intelfbhw.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/tty.h>
  26. #include <linux/slab.h>
  27. #include <linux/delay.h>
  28. #include <linux/fb.h>
  29. #include <linux/ioport.h>
  30. #include <linux/init.h>
  31. #include <linux/pci.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/pagemap.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, //I8xx
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } //I9xx
  58. };
  59. int
  60. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  61. {
  62. u32 tmp;
  63. if (!pdev || !dinfo)
  64. return 1;
  65. switch (pdev->device) {
  66. case PCI_DEVICE_ID_INTEL_830M:
  67. dinfo->name = "Intel(R) 830M";
  68. dinfo->chipset = INTEL_830M;
  69. dinfo->mobile = 1;
  70. dinfo->pll_index = PLLS_I8xx;
  71. return 0;
  72. case PCI_DEVICE_ID_INTEL_845G:
  73. dinfo->name = "Intel(R) 845G";
  74. dinfo->chipset = INTEL_845G;
  75. dinfo->mobile = 0;
  76. dinfo->pll_index = PLLS_I8xx;
  77. return 0;
  78. case PCI_DEVICE_ID_INTEL_85XGM:
  79. tmp = 0;
  80. dinfo->mobile = 1;
  81. dinfo->pll_index = PLLS_I8xx;
  82. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  83. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  84. INTEL_85X_VARIANT_MASK) {
  85. case INTEL_VAR_855GME:
  86. dinfo->name = "Intel(R) 855GME";
  87. dinfo->chipset = INTEL_855GME;
  88. return 0;
  89. case INTEL_VAR_855GM:
  90. dinfo->name = "Intel(R) 855GM";
  91. dinfo->chipset = INTEL_855GM;
  92. return 0;
  93. case INTEL_VAR_852GME:
  94. dinfo->name = "Intel(R) 852GME";
  95. dinfo->chipset = INTEL_852GME;
  96. return 0;
  97. case INTEL_VAR_852GM:
  98. dinfo->name = "Intel(R) 852GM";
  99. dinfo->chipset = INTEL_852GM;
  100. return 0;
  101. default:
  102. dinfo->name = "Intel(R) 852GM/855GM";
  103. dinfo->chipset = INTEL_85XGM;
  104. return 0;
  105. }
  106. break;
  107. case PCI_DEVICE_ID_INTEL_865G:
  108. dinfo->name = "Intel(R) 865G";
  109. dinfo->chipset = INTEL_865G;
  110. dinfo->mobile = 0;
  111. dinfo->pll_index = PLLS_I8xx;
  112. return 0;
  113. case PCI_DEVICE_ID_INTEL_915G:
  114. dinfo->name = "Intel(R) 915G";
  115. dinfo->chipset = INTEL_915G;
  116. dinfo->mobile = 0;
  117. dinfo->pll_index = PLLS_I9xx;
  118. return 0;
  119. case PCI_DEVICE_ID_INTEL_915GM:
  120. dinfo->name = "Intel(R) 915GM";
  121. dinfo->chipset = INTEL_915GM;
  122. dinfo->mobile = 1;
  123. dinfo->pll_index = PLLS_I9xx;
  124. return 0;
  125. case PCI_DEVICE_ID_INTEL_945G:
  126. dinfo->name = "Intel(R) 945G";
  127. dinfo->chipset = INTEL_945G;
  128. dinfo->mobile = 0;
  129. dinfo->pll_index = PLLS_I9xx;
  130. return 0;
  131. case PCI_DEVICE_ID_INTEL_945GM:
  132. dinfo->name = "Intel(R) 945GM";
  133. dinfo->chipset = INTEL_945GM;
  134. dinfo->mobile = 1;
  135. dinfo->pll_index = PLLS_I9xx;
  136. return 0;
  137. default:
  138. return 1;
  139. }
  140. }
  141. int
  142. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  143. int *stolen_size)
  144. {
  145. struct pci_dev *bridge_dev;
  146. u16 tmp;
  147. int stolen_overhead;
  148. if (!pdev || !aperture_size || !stolen_size)
  149. return 1;
  150. /* Find the bridge device. It is always 0:0.0 */
  151. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  152. ERR_MSG("cannot find bridge device\n");
  153. return 1;
  154. }
  155. /* Get the fb aperture size and "stolen" memory amount. */
  156. tmp = 0;
  157. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  158. switch (pdev->device) {
  159. case PCI_DEVICE_ID_INTEL_915G:
  160. case PCI_DEVICE_ID_INTEL_915GM:
  161. case PCI_DEVICE_ID_INTEL_945G:
  162. case PCI_DEVICE_ID_INTEL_945GM:
  163. /* 915 and 945 chipsets support a 256MB aperture.
  164. Aperture size is determined by inspected the
  165. base address of the aperture. */
  166. if (pci_resource_start(pdev, 2) & 0x08000000)
  167. *aperture_size = MB(128);
  168. else
  169. *aperture_size = MB(256);
  170. break;
  171. default:
  172. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  173. *aperture_size = MB(64);
  174. else
  175. *aperture_size = MB(128);
  176. break;
  177. }
  178. /* Stolen memory size is reduced by the GTT and the popup.
