inode.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/highuid.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/quotaops.h>
  33. #include <linux/string.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/writeback.h>
  36. #include <linux/mpage.h>
  37. #include <linux/uio.h>
  38. #include "xattr.h"
  39. #include "acl.h"
  40. static int ext3_writepage_trans_blocks(struct inode *inode);
  41. /*
  42. * Test whether an inode is a fast symlink.
  43. */
  44. static int ext3_inode_is_fast_symlink(struct inode *inode)
  45. {
  46. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  47. (inode->i_sb->s_blocksize >> 9) : 0;
  48. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  49. }
  50. /*
  51. * The ext3 forget function must perform a revoke if we are freeing data
  52. * which has been journaled. Metadata (eg. indirect blocks) must be
  53. * revoked in all cases.
  54. *
  55. * "bh" may be NULL: a metadata block may have been freed from memory
  56. * but there may still be a record of it in the journal, and that record
  57. * still needs to be revoked.
  58. */
  59. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  60. struct buffer_head *bh, ext3_fsblk_t blocknr)
  61. {
  62. int err;
  63. might_sleep();
  64. BUFFER_TRACE(bh, "enter");
  65. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  66. "data mode %lx\n",
  67. bh, is_metadata, inode->i_mode,
  68. test_opt(inode->i_sb, DATA_FLAGS));
  69. /* Never use the revoke function if we are doing full data
  70. * journaling: there is no need to, and a V1 superblock won't
  71. * support it. Otherwise, only skip the revoke on un-journaled
  72. * data blocks. */
  73. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  74. (!is_metadata && !ext3_should_journal_data(inode))) {
  75. if (bh) {
  76. BUFFER_TRACE(bh, "call journal_forget");
  77. return ext3_journal_forget(handle, bh);
  78. }
  79. return 0;
  80. }
  81. /*
  82. * data!=journal && (is_metadata || should_journal_data(inode))
  83. */
  84. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  85. err = ext3_journal_revoke(handle, blocknr, bh);
  86. if (err)
  87. ext3_abort(inode->i_sb, __FUNCTION__,
  88. "error %d when attempting revoke", err);
  89. BUFFER_TRACE(bh, "exit");
  90. return err;
  91. }
  92. /*
  93. * Work out how many blocks we need to proceed with the next chunk of a
  94. * truncate transaction.
  95. */
  96. static unsigned long blocks_for_truncate(struct inode *inode)
  97. {
  98. unsigned long needed;
  99. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  100. /* Give ourselves just enough room to cope with inodes in which
  101. * i_blocks is corrupt: we've seen disk corruptions in the past
  102. * which resulted in random data in an inode which looked enough
  103. * like a regular file for ext3 to try to delete it. Things
  104. * will go a bit crazy if that happens, but at least we should
  105. * try not to panic the whole kernel. */
  106. if (needed < 2)
  107. needed = 2;
  108. /* But we need to bound the transaction so we don't overflow the
  109. * journal. */
  110. if (needed > EXT3_MAX_TRANS_DATA)
  111. needed = EXT3_MAX_TRANS_DATA;
  112. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  113. }
  114. /*
  115. * Truncate transactions can be complex and absolutely huge. So we need to
  116. * be able to restart the transaction at a conventient checkpoint to make
  117. * sure we don't overflow the journal.
  118. *
  119. * start_transaction gets us a new handle for a truncate transaction,
  120. * and extend_transaction tries to extend the existing one a bit. If
  121. * extend fails, we need to propagate the failure up and restart the
  122. * transaction in the top-level truncate loop. --sct
  123. */
  124. static handle_t *start_transaction(struct inode *inode)
  125. {
  126. handle_t *result;
  127. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  128. if (!IS_ERR(result))
  129. return result;
  130. ext3_std_error(inode->i_sb, PTR_ERR(result));
  131. return result;
  132. }
  133. /*
  134. * Try to extend this transaction for the purposes of truncation.
  135. *
  136. * Returns 0 if we managed to create more room. If we can't create more
  137. * room, and the transaction must be restarted we return 1.
  138. */
  139. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  140. {
  141. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  142. return 0;
  143. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  144. return 0;
  145. return 1;
  146. }
  147. /*
  148. * Restart the transaction associated with *handle. This does a commit,
  149. * so before we call here everything must be consistently dirtied against
  150. * this transaction.
  151. */
  152. static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
  153. {
  154. jbd_debug(2, "restarting handle %p\n", handle);
  155. return ext3_journal_restart(handle, blocks_for_truncate(inode));
  156. }
  157. /*
  158. * Called at the last iput() if i_nlink is zero.
  159. */
  160. void ext3_delete_inode (struct inode * inode)
  161. {
  162. handle_t *handle;
  163. truncate_inode_pages(&inode->i_data, 0);
  164. if (is_bad_inode(inode))
  165. goto no_delete;
  166. handle = start_transaction(inode);
  167. if (IS_ERR(handle)) {
  168. /*
  169. * If we're going to skip the normal cleanup, we still need to
  170. * make sure that the in-core orphan linked list is properly
  171. * cleaned up.
  172. */
  173. ext3_orphan_del(NULL, inode);
  174. goto no_delete;
  175. }
  176. if (IS_SYNC(inode))
  177. handle->h_sync = 1;
  178. inode->i_size = 0;
  179. if (inode->i_blocks)
  180. ext3_truncate(inode);
  181. /*
  182. * Kill off the orphan record which ext3_truncate created.
  183. * AKPM: I think this can be inside the above `if'.
  184. * Note that ext3_orphan_del() has to be able to cope with the
  185. * deletion of a non-existent orphan - this is because we don't
  186. * know if ext3_truncate() actually created an orphan record.
  187. * (Well, we could do this if we need to, but heck - it works)
  188. */
  189. ext3_orphan_del(handle, inode);
  190. EXT3_I(inode)->i_dtime = get_seconds();
  191. /*
  192. * One subtle ordering requirement: if anything has gone wrong
  193. * (transaction abort, IO errors, whatever), then we can still
  194. * do these next steps (the fs will already have been marked as
  195. * having errors), but we can't free the inode if the mark_dirty
  196. * fails.
  197. */
  198. if (ext3_mark_inode_dirty(handle, inode))
  199. /* If that failed, just do the required in-core inode clear. */
  200. clear_inode(inode);
  201. else
  202. ext3_free_inode(handle, inode);
  203. ext3_journal_stop(handle);
  204. return;
  205. no_delete:
  206. clear_inode(inode); /* We must guarantee clearing of inode... */
  207. }
  208. typedef struct {
  209. __le32 *p;
  210. __le32 key;
  211. struct buffer_head *bh;
  212. } Indirect;
  213. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  214. {
  215. p->key = *(p->p = v);
  216. p->bh = bh;
  217. }
  218. static int verify_chain(Indirect *from, Indirect *to)
  219. {
  220. while (from <= to && from->key == *from->p)
  221. from++;
  222. return (from > to);
  223. }
  224. /**
  225. * ext3_block_to_path - parse the block number into array of offsets
  226. * @inode: inode in question (we are only interested in its superblock)
  227. * @i_block: block number to be parsed
  228. * @offsets: array to store the offsets in
  229. * @boundary: set this non-zero if the referred-to block is likely to be
  230. * followed (on disk) by an indirect block.
  231. *
  232. * To store the locations of file's data ext3 uses a data structure common
  233. * for UNIX filesystems - tree of pointers anchored in the inode, with
  234. * data blocks at leaves and indirect blocks in intermediate nodes.
  235. * This function translates the block number into path in that tree -
  236. * return value is the path length and @offsets[n] is the offset of
  237. * pointer to (n+1)th node in the nth one. If @block is out of range
  238. * (negative or too large) warning is printed and zero returned.
  239. *
  240. * Note: function doesn't find node addresses, so no IO is needed. All
  241. * we need to know is the capacity of indirect blocks (taken from the
  242. * inode->i_sb).
  243. */
  244. /*
  245. * Portability note: the last comparison (check that we fit into triple
  246. * indirect block) is spelled differently, because otherwise on an
  247. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  248. * if our filesystem had 8Kb blocks. We might use long long, but that would
  249. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  250. * i_block would have to be negative in the very beginning, so we would not
  251. * get there at all.
  252. */
  253. static int ext3_block_to_path(struct inode *inode,
  254. long i_block, int offsets[4], int *boundary)
  255. {
  256. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  257. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  258. const long direct_blocks = EXT3_NDIR_BLOCKS,
  259. indirect_blocks = ptrs,
  260. double_blocks = (1 << (ptrs_bits * 2));
  261. int n = 0;
  262. int final = 0;
  263. if (i_block < 0) {
  264. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  265. } else if (i_block < direct_blocks) {
  266. offsets[n++] = i_block;
  267. final = direct_blocks;
  268. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  269. offsets[n++] = EXT3_IND_BLOCK;
  270. offsets[n++] = i_block;
  271. final = ptrs;
  272. } else if ((i_block -= indirect_blocks) < double_blocks) {
  273. offsets[n++] = EXT3_DIND_BLOCK;
  274. offsets[n++] = i_block >> ptrs_bits;
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  278. offsets[n++] = EXT3_TIND_BLOCK;
  279. offsets[n++] = i_block >> (ptrs_bits * 2);
  280. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  281. offsets[n++] = i_block & (ptrs - 1);
  282. final = ptrs;
  283. } else {
  284. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  285. }
  286. if (boundary)
  287. *boundary = final - 1 - (i_block & (ptrs - 1));
  288. return n;
  289. }
  290. /**
  291. * ext3_get_branch - read the chain of indirect blocks leading to data
  292. * @inode: inode in question
  293. * @depth: depth of the chain (1 - direct pointer, etc.)
  294. * @offsets: offsets of pointers in inode/indirect blocks
  295. * @chain: place to store the result
  296. * @err: here we store the error value
  297. *
  298. * Function fills the array of triples <key, p, bh> and returns %NULL
  299. * if everything went OK or the pointer to the last filled triple
  300. * (incomplete one) otherwise. Upon the return chain[i].key contains
  301. * the number of (i+1)-th block in the chain (as it is stored in memory,
  302. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  303. * number (it points into struct inode for i==0 and into the bh->b_data
  304. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  305. * block for i>0 and NULL for i==0. In other words, it holds the block
  306. * numbers of the chain, addresses they were taken from (and where we can
  307. * verify that chain did not change) and buffer_heads hosting these
  308. * numbers.
  309. *
  310. * Function stops when it stumbles upon zero pointer (absent block)
  311. * (pointer to last triple returned, *@err == 0)
  312. * or when it gets an IO error reading an indirect block
  313. * (ditto, *@err == -EIO)
  314. * or when it notices that chain had been changed while it was reading
  315. * (ditto, *@err == -EAGAIN)
  316. * or when it reads all @depth-1 indirect blocks successfully and finds
  317. * the whole chain, all way to the data (returns %NULL, *err == 0).
  318. */
  319. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  320. Indirect chain[4], int *err)
  321. {
  322. struct super_block *sb = inode->i_sb;
  323. Indirect *p = chain;
  324. struct buffer_head *bh;
  325. *err = 0;
  326. /* i_data is not going away, no lock needed */
  327. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  328. if (!p->key)
  329. goto no_block;
  330. while (--depth) {
  331. bh = sb_bread(sb, le32_to_cpu(p->key));
  332. if (!bh)
  333. goto failure;
  334. /* Reader: pointers */
  335. if (!verify_chain(chain, p))
  336. goto changed;
  337. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  338. /* Reader: end */
  339. if (!p->key)
  340. goto no_block;
  341. }
  342. return NULL;
  343. changed:
  344. brelse(bh);
  345. *err = -EAGAIN;
  346. goto no_block;
  347. failure:
  348. *err = -EIO;
  349. no_block:
  350. return p;
  351. }
  352. /**
  353. * ext3_find_near - find a place for allocation with sufficient locality
  354. * @inode: owner
  355. * @ind: descriptor of indirect block.
  356. *
  357. * This function returns the prefered place for block allocation.
  358. * It is used when heuristic for sequential allocation fails.
  359. * Rules are:
  360. * + if there is a block to the left of our position - allocate near it.
  361. * + if pointer will live in indirect block - allocate near that block.
  362. * + if pointer will live in inode - allocate in the same
  363. * cylinder group.
  364. *
  365. * In the latter case we colour the starting block by the callers PID to
  366. * prevent it from clashing with concurrent allocations for a different inode
  367. * in the same block group. The PID is used here so that functionally related
  368. * files will be close-by on-disk.
  369. *
  370. * Caller must make sure that @ind is valid and will stay that way.
  371. */
  372. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  373. {
  374. struct ext3_inode_info *ei = EXT3_I(inode);
  375. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  376. __le32 *p;
  377. ext3_fsblk_t bg_start;
  378. ext3_grpblk_t colour;
  379. /* Try to find previous block */
  380. for (p = ind->p - 1; p >= start; p--) {
  381. if (*p)
  382. return le32_to_cpu(*p);
  383. }
  384. /* No such thing, so let's try location of indirect block */
  385. if (ind->bh)
  386. return ind->bh->b_blocknr;
  387. /*
  388. * It is going to be referred to from the inode itself? OK, just put it
  389. * into the same cylinder group then.
  390. */
  391. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  392. colour = (current->pid % 16) *
  393. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  394. return bg_start + colour;
  395. }
  396. /**
  397. * ext3_find_goal - find a prefered place for allocation.
