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  240. goal, required + blockoff,
  241. err, locked_page);
  242. }
  243. /*
  244. * We will extend last allocated block
  245. */
  246. else if (lastblock == block) {
  247. tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
  248. fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
  249. err, locked_page);
  250. }
  251. /*
  252. * We will allocate new block before last allocated block
  253. */
  254. else /* (lastblock > block) */ {
  255. if (lastblock && (tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock-1])))
  256. goal = tmp + uspi->s_fpb;
  257. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  258. goal, uspi->s_fpb, err, locked_page);
  259. }
  260. if (!tmp) {
  261. if ((!blockoff && *p) ||
  262. (blockoff && lastfrag != ufsi->i_lastfrag))
  263. goto repeat;
  264. *err = -ENOSPC;
  265. return NULL;
  266. }
  267. if (!phys) {
  268. result = ufs_clear_frags(inode, tmp + blockoff, required);
  269. } else {
  270. *phys = tmp + blockoff;
  271. result = NULL;
  272. *err = 0;
  273. *new = 1;
  274. }
  275. inode->i_ctime = CURRENT_TIME_SEC;
  276. if (IS_SYNC(inode))
  277. ufs_sync_inode (inode);
  278. mark_inode_dirty(inode);
  279. UFSD("EXIT, result %u\n", tmp + blockoff);
  280. return result;
  281. /* This part : To be implemented ....
  282. Required only for writing, not required for READ-ONLY.
  283. ufs2:
  284. u2_block = ufs_fragstoblks(fragment);
  285. u2_blockoff = ufs_fragnum(fragment);
  286. p = ufsi->i_u1.u2_i_data + block;
  287. goal = 0;
  288. repeat2:
  289. tmp = fs32_to_cpu(sb, *p);
  290. lastfrag = ufsi->i_lastfrag;
  291. */
  292. }
  293. /**
  294. * ufs_inode_getblock() - allocate new block
  295. * @inode - pointer to inode
  296. * @bh - pointer to block which hold "pointer" to new allocated block
  297. * @fragment - number of `fragment' which hold pointer
  298. * to new allocated block
  299. * @new_fragment - number of new allocated fragment
  300. * (block will hold this fragment and also uspi->s_fpb-1)
  301. * @err - see ufs_inode_getfrag()
  302. * @phys - see ufs_inode_getfrag()
  303. * @new - see ufs_inode_getfrag()
  304. * @locked_page - see ufs_inode_getfrag()
  305. */
  306. static struct buffer_head *
  307. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  308. unsigned int fragment, sector_t new_fragment, int *err,
  309. long *phys, int *new, struct page *locked_page)
  310. {
  311. struct super_block *sb = inode->i_sb;
  312. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  313. struct buffer_head * result;
  314. unsigned tmp, goal, block, blockoff;
  315. __fs32 * p;
  316. block = ufs_fragstoblks (fragment);
  317. blockoff = ufs_fragnum (fragment);
  318. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
  319. inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
  320. result = NULL;
  321. if (!bh)
  322. goto out;
  323. if (!buffer_uptodate(bh)) {
  324. ll_rw_block (READ, 1, &bh);
  325. wait_on_buffer (bh);
  326. if (!buffer_uptodate(bh))
  327. goto out;
  328. }
  329. p = (__fs32 *) bh->b_data + block;
  330. repeat:
  331. tmp = fs32_to_cpu(sb, *p);
  332. if (tmp) {
  333. if (!phys) {
  334. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  335. if (tmp == fs32_to_cpu(sb, *p))
  336. goto out;
  337. brelse (result);
  338. goto repeat;
  339. } else {
  340. *phys = tmp + blockoff;
  341. goto out;
  342. }
  343. }
  344. if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1]) + uspi->s_fpb))
  345. goal = tmp + uspi->s_fpb;
  346. else
  347. goal = bh->b_blocknr + uspi->s_fpb;
  348. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  349. uspi->s_fpb, err, locked_page);
  350. if (!tmp) {
  351. if (fs32_to_cpu(sb, *p))
  352. goto repeat;
  353. goto out;
  354. }
  355. if (!phys) {
  356. result = ufs_clear_frags(inode, tmp + blockoff, uspi->s_fpb);
  357. } else {
  358. *phys = tmp + blockoff;
  359. *new = 1;
  360. }
  361. mark_buffer_dirty(bh);
  362. if (IS_SYNC(inode))
  363. sync_dirty_buffer(bh);
  364. inode->i_ctime = CURRENT_TIME_SEC;