  179. GTT is 1K per MB of aperture size, and popup is 4K. */
  180. stolen_overhead = (*aperture_size / MB(1)) + 4;
  181. switch(pdev->device) {
  182. case PCI_DEVICE_ID_INTEL_830M:
  183. case PCI_DEVICE_ID_INTEL_845G:
  184. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  185. case INTEL_830_GMCH_GMS_STOLEN_512:
  186. *stolen_size = KB(512) - KB(stolen_overhead);
  187. return 0;
  188. case INTEL_830_GMCH_GMS_STOLEN_1024:
  189. *stolen_size = MB(1) - KB(stolen_overhead);
  190. return 0;
  191. case INTEL_830_GMCH_GMS_STOLEN_8192:
  192. *stolen_size = MB(8) - KB(stolen_overhead);
  193. return 0;
  194. case INTEL_830_GMCH_GMS_LOCAL:
  195. ERR_MSG("only local memory found\n");
  196. return 1;
  197. case INTEL_830_GMCH_GMS_DISABLED:
  198. ERR_MSG("video memory is disabled\n");
  199. return 1;
  200. default:
  201. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  202. tmp & INTEL_830_GMCH_GMS_MASK);
  203. return 1;
  204. }
  205. break;
  206. default:
  207. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  208. case INTEL_855_GMCH_GMS_STOLEN_1M:
  209. *stolen_size = MB(1) - KB(stolen_overhead);
  210. return 0;
  211. case INTEL_855_GMCH_GMS_STOLEN_4M:
  212. *stolen_size = MB(4) - KB(stolen_overhead);
  213. return 0;
  214. case INTEL_855_GMCH_GMS_STOLEN_8M:
  215. *stolen_size = MB(8) - KB(stolen_overhead);
  216. return 0;
  217. case INTEL_855_GMCH_GMS_STOLEN_16M:
  218. *stolen_size = MB(16) - KB(stolen_overhead);
  219. return 0;
  220. case INTEL_855_GMCH_GMS_STOLEN_32M:
  221. *stolen_size = MB(32) - KB(stolen_overhead);
  222. return 0;
  223. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  224. *stolen_size = MB(48) - KB(stolen_overhead);
  225. return 0;
  226. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  227. *stolen_size = MB(64) - KB(stolen_overhead);
  228. return 0;
  229. case INTEL_855_GMCH_GMS_DISABLED:
  230. ERR_MSG("video memory is disabled\n");
  231. return 0;
  232. default:
  233. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  234. tmp & INTEL_855_GMCH_GMS_MASK);
  235. return 1;
  236. }
  237. }
  238. }
  239. int
  240. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  241. {
  242. int dvo = 0;
  243. if (INREG(LVDS) & PORT_ENABLE)
  244. dvo |= LVDS_PORT;
  245. if (INREG(DVOA) & PORT_ENABLE)
  246. dvo |= DVOA_PORT;
  247. if (INREG(DVOB) & PORT_ENABLE)
  248. dvo |= DVOB_PORT;
  249. if (INREG(DVOC) & PORT_ENABLE)
  250. dvo |= DVOC_PORT;
  251. return dvo;
  252. }
  253. const char *
  254. intelfbhw_dvo_to_string(int dvo)
  255. {
  256. if (dvo & DVOA_PORT)
  257. return "DVO port A";
  258. else if (dvo & DVOB_PORT)
  259. return "DVO port B";
  260. else if (dvo & DVOC_PORT)
  261. return "DVO port C";
  262. else if (dvo & LVDS_PORT)
  263. return "LVDS port";
  264. else
  265. return NULL;
  266. }
  267. int
  268. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  269. struct fb_var_screeninfo *var)
  270. {
  271. int bytes_per_pixel;
  272. int tmp;
  273. #if VERBOSE > 0
  274. DBG_MSG("intelfbhw_validate_mode\n");
  275. #endif
  276. bytes_per_pixel = var->bits_per_pixel / 8;
  277. if (bytes_per_pixel == 3)
  278. bytes_per_pixel = 4;
  279. /* Check if enough video memory. */
  280. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  281. if (tmp > dinfo->fb.size) {
  282. WRN_MSG("Not enough video ram for mode "
  283. "(%d KByte vs %d KByte).\n",
  284. BtoKB(tmp), BtoKB(dinfo->fb.size));
  285. return 1;
  286. }
  287. /* Check if x/y limits are OK. */
  288. if (var->xres - 1 > HACTIVE_MASK) {
  289. WRN_MSG("X resolution too large (%d vs %d).\n",
  290. var->xres, HACTIVE_MASK + 1);
  291. return 1;
  292. }
  293. if (var->yres - 1 > VACTIVE_MASK) {
  294. WRN_MSG("Y resolution too large (%d vs %d).\n",
  295. var->yres, VACTIVE_MASK + 1);
  296. return 1;
  297. }
  298. /* Check for interlaced/doublescan modes. */
  299. if (var->vmode & FB_VMODE_INTERLACED) {
  300. WRN_MSG("Mode is interlaced.\n");
  301. return 1;
  302. }
  303. if (var->vmode & FB_VMODE_DOUBLE) {
  304. WRN_MSG("Mode is double-scan.\n");
  305. return 1;
  306. }
  307. /* Check if clock is OK. */
  308. tmp = 1000000000 / var->pixclock;
  309. if (tmp < MIN_CLOCK) {
  310. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  311. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  312. return 1;
  313. }
  314. if (tmp > MAX_CLOCK) {
  315. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  316. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  317. return 1;
  318. }
  319. return 0;
  320. }
  321. int
  322. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  323. {
  324. struct intelfb_info *dinfo = GET_DINFO(info);
  325. u32 offset, xoffset, yoffset;
  326. #if VERBOSE > 0
  327. DBG_MSG("intelfbhw_pan_display\n");
  328. #endif
  329. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  330. yoffset = var->yoffset;
  331. if ((xoffset + var->xres > var->xres_virtual) ||