  398. * @inode: owner
  399. * @block: block we want
  400. * @chain: chain of indirect blocks
  401. * @partial: pointer to the last triple within a chain
  402. * @goal: place to store the result.
  403. *
  404. * Normally this function find the prefered place for block allocation,
  405. * stores it in *@goal and returns zero.
  406. */
  407. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  408. Indirect chain[4], Indirect *partial)
  409. {
  410. struct ext3_block_alloc_info *block_i;
  411. block_i = EXT3_I(inode)->i_block_alloc_info;
  412. /*
  413. * try the heuristic for sequential allocation,
  414. * failing that at least try to get decent locality.
  415. */
  416. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  417. && (block_i->last_alloc_physical_block != 0)) {
  418. return block_i->last_alloc_physical_block + 1;
  419. }
  420. return ext3_find_near(inode, partial);
  421. }
  422. /**
  423. * ext3_blks_to_allocate: Look up the block map and count the number
  424. * of direct blocks need to be allocated for the given branch.
  425. *
  426. * @branch: chain of indirect blocks
  427. * @k: number of blocks need for indirect blocks
  428. * @blks: number of data blocks to be mapped.
  429. * @blocks_to_boundary: the offset in the indirect block
  430. *
  431. * return the total number of blocks to be allocate, including the
  432. * direct and indirect blocks.
  433. */
  434. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  435. int blocks_to_boundary)
  436. {
  437. unsigned long count = 0;
  438. /*
  439. * Simple case, [t,d]Indirect block(s) has not allocated yet
  440. * then it's clear blocks on that path have not allocated
  441. */
  442. if (k > 0) {
  443. /* right now we don't handle cross boundary allocation */
  444. if (blks < blocks_to_boundary + 1)
  445. count += blks;
  446. else
  447. count += blocks_to_boundary + 1;
  448. return count;
  449. }
  450. count++;
  451. while (count < blks && count <= blocks_to_boundary &&
  452. le32_to_cpu(*(branch[0].p + count)) == 0) {
  453. count++;
  454. }
  455. return count;
  456. }
  457. /**
  458. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  459. * @indirect_blks: the number of blocks need to allocate for indirect
  460. * blocks
  461. *
  462. * @new_blocks: on return it will store the new block numbers for
  463. * the indirect blocks(if needed) and the first direct block,
  464. * @blks: on return it will store the total number of allocated
  465. * direct blocks
  466. */
  467. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  468. ext3_fsblk_t goal, int indirect_blks, int blks,
  469. ext3_fsblk_t new_blocks[4], int *err)
  470. {
  471. int target, i;
  472. unsigned long count = 0;
  473. int index = 0;
  474. ext3_fsblk_t current_block = 0;
  475. int ret = 0;
  476. /*
  477. * Here we try to allocate the requested multiple blocks at once,
  478. * on a best-effort basis.
  479. * To build a branch, we should allocate blocks for
  480. * the indirect blocks(if not allocated yet), and at least
  481. * the first direct block of this branch. That's the
  482. * minimum number of blocks need to allocate(required)
  483. */
  484. target = blks + indirect_blks;
  485. while (1) {
  486. count = target;
  487. /* allocating blocks for indirect blocks and direct blocks */
  488. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  489. if (*err)
  490. goto failed_out;
  491. target -= count;
  492. /* allocate blocks for indirect blocks */
  493. while (index < indirect_blks && count) {
  494. new_blocks[index++] = current_block++;
  495. count--;
  496. }
  497. if (count > 0)
  498. break;
  499. }
  500. /* save the new block number for the first direct block */
  501. new_blocks[index] = current_block;
  502. /* total number of blocks allocated for direct blocks */
  503. ret = count;
  504. *err = 0;
  505. return ret;
  506. failed_out:
  507. for (i = 0; i <index; i++)
  508. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  509. return ret;
  510. }
  511. /**
  512. * ext3_alloc_branch - allocate and set up a chain of blocks.
  513. * @inode: owner
  514. * @indirect_blks: number of allocated indirect blocks
  515. * @blks: number of allocated direct blocks
  516. * @offsets: offsets (in the blocks) to store the pointers to next.
  517. * @branch: place to store the chain in.
  518. *
  519. * This function allocates blocks, zeroes out all but the last one,
  520. * links them into chain and (if we are synchronous) writes them to disk.
  521. * In other words, it prepares a branch that can be spliced onto the
  522. * inode. It stores the information about that chain in the branch[], in
  523. * the same format as ext3_get_branch() would do. We are calling it after
  524. * we had read the existing part of chain and partial points to the last
  525. * triple of that (one with zero ->key). Upon the exit we have the same
  526. * picture as after the successful ext3_get_block(), except that in one
  527. * place chain is disconnected - *branch->p is still zero (we did not
  528. * set the last link), but branch->key contains the number that should
  529. * be placed into *branch->p to fill that gap.
  530. *
  531. * If allocation fails we free all blocks we've allocated (and forget
  532. * their buffer_heads) and return the error value the from failed
  533. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  534. * as described above and return 0.
  535. */
  536. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  537. int indirect_blks, int *blks, ext3_fsblk_t goal,
  538. int *offsets, Indirect *branch)
  539. {
  540. int blocksize = inode->i_sb->s_blocksize;
  541. int i, n = 0;
  542. int err = 0;
  543. struct buffer_head *bh;
  544. int num;
  545. ext3_fsblk_t new_blocks[4];
  546. ext3_fsblk_t current_block;
  547. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  548. *blks, new_blocks, &err);
  549. if (err)
  550. return err;
  551. branch[0].key = cpu_to_le32(new_blocks[0]);
  552. /*
  553. * metadata blocks and data blocks are allocated.
  554. */
  555. for (n = 1; n <= indirect_blks; n++) {
  556. /*
  557. * Get buffer_head for parent block, zero it out
  558. * and set the pointer to new one, then send
  559. * parent to disk.
  560. */
  561. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  562. branch[n].bh = bh;
  563. lock_buffer(bh);
  564. BUFFER_TRACE(bh, "call get_create_access");
  565. err = ext3_journal_get_create_access(handle, bh);
  566. if (err) {
  567. unlock_buffer(bh);
  568. brelse(bh);
  569. goto failed;
  570. }
  571. memset(bh->b_data, 0, blocksize);
  572. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  573. branch[n].key = cpu_to_le32(new_blocks[n]);
  574. *branch[n].p = branch[n].key;
  575. if ( n == indirect_blks) {
  576. current_block = new_blocks[n];
  577. /*
  578. * End of chain, update the last new metablock of
  579. * the chain to point to the new allocated
  580. * data blocks numbers
  581. */
  582. for (i=1; i < num; i++)
  583. *(branch[n].p + i) = cpu_to_le32(++current_block);
  584. }
  585. BUFFER_TRACE(bh, "marking uptodate");
  586. set_buffer_uptodate(bh);
  587. unlock_buffer(bh);
  588. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  589. err = ext3_journal_dirty_metadata(handle, bh);
  590. if (err)
  591. goto failed;
  592. }
  593. *blks = num;
  594. return err;
  595. failed:
  596. /* Allocation failed, free what we already allocated */
  597. for (i = 1; i <= n ; i++) {
  598. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  599. ext3_journal_forget(handle, branch[i].bh);
  600. }
  601. for (i = 0; i <indirect_blks; i++)
  602. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  603. ext3_free_blocks(handle, inode, new_blocks[i], num);
  604. return err;
  605. }
  606. /**
  607. * ext3_splice_branch - splice the allocated branch onto inode.
  608. * @inode: owner
  609. * @block: (logical) number of block we are adding
  610. * @chain: chain of indirect blocks (with a missing link - see
  611. * ext3_alloc_branch)
  612. * @where: location of missing link
  613. * @num: number of indirect blocks we are adding
  614. * @blks: number of direct blocks we are adding
  615. *
  616. * This function fills the missing link and does all housekeeping needed in
  617. * inode (->i_blocks, etc.). In case of success we end up with the full
  618. * chain to new block and return 0.
  619. */
  620. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  621. long block, Indirect *where, int num, int blks)
  622. {
  623. int i;
  624. int err = 0;
  625. struct ext3_block_alloc_info *block_i;
  626. ext3_fsblk_t current_block;
  627. block_i = EXT3_I(inode)->i_block_alloc_info;
  628. /*
  629. * If we're splicing into a [td]indirect block (as opposed to the
  630. * inode) then we need to get write access to the [td]indirect block
  631. * before the splice.
  632. */
  633. if (where->bh) {
  634. BUFFER_TRACE(where->bh, "get_write_access");
  635. err = ext3_journal_get_write_access(handle, where->bh);
  636. if (err)
  637. goto err_out;
  638. }
  639. /* That's it */
  640. *where->p = where->key;
  641. /*
  642. * Update the host buffer_head or inode to point to more just allocated
  643. * direct blocks blocks
  644. */
  645. if (num == 0 && blks > 1) {
  646. current_block = le32_to_cpu(where->key) + 1;
  647. for (i = 1; i < blks; i++)
  648. *(where->p + i ) = cpu_to_le32(current_block++);
  649. }
  650. /*
  651. * update the most recently allocated logical & physical block
  652. * in i_block_alloc_info, to assist find the proper goal block for next
  653. * allocation
  654. */
  655. if (block_i) {
  656. block_i->last_alloc_logical_block = block + blks - 1;
  657. block_i->last_alloc_physical_block =
  658. le32_to_cpu(where[num].key) + blks - 1;
  659. }
  660. /* We are done with atomic stuff, now do the rest of housekeeping */
  661. inode->i_ctime = CURRENT_TIME_SEC;
  662. ext3_mark_inode_dirty(handle, inode);
  663. /* had we spliced it onto indirect block? */
  664. if (where->bh) {
  665. /*
  666. * If we spliced it onto an indirect block, we haven't
  667. * altered the inode. Note however that if it is being spliced
  668. * onto an indirect block at the very end of the file (the
  669. * file is growing) then we *will* alter the inode to reflect
  670. * the new i_size. But that is not done here - it is done in
  671. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  672. */
  673. jbd_debug(5, "splicing indirect only\n");
  674. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  675. err = ext3_journal_dirty_metadata(handle, where->bh);
  676. if (err)
  677. goto err_out;
  678. } else {
  679. /*
  680. * OK, we spliced it into the inode itself on a direct block.
  681. * Inode was dirtied above.
  682. */
  683. jbd_debug(5, "splicing direct\n");
  684. }
  685. return err;
  686. err_out:
  687. for (i = 1; i <= num; i++) {
  688. BUFFER_TRACE(where[i].bh, "call journal_forget");
  689. ext3_journal_forget(handle, where[i].bh);
  690. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  691. }
  692. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  693. return err;
  694. }
  695. /*
  696. * Allocation strategy is simple: if we have to allocate something, we will
  697. * have to go the whole way to leaf. So let's do it before attaching anything
  698. * to tree, set linkage between the newborn blocks, write them if sync is
  699. * required, recheck the path, free and repeat if check fails, otherwise
  700. * set the last missing link (that will protect us from any truncate-generated
  701. * removals - all blocks on the path are immune now) and possibly force the
  702. * write on the parent block.
  703. * That has a nice additional property: no special recovery from the failed
  704. * allocations is needed - we simply release blocks and do not touch anything
  705. * reachable from inode.
  706. *
  707. * `handle' can be NULL if create == 0.
  708. *
  709. * The BKL may not be held on entry here. Be sure to take it early.
  710. * return > 0, # of blocks mapped or allocated.
  711. * return = 0, if plain lookup failed.
  712. * return < 0, error case.
  713. */
  714. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  715. sector_t iblock, unsigned long maxblocks,
  716. struct buffer_head *bh_result,
  717. int create, int extend_disksize)
  718. {
  719. int err = -EIO;
  720. int offsets[4];
  721. Indirect chain[4];
  722. Indirect *partial;
  723. ext3_fsblk_t goal;
  724. int indirect_blks;
  725. int blocks_to_boundary = 0;
  726. int depth;
  727. struct ext3_inode_info *ei = EXT3_I(inode);
  728. int count = 0;
  729. ext3_fsblk_t first_block = 0;
  730. J_ASSERT(handle != NULL || create == 0);
  731. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  732. if (depth == 0)
  733. goto out;
  734. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  735. /* Simplest case - block found, no allocation needed */
  736. if (!partial) {
  737. first_block = le32_to_cpu(chain[depth - 1].key);
  738. clear_buffer_new(bh_result);
  739. count++;
  740. /*map more blocks*/
  741. while (count < maxblocks && count <= blocks_to_boundary) {
  742. ext3_fsblk_t blk;
  743. if (!verify_chain(chain, partial)) {
  744. /*
  745. * Indirect block might be removed by
  746. * truncate while we were reading it.
  747. * Handling of that case: forget what we've
  748. * got now. Flag the err as EAGAIN, so it
  749. * will reread.
  750. */
  751. err = -EAGAIN;
  752. count = 0;
  753. break;
  754. }
  755. blk = le32_to_cpu(*(chain[depth-1].p + count));
  756. if (blk == first_block + count)
  757. count++;
  758. else
  759. break;
  760. }
  761. if (err != -EAGAIN)
  762. goto got_it;
  763. }
  764. /* Next simple case - plain lookup or failed read of indirect block */
  765. if (!create || err == -EIO)
  766. goto cleanup;
  767. mutex_lock(&ei->truncate_mutex);
  768. /*
  769. * If the indirect block is missing while we are reading
  770. * the chain(ext3_get_branch() returns -EAGAIN err), or
  771. * if the chain has been changed after we grab the semaphore,
  772. * (either because another process truncated this branch, or
  773. * another get_block allocated this branch) re-grab the chain to see if
  774. * the request block has been allocated or not.