  365. mark_inode_dirty(inode);
  366. UFSD("result %u\n", tmp + blockoff);
  367. out:
  368. brelse (bh);
  369. UFSD("EXIT\n");
  370. return result;
  371. }
  372. /**
  373. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  374. * readpage, writepage and so on
  375. */
  376. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  377. {
  378. struct super_block * sb = inode->i_sb;
  379. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  380. struct buffer_head * bh;
  381. int ret, err, new;
  382. unsigned long ptr,phys;
  383. u64 phys64 = 0;
  384. if (!create) {
  385. phys64 = ufs_frag_map(inode, fragment);
  386. UFSD("phys64 = %llu\n", (unsigned long long)phys64);
  387. if (phys64)
  388. map_bh(bh_result, sb, phys64);
  389. return 0;
  390. }
  391. /* This code entered only while writing ....? */
  392. err = -EIO;
  393. new = 0;
  394. ret = 0;
  395. bh = NULL;
  396. lock_kernel();
  397. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  398. if (fragment < 0)
  399. goto abort_negative;
  400. if (fragment >
  401. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  402. << uspi->s_fpbshift))
  403. goto abort_too_big;
  404. err = 0;
  405. ptr = fragment;
  406. /*
  407. * ok, these macros clean the logic up a bit and make
  408. * it much more readable:
  409. */
  410. #define GET_INODE_DATABLOCK(x) \
  411. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
  412. #define GET_INODE_PTR(x) \
  413. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
  414. #define GET_INDIRECT_DATABLOCK(x) \
  415. ufs_inode_getblock(inode, bh, x, fragment, \
  416. &err, &phys, &new, bh_result->b_page);
  417. #define GET_INDIRECT_PTR(x) \
  418. ufs_inode_getblock(inode, bh, x, fragment, \
  419. &err, NULL, NULL, bh_result->b_page);
  420. if (ptr < UFS_NDIR_FRAGMENT) {
  421. bh = GET_INODE_DATABLOCK(ptr);
  422. goto out;
  423. }
  424. ptr -= UFS_NDIR_FRAGMENT;
  425. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  426. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  427. goto get_indirect;
  428. }
  429. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  430. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  431. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  432. goto get_double;
  433. }
  434. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  435. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  436. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  437. get_double:
  438. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  439. get_indirect:
  440. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  441. #undef GET_INODE_DATABLOCK
  442. #undef GET_INODE_PTR
  443. #undef GET_INDIRECT_DATABLOCK
  444. #undef GET_INDIRECT_PTR
  445. out:
  446. if (err)
  447. goto abort;
  448. if (new)
  449. set_buffer_new(bh_result);
  450. map_bh(bh_result, sb, phys);
  451. abort:
  452. unlock_kernel();
  453. return err;
  454. abort_negative:
  455. ufs_warning(sb, "ufs_get_block", "block < 0");
  456. goto abort;
  457. abort_too_big:
  458. ufs_warning(sb, "ufs_get_block", "block > big");
  459. goto abort;
  460. }
  461. static struct buffer_head *ufs_getfrag(struct inode *inode,
  462. unsigned int fragment,
  463. int create, int *err)
  464. {
  465. struct buffer_head dummy;
  466. int error;
  467. dummy.b_state = 0;
  468. dummy.b_blocknr = -1000;
  469. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  470. *err = error;
  471. if (!error && buffer_mapped(&dummy)) {
  472. struct buffer_head *bh;
  473. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  474. if (buffer_new(&dummy)) {
  475. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  476. set_buffer_uptodate(bh);
  477. mark_buffer_dirty(bh);
  478. }
  479. return bh;
  480. }
  481. return NULL;
  482. }
  483. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  484. int create, int * err)
  485. {
  486. struct buffer_head * bh;
  487. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  488. bh = ufs_getfrag (inode, fragment, create, err);
  489. if (!bh || buffer_uptodate(bh))