  332. (yoffset + var->yres > var->yres_virtual))
  333. return -EINVAL;
  334. offset = (yoffset * dinfo->pitch) +
  335. (xoffset * var->bits_per_pixel) / 8;
  336. offset += dinfo->fb.offset << 12;
  337. OUTREG(DSPABASE, offset);
  338. return 0;
  339. }
  340. /* Blank the screen. */
  341. void
  342. intelfbhw_do_blank(int blank, struct fb_info *info)
  343. {
  344. struct intelfb_info *dinfo = GET_DINFO(info);
  345. u32 tmp;
  346. #if VERBOSE > 0
  347. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  348. #endif
  349. /* Turn plane A on or off */
  350. tmp = INREG(DSPACNTR);
  351. if (blank)
  352. tmp &= ~DISPPLANE_PLANE_ENABLE;
  353. else
  354. tmp |= DISPPLANE_PLANE_ENABLE;
  355. OUTREG(DSPACNTR, tmp);
  356. /* Flush */
  357. tmp = INREG(DSPABASE);
  358. OUTREG(DSPABASE, tmp);
  359. /* Turn off/on the HW cursor */
  360. #if VERBOSE > 0
  361. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  362. #endif
  363. if (dinfo->cursor_on) {
  364. if (blank) {
  365. intelfbhw_cursor_hide(dinfo);
  366. } else {
  367. intelfbhw_cursor_show(dinfo);
  368. }
  369. dinfo->cursor_on = 1;
  370. }
  371. dinfo->cursor_blanked = blank;
  372. /* Set DPMS level */
  373. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  374. switch (blank) {
  375. case FB_BLANK_UNBLANK:
  376. case FB_BLANK_NORMAL:
  377. tmp |= ADPA_DPMS_D0;
  378. break;
  379. case FB_BLANK_VSYNC_SUSPEND:
  380. tmp |= ADPA_DPMS_D1;
  381. break;
  382. case FB_BLANK_HSYNC_SUSPEND:
  383. tmp |= ADPA_DPMS_D2;
  384. break;
  385. case FB_BLANK_POWERDOWN:
  386. tmp |= ADPA_DPMS_D3;
  387. break;
  388. }
  389. OUTREG(ADPA, tmp);
  390. return;
  391. }
  392. void
  393. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  394. unsigned red, unsigned green, unsigned blue,
  395. unsigned transp)
  396. {
  397. #if VERBOSE > 0
  398. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  399. regno, red, green, blue);
  400. #endif
  401. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  402. PALETTE_A : PALETTE_B;
  403. OUTREG(palette_reg + (regno << 2),
  404. (red << PALETTE_8_RED_SHIFT) |
  405. (green << PALETTE_8_GREEN_SHIFT) |
  406. (blue << PALETTE_8_BLUE_SHIFT));
  407. }
  408. int
  409. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  410. int flag)
  411. {
  412. int i;
  413. #if VERBOSE > 0
  414. DBG_MSG("intelfbhw_read_hw_state\n");
  415. #endif
  416. if (!hw || !dinfo)
  417. return -1;
  418. /* Read in as much of the HW state as possible. */
  419. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  420. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  421. hw->vga_pd = INREG(VGAPD);
  422. hw->dpll_a = INREG(DPLL_A);
  423. hw->dpll_b = INREG(DPLL_B);
  424. hw->fpa0 = INREG(FPA0);
  425. hw->fpa1 = INREG(FPA1);
  426. hw->fpb0 = INREG(FPB0);
  427. hw->fpb1 = INREG(FPB1);
  428. if (flag == 1)
  429. return flag;
  430. #if 0
  431. /* This seems to be a problem with the 852GM/855GM */
  432. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  433. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  434. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  435. }
  436. #endif
  437. if (flag == 2)
  438. return flag;
  439. hw->htotal_a = INREG(HTOTAL_A);
  440. hw->hblank_a = INREG(HBLANK_A);
  441. hw->hsync_a = INREG(HSYNC_A);
  442. hw->vtotal_a = INREG(VTOTAL_A);
  443. hw->vblank_a = INREG(VBLANK_A);
  444. hw->vsync_a = INREG(VSYNC_A);
  445. hw->src_size_a = INREG(SRC_SIZE_A);
  446. hw->bclrpat_a = INREG(BCLRPAT_A);
  447. hw->htotal_b = INREG(HTOTAL_B);
  448. hw->hblank_b = INREG(HBLANK_B);
  449. hw->hsync_b = INREG(HSYNC_B);
  450. hw->vtotal_b = INREG(VTOTAL_B);
  451. hw->vblank_b = INREG(VBLANK_B);
  452. hw->vsync_b = INREG(VSYNC_B);
  453. hw->src_size_b = INREG(SRC_SIZE_B);
  454. hw->bclrpat_b = INREG(BCLRPAT_B);
  455. if (flag == 3)
  456. return flag;
  457. hw->adpa = INREG(ADPA);
  458. hw->dvoa = INREG(DVOA);
  459. hw->dvob = INREG(DVOB);
  460. hw->dvoc = INREG(DVOC);
  461. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  462. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  463. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  464. hw->lvds = INREG(LVDS);
  465. if (flag == 4)
  466. return flag;
  467. hw->pipe_a_conf = INREG(PIPEACONF);
  468. hw->pipe_b_conf = INREG(PIPEBCONF);
  469. hw->disp_arb = INREG(DISPARB);
  470. if (flag == 5)
  471. return flag;
  472. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  473. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  474. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  475. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  476. if (flag == 6)
  477. return flag;
  478. for (i = 0; i < 4; i++) {
  479. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  480. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  481. }
  482. if (flag == 7)
  483. return flag;
  484. hw->cursor_size = INREG(CURSOR_SIZE);
  485. if (flag == 8)