  775. *
  776. * Since we already block the truncate/other get_block
  777. * at this point, we will have the current copy of the chain when we
  778. * splice the branch into the tree.
  779. */
  780. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  781. while (partial > chain) {
  782. brelse(partial->bh);
  783. partial--;
  784. }
  785. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  786. if (!partial) {
  787. count++;
  788. mutex_unlock(&ei->truncate_mutex);
  789. if (err)
  790. goto cleanup;
  791. clear_buffer_new(bh_result);
  792. goto got_it;
  793. }
  794. }
  795. /*
  796. * Okay, we need to do block allocation. Lazily initialize the block
  797. * allocation info here if necessary
  798. */
  799. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  800. ext3_init_block_alloc_info(inode);
  801. goal = ext3_find_goal(inode, iblock, chain, partial);
  802. /* the number of blocks need to allocate for [d,t]indirect blocks */
  803. indirect_blks = (chain + depth) - partial - 1;
  804. /*
  805. * Next look up the indirect map to count the totoal number of
  806. * direct blocks to allocate for this branch.
  807. */
  808. count = ext3_blks_to_allocate(partial, indirect_blks,
  809. maxblocks, blocks_to_boundary);
  810. /*
  811. * Block out ext3_truncate while we alter the tree
  812. */
  813. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  814. offsets + (partial - chain), partial);
  815. /*
  816. * The ext3_splice_branch call will free and forget any buffers
  817. * on the new chain if there is a failure, but that risks using
  818. * up transaction credits, especially for bitmaps where the
  819. * credits cannot be returned. Can we handle this somehow? We
  820. * may need to return -EAGAIN upwards in the worst case. --sct
  821. */
  822. if (!err)
  823. err = ext3_splice_branch(handle, inode, iblock,
  824. partial, indirect_blks, count);
  825. /*
  826. * i_disksize growing is protected by truncate_mutex. Don't forget to
  827. * protect it if you're about to implement concurrent
  828. * ext3_get_block() -bzzz
  829. */
  830. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  831. ei->i_disksize = inode->i_size;
  832. mutex_unlock(&ei->truncate_mutex);
  833. if (err)
  834. goto cleanup;
  835. set_buffer_new(bh_result);
  836. got_it:
  837. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  838. if (blocks_to_boundary == 0)
  839. set_buffer_boundary(bh_result);
  840. err = count;
  841. /* Clean up and exit */
  842. partial = chain + depth - 1; /* the whole chain */
  843. cleanup:
  844. while (partial > chain) {
  845. BUFFER_TRACE(partial->bh, "call brelse");
  846. brelse(partial->bh);
  847. partial--;
  848. }
  849. BUFFER_TRACE(bh_result, "returned");
  850. out:
  851. return err;
  852. }
  853. #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
  854. static int ext3_get_block(struct inode *inode, sector_t iblock,
  855. struct buffer_head *bh_result, int create)
  856. {
  857. handle_t *handle = journal_current_handle();
  858. int ret = 0;
  859. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  860. if (!create)
  861. goto get_block; /* A read */
  862. if (max_blocks == 1)
  863. goto get_block; /* A single block get */
  864. if (handle->h_transaction->t_state == T_LOCKED) {
  865. /*
  866. * Huge direct-io writes can hold off commits for long
  867. * periods of time. Let this commit run.
  868. */
  869. ext3_journal_stop(handle);
  870. handle = ext3_journal_start(inode, DIO_CREDITS);
  871. if (IS_ERR(handle))
  872. ret = PTR_ERR(handle);
  873. goto get_block;
  874. }
  875. if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
  876. /*
  877. * Getting low on buffer credits...
  878. */
  879. ret = ext3_journal_extend(handle, DIO_CREDITS);
  880. if (ret > 0) {
  881. /*
  882. * Couldn't extend the transaction. Start a new one.
  883. */
  884. ret = ext3_journal_restart(handle, DIO_CREDITS);
  885. }
  886. }
  887. get_block:
  888. if (ret == 0) {
  889. ret = ext3_get_blocks_handle(handle, inode, iblock,
  890. max_blocks, bh_result, create, 0);
  891. if (ret > 0) {
  892. bh_result->b_size = (ret << inode->i_blkbits);
  893. ret = 0;
  894. }
  895. }
  896. return ret;
  897. }
  898. /*
  899. * `handle' can be NULL if create is zero
  900. */
  901. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  902. long block, int create, int *errp)
  903. {
  904. struct buffer_head dummy;
  905. int fatal = 0, err;
  906. J_ASSERT(handle != NULL || create == 0);
  907. dummy.b_state = 0;
  908. dummy.b_blocknr = -1000;
  909. buffer_trace_init(&dummy.b_history);
  910. err = ext3_get_blocks_handle(handle, inode, block, 1,
  911. &dummy, create, 1);
  912. if (err == 1) {
  913. err = 0;
  914. } else if (err >= 0) {
  915. WARN_ON(1);
  916. err = -EIO;
  917. }
  918. *errp = err;
  919. if (!err && buffer_mapped(&dummy)) {
  920. struct buffer_head *bh;
  921. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  922. if (!bh) {
  923. *errp = -EIO;
  924. goto err;
  925. }
  926. if (buffer_new(&dummy)) {
  927. J_ASSERT(create != 0);
  928. J_ASSERT(handle != 0);
  929. /*
  930. * Now that we do not always journal data, we should
  931. * keep in mind whether this should always journal the
  932. * new buffer as metadata. For now, regular file
  933. * writes use ext3_get_block instead, so it's not a
  934. * problem.
  935. */
  936. lock_buffer(bh);
  937. BUFFER_TRACE(bh, "call get_create_access");
  938. fatal = ext3_journal_get_create_access(handle, bh);
  939. if (!fatal && !buffer_uptodate(bh)) {
  940. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  941. set_buffer_uptodate(bh);
  942. }
  943. unlock_buffer(bh);
  944. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  945. err = ext3_journal_dirty_metadata(handle, bh);
  946. if (!fatal)
  947. fatal = err;
  948. } else {
  949. BUFFER_TRACE(bh, "not a new buffer");
  950. }
  951. if (fatal) {
  952. *errp = fatal;
  953. brelse(bh);
  954. bh = NULL;
  955. }
  956. return bh;
  957. }
  958. err:
  959. return NULL;
  960. }
  961. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  962. int block, int create, int *err)
  963. {
  964. struct buffer_head * bh;
  965. bh = ext3_getblk(handle, inode, block, create, err);
  966. if (!bh)
  967. return bh;
  968. if (buffer_uptodate(bh))
  969. return bh;
  970. ll_rw_block(READ, 1, &bh);
  971. wait_on_buffer(bh);
  972. if (buffer_uptodate(bh))
  973. return bh;
  974. put_bh(bh);
  975. *err = -EIO;
  976. return NULL;
  977. }
  978. static int walk_page_buffers( handle_t *handle,
  979. struct buffer_head *head,
  980. unsigned from,
  981. unsigned to,
  982. int *partial,
  983. int (*fn)( handle_t *handle,
  984. struct buffer_head *bh))
  985. {
  986. struct buffer_head *bh;
  987. unsigned block_start, block_end;
  988. unsigned blocksize = head->b_size;
  989. int err, ret = 0;
  990. struct buffer_head *next;
  991. for ( bh = head, block_start = 0;
  992. ret == 0 && (bh != head || !block_start);
  993. block_start = block_end, bh = next)
  994. {
  995. next = bh->b_this_page;
  996. block_end = block_start + blocksize;
  997. if (block_end <= from || block_start >= to) {
  998. if (partial && !buffer_uptodate(bh))
  999. *partial = 1;
  1000. continue;
  1001. }
  1002. err = (*fn)(handle, bh);
  1003. if (!ret)
  1004. ret = err;
  1005. }
  1006. return ret;
  1007. }
  1008. /*
  1009. * To preserve ordering, it is essential that the hole instantiation and
  1010. * the data write be encapsulated in a single transaction. We cannot
  1011. * close off a transaction and start a new one between the ext3_get_block()
  1012. * and the commit_write(). So doing the journal_start at the start of
  1013. * prepare_write() is the right place.
  1014. *
  1015. * Also, this function can nest inside ext3_writepage() ->
  1016. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1017. * has generated enough buffer credits to do the whole page. So we won't
  1018. * block on the journal in that case, which is good, because the caller may
  1019. * be PF_MEMALLOC.
  1020. *
  1021. * By accident, ext3 can be reentered when a transaction is open via
  1022. * quota file writes. If we were to commit the transaction while thus
  1023. * reentered, there can be a deadlock - we would be holding a quota
  1024. * lock, and the commit would never complete if another thread had a
  1025. * transaction open and was blocking on the quota lock - a ranking
  1026. * violation.
  1027. *
  1028. * So what we do is to rely on the fact that journal_stop/journal_start
  1029. * will _not_ run commit under these circumstances because handle->h_ref
  1030. * is elevated. We'll still have enough credits for the tiny quotafile
  1031. * write.
  1032. */
  1033. static int do_journal_get_write_access(handle_t *handle,
  1034. struct buffer_head *bh)
  1035. {
  1036. if (!buffer_mapped(bh) || buffer_freed(bh))
  1037. return 0;
  1038. return ext3_journal_get_write_access(handle, bh);
  1039. }
  1040. static int ext3_prepare_write(struct file *file, struct page *page,
  1041. unsigned from, unsigned to)
  1042. {
  1043. struct inode *inode = page->mapping->host;
  1044. int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
  1045. handle_t *handle;
  1046. int retries = 0;
  1047. retry:
  1048. handle = ext3_journal_start(inode, needed_blocks);
  1049. if (IS_ERR(handle)) {
  1050. ret = PTR_ERR(handle);
  1051. goto out;
  1052. }
  1053. if (test_opt(inode->i_sb, NOBH))
  1054. ret = nobh_prepare_write(page, from, to, ext3_get_block);
  1055. else
  1056. ret = block_prepare_write(page, from, to, ext3_get_block);
  1057. if (ret)
  1058. goto prepare_write_failed;
  1059. if (ext3_should_journal_data(inode)) {
  1060. ret = walk_page_buffers(handle, page_buffers(page),
  1061. from, to, NULL, do_journal_get_write_access);
  1062. }
  1063. prepare_write_failed:
  1064. if (ret)
  1065. ext3_journal_stop(handle);
  1066. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1067. goto retry;
  1068. out:
  1069. return ret;
  1070. }
  1071. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1072. {
  1073. int err = journal_dirty_data(handle, bh);
  1074. if (err)
  1075. ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1076. bh, handle,err);
  1077. return err;
  1078. }
  1079. /* For commit_write() in data=journal mode */
  1080. static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
  1081. {
  1082. if (!buffer_mapped(bh) || buffer_freed(bh))
  1083. return 0;
  1084. set_buffer_uptodate(bh);
  1085. return ext3_journal_dirty_metadata(handle, bh);
  1086. }
  1087. /*
  1088. * We need to pick up the new inode size which generic_commit_write gave us
  1089. * `file' can be NULL - eg, when called from page_symlink().
  1090. *
  1091. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1092. * buffers are managed internally.
  1093. */
  1094. static int ext3_ordered_commit_write(struct file *file, struct page *page,
  1095. unsigned from, unsigned to)
  1096. {
  1097. handle_t *handle = ext3_journal_current_handle();
  1098. struct inode *inode = page->mapping->host;
  1099. int ret = 0, ret2;
  1100. ret = walk_page_buffers(handle, page_buffers(page),
  1101. from, to, NULL, ext3_journal_dirty_data);
  1102. if (ret == 0) {
  1103. /*
  1104. * generic_commit_write() will run mark_inode_dirty() if i_size
  1105. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1106. * into that.