  490. return bh;
  491. ll_rw_block (READ, 1, &bh);
  492. wait_on_buffer (bh);
  493. if (buffer_uptodate(bh))
  494. return bh;
  495. brelse (bh);
  496. *err = -EIO;
  497. return NULL;
  498. }
  499. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  500. {
  501. return block_write_full_page(page,ufs_getfrag_block,wbc);
  502. }
  503. static int ufs_readpage(struct file *file, struct page *page)
  504. {
  505. return block_read_full_page(page,ufs_getfrag_block);
  506. }
  507. static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
  508. {
  509. return block_prepare_write(page,from,to,ufs_getfrag_block);
  510. }
  511. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  512. {
  513. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  514. }
  515. const struct address_space_operations ufs_aops = {
  516. .readpage = ufs_readpage,
  517. .writepage = ufs_writepage,
  518. .sync_page = block_sync_page,
  519. .prepare_write = ufs_prepare_write,
  520. .commit_write = generic_commit_write,
  521. .bmap = ufs_bmap
  522. };
  523. static void ufs_set_inode_ops(struct inode *inode)
  524. {
  525. if (S_ISREG(inode->i_mode)) {
  526. inode->i_op = &ufs_file_inode_operations;
  527. inode->i_fop = &ufs_file_operations;
  528. inode->i_mapping->a_ops = &ufs_aops;
  529. } else if (S_ISDIR(inode->i_mode)) {
  530. inode->i_op = &ufs_dir_inode_operations;
  531. inode->i_fop = &ufs_dir_operations;
  532. inode->i_mapping->a_ops = &ufs_aops;
  533. } else if (S_ISLNK(inode->i_mode)) {
  534. if (!inode->i_blocks)
  535. inode->i_op = &ufs_fast_symlink_inode_operations;
  536. else {
  537. inode->i_op = &page_symlink_inode_operations;
  538. inode->i_mapping->a_ops = &ufs_aops;
  539. }
  540. } else
  541. init_special_inode(inode, inode->i_mode,
  542. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  543. }
  544. static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  545. {
  546. struct ufs_inode_info *ufsi = UFS_I(inode);
  547. struct super_block *sb = inode->i_sb;
  548. mode_t mode;
  549. unsigned i;
  550. /*
  551. * Copy data to the in-core inode.
  552. */
  553. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  554. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  555. if (inode->i_nlink == 0)
  556. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  557. /*
  558. * Linux now has 32-bit uid and gid, so we can support EFT.
  559. */
  560. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  561. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  562. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  563. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  564. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  565. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  566. inode->i_mtime.tv_nsec = 0;
  567. inode->i_atime.tv_nsec = 0;
  568. inode->i_ctime.tv_nsec = 0;
  569. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  570. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  571. ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
  572. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  573. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  574. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  575. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  576. ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
  577. } else {
  578. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  579. ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
  580. }
  581. }
  582. static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  583. {
  584. struct ufs_inode_info *ufsi = UFS_I(inode);
  585. struct super_block *sb = inode->i_sb;
  586. mode_t mode;
  587. unsigned i;
  588. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  589. /*
  590. * Copy data to the in-core inode.
  591. */
  592. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  593. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  594. if (inode->i_nlink == 0)
  595. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  596. /*
  597. * Linux now has 32-bit uid and gid, so we can support EFT.