  486. return flag;
  487. hw->disp_a_ctrl = INREG(DSPACNTR);
  488. hw->disp_b_ctrl = INREG(DSPBCNTR);
  489. hw->disp_a_base = INREG(DSPABASE);
  490. hw->disp_b_base = INREG(DSPBBASE);
  491. hw->disp_a_stride = INREG(DSPASTRIDE);
  492. hw->disp_b_stride = INREG(DSPBSTRIDE);
  493. if (flag == 9)
  494. return flag;
  495. hw->vgacntrl = INREG(VGACNTRL);
  496. if (flag == 10)
  497. return flag;
  498. hw->add_id = INREG(ADD_ID);
  499. if (flag == 11)
  500. return flag;
  501. for (i = 0; i < 7; i++) {
  502. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  503. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  504. if (i < 3)
  505. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  506. }
  507. for (i = 0; i < 8; i++)
  508. hw->fence[i] = INREG(FENCE + (i << 2));
  509. hw->instpm = INREG(INSTPM);
  510. hw->mem_mode = INREG(MEM_MODE);
  511. hw->fw_blc_0 = INREG(FW_BLC_0);
  512. hw->fw_blc_1 = INREG(FW_BLC_1);
  513. return 0;
  514. }
  515. static int calc_vclock3(int index, int m, int n, int p)
  516. {
  517. if (p == 0 || n == 0)
  518. return 0;
  519. return plls[index].ref_clk * m / n / p;
  520. }
  521. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  522. {
  523. struct pll_min_max *pll = &plls[index];
  524. u32 m, vco, p;
  525. m = (5 * (m1 + 2)) + (m2 + 2);
  526. n += 2;
  527. vco = pll->ref_clk * m / n;
  528. if (index == PLLS_I8xx) {
  529. p = ((p1 + 2) * (1 << (p2 + 1)));
  530. } else {
  531. p = ((p1) * (p2 ? 5 : 10));
  532. }
  533. return vco / p;
  534. }
  535. static void
  536. intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
  537. {
  538. int p1, p2;
  539. if (IS_I9XX(dinfo)) {
  540. if (dpll & DPLL_P1_FORCE_DIV2)
  541. p1 = 1;
  542. else
  543. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  544. p1 = ffs(p1);
  545. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  546. } else {
  547. if (dpll & DPLL_P1_FORCE_DIV2)
  548. p1 = 0;
  549. else
  550. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  551. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  552. }
  553. *o_p1 = p1;
  554. *o_p2 = p2;
  555. }
  556. void
  557. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  558. {
  559. #if REGDUMP
  560. int i, m1, m2, n, p1, p2;
  561. int index = dinfo->pll_index;
  562. DBG_MSG("intelfbhw_print_hw_state\n");
  563. if (!hw || !dinfo)
  564. return;
  565. /* Read in as much of the HW state as possible. */
  566. printk("hw state dump start\n");
  567. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  568. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  569. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  570. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  571. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  572. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  573. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  574. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  575. m1, m2, n, p1, p2);
  576. printk(" VGA0: clock is %d\n",
  577. calc_vclock(index, m1, m2, n, p1, p2, 0));
  578. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  579. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  580. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  581. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  582. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  583. m1, m2, n, p1, p2);
  584. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  585. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  586. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  587. printk(" FPA0: 0x%08x\n", hw->fpa0);
  588. printk(" FPA1: 0x%08x\n", hw->fpa1);
  589. printk(" FPB0: 0x%08x\n", hw->fpb0);
  590. printk(" FPB1: 0x%08x\n", hw->fpb1);
  591. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  592. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  593. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  594. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  595. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  596. m1, m2, n, p1, p2);
  597. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  598. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  599. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  600. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  601. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  602. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  603. m1, m2, n, p1, p2);
  604. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  605. #if 0
  606. printk(" PALETTE_A:\n");
  607. for (i = 0; i < PALETTE_8_ENTRIES)
  608. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  609. printk(" PALETTE_B:\n");
  610. for (i = 0; i < PALETTE_8_ENTRIES)
  611. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  612. #endif