  1107. */
  1108. loff_t new_i_size;
  1109. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1110. if (new_i_size > EXT3_I(inode)->i_disksize)
  1111. EXT3_I(inode)->i_disksize = new_i_size;
  1112. ret = generic_commit_write(file, page, from, to);
  1113. }
  1114. ret2 = ext3_journal_stop(handle);
  1115. if (!ret)
  1116. ret = ret2;
  1117. return ret;
  1118. }
  1119. static int ext3_writeback_commit_write(struct file *file, struct page *page,
  1120. unsigned from, unsigned to)
  1121. {
  1122. handle_t *handle = ext3_journal_current_handle();
  1123. struct inode *inode = page->mapping->host;
  1124. int ret = 0, ret2;
  1125. loff_t new_i_size;
  1126. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1127. if (new_i_size > EXT3_I(inode)->i_disksize)
  1128. EXT3_I(inode)->i_disksize = new_i_size;
  1129. if (test_opt(inode->i_sb, NOBH))
  1130. ret = nobh_commit_write(file, page, from, to);
  1131. else
  1132. ret = generic_commit_write(file, page, from, to);
  1133. ret2 = ext3_journal_stop(handle);
  1134. if (!ret)
  1135. ret = ret2;
  1136. return ret;
  1137. }
  1138. static int ext3_journalled_commit_write(struct file *file,
  1139. struct page *page, unsigned from, unsigned to)
  1140. {
  1141. handle_t *handle = ext3_journal_current_handle();
  1142. struct inode *inode = page->mapping->host;
  1143. int ret = 0, ret2;
  1144. int partial = 0;
  1145. loff_t pos;
  1146. /*
  1147. * Here we duplicate the generic_commit_write() functionality
  1148. */
  1149. pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1150. ret = walk_page_buffers(handle, page_buffers(page), from,
  1151. to, &partial, commit_write_fn);
  1152. if (!partial)
  1153. SetPageUptodate(page);
  1154. if (pos > inode->i_size)
  1155. i_size_write(inode, pos);
  1156. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1157. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1158. EXT3_I(inode)->i_disksize = inode->i_size;
  1159. ret2 = ext3_mark_inode_dirty(handle, inode);
  1160. if (!ret)
  1161. ret = ret2;
  1162. }
  1163. ret2 = ext3_journal_stop(handle);
  1164. if (!ret)
  1165. ret = ret2;
  1166. return ret;
  1167. }
  1168. /*
  1169. * bmap() is special. It gets used by applications such as lilo and by
  1170. * the swapper to find the on-disk block of a specific piece of data.
  1171. *
  1172. * Naturally, this is dangerous if the block concerned is still in the
  1173. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1174. * filesystem and enables swap, then they may get a nasty shock when the
  1175. * data getting swapped to that swapfile suddenly gets overwritten by
  1176. * the original zero's written out previously to the journal and
  1177. * awaiting writeback in the kernel's buffer cache.
  1178. *
  1179. * So, if we see any bmap calls here on a modified, data-journaled file,
  1180. * take extra steps to flush any blocks which might be in the cache.
  1181. */
  1182. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1183. {
  1184. struct inode *inode = mapping->host;
  1185. journal_t *journal;
  1186. int err;
  1187. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1188. /*
  1189. * This is a REALLY heavyweight approach, but the use of
  1190. * bmap on dirty files is expected to be extremely rare:
  1191. * only if we run lilo or swapon on a freshly made file
  1192. * do we expect this to happen.
  1193. *
  1194. * (bmap requires CAP_SYS_RAWIO so this does not
  1195. * represent an unprivileged user DOS attack --- we'd be
  1196. * in trouble if mortal users could trigger this path at
  1197. * will.)
  1198. *
  1199. * NB. EXT3_STATE_JDATA is not set on files other than
  1200. * regular files. If somebody wants to bmap a directory
  1201. * or symlink and gets confused because the buffer
  1202. * hasn't yet been flushed to disk, they deserve
  1203. * everything they get.
  1204. */
  1205. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1206. journal = EXT3_JOURNAL(inode);
  1207. journal_lock_updates(journal);
  1208. err = journal_flush(journal);
  1209. journal_unlock_updates(journal);
  1210. if (err)
  1211. return 0;
  1212. }
  1213. return generic_block_bmap(mapping,block,ext3_get_block);
  1214. }
  1215. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1216. {
  1217. get_bh(bh);
  1218. return 0;
  1219. }
  1220. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1221. {
  1222. put_bh(bh);
  1223. return 0;
  1224. }
  1225. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1226. {
  1227. if (buffer_mapped(bh))
  1228. return ext3_journal_dirty_data(handle, bh);
  1229. return 0;
  1230. }
  1231. /*
  1232. * Note that we always start a transaction even if we're not journalling
  1233. * data. This is to preserve ordering: any hole instantiation within
  1234. * __block_write_full_page -> ext3_get_block() should be journalled
  1235. * along with the data so we don't crash and then get metadata which
  1236. * refers to old data.
  1237. *
  1238. * In all journalling modes block_write_full_page() will start the I/O.
  1239. *
  1240. * Problem:
  1241. *
  1242. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1243. * ext3_writepage()
  1244. *
  1245. * Similar for:
  1246. *
  1247. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1248. *
  1249. * Same applies to ext3_get_block(). We will deadlock on various things like
  1250. * lock_journal and i_truncate_mutex.
  1251. *
  1252. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1253. * allocations fail.
  1254. *
  1255. * 16May01: If we're reentered then journal_current_handle() will be
  1256. * non-zero. We simply *return*.
  1257. *
  1258. * 1 July 2001: @@@ FIXME:
  1259. * In journalled data mode, a data buffer may be metadata against the
  1260. * current transaction. But the same file is part of a shared mapping
  1261. * and someone does a writepage() on it.
  1262. *
  1263. * We will move the buffer onto the async_data list, but *after* it has
  1264. * been dirtied. So there's a small window where we have dirty data on
  1265. * BJ_Metadata.
  1266. *
  1267. * Note that this only applies to the last partial page in the file. The
  1268. * bit which block_write_full_page() uses prepare/commit for. (That's
  1269. * broken code anyway: it's wrong for msync()).
  1270. *
  1271. * It's a rare case: affects the final partial page, for journalled data
  1272. * where the file is subject to bith write() and writepage() in the same
  1273. * transction. To fix it we'll need a custom block_write_full_page().
  1274. * We'll probably need that anyway for journalling writepage() output.
  1275. *
  1276. * We don't honour synchronous mounts for writepage(). That would be
  1277. * disastrous. Any write() or metadata operation will sync the fs for
  1278. * us.
  1279. *
  1280. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1281. * we don't need to open a transaction here.
  1282. */
  1283. static int ext3_ordered_writepage(struct page *page,
  1284. struct writeback_control *wbc)
  1285. {
  1286. struct inode *inode = page->mapping->host;
  1287. struct buffer_head *page_bufs;
  1288. handle_t *handle = NULL;
  1289. int ret = 0;
  1290. int err;
  1291. J_ASSERT(PageLocked(page));
  1292. /*
  1293. * We give up here if we're reentered, because it might be for a
  1294. * different filesystem.
  1295. */
  1296. if (ext3_journal_current_handle())
  1297. goto out_fail;
  1298. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1299. if (IS_ERR(handle)) {
  1300. ret = PTR_ERR(handle);
  1301. goto out_fail;
  1302. }
  1303. if (!page_has_buffers(page)) {
  1304. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1305. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1306. }
  1307. page_bufs = page_buffers(page);
  1308. walk_page_buffers(handle, page_bufs, 0,
  1309. PAGE_CACHE_SIZE, NULL, bget_one);
  1310. ret = block_write_full_page(page, ext3_get_block, wbc);
  1311. /*
  1312. * The page can become unlocked at any point now, and
  1313. * truncate can then come in and change things. So we
  1314. * can't touch *page from now on. But *page_bufs is
  1315. * safe due to elevated refcount.
  1316. */
  1317. /*
  1318. * And attach them to the current transaction. But only if
  1319. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1320. * and generally junk.
  1321. */
  1322. if (ret == 0) {
  1323. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1324. NULL, journal_dirty_data_fn);
  1325. if (!ret)
  1326. ret = err;
  1327. }
  1328. walk_page_buffers(handle, page_bufs, 0,
  1329. PAGE_CACHE_SIZE, NULL, bput_one);
  1330. err = ext3_journal_stop(handle);
  1331. if (!ret)
  1332. ret = err;
  1333. return ret;
  1334. out_fail:
  1335. redirty_page_for_writepage(wbc, page);
  1336. unlock_page(page);
  1337. return ret;
  1338. }
  1339. static int ext3_writeback_writepage(struct page *page,
  1340. struct writeback_control *wbc)
  1341. {
  1342. struct inode *inode = page->mapping->host;
  1343. handle_t *handle = NULL;
  1344. int ret = 0;
  1345. int err;
  1346. if (ext3_journal_current_handle())
  1347. goto out_fail;
  1348. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1349. if (IS_ERR(handle)) {
  1350. ret = PTR_ERR(handle);
  1351. goto out_fail;
  1352. }
  1353. if (test_opt(inode->i_sb, NOBH))
  1354. ret = nobh_writepage(page, ext3_get_block, wbc);
  1355. else
  1356. ret = block_write_full_page(page, ext3_get_block, wbc);
  1357. err = ext3_journal_stop(handle);
  1358. if (!ret)
  1359. ret = err;
  1360. return ret;
  1361. out_fail:
  1362. redirty_page_for_writepage(wbc, page);
  1363. unlock_page(page);
  1364. return ret;
  1365. }
  1366. static int ext3_journalled_writepage(struct page *page,
  1367. struct writeback_control *wbc)
  1368. {
  1369. struct inode *inode = page->mapping->host;
  1370. handle_t *handle = NULL;
  1371. int ret = 0;
  1372. int err;
  1373. if (ext3_journal_current_handle())
  1374. goto no_write;
  1375. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1376. if (IS_ERR(handle)) {
  1377. ret = PTR_ERR(handle);
  1378. goto no_write;
  1379. }
  1380. if (!page_has_buffers(page) || PageChecked(page)) {
  1381. /*
  1382. * It's mmapped pagecache. Add buffers and journal it. There
  1383. * doesn't seem much point in redirtying the page here.
  1384. */
  1385. ClearPageChecked(page);
  1386. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1387. ext3_get_block);
  1388. if (ret != 0) {
  1389. ext3_journal_stop(handle);
  1390. goto out_unlock;
  1391. }
  1392. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1393. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1394. err = walk_page_buffers(handle, page_buffers(page), 0,
  1395. PAGE_CACHE_SIZE, NULL, commit_write_fn);
  1396. if (ret == 0)
  1397. ret = err;
  1398. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1399. unlock_page(page);
  1400. } else {
  1401. /*
  1402. * It may be a page full of checkpoint-mode buffers. We don't
  1403. * really know unless we go poke around in the buffer_heads.
  1404. * But block_write_full_page will do the right thing.
  1405. */
  1406. ret = block_write_full_page(page, ext3_get_block, wbc);
  1407. }
  1408. err = ext3_journal_stop(handle);
  1409. if (!ret)
  1410. ret = err;
  1411. out:
  1412. return ret;
  1413. no_write:
  1414. redirty_page_for_writepage(wbc, page);
  1415. out_unlock:
  1416. unlock_page(page);
  1417. goto out;
  1418. }
  1419. static int ext3_readpage(struct file *file, struct page *page)
  1420. {
  1421. return mpage_readpage(page, ext3_get_block);
  1422. }
  1423. static int
  1424. ext3_readpages(struct file *file, struct address_space *mapping,
  1425. struct list_head *pages, unsigned nr_pages)
  1426. {
  1427. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1428. }
  1429. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1430. {
  1431. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1432. /*
  1433. * If it's a full truncate we just forget about the pending dirtying
  1434. */
  1435. if (offset == 0)
  1436. ClearPageChecked(page);
  1437. journal_invalidatepage(journal, page, offset);
  1438. }
  1439. static int ext3_releasepage(struct page *page, gfp_t wait)
  1440. {
  1441. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1442. WARN_ON(PageChecked(page));
  1443. if (!page_has_buffers(page))
  1444. return 0;
  1445. return journal_try_to_free_buffers(journal, page, wait);
  1446. }
  1447. /*
  1448. * If the O_DIRECT write will extend the file then add this inode to the
  1449. * orphan list. So recovery will truncate it back to the original size
  1450. * if the machine crashes during the write.
  1451. *
  1452. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1453. * crashes then stale disk data _may_ be exposed inside the file.
  1454. */
  1455. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1456. const struct iovec *iov, loff_t offset,
  1457. unsigned long nr_segs)
  1458. {
  1459. struct file *file = iocb->ki_filp;
  1460. struct inode *inode = file->f_mapping->host;
  1461. struct ext3_inode_info *ei = EXT3_I(inode);
  1462. handle_t *handle = NULL;
  1463. ssize_t ret;
  1464. int orphan = 0;
  1465. size_t count = iov_length(iov, nr_segs);
  1466. if (rw == WRITE) {
  1467. loff_t final_size = offset + count;
  1468. handle = ext3_journal_start(inode, DIO_CREDITS);
  1469. if (IS_ERR(handle)) {
  1470. ret = PTR_ERR(handle);
  1471. goto out;
  1472. }
  1473. if (final_size > inode->i_size) {
  1474. ret = ext3_orphan_add(handle, inode);
  1475. if (ret)
  1476. goto out_stop;
  1477. orphan = 1;
  1478. ei->i_disksize = inode->i_size;
  1479. }
  1480. }
  1481. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1482. offset, nr_segs,
  1483. ext3_get_block, NULL);
  1484. /*
  1485. * Reacquire the handle: ext3_get_block() can restart the transaction
  1486. */
  1487. handle = journal_current_handle();
  1488. out_stop:
  1489. if (handle) {
  1490. int err;
  1491. if (orphan && inode->i_nlink)
  1492. ext3_orphan_del(handle, inode);
  1493. if (orphan && ret > 0) {
  1494. loff_t end = offset + ret;
  1495. if (end > inode->i_size) {
  1496. ei->i_disksize = end;
  1497. i_size_write(inode, end);
  1498. /*
  1499. * We're going to return a positive `ret'
  1500. * here due to non-zero-length I/O, so there's
  1501. * no way of reporting error returns from
  1502. * ext3_mark_inode_dirty() to userspace. So
  1503. * ignore it.