  598. */
  599. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  600. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  601. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  602. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
  603. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
  604. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
  605. inode->i_mtime.tv_nsec = 0;
  606. inode->i_atime.tv_nsec = 0;
  607. inode->i_ctime.tv_nsec = 0;
  608. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  609. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  610. ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  611. /*
  612. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  613. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  614. */
  615. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  616. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  617. ufsi->i_u1.u2_i_data[i] =
  618. ufs2_inode->ui_u2.ui_addr.ui_db[i];
  619. } else {
  620. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  621. ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
  622. }
  623. }
  624. void ufs_read_inode(struct inode * inode)
  625. {
  626. struct ufs_inode_info *ufsi = UFS_I(inode);
  627. struct super_block * sb;
  628. struct ufs_sb_private_info * uspi;
  629. struct buffer_head * bh;
  630. UFSD("ENTER, ino %lu\n", inode->i_ino);
  631. sb = inode->i_sb;
  632. uspi = UFS_SB(sb)->s_uspi;
  633. if (inode->i_ino < UFS_ROOTINO ||
  634. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  635. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  636. inode->i_ino);
  637. goto bad_inode;
  638. }
  639. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  640. if (!bh) {
  641. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  642. inode->i_ino);
  643. goto bad_inode;
  644. }
  645. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  646. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  647. ufs2_read_inode(inode,
  648. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  649. } else {
  650. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  651. ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  652. }
  653. inode->i_blksize = PAGE_SIZE;/*This is the optimal IO size (for stat)*/
  654. inode->i_version++;
  655. ufsi->i_lastfrag =
  656. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  657. ufsi->i_dir_start_lookup = 0;
  658. ufsi->i_osync = 0;
  659. ufs_set_inode_ops(inode);
  660. brelse(bh);
  661. UFSD("EXIT\n");
  662. return;
  663. bad_inode:
  664. make_bad_inode(inode);
  665. }
  666. static int ufs_update_inode(struct inode * inode, int do_sync)
  667. {
  668. struct ufs_inode_info *ufsi = UFS_I(inode);
  669. struct super_block * sb;
  670. struct ufs_sb_private_info * uspi;
  671. struct buffer_head * bh;
  672. struct ufs_inode * ufs_inode;
  673. unsigned i;
  674. unsigned flags;
  675. UFSD("ENTER, ino %lu\n", inode->i_ino);
  676. sb = inode->i_sb;
  677. uspi = UFS_SB(sb)->s_uspi;
  678. flags = UFS_SB(sb)->s_flags;
  679. if (inode->i_ino < UFS_ROOTINO ||
  680. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  681. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  682. return -1;
  683. }
  684. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  685. if (!bh) {
  686. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  687. return -1;
  688. }
  689. ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
  690. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  691. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  692. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  693. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  694. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  695. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  696. ufs_inode->ui_atime.tv_usec = 0;
  697. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  698. ufs_inode->ui_ctime.tv_usec = 0;
  699. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  700. ufs_inode->ui_mtime.tv_usec = 0;
  701. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  702. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  703. ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
  704. if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
  705. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  706. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  707. }
  708. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  709. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  710. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  711. } else if (inode->i_blocks) {
  712. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  713. ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
  714. }
  715. else {
  716. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  717. ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
  718. }
  719. if (!inode->i_nlink)
  720. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  721. mark_buffer_dirty(bh);
  722. if (do_sync)
  723. sync_dirty_buffer(bh);
  724. brelse (bh);
  725. UFSD("EXIT\n");
  726. return 0;
  727. }
  728. int ufs_write_inode (struct inode * inode, int wait)
  729. {
  730. int ret;
  731. lock_kernel();
  732. ret = ufs_update_inode (inode, wait);
  733. unlock_kernel();
  734. return ret;
  735. }
  736. int ufs_sync_inode (struct inode *inode)
  737. {
  738. return ufs_update_inode (inode, 1);
  739. }
  740. void ufs_delete_inode (struct inode * inode)
  741. {
  742. loff_t old_i_size;
  743. truncate_inode_pages(&inode->i_data, 0);
  744. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  745. lock_kernel();
  746. mark_inode_dirty(inode);
  747. ufs_update_inode(inode, IS_SYNC(inode));
  748. old_i_size = inode->i_size;
  749. inode->i_size = 0;
  750. if (inode->i_blocks && ufs_truncate(inode, old_i_size))
  751. ufs_warning(inode->i_sb, __FUNCTION__, "ufs_truncate failed\n");
  752. ufs_free_inode (inode);
  753. unlock_kernel();
  754. }