  613. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  614. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  615. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  616. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  617. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  618. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  619. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  620. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  621. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  622. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  623. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  624. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  625. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  626. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  627. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  628. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  629. printk(" ADPA: 0x%08x\n", hw->adpa);
  630. printk(" DVOA: 0x%08x\n", hw->dvoa);
  631. printk(" DVOB: 0x%08x\n", hw->dvob);
  632. printk(" DVOC: 0x%08x\n", hw->dvoc);
  633. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  634. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  635. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  636. printk(" LVDS: 0x%08x\n", hw->lvds);
  637. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  638. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  639. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  640. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  641. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  642. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  643. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  644. printk(" CURSOR_A_PALETTE: ");
  645. for (i = 0; i < 4; i++) {
  646. printk("0x%08x", hw->cursor_a_palette[i]);
  647. if (i < 3)
  648. printk(", ");
  649. }
  650. printk("\n");
  651. printk(" CURSOR_B_PALETTE: ");
  652. for (i = 0; i < 4; i++) {
  653. printk("0x%08x", hw->cursor_b_palette[i]);
  654. if (i < 3)
  655. printk(", ");
  656. }
  657. printk("\n");
  658. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  659. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  660. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  661. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  662. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  663. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  664. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  665. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  666. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  667. for (i = 0; i < 7; i++) {
  668. printk(" SWF0%d 0x%08x\n", i,
  669. hw->swf0x[i]);
  670. }
  671. for (i = 0; i < 7; i++) {
  672. printk(" SWF1%d 0x%08x\n", i,
  673. hw->swf1x[i]);
  674. }
  675. for (i = 0; i < 3; i++) {
  676. printk(" SWF3%d 0x%08x\n", i,
  677. hw->swf3x[i]);
  678. }
  679. for (i = 0; i < 8; i++)
  680. printk(" FENCE%d 0x%08x\n", i,
  681. hw->fence[i]);
  682. printk(" INSTPM 0x%08x\n", hw->instpm);
  683. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  684. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  685. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  686. printk("hw state dump end\n");
  687. #endif
  688. }
  689. /* Split the M parameter into M1 and M2. */
  690. static int
  691. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  692. {
  693. int m1, m2;
  694. int testm;
  695. struct pll_min_max *pll = &plls[index];
  696. /* no point optimising too much - brute force m */
  697. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  698. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  699. testm = (5 * (m1 + 2)) + (m2 + 2);
  700. if (testm == m) {
  701. *retm1 = (unsigned int)m1;
  702. *retm2 = (unsigned int)m2;
  703. return 0;
  704. }
  705. }
  706. }
  707. return 1;
  708. }
  709. /* Split the P parameter into P1 and P2. */
  710. static int
  711. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  712. {
  713. int p1, p2;
  714. struct pll_min_max *pll = &plls[index];
  715. if (index == PLLS_I9xx) {
  716. p2 = (p % 10) ? 1 : 0;
  717. p1 = p / (p2 ? 5 : 10);
  718. *retp1 = (unsigned int)p1;
  719. *retp2 = (unsigned int)p2;
  720. return 0;
  721. }
  722. if (p % 4 == 0)
  723. p2 = 1;
  724. else
  725. p2 = 0;
  726. p1 = (p / (1 << (p2 + 1))) - 2;
  727. if (p % 4 == 0 && p1 < pll->min_p1) {
  728. p2 = 0;
  729. p1 = (p / (1 << (p2 + 1))) - 2;
  730. }
  731. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  732. (p1 + 2) * (1 << (p2 + 1)) != p) {
  733. return 1;
  734. } else {
  735. *retp1 = (unsigned int)p1;
  736. *retp2 = (unsigned int)p2;
  737. return 0;
  738. }
  739. }
  740. static int
  741. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  742. u32 *retp2, u32 *retclock)
  743. {
  744. u32 m1, m2, n, p1, p2, n1, testm;
  745. u32 f_vco, p, p_best = 0, m, f_out = 0;
  746. u32 err_max, err_target, err_best = 10000000;
  747. u32 n_best = 0, m_best = 0, f_best, f_err;
  748. u32 p_min, p_max, p_inc, div_max;
  749. struct pll_min_max *pll = &plls[index];