  1504. */
  1505. ext3_mark_inode_dirty(handle, inode);
  1506. }
  1507. }
  1508. err = ext3_journal_stop(handle);
  1509. if (ret == 0)
  1510. ret = err;
  1511. }
  1512. out:
  1513. return ret;
  1514. }
  1515. /*
  1516. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1517. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1518. * much here because ->set_page_dirty is called under VFS locks. The page is
  1519. * not necessarily locked.
  1520. *
  1521. * We cannot just dirty the page and leave attached buffers clean, because the
  1522. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1523. * or jbddirty because all the journalling code will explode.
  1524. *
  1525. * So what we do is to mark the page "pending dirty" and next time writepage
  1526. * is called, propagate that into the buffers appropriately.
  1527. */
  1528. static int ext3_journalled_set_page_dirty(struct page *page)
  1529. {
  1530. SetPageChecked(page);
  1531. return __set_page_dirty_nobuffers(page);
  1532. }
  1533. static const struct address_space_operations ext3_ordered_aops = {
  1534. .readpage = ext3_readpage,
  1535. .readpages = ext3_readpages,
  1536. .writepage = ext3_ordered_writepage,
  1537. .sync_page = block_sync_page,
  1538. .prepare_write = ext3_prepare_write,
  1539. .commit_write = ext3_ordered_commit_write,
  1540. .bmap = ext3_bmap,
  1541. .invalidatepage = ext3_invalidatepage,
  1542. .releasepage = ext3_releasepage,
  1543. .direct_IO = ext3_direct_IO,
  1544. .migratepage = buffer_migrate_page,
  1545. };
  1546. static const struct address_space_operations ext3_writeback_aops = {
  1547. .readpage = ext3_readpage,
  1548. .readpages = ext3_readpages,
  1549. .writepage = ext3_writeback_writepage,
  1550. .sync_page = block_sync_page,
  1551. .prepare_write = ext3_prepare_write,
  1552. .commit_write = ext3_writeback_commit_write,
  1553. .bmap = ext3_bmap,
  1554. .invalidatepage = ext3_invalidatepage,
  1555. .releasepage = ext3_releasepage,
  1556. .direct_IO = ext3_direct_IO,
  1557. .migratepage = buffer_migrate_page,
  1558. };
  1559. static const struct address_space_operations ext3_journalled_aops = {
  1560. .readpage = ext3_readpage,
  1561. .readpages = ext3_readpages,
  1562. .writepage = ext3_journalled_writepage,
  1563. .sync_page = block_sync_page,
  1564. .prepare_write = ext3_prepare_write,
  1565. .commit_write = ext3_journalled_commit_write,
  1566. .set_page_dirty = ext3_journalled_set_page_dirty,
  1567. .bmap = ext3_bmap,
  1568. .invalidatepage = ext3_invalidatepage,
  1569. .releasepage = ext3_releasepage,
  1570. };
  1571. void ext3_set_aops(struct inode *inode)
  1572. {
  1573. if (ext3_should_order_data(inode))
  1574. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1575. else if (ext3_should_writeback_data(inode))
  1576. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1577. else
  1578. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1579. }
  1580. /*
  1581. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1582. * up to the end of the block which corresponds to `from'.
  1583. * This required during truncate. We need to physically zero the tail end
  1584. * of that block so it doesn't yield old data if the file is later grown.
  1585. */
  1586. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1587. struct address_space *mapping, loff_t from)
  1588. {
  1589. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1590. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1591. unsigned blocksize, iblock, length, pos;
  1592. struct inode *inode = mapping->host;
  1593. struct buffer_head *bh;
  1594. int err = 0;
  1595. void *kaddr;
  1596. blocksize = inode->i_sb->s_blocksize;
  1597. length = blocksize - (offset & (blocksize - 1));
  1598. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1599. /*
  1600. * For "nobh" option, we can only work if we don't need to
  1601. * read-in the page - otherwise we create buffers to do the IO.
  1602. */
  1603. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1604. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1605. kaddr = kmap_atomic(page, KM_USER0);
  1606. memset(kaddr + offset, 0, length);
  1607. flush_dcache_page(page);
  1608. kunmap_atomic(kaddr, KM_USER0);
  1609. set_page_dirty(page);
  1610. goto unlock;
  1611. }
  1612. if (!page_has_buffers(page))
  1613. create_empty_buffers(page, blocksize, 0);
  1614. /* Find the buffer that contains "offset" */
  1615. bh = page_buffers(page);
  1616. pos = blocksize;
  1617. while (offset >= pos) {
  1618. bh = bh->b_this_page;
  1619. iblock++;
  1620. pos += blocksize;
  1621. }
  1622. err = 0;
  1623. if (buffer_freed(bh)) {
  1624. BUFFER_TRACE(bh, "freed: skip");
  1625. goto unlock;
  1626. }
  1627. if (!buffer_mapped(bh)) {
  1628. BUFFER_TRACE(bh, "unmapped");
  1629. ext3_get_block(inode, iblock, bh, 0);
  1630. /* unmapped? It's a hole - nothing to do */
  1631. if (!buffer_mapped(bh)) {
  1632. BUFFER_TRACE(bh, "still unmapped");
  1633. goto unlock;
  1634. }
  1635. }
  1636. /* Ok, it's mapped. Make sure it's up-to-date */
  1637. if (PageUptodate(page))
  1638. set_buffer_uptodate(bh);
  1639. if (!buffer_uptodate(bh)) {
  1640. err = -EIO;
  1641. ll_rw_block(READ, 1, &bh);
  1642. wait_on_buffer(bh);
  1643. /* Uhhuh. Read error. Complain and punt. */
  1644. if (!buffer_uptodate(bh))
  1645. goto unlock;
  1646. }
  1647. if (ext3_should_journal_data(inode)) {
  1648. BUFFER_TRACE(bh, "get write access");
  1649. err = ext3_journal_get_write_access(handle, bh);
  1650. if (err)
  1651. goto unlock;
  1652. }
  1653. kaddr = kmap_atomic(page, KM_USER0);
  1654. memset(kaddr + offset, 0, length);
  1655. flush_dcache_page(page);
  1656. kunmap_atomic(kaddr, KM_USER0);
  1657. BUFFER_TRACE(bh, "zeroed end of block");
  1658. err = 0;
  1659. if (ext3_should_journal_data(inode)) {
  1660. err = ext3_journal_dirty_metadata(handle, bh);
  1661. } else {
  1662. if (ext3_should_order_data(inode))
  1663. err = ext3_journal_dirty_data(handle, bh);
  1664. mark_buffer_dirty(bh);
  1665. }
  1666. unlock:
  1667. unlock_page(page);
  1668. page_cache_release(page);
  1669. return err;
  1670. }
  1671. /*
  1672. * Probably it should be a library function... search for first non-zero word
  1673. * or memcmp with zero_page, whatever is better for particular architecture.
  1674. * Linus?
  1675. */
  1676. static inline int all_zeroes(__le32 *p, __le32 *q)
  1677. {
  1678. while (p < q)
  1679. if (*p++)
  1680. return 0;
  1681. return 1;
  1682. }
  1683. /**
  1684. * ext3_find_shared - find the indirect blocks for partial truncation.
  1685. * @inode: inode in question
  1686. * @depth: depth of the affected branch
  1687. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1688. * @chain: place to store the pointers to partial indirect blocks
  1689. * @top: place to the (detached) top of branch
  1690. *
  1691. * This is a helper function used by ext3_truncate().
  1692. *
  1693. * When we do truncate() we may have to clean the ends of several
  1694. * indirect blocks but leave the blocks themselves alive. Block is
  1695. * partially truncated if some data below the new i_size is refered
  1696. * from it (and it is on the path to the first completely truncated
  1697. * data block, indeed). We have to free the top of that path along
  1698. * with everything to the right of the path. Since no allocation
  1699. * past the truncation point is possible until ext3_truncate()
  1700. * finishes, we may safely do the latter, but top of branch may
  1701. * require special attention - pageout below the truncation point
  1702. * might try to populate it.
  1703. *
  1704. * We atomically detach the top of branch from the tree, store the
  1705. * block number of its root in *@top, pointers to buffer_heads of
  1706. * partially truncated blocks - in @chain[].bh and pointers to
  1707. * their last elements that should not be removed - in
  1708. * @chain[].p. Return value is the pointer to last filled element
  1709. * of @chain.
  1710. *
  1711. * The work left to caller to do the actual freeing of subtrees:
  1712. * a) free the subtree starting from *@top
  1713. * b) free the subtrees whose roots are stored in
  1714. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1715. * c) free the subtrees growing from the inode past the @chain[0].
  1716. * (no partially truncated stuff there). */
  1717. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1718. int offsets[4], Indirect chain[4], __le32 *top)
  1719. {
  1720. Indirect *partial, *p;
  1721. int k, err;
  1722. *top = 0;
  1723. /* Make k index the deepest non-null offest + 1 */
  1724. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1725. ;
  1726. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1727. /* Writer: pointers */
  1728. if (!partial)
  1729. partial = chain + k-1;
  1730. /*
  1731. * If the branch acquired continuation since we've looked at it -
  1732. * fine, it should all survive and (new) top doesn't belong to us.
  1733. */
  1734. if (!partial->key && *partial->p)
  1735. /* Writer: end */
  1736. goto no_top;
  1737. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1738. ;
  1739. /*
  1740. * OK, we've found the last block that must survive. The rest of our
  1741. * branch should be detached before unlocking. However, if that rest
  1742. * of branch is all ours and does not grow immediately from the inode
  1743. * it's easier to cheat and just decrement partial->p.
  1744. */
  1745. if (p == chain + k - 1 && p > chain) {
  1746. p->p--;
  1747. } else {
  1748. *top = *p->p;
  1749. /* Nope, don't do this in ext3. Must leave the tree intact */
  1750. #if 0
  1751. *p->p = 0;
  1752. #endif
  1753. }
  1754. /* Writer: end */
  1755. while(partial > p) {
  1756. brelse(partial->bh);
  1757. partial--;
  1758. }
  1759. no_top:
  1760. return partial;
  1761. }
  1762. /*
  1763. * Zero a number of block pointers in either an inode or an indirect block.
  1764. * If we restart the transaction we must again get write access to the
  1765. * indirect block for further modification.
  1766. *
  1767. * We release `count' blocks on disk, but (last - first) may be greater
  1768. * than `count' because there can be holes in there.
  1769. */
  1770. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1771. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1772. unsigned long count, __le32 *first, __le32 *last)
  1773. {
  1774. __le32 *p;
  1775. if (try_to_extend_transaction(handle, inode)) {
  1776. if (bh) {
  1777. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1778. ext3_journal_dirty_metadata(handle, bh);
  1779. }
  1780. ext3_mark_inode_dirty(handle, inode);
  1781. ext3_journal_test_restart(handle, inode);
  1782. if (bh) {
  1783. BUFFER_TRACE(bh, "retaking write access");
  1784. ext3_journal_get_write_access(handle, bh);
  1785. }
  1786. }
  1787. /*
  1788. * Any buffers which are on the journal will be in memory. We find
  1789. * them on the hash table so journal_revoke() will run journal_forget()
  1790. * on them. We've already detached each block from the file, so
  1791. * bforget() in journal_forget() should be safe.
  1792. *
  1793. * AKPM: turn on bforget in journal_forget()!!!
  1794. */
  1795. for (p = first; p < last; p++) {
  1796. u32 nr = le32_to_cpu(*p);
  1797. if (nr) {
  1798. struct buffer_head *bh;
  1799. *p = 0;
  1800. bh = sb_find_get_block(inode->i_sb, nr);
  1801. ext3_forget(handle, 0, inode, bh, nr);
  1802. }
  1803. }
  1804. ext3_free_blocks(handle, inode, block_to_free, count);
  1805. }
  1806. /**
  1807. * ext3_free_data - free a list of data blocks
  1808. * @handle: handle for this transaction
  1809. * @inode: inode we are dealing with
  1810. * @this_bh: indirect buffer_head which contains *@first and *@last
  1811. * @first: array of block numbers
  1812. * @last: points immediately past the end of array
  1813. *
  1814. * We are freeing all blocks refered from that array (numbers are stored as
  1815. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1816. *
  1817. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1818. * blocks are contiguous then releasing them at one time will only affect one
  1819. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1820. * actually use a lot of journal space.
  1821. *
  1822. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1823. * block pointers.
  1824. */
  1825. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1826. struct buffer_head *this_bh,
  1827. __le32 *first, __le32 *last)
  1828. {
  1829. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1830. unsigned long count = 0; /* Number of blocks in the run */
  1831. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1832. corresponding to
  1833. block_to_free */
  1834. ext3_fsblk_t nr; /* Current block # */
  1835. __le32 *p; /* Pointer into inode/ind
  1836. for current block */
  1837. int err;
  1838. if (this_bh) { /* For indirect block */
  1839. BUFFER_TRACE(this_bh, "get_write_access");
  1840. err = ext3_journal_get_write_access(handle, this_bh);
  1841. /* Important: if we can't update the indirect pointers
  1842. * to the blocks, we can't free them. */
  1843. if (err)
  1844. return;
  1845. }
  1846. for (p = first; p < last; p++) {
  1847. nr = le32_to_cpu(*p);
  1848. if (nr) {
  1849. /* accumulate blocks to free if they're contiguous */
  1850. if (count == 0) {
  1851. block_to_free = nr;
  1852. block_to_free_p = p;
  1853. count = 1;
  1854. } else if (nr == block_to_free + count) {
  1855. count++;
  1856. } else {
  1857. ext3_clear_blocks(handle, inode, this_bh,
  1858. block_to_free,
  1859. count, block_to_free_p, p);
  1860. block_to_free = nr;
  1861. block_to_free_p = p;
  1862. count = 1;
  1863. }
  1864. }
  1865. }
  1866. if (count > 0)
  1867. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1868. count, block_to_free_p, p);
  1869. if (this_bh) {
  1870. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1871. ext3_journal_dirty_metadata(handle, this_bh);
  1872. }
  1873. }
  1874. /**
  1875. * ext3_free_branches - free an array of branches
  1876. * @handle: JBD handle for this transaction
  1877. * @inode: inode we are dealing with
  1878. * @parent_bh: the buffer_head which contains *@first and *@last
  1879. * @first: array of block numbers
  1880. * @last: pointer immediately past the end of array
  1881. * @depth: depth of the branches to free
  1882. *
  1883. * We are freeing all blocks refered from these branches (numbers are
  1884. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1885. * appropriately.
  1886. */
  1887. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  1888. struct buffer_head *parent_bh,
  1889. __le32 *first, __le32 *last, int depth)
  1890. {
  1891. ext3_fsblk_t nr;
  1892. __le32 *p;
  1893. if (is_handle_aborted(handle))
  1894. return;
  1895. if (depth--) {
  1896. struct buffer_head *bh;
  1897. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  1898. p = last;
  1899. while (--p >= first) {
  1900. nr = le32_to_cpu(*p);
  1901. if (!nr)
  1902. continue; /* A hole */
  1903. /* Go read the buffer for the next level down */
  1904. bh = sb_bread(inode->i_sb, nr);
  1905. /*
  1906. * A read failure? Report error and clear slot
  1907. * (should be rare).
  1908. */
  1909. if (!bh) {
  1910. ext3_error(inode->i_sb, "ext3_free_branches",
  1911. "Read failure, inode=%ld, block="E3FSBLK,
  1912. inode->i_ino, nr);
  1913. continue;
  1914. }
  1915. /* This zaps the entire block. Bottom up. */
  1916. BUFFER_TRACE(bh, "free child branches");
  1917. ext3_free_branches(handle, inode, bh,
  1918. (__le32*)bh->b_data,
  1919. (__le32*)bh->b_data + addr_per_block,
  1920. depth);
  1921. /*
  1922. * We've probably journalled the indirect block several
  1923. * times during the truncate. But it's no longer
  1924. * needed and we now drop it from the transaction via
  1925. * journal_revoke().
  1926. *
  1927. * That's easy if it's exclusively part of this
  1928. * transaction. But if it's part of the committing
  1929. * transaction then journal_forget() will simply
  1930. * brelse() it. That means that if the underlying
  1931. * block is reallocated in ext3_get_block(),
  1932. * unmap_underlying_metadata() will find this block
  1933. * and will try to get rid of it. damn, damn.
  1934. *
  1935. * If this block has already been committed to the
  1936. * journal, a revoke record will be written. And
  1937. * revoke records must be emitted *before* clearing
  1938. * this block's bit in the bitmaps.
  1939. */
  1940. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  1941. /*
  1942. * Everything below this this pointer has been
  1943. * released. Now let this top-of-subtree go.
  1944. *
  1945. * We want the freeing of this indirect block to be
  1946. * atomic in the journal with the updating of the
  1947. * bitmap block which owns it. So make some room in
  1948. * the journal.
  1949. *
  1950. * We zero the parent pointer *after* freeing its
  1951. * pointee in the bitmaps, so if extend_transaction()
  1952. * for some reason fails to put the bitmap changes and
  1953. * the release into the same transaction, recovery
  1954. * will merely complain about releasing a free block,
  1955. * rather than leaking blocks.
  1956. */
  1957. if (is_handle_aborted(handle))
  1958. return;
  1959. if (try_to_extend_transaction(handle, inode)) {
  1960. ext3_mark_inode_dirty(handle, inode);
  1961. ext3_journal_test_restart(handle, inode);
  1962. }
  1963. ext3_free_blocks(handle, inode, nr, 1);
  1964. if (parent_bh) {
  1965. /*
  1966. * The block which we have just freed is
  1967. * pointed to by an indirect block: journal it
  1968. */
  1969. BUFFER_TRACE(parent_bh, "get_write_access");
  1970. if (!ext3_journal_get_write_access(handle,
  1971. parent_bh)){
  1972. *p = 0;
  1973. BUFFER_TRACE(parent_bh,
  1974. "call ext3_journal_dirty_metadata");
  1975. ext3_journal_dirty_metadata(handle,
  1976. parent_bh);
  1977. }
  1978. }
  1979. }
  1980. } else {
  1981. /* We have reached the bottom of the tree. */
  1982. BUFFER_TRACE(parent_bh, "free data blocks");
  1983. ext3_free_data(handle, inode, parent_bh, first, last);
  1984. }
  1985. }
  1986. /*
  1987. * ext3_truncate()
  1988. *
  1989. * We block out ext3_get_block() block instantiations across the entire
  1990. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  1991. * simultaneously on behalf of the same inode.
  1992. *
  1993. * As we work through the truncate and commmit bits of it to the journal there
  1994. * is one core, guiding principle: the file's tree must always be consistent on
  1995. * disk. We must be able to restart the truncate after a crash.
  1996. *
  1997. * The file's tree may be transiently inconsistent in memory (although it
  1998. * probably isn't), but whenever we close off and commit a journal transaction,
  1999. * the contents of (the filesystem + the journal) must be consistent and
  2000. * restartable. It's pretty simple, really: bottom up, right to left (although
  2001. * left-to-right works OK too).
  2002. *
  2003. * Note that at recovery time, journal replay occurs *before* the restart of
  2004. * truncate against the orphan inode list.
  2005. *
  2006. * The committed inode has the new, desired i_size (which is the same as
  2007. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2008. * that this inode's truncate did not complete and it will again call
  2009. * ext3_truncate() to have another go. So there will be instantiated blocks
  2010. * to the right of the truncation point in a crashed ext3 filesystem. But
  2011. * that's fine - as long as they are linked from the inode, the post-crash
  2012. * ext3_truncate() run will find them and release them.
  2013. */
  2014. void ext3_truncate(struct inode *inode)
  2015. {
  2016. handle_t *handle;
  2017. struct ext3_inode_info *ei = EXT3_I(inode);
  2018. __le32 *i_data = ei->i_data;
  2019. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2020. struct address_space *mapping = inode->i_mapping;
  2021. int offsets[4];
  2022. Indirect chain[4];
  2023. Indirect *partial;
  2024. __le32 nr = 0;
  2025. int n;
  2026. long last_block;
  2027. unsigned blocksize = inode->i_sb->s_blocksize;
  2028. struct page *page;
  2029. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2030. S_ISLNK(inode->i_mode)))
  2031. return;
  2032. if (ext3_inode_is_fast_symlink(inode))
  2033. return;
  2034. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2035. return;
  2036. /*
  2037. * We have to lock the EOF page here, because lock_page() nests
  2038. * outside journal_start().
  2039. */
  2040. if ((inode->i_size & (blocksize - 1)) == 0) {
  2041. /* Block boundary? Nothing to do */
  2042. page = NULL;
  2043. } else {
  2044. page = grab_cache_page(mapping,
  2045. inode->i_size >> PAGE_CACHE_SHIFT);
  2046. if (!page)
  2047. return;
  2048. }
  2049. handle = start_transaction(inode);
  2050. if (IS_ERR(handle)) {
  2051. if (page) {
  2052. clear_highpage(page);
  2053. flush_dcache_page(page);
  2054. unlock_page(page);
  2055. page_cache_release(page);
  2056. }
  2057. return; /* AKPM: return what? */
  2058. }
  2059. last_block = (inode->i_size + blocksize-1)
  2060. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2061. if (page)
  2062. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2063. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2064. if (n == 0)
  2065. goto out_stop; /* error */
  2066. /*
  2067. * OK. This truncate is going to happen. We add the inode to the
  2068. * orphan list, so that if this truncate spans multiple transactions,
  2069. * and we crash, we will resume the truncate when the filesystem
  2070. * recovers. It also marks the inode dirty, to catch the new size.
  2071. *
  2072. * Implication: the file must always be in a sane, consistent
  2073. * truncatable state while each transaction commits.
  2074. */
  2075. if (ext3_orphan_add(handle, inode))
  2076. goto out_stop;
  2077. /*
  2078. * The orphan list entry will now protect us from any crash which
  2079. * occurs before the truncate completes, so it is now safe to propagate
  2080. * the new, shorter inode size (held for now in i_size) into the
  2081. * on-disk inode. We do this via i_disksize, which is the value which
  2082. * ext3 *really* writes onto the disk inode.
  2083. */
  2084. ei->i_disksize = inode->i_size;
  2085. /*
  2086. * From here we block out all ext3_get_block() callers who want to
  2087. * modify the block allocation tree.
  2088. */
  2089. mutex_lock(&ei->truncate_mutex);
  2090. if (n == 1) { /* direct blocks */
  2091. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2092. i_data + EXT3_NDIR_BLOCKS);
  2093. goto do_indirects;
  2094. }
  2095. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2096. /* Kill the top of shared branch (not detached) */
  2097. if (nr) {
  2098. if (partial == chain) {
  2099. /* Shared branch grows from the inode */
  2100. ext3_free_branches(handle, inode, NULL,
  2101. &nr, &nr+1, (chain+n-1) - partial);
  2102. *partial->p = 0;
  2103. /*
  2104. * We mark the inode dirty prior to restart,
  2105. * and prior to stop. No need for it here.
  2106. */
  2107. } else {
  2108. /* Shared branch grows from an indirect block */
  2109. BUFFER_TRACE(partial->bh, "get_write_access");
  2110. ext3_free_branches(handle, inode, partial->bh,
  2111. partial->p,
  2112. partial->p+1, (chain+n-1) - partial);
  2113. }
  2114. }
  2115. /* Clear the ends of indirect blocks on the shared branch */
  2116. while (partial > chain) {
  2117. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2118. (__le32*)partial->bh->b_data+addr_per_block,
  2119. (chain+n-1) - partial);
  2120. BUFFER_TRACE(partial->bh, "call brelse");
  2121. brelse (partial->bh);
  2122. partial--;
  2123. }
  2124. do_indirects:
  2125. /* Kill the remaining (whole) subtrees */
  2126. switch (offsets[0]) {
  2127. default:
  2128. nr = i_data[EXT3_IND_BLOCK];
  2129. if (nr) {
  2130. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2131. i_data[EXT3_IND_BLOCK] = 0;
  2132. }
  2133. case EXT3_IND_BLOCK:
  2134. nr = i_data[EXT3_DIND_BLOCK];
  2135. if (nr) {
  2136. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2137. i_data[EXT3_DIND_BLOCK] = 0;
  2138. }
  2139. case EXT3_DIND_BLOCK:
  2140. nr = i_data[EXT3_TIND_BLOCK];
  2141. if (nr) {
  2142. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2143. i_data[EXT3_TIND_BLOCK] = 0;
  2144. }
  2145. case EXT3_TIND_BLOCK:
  2146. ;
  2147. }
  2148. ext3_discard_reservation(inode);
  2149. mutex_unlock(&ei->truncate_mutex);
  2150. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2151. ext3_mark_inode_dirty(handle, inode);
  2152. /*
  2153. * In a multi-transaction truncate, we only make the final transaction
  2154. * synchronous
  2155. */
  2156. if (IS_SYNC(inode))
  2157. handle->h_sync = 1;
  2158. out_stop:
  2159. /*
  2160. * If this was a simple ftruncate(), and the file will remain alive
  2161. * then we need to clear up the orphan record which we created above.
  2162. * However, if this was a real unlink then we were called by
  2163. * ext3_delete_inode(), and we allow that function to clean up the
  2164. * orphan info for us.
  2165. */
  2166. if (inode->i_nlink)
  2167. ext3_orphan_del(handle, inode);
  2168. ext3_journal_stop(handle);
  2169. }
  2170. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2171. unsigned long ino, struct ext3_iloc *iloc)
  2172. {
  2173. unsigned long desc, group_desc, block_group;
  2174. unsigned long offset;
  2175. ext3_fsblk_t block;
  2176. struct buffer_head *bh;
  2177. struct ext3_group_desc * gdp;
  2178. if ((ino != EXT3_ROOT_INO && ino != EXT3_JOURNAL_INO &&
  2179. ino != EXT3_RESIZE_INO && ino < EXT3_FIRST_INO(sb)) ||
  2180. ino > le32_to_cpu(EXT3_SB(sb)->s_es->s_inodes_count)) {
  2181. ext3_error(sb, "ext3_get_inode_block",
  2182. "bad inode number: %lu", ino);
  2183. return 0;
  2184. }
  2185. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2186. if (block_group >= EXT3_SB(sb)->s_groups_count) {
  2187. ext3_error(sb,"ext3_get_inode_block","group >= groups count");
  2188. return 0;
  2189. }
  2190. smp_rmb();
  2191. group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
  2192. desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
  2193. bh = EXT3_SB(sb)->s_group_desc[group_desc];
  2194. if (!bh) {
  2195. ext3_error (sb, "ext3_get_inode_block",
  2196. "Descriptor not loaded");
  2197. return 0;
  2198. }
  2199. gdp = (struct ext3_group_desc *)bh->b_data;
  2200. /*
  2201. * Figure out the offset within the block group inode table
  2202. */
  2203. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2204. EXT3_INODE_SIZE(sb);
  2205. block = le32_to_cpu(gdp[desc].bg_inode_table) +
  2206. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2207. iloc->block_group = block_group;
  2208. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2209. return block;
  2210. }
  2211. /*
  2212. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2213. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2214. * data in memory that is needed to recreate the on-disk version of this
  2215. * inode.