  750. /* Accept 0.5% difference, but aim for 0.1% */
  751. err_max = 5 * clock / 1000;
  752. err_target = clock / 1000;
  753. DBG_MSG("Clock is %d\n", clock);
  754. div_max = pll->max_vco / clock;
  755. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  756. p_min = p_inc;
  757. p_max = ROUND_DOWN_TO(div_max, p_inc);
  758. if (p_min < pll->min_p)
  759. p_min = pll->min_p;
  760. if (p_max > pll->max_p)
  761. p_max = pll->max_p;
  762. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  763. p = p_min;
  764. do {
  765. if (splitp(index, p, &p1, &p2)) {
  766. WRN_MSG("cannot split p = %d\n", p);
  767. p += p_inc;
  768. continue;
  769. }
  770. n = pll->min_n;
  771. f_vco = clock * p;
  772. do {
  773. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  774. if (m < pll->min_m)
  775. m = pll->min_m + 1;
  776. if (m > pll->max_m)
  777. m = pll->max_m - 1;
  778. for (testm = m - 1; testm <= m; testm++) {
  779. f_out = calc_vclock3(index, m, n, p);
  780. if (splitm(index, testm, &m1, &m2)) {
  781. WRN_MSG("cannot split m = %d\n", m);
  782. n++;
  783. continue;
  784. }
  785. if (clock > f_out)
  786. f_err = clock - f_out;
  787. else/* slightly bias the error for bigger clocks */
  788. f_err = f_out - clock + 1;
  789. if (f_err < err_best) {
  790. m_best = testm;
  791. n_best = n;
  792. p_best = p;
  793. f_best = f_out;
  794. err_best = f_err;
  795. }
  796. }
  797. n++;
  798. } while ((n <= pll->max_n) && (f_out >= clock));
  799. p += p_inc;
  800. } while ((p <= p_max));
  801. if (!m_best) {
  802. WRN_MSG("cannot find parameters for clock %d\n", clock);
  803. return 1;
  804. }
  805. m = m_best;
  806. n = n_best;
  807. p = p_best;
  808. splitm(index, m, &m1, &m2);
  809. splitp(index, p, &p1, &p2);
  810. n1 = n - 2;
  811. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  812. "f: %d (%d), VCO: %d\n",
  813. m, m1, m2, n, n1, p, p1, p2,
  814. calc_vclock3(index, m, n, p),
  815. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  816. calc_vclock3(index, m, n, p) * p);
  817. *retm1 = m1;
  818. *retm2 = m2;
  819. *retn = n1;
  820. *retp1 = p1;
  821. *retp2 = p2;
  822. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  823. return 0;
  824. }
  825. static __inline__ int
  826. check_overflow(u32 value, u32 limit, const char *description)
  827. {
  828. if (value > limit) {
  829. WRN_MSG("%s value %d exceeds limit %d\n",
  830. description, value, limit);
  831. return 1;
  832. }
  833. return 0;
  834. }
  835. /* It is assumed that hw is filled in with the initial state information. */
  836. int
  837. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  838. struct fb_var_screeninfo *var)
  839. {
  840. int pipe = PIPE_A;
  841. u32 *dpll, *fp0, *fp1;
  842. u32 m1, m2, n, p1, p2, clock_target, clock;
  843. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  844. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  845. u32 vsync_pol, hsync_pol;
  846. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  847. u32 stride_alignment;
  848. DBG_MSG("intelfbhw_mode_to_hw\n");
  849. /* Disable VGA */
  850. hw->vgacntrl |= VGA_DISABLE;
  851. /* Check whether pipe A or pipe B is enabled. */
  852. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  853. pipe = PIPE_A;
  854. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  855. pipe = PIPE_B;
  856. /* Set which pipe's registers will be set. */
  857. if (pipe == PIPE_B) {
  858. dpll = &hw->dpll_b;
  859. fp0 = &hw->fpb0;
  860. fp1 = &hw->fpb1;
  861. hs = &hw->hsync_b;
  862. hb = &hw->hblank_b;
  863. ht = &hw->htotal_b;
  864. vs = &hw->vsync_b;
  865. vb = &hw->vblank_b;
  866. vt = &hw->vtotal_b;
  867. ss = &hw->src_size_b;
  868. pipe_conf = &hw->pipe_b_conf;
  869. } else {
  870. dpll = &hw->dpll_a;
  871. fp0 = &hw->fpa0;
  872. fp1 = &hw->fpa1;
  873. hs = &hw->hsync_a;
  874. hb = &hw->hblank_a;
  875. ht = &hw->htotal_a;
  876. vs = &hw->vsync_a;
  877. vb = &hw->vblank_a;
  878. vt = &hw->vtotal_a;
  879. ss = &hw->src_size_a;
  880. pipe_conf = &hw->pipe_a_conf;
  881. }
  882. /* Use ADPA register for sync control. */
  883. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  884. /* sync polarity */
  885. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  886. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  887. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  888. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  889. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  890. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  891. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  892. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  893. /* Connect correct pipe to the analog port DAC */
  894. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  895. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  896. /* Set DPMS state to D0 (on) */
  897. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  898. hw->adpa |= ADPA_DPMS_D0;