  2216. */
  2217. static int __ext3_get_inode_loc(struct inode *inode,
  2218. struct ext3_iloc *iloc, int in_mem)
  2219. {
  2220. ext3_fsblk_t block;
  2221. struct buffer_head *bh;
  2222. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2223. if (!block)
  2224. return -EIO;
  2225. bh = sb_getblk(inode->i_sb, block);
  2226. if (!bh) {
  2227. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2228. "unable to read inode block - "
  2229. "inode=%lu, block="E3FSBLK,
  2230. inode->i_ino, block);
  2231. return -EIO;
  2232. }
  2233. if (!buffer_uptodate(bh)) {
  2234. lock_buffer(bh);
  2235. if (buffer_uptodate(bh)) {
  2236. /* someone brought it uptodate while we waited */
  2237. unlock_buffer(bh);
  2238. goto has_buffer;
  2239. }
  2240. /*
  2241. * If we have all information of the inode in memory and this
  2242. * is the only valid inode in the block, we need not read the
  2243. * block.
  2244. */
  2245. if (in_mem) {
  2246. struct buffer_head *bitmap_bh;
  2247. struct ext3_group_desc *desc;
  2248. int inodes_per_buffer;
  2249. int inode_offset, i;
  2250. int block_group;
  2251. int start;
  2252. block_group = (inode->i_ino - 1) /
  2253. EXT3_INODES_PER_GROUP(inode->i_sb);
  2254. inodes_per_buffer = bh->b_size /
  2255. EXT3_INODE_SIZE(inode->i_sb);
  2256. inode_offset = ((inode->i_ino - 1) %
  2257. EXT3_INODES_PER_GROUP(inode->i_sb));
  2258. start = inode_offset & ~(inodes_per_buffer - 1);
  2259. /* Is the inode bitmap in cache? */
  2260. desc = ext3_get_group_desc(inode->i_sb,
  2261. block_group, NULL);
  2262. if (!desc)
  2263. goto make_io;
  2264. bitmap_bh = sb_getblk(inode->i_sb,
  2265. le32_to_cpu(desc->bg_inode_bitmap));
  2266. if (!bitmap_bh)
  2267. goto make_io;
  2268. /*
  2269. * If the inode bitmap isn't in cache then the
  2270. * optimisation may end up performing two reads instead
  2271. * of one, so skip it.
  2272. */
  2273. if (!buffer_uptodate(bitmap_bh)) {
  2274. brelse(bitmap_bh);
  2275. goto make_io;
  2276. }
  2277. for (i = start; i < start + inodes_per_buffer; i++) {
  2278. if (i == inode_offset)
  2279. continue;
  2280. if (ext3_test_bit(i, bitmap_bh->b_data))
  2281. break;
  2282. }
  2283. brelse(bitmap_bh);
  2284. if (i == start + inodes_per_buffer) {
  2285. /* all other inodes are free, so skip I/O */
  2286. memset(bh->b_data, 0, bh->b_size);
  2287. set_buffer_uptodate(bh);
  2288. unlock_buffer(bh);
  2289. goto has_buffer;
  2290. }
  2291. }
  2292. make_io:
  2293. /*
  2294. * There are other valid inodes in the buffer, this inode
  2295. * has in-inode xattrs, or we don't have this inode in memory.
  2296. * Read the block from disk.
  2297. */
  2298. get_bh(bh);
  2299. bh->b_end_io = end_buffer_read_sync;
  2300. submit_bh(READ, bh);
  2301. wait_on_buffer(bh);
  2302. if (!buffer_uptodate(bh)) {
  2303. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2304. "unable to read inode block - "
  2305. "inode=%lu, block="E3FSBLK,
  2306. inode->i_ino, block);
  2307. brelse(bh);
  2308. return -EIO;
  2309. }
  2310. }
  2311. has_buffer:
  2312. iloc->bh = bh;
  2313. return 0;
  2314. }
  2315. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2316. {
  2317. /* We have all inode data except xattrs in memory here. */
  2318. return __ext3_get_inode_loc(inode, iloc,
  2319. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2320. }
  2321. void ext3_set_inode_flags(struct inode *inode)
  2322. {
  2323. unsigned int flags = EXT3_I(inode)->i_flags;
  2324. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2325. if (flags & EXT3_SYNC_FL)
  2326. inode->i_flags |= S_SYNC;
  2327. if (flags & EXT3_APPEND_FL)
  2328. inode->i_flags |= S_APPEND;
  2329. if (flags & EXT3_IMMUTABLE_FL)
  2330. inode->i_flags |= S_IMMUTABLE;
  2331. if (flags & EXT3_NOATIME_FL)
  2332. inode->i_flags |= S_NOATIME;
  2333. if (flags & EXT3_DIRSYNC_FL)
  2334. inode->i_flags |= S_DIRSYNC;
  2335. }
  2336. void ext3_read_inode(struct inode * inode)
  2337. {
  2338. struct ext3_iloc iloc;
  2339. struct ext3_inode *raw_inode;
  2340. struct ext3_inode_info *ei = EXT3_I(inode);
  2341. struct buffer_head *bh;
  2342. int block;
  2343. #ifdef CONFIG_EXT3_FS_POSIX_ACL
  2344. ei->i_acl = EXT3_ACL_NOT_CACHED;
  2345. ei->i_default_acl = EXT3_ACL_NOT_CACHED;
  2346. #endif
  2347. ei->i_block_alloc_info = NULL;
  2348. if (__ext3_get_inode_loc(inode, &iloc, 0))
  2349. goto bad_inode;
  2350. bh = iloc.bh;
  2351. raw_inode = ext3_raw_inode(&iloc);
  2352. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2353. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2354. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2355. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2356. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2357. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2358. }
  2359. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2360. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2361. inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
  2362. inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
  2363. inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
  2364. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2365. ei->i_state = 0;
  2366. ei->i_dir_start_lookup = 0;
  2367. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2368. /* We now have enough fields to check if the inode was active or not.
  2369. * This is needed because nfsd might try to access dead inodes
  2370. * the test is that same one that e2fsck uses
  2371. * NeilBrown 1999oct15
  2372. */
  2373. if (inode->i_nlink == 0) {
  2374. if (inode->i_mode == 0 ||
  2375. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2376. /* this inode is deleted */
  2377. brelse (bh);
  2378. goto bad_inode;
  2379. }
  2380. /* The only unlinked inodes we let through here have
  2381. * valid i_mode and are being read by the orphan
  2382. * recovery code: that's fine, we're about to complete
  2383. * the process of deleting those. */
  2384. }
  2385. inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
  2386. * (for stat), not the fs block
  2387. * size */
  2388. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2389. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2390. #ifdef EXT3_FRAGMENTS
  2391. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2392. ei->i_frag_no = raw_inode->i_frag;
  2393. ei->i_frag_size = raw_inode->i_fsize;
  2394. #endif
  2395. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2396. if (!S_ISREG(inode->i_mode)) {
  2397. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2398. } else {
  2399. inode->i_size |=
  2400. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2401. }
  2402. ei->i_disksize = inode->i_size;
  2403. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2404. ei->i_block_group = iloc.block_group;
  2405. /*
  2406. * NOTE! The in-memory inode i_data array is in little-endian order
  2407. * even on big-endian machines: we do NOT byteswap the block numbers!
  2408. */
  2409. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2410. ei->i_data[block] = raw_inode->i_block[block];
  2411. INIT_LIST_HEAD(&ei->i_orphan);
  2412. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2413. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2414. /*
  2415. * When mke2fs creates big inodes it does not zero out
  2416. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2417. * so ignore those first few inodes.
  2418. */
  2419. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2420. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2421. EXT3_INODE_SIZE(inode->i_sb))
  2422. goto bad_inode;
  2423. if (ei->i_extra_isize == 0) {
  2424. /* The extra space is currently unused. Use it. */
  2425. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2426. EXT3_GOOD_OLD_INODE_SIZE;
  2427. } else {
  2428. __le32 *magic = (void *)raw_inode +
  2429. EXT3_GOOD_OLD_INODE_SIZE +
  2430. ei->i_extra_isize;
  2431. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2432. ei->i_state |= EXT3_STATE_XATTR;
  2433. }
  2434. } else
  2435. ei->i_extra_isize = 0;
  2436. if (S_ISREG(inode->i_mode)) {
  2437. inode->i_op = &ext3_file_inode_operations;
  2438. inode->i_fop = &ext3_file_operations;
  2439. ext3_set_aops(inode);
  2440. } else if (S_ISDIR(inode->i_mode)) {
  2441. inode->i_op = &ext3_dir_inode_operations;
  2442. inode->i_fop = &ext3_dir_operations;
  2443. } else if (S_ISLNK(inode->i_mode)) {
  2444. if (ext3_inode_is_fast_symlink(inode))
  2445. inode->i_op = &ext3_fast_symlink_inode_operations;
  2446. else {
  2447. inode->i_op = &ext3_symlink_inode_operations;
  2448. ext3_set_aops(inode);
  2449. }
  2450. } else {
  2451. inode->i_op = &ext3_special_inode_operations;
  2452. if (raw_inode->i_block[0])
  2453. init_special_inode(inode, inode->i_mode,
  2454. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2455. else
  2456. init_special_inode(inode, inode->i_mode,
  2457. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2458. }
  2459. brelse (iloc.bh);
  2460. ext3_set_inode_flags(inode);
  2461. return;
  2462. bad_inode:
  2463. make_bad_inode(inode);
  2464. return;
  2465. }
  2466. /*
  2467. * Post the struct inode info into an on-disk inode location in the
  2468. * buffer-cache. This gobbles the caller's reference to the
  2469. * buffer_head in the inode location struct.
  2470. *
  2471. * The caller must have write access to iloc->bh.
  2472. */
  2473. static int ext3_do_update_inode(handle_t *handle,
  2474. struct inode *inode,
  2475. struct ext3_iloc *iloc)
  2476. {
  2477. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2478. struct ext3_inode_info *ei = EXT3_I(inode);
  2479. struct buffer_head *bh = iloc->bh;
  2480. int err = 0, rc, block;
  2481. /* For fields not not tracking in the in-memory inode,
  2482. * initialise them to zero for new inodes. */
  2483. if (ei->i_state & EXT3_STATE_NEW)
  2484. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2485. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2486. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2487. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2488. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2489. /*
  2490. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2491. * re-used with the upper 16 bits of the uid/gid intact
  2492. */
  2493. if(!ei->i_dtime) {
  2494. raw_inode->i_uid_high =
  2495. cpu_to_le16(high_16_bits(inode->i_uid));
  2496. raw_inode->i_gid_high =
  2497. cpu_to_le16(high_16_bits(inode->i_gid));
  2498. } else {
  2499. raw_inode->i_uid_high = 0;
  2500. raw_inode->i_gid_high = 0;
  2501. }
  2502. } else {
  2503. raw_inode->i_uid_low =
  2504. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2505. raw_inode->i_gid_low =
  2506. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2507. raw_inode->i_uid_high = 0;
  2508. raw_inode->i_gid_high = 0;
  2509. }
  2510. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2511. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2512. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2513. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2514. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2515. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2516. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2517. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2518. #ifdef EXT3_FRAGMENTS
  2519. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2520. raw_inode->i_frag = ei->i_frag_no;
  2521. raw_inode->i_fsize = ei->i_frag_size;
  2522. #endif
  2523. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2524. if (!S_ISREG(inode->i_mode)) {
  2525. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2526. } else {
  2527. raw_inode->i_size_high =
  2528. cpu_to_le32(ei->i_disksize >> 32);
  2529. if (ei->i_disksize > 0x7fffffffULL) {
  2530. struct super_block *sb = inode->i_sb;
  2531. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2532. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2533. EXT3_SB(sb)->s_es->s_rev_level ==
  2534. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2535. /* If this is the first large file
  2536. * created, add a flag to the superblock.
  2537. */
  2538. err = ext3_journal_get_write_access(handle,
  2539. EXT3_SB(sb)->s_sbh);
  2540. if (err)
  2541. goto out_brelse;
  2542. ext3_update_dynamic_rev(sb);
  2543. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2544. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2545. sb->s_dirt = 1;
  2546. handle->h_sync = 1;
  2547. err = ext3_journal_dirty_metadata(handle,
  2548. EXT3_SB(sb)->s_sbh);
  2549. }
  2550. }
  2551. }
  2552. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2553. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2554. if (old_valid_dev(inode->i_rdev)) {
  2555. raw_inode->i_block[0] =
  2556. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2557. raw_inode->i_block[1] = 0;
  2558. } else {
  2559. raw_inode->i_block[0] = 0;
  2560. raw_inode->i_block[1] =
  2561. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2562. raw_inode->i_block[2] = 0;
  2563. }
  2564. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2565. raw_inode->i_block[block] = ei->i_data[block];
  2566. if (ei->i_extra_isize)
  2567. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2568. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2569. rc = ext3_journal_dirty_metadata(handle, bh);
  2570. if (!err)
  2571. err = rc;
  2572. ei->i_state &= ~EXT3_STATE_NEW;
  2573. out_brelse:
  2574. brelse (bh);
  2575. ext3_std_error(inode->i_sb, err);
  2576. return err;
  2577. }
  2578. /*
  2579. * ext3_write_inode()
  2580. *
  2581. * We are called from a few places:
  2582. *
  2583. * - Within generic_file_write() for O_SYNC files.