  899. hw->adpa |= ADPA_DAC_ENABLE;
  900. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  901. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  902. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  903. /* Desired clock in kHz */
  904. clock_target = 1000000000 / var->pixclock;
  905. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  906. &n, &p1, &p2, &clock)) {
  907. WRN_MSG("calc_pll_params failed\n");
  908. return 1;
  909. }
  910. /* Check for overflow. */
  911. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  912. return 1;
  913. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  914. return 1;
  915. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  916. return 1;
  917. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  918. return 1;
  919. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  920. return 1;
  921. *dpll &= ~DPLL_P1_FORCE_DIV2;
  922. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  923. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  924. if (IS_I9XX(dinfo)) {
  925. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  926. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  927. } else {
  928. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  929. }
  930. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  931. (m1 << FP_M1_DIVISOR_SHIFT) |
  932. (m2 << FP_M2_DIVISOR_SHIFT);
  933. *fp1 = *fp0;
  934. hw->dvob &= ~PORT_ENABLE;
  935. hw->dvoc &= ~PORT_ENABLE;
  936. /* Use display plane A. */
  937. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  938. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  939. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  940. switch (intelfb_var_to_depth(var)) {
  941. case 8:
  942. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  943. break;
  944. case 15:
  945. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  946. break;
  947. case 16:
  948. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  949. break;
  950. case 24:
  951. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  952. break;
  953. }
  954. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  955. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  956. /* Set CRTC registers. */
  957. hactive = var->xres;
  958. hsync_start = hactive + var->right_margin;
  959. hsync_end = hsync_start + var->hsync_len;
  960. htotal = hsync_end + var->left_margin;
  961. hblank_start = hactive;
  962. hblank_end = htotal;
  963. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  964. hactive, hsync_start, hsync_end, htotal, hblank_start,
  965. hblank_end);
  966. vactive = var->yres;
  967. vsync_start = vactive + var->lower_margin;
  968. vsync_end = vsync_start + var->vsync_len;
  969. vtotal = vsync_end + var->upper_margin;
  970. vblank_start = vactive;
  971. vblank_end = vtotal;
  972. vblank_end = vsync_end + 1;
  973. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  974. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  975. vblank_end);
  976. /* Adjust for register values, and check for overflow. */
  977. hactive--;
  978. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  979. return 1;
  980. hsync_start--;
  981. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  982. return 1;
  983. hsync_end--;
  984. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  985. return 1;
  986. htotal--;
  987. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  988. return 1;
  989. hblank_start--;
  990. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  991. return 1;
  992. hblank_end--;
  993. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  994. return 1;
  995. vactive--;
  996. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  997. return 1;
  998. vsync_start--;
  999. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1000. return 1;
  1001. vsync_end--;
  1002. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1003. return 1;
  1004. vtotal--;
  1005. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1006. return 1;
  1007. vblank_start--;
  1008. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1009. return 1;
  1010. vblank_end--;
  1011. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1012. return 1;
  1013. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1014. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1015. (hblank_end << HSYNCEND_SHIFT);
  1016. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1017. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1018. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1019. (vblank_end << VSYNCEND_SHIFT);
  1020. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1021. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1022. (vactive << SRC_SIZE_VERT_SHIFT);
  1023. hw->disp_a_stride = dinfo->pitch;
  1024. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1025. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1026. var->xoffset * var->bits_per_pixel / 8;