  2584. * Here, there will be no transaction running. We wait for any running
  2585. * trasnaction to commit.
  2586. *
  2587. * - Within sys_sync(), kupdate and such.
  2588. * We wait on commit, if tol to.
  2589. *
  2590. * - Within prune_icache() (PF_MEMALLOC == true)
  2591. * Here we simply return. We can't afford to block kswapd on the
  2592. * journal commit.
  2593. *
  2594. * In all cases it is actually safe for us to return without doing anything,
  2595. * because the inode has been copied into a raw inode buffer in
  2596. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2597. * knfsd.
  2598. *
  2599. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2600. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2601. * which we are interested.
  2602. *
  2603. * It would be a bug for them to not do this. The code:
  2604. *
  2605. * mark_inode_dirty(inode)
  2606. * stuff();
  2607. * inode->i_size = expr;
  2608. *
  2609. * is in error because a kswapd-driven write_inode() could occur while
  2610. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2611. * will no longer be on the superblock's dirty inode list.
  2612. */
  2613. int ext3_write_inode(struct inode *inode, int wait)
  2614. {
  2615. if (current->flags & PF_MEMALLOC)
  2616. return 0;
  2617. if (ext3_journal_current_handle()) {
  2618. jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
  2619. dump_stack();
  2620. return -EIO;
  2621. }
  2622. if (!wait)
  2623. return 0;
  2624. return ext3_force_commit(inode->i_sb);
  2625. }
  2626. /*
  2627. * ext3_setattr()
  2628. *
  2629. * Called from notify_change.
  2630. *
  2631. * We want to trap VFS attempts to truncate the file as soon as
  2632. * possible. In particular, we want to make sure that when the VFS
  2633. * shrinks i_size, we put the inode on the orphan list and modify
  2634. * i_disksize immediately, so that during the subsequent flushing of
  2635. * dirty pages and freeing of disk blocks, we can guarantee that any
  2636. * commit will leave the blocks being flushed in an unused state on
  2637. * disk. (On recovery, the inode will get truncated and the blocks will
  2638. * be freed, so we have a strong guarantee that no future commit will
  2639. * leave these blocks visible to the user.)
  2640. *
  2641. * Called with inode->sem down.
  2642. */
  2643. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2644. {
  2645. struct inode *inode = dentry->d_inode;
  2646. int error, rc = 0;
  2647. const unsigned int ia_valid = attr->ia_valid;
  2648. error = inode_change_ok(inode, attr);
  2649. if (error)
  2650. return error;
  2651. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2652. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2653. handle_t *handle;
  2654. /* (user+group)*(old+new) structure, inode write (sb,
  2655. * inode block, ? - but truncate inode update has it) */
  2656. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2657. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2658. if (IS_ERR(handle)) {
  2659. error = PTR_ERR(handle);
  2660. goto err_out;
  2661. }
  2662. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2663. if (error) {
  2664. ext3_journal_stop(handle);
  2665. return error;
  2666. }
  2667. /* Update corresponding info in inode so that everything is in
  2668. * one transaction */
  2669. if (attr->ia_valid & ATTR_UID)
  2670. inode->i_uid = attr->ia_uid;
  2671. if (attr->ia_valid & ATTR_GID)
  2672. inode->i_gid = attr->ia_gid;
  2673. error = ext3_mark_inode_dirty(handle, inode);
  2674. ext3_journal_stop(handle);
  2675. }
  2676. if (S_ISREG(inode->i_mode) &&
  2677. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2678. handle_t *handle;
  2679. handle = ext3_journal_start(inode, 3);
  2680. if (IS_ERR(handle)) {
  2681. error = PTR_ERR(handle);
  2682. goto err_out;
  2683. }
  2684. error = ext3_orphan_add(handle, inode);
  2685. EXT3_I(inode)->i_disksize = attr->ia_size;
  2686. rc = ext3_mark_inode_dirty(handle, inode);
  2687. if (!error)
  2688. error = rc;
  2689. ext3_journal_stop(handle);
  2690. }
  2691. rc = inode_setattr(inode, attr);
  2692. /* If inode_setattr's call to ext3_truncate failed to get a
  2693. * transaction handle at all, we need to clean up the in-core
  2694. * orphan list manually. */
  2695. if (inode->i_nlink)
  2696. ext3_orphan_del(NULL, inode);
  2697. if (!rc && (ia_valid & ATTR_MODE))
  2698. rc = ext3_acl_chmod(inode);
  2699. err_out:
  2700. ext3_std_error(inode->i_sb, error);
  2701. if (!error)
  2702. error = rc;
  2703. return error;
  2704. }
  2705. /*
  2706. * How many blocks doth make a writepage()?
  2707. *
  2708. * With N blocks per page, it may be:
  2709. * N data blocks
  2710. * 2 indirect block
  2711. * 2 dindirect
  2712. * 1 tindirect
  2713. * N+5 bitmap blocks (from the above)
  2714. * N+5 group descriptor summary blocks
  2715. * 1 inode block
  2716. * 1 superblock.
  2717. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2718. *
  2719. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2720. *
  2721. * With ordered or writeback data it's the same, less the N data blocks.
  2722. *
  2723. * If the inode's direct blocks can hold an integral number of pages then a
  2724. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2725. * and dindirect block, and the "5" above becomes "3".
  2726. *
  2727. * This still overestimates under most circumstances. If we were to pass the
  2728. * start and end offsets in here as well we could do block_to_path() on each
  2729. * block and work out the exact number of indirects which are touched. Pah.
  2730. */
  2731. static int ext3_writepage_trans_blocks(struct inode *inode)
  2732. {
  2733. int bpp = ext3_journal_blocks_per_page(inode);
  2734. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2735. int ret;
  2736. if (ext3_should_journal_data(inode))
  2737. ret = 3 * (bpp + indirects) + 2;
  2738. else
  2739. ret = 2 * (bpp + indirects) + 2;
  2740. #ifdef CONFIG_QUOTA
  2741. /* We know that structure was already allocated during DQUOT_INIT so
  2742. * we will be updating only the data blocks + inodes */
  2743. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2744. #endif
  2745. return ret;
  2746. }
  2747. /*
  2748. * The caller must have previously called ext3_reserve_inode_write().
  2749. * Give this, we know that the caller already has write access to iloc->bh.
  2750. */
  2751. int ext3_mark_iloc_dirty(handle_t *handle,
  2752. struct inode *inode, struct ext3_iloc *iloc)
  2753. {
  2754. int err = 0;
  2755. /* the do_update_inode consumes one bh->b_count */
  2756. get_bh(iloc->bh);
  2757. /* ext3_do_update_inode() does journal_dirty_metadata */
  2758. err = ext3_do_update_inode(handle, inode, iloc);
  2759. put_bh(iloc->bh);
  2760. return err;
  2761. }
  2762. /*
  2763. * On success, We end up with an outstanding reference count against
  2764. * iloc->bh. This _must_ be cleaned up later.
  2765. */
  2766. int
  2767. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2768. struct ext3_iloc *iloc)
  2769. {
  2770. int err = 0;
  2771. if (handle) {
  2772. err = ext3_get_inode_loc(inode, iloc);
  2773. if (!err) {
  2774. BUFFER_TRACE(iloc->bh, "get_write_access");
  2775. err = ext3_journal_get_write_access(handle, iloc->bh);
  2776. if (err) {
  2777. brelse(iloc->bh);
  2778. iloc->bh = NULL;
  2779. }
  2780. }
  2781. }
  2782. ext3_std_error(inode->i_sb, err);
  2783. return err;
  2784. }
  2785. /*
  2786. * What we do here is to mark the in-core inode as clean with respect to inode
  2787. * dirtiness (it may still be data-dirty).
  2788. * This means that the in-core inode may be reaped by prune_icache
  2789. * without having to perform any I/O. This is a very good thing,
  2790. * because *any* task may call prune_icache - even ones which
  2791. * have a transaction open against a different journal.
  2792. *
  2793. * Is this cheating? Not really. Sure, we haven't written the
  2794. * inode out, but prune_icache isn't a user-visible syncing function.
  2795. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2796. * we start and wait on commits.
  2797. *
  2798. * Is this efficient/effective? Well, we're being nice to the system
  2799. * by cleaning up our inodes proactively so they can be reaped
  2800. * without I/O. But we are potentially leaving up to five seconds'
  2801. * worth of inodes floating about which prune_icache wants us to
  2802. * write out. One way to fix that would be to get prune_icache()
  2803. * to do a write_super() to free up some memory. It has the desired
  2804. * effect.
  2805. */
  2806. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2807. {
  2808. struct ext3_iloc iloc;
  2809. int err;
  2810. might_sleep();
  2811. err = ext3_reserve_inode_write(handle, inode, &iloc);
  2812. if (!err)
  2813. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  2814. return err;
  2815. }
  2816. /*
  2817. * ext3_dirty_inode() is called from __mark_inode_dirty()
  2818. *
  2819. * We're really interested in the case where a file is being extended.
  2820. * i_size has been changed by generic_commit_write() and we thus need
  2821. * to include the updated inode in the current transaction.
  2822. *
  2823. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2824. * are allocated to the file.
  2825. *
  2826. * If the inode is marked synchronous, we don't honour that here - doing
  2827. * so would cause a commit on atime updates, which we don't bother doing.
  2828. * We handle synchronous inodes at the highest possible level.
  2829. */
  2830. void ext3_dirty_inode(struct inode *inode)
  2831. {
  2832. handle_t *current_handle = ext3_journal_current_handle();
  2833. handle_t *handle;
  2834. handle = ext3_journal_start(inode, 2);
  2835. if (IS_ERR(handle))
  2836. goto out;
  2837. if (current_handle &&
  2838. current_handle->h_transaction != handle->h_transaction) {
  2839. /* This task has a transaction open against a different fs */
  2840. printk(KERN_EMERG "%s: transactions do not match!\n",
  2841. __FUNCTION__);
  2842. } else {
  2843. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2844. current_handle);
  2845. ext3_mark_inode_dirty(handle, inode);
  2846. }
  2847. ext3_journal_stop(handle);
  2848. out:
  2849. return;
  2850. }
  2851. #if 0
  2852. /*
  2853. * Bind an inode's backing buffer_head into this transaction, to prevent
  2854. * it from being flushed to disk early. Unlike
  2855. * ext3_reserve_inode_write, this leaves behind no bh reference and
  2856. * returns no iloc structure, so the caller needs to repeat the iloc
  2857. * lookup to mark the inode dirty later.
  2858. */
  2859. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  2860. {
  2861. struct ext3_iloc iloc;
  2862. int err = 0;
  2863. if (handle) {
  2864. err = ext3_get_inode_loc(inode, &iloc);
  2865. if (!err) {
  2866. BUFFER_TRACE(iloc.bh, "get_write_access");
  2867. err = journal_get_write_access(handle, iloc.bh);
  2868. if (!err)
  2869. err = ext3_journal_dirty_metadata(handle,
  2870. iloc.bh);
  2871. brelse(iloc.bh);
  2872. }
  2873. }
  2874. ext3_std_error(inode->i_sb, err);
  2875. return err;
  2876. }
  2877. #endif
  2878. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  2879. {
  2880. journal_t *journal;
  2881. handle_t *handle;
  2882. int err;
  2883. /*
  2884. * We have to be very careful here: changing a data block's
  2885. * journaling status dynamically is dangerous. If we write a
  2886. * data block to the journal, change the status and then delete
  2887. * that block, we risk forgetting to revoke the old log record
  2888. * from the journal and so a subsequent replay can corrupt data.
  2889. * So, first we make sure that the journal is empty and that
  2890. * nobody is changing anything.
  2891. */
  2892. journal = EXT3_JOURNAL(inode);
  2893. if (is_journal_aborted(journal) || IS_RDONLY(inode))
  2894. return -EROFS;
  2895. journal_lock_updates(journal);
  2896. journal_flush(journal);
  2897. /*
  2898. * OK, there are no updates running now, and all cached data is
  2899. * synced to disk. We are now in a completely consistent state
  2900. * which doesn't have anything in the journal, and we know that
  2901. * no filesystem updates are running, so it is safe to modify
  2902. * the inode's in-core data-journaling state flag now.
  2903. */
  2904. if (val)
  2905. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  2906. else
  2907. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  2908. ext3_set_aops(inode);
  2909. journal_unlock_updates(journal);
  2910. /* Finally we can mark the inode as dirty. */
  2911. handle = ext3_journal_start(inode, 1);
  2912. if (IS_ERR(handle))
  2913. return PTR_ERR(handle);
  2914. err = ext3_mark_inode_dirty(handle, inode);
  2915. handle->h_sync = 1;
  2916. ext3_journal_stop(handle);
  2917. ext3_std_error(inode->i_sb, err);
  2918. return err;
  2919. }