  1027. hw->disp_a_base += dinfo->fb.offset << 12;
  1028. /* Check stride alignment. */
  1029. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1030. STRIDE_ALIGNMENT;
  1031. if (hw->disp_a_stride % stride_alignment != 0) {
  1032. WRN_MSG("display stride %d has bad alignment %d\n",
  1033. hw->disp_a_stride, stride_alignment);
  1034. return 1;
  1035. }
  1036. /* Set the palette to 8-bit mode. */
  1037. *pipe_conf &= ~PIPECONF_GAMMA;
  1038. return 0;
  1039. }
  1040. /* Program a (non-VGA) video mode. */
  1041. int
  1042. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1043. const struct intelfb_hwstate *hw, int blank)
  1044. {
  1045. int pipe = PIPE_A;
  1046. u32 tmp;
  1047. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1048. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1049. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1050. u32 hsync_reg, htotal_reg, hblank_reg;
  1051. u32 vsync_reg, vtotal_reg, vblank_reg;
  1052. u32 src_size_reg;
  1053. u32 count, tmp_val[3];
  1054. /* Assume single pipe, display plane A, analog CRT. */
  1055. #if VERBOSE > 0
  1056. DBG_MSG("intelfbhw_program_mode\n");
  1057. #endif
  1058. /* Disable VGA */
  1059. tmp = INREG(VGACNTRL);
  1060. tmp |= VGA_DISABLE;
  1061. OUTREG(VGACNTRL, tmp);
  1062. /* Check whether pipe A or pipe B is enabled. */
  1063. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1064. pipe = PIPE_A;
  1065. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1066. pipe = PIPE_B;
  1067. dinfo->pipe = pipe;
  1068. if (pipe == PIPE_B) {
  1069. dpll = &hw->dpll_b;
  1070. fp0 = &hw->fpb0;
  1071. fp1 = &hw->fpb1;
  1072. pipe_conf = &hw->pipe_b_conf;
  1073. hs = &hw->hsync_b;
  1074. hb = &hw->hblank_b;
  1075. ht = &hw->htotal_b;
  1076. vs = &hw->vsync_b;
  1077. vb = &hw->vblank_b;
  1078. vt = &hw->vtotal_b;
  1079. ss = &hw->src_size_b;
  1080. dpll_reg = DPLL_B;
  1081. fp0_reg = FPB0;
  1082. fp1_reg = FPB1;
  1083. pipe_conf_reg = PIPEBCONF;
  1084. hsync_reg = HSYNC_B;
  1085. htotal_reg = HTOTAL_B;
  1086. hblank_reg = HBLANK_B;
  1087. vsync_reg = VSYNC_B;
  1088. vtotal_reg = VTOTAL_B;
  1089. vblank_reg = VBLANK_B;
  1090. src_size_reg = SRC_SIZE_B;
  1091. } else {
  1092. dpll = &hw->dpll_a;
  1093. fp0 = &hw->fpa0;
  1094. fp1 = &hw->fpa1;
  1095. pipe_conf = &hw->pipe_a_conf;
  1096. hs = &hw->hsync_a;
  1097. hb = &hw->hblank_a;
  1098. ht = &hw->htotal_a;
  1099. vs = &hw->vsync_a;
  1100. vb = &hw->vblank_a;
  1101. vt = &hw->vtotal_a;
  1102. ss = &hw->src_size_a;
  1103. dpll_reg = DPLL_A;
  1104. fp0_reg = FPA0;
  1105. fp1_reg = FPA1;
  1106. pipe_conf_reg = PIPEACONF;
  1107. hsync_reg = HSYNC_A;
  1108. htotal_reg = HTOTAL_A;
  1109. hblank_reg = HBLANK_A;
  1110. vsync_reg = VSYNC_A;
  1111. vtotal_reg = VTOTAL_A;
  1112. vblank_reg = VBLANK_A;
  1113. src_size_reg = SRC_SIZE_A;
  1114. }
  1115. /* turn off pipe */
  1116. tmp = INREG(pipe_conf_reg);
  1117. tmp &= ~PIPECONF_ENABLE;
  1118. OUTREG(pipe_conf_reg, tmp);
  1119. count = 0;
  1120. do {
  1121. tmp_val[count%3] = INREG(0x70000);
  1122. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1123. break;
  1124. count++;
  1125. udelay(1);
  1126. if (count % 200 == 0) {
  1127. tmp = INREG(pipe_conf_reg);
  1128. tmp &= ~PIPECONF_ENABLE;
  1129. OUTREG(pipe_conf_reg, tmp);
  1130. }
  1131. } while(count < 2000);
  1132. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1133. /* Disable planes A and B. */
  1134. tmp = INREG(DSPACNTR);
  1135. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1136. OUTREG(DSPACNTR, tmp);
  1137. tmp = INREG(DSPBCNTR);
  1138. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1139. OUTREG(DSPBCNTR, tmp);
  1140. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1141. mdelay(20);
  1142. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1143. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1144. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1145. /* Disable Sync */
  1146. tmp = INREG(ADPA);
  1147. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1148. tmp |= ADPA_DPMS_D3;
  1149. OUTREG(ADPA, tmp);
  1150. /* do some funky magic - xyzzy */
  1151. OUTREG(0x61204, 0xabcd0000);
  1152. /* turn off PLL */
  1153. tmp = INREG(dpll_reg);
  1154. dpll_reg &= ~DPLL_VCO_ENABLE;
  1155. OUTREG(dpll_reg, tmp);
  1156. /* Set PLL parameters */
  1157. OUTREG(fp0_reg, *fp0);
  1158. OUTREG(fp1_reg, *fp1);
  1159. /* Enable PLL */
  1160. OUTREG(dpll_reg, *dpll);
  1161. /* Set DVOs B/C */
  1162. OUTREG(DVOB, hw->dvob);
  1163. OUTREG(DVOC, hw->dvoc);
  1164. /* undo funky magic */
  1165. OUTREG(0x61204, 0x00000000);
  1166. /* Set ADPA */
  1167. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1168. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1169. /* Set pipe parameters */
  1170. OUTREG(hsync_reg, *hs);
  1171. OUTREG(hblank_reg, *hb);
  1172. OUTREG(htotal_reg, *ht);
  1173. OUTREG(vsync_reg, *vs);
  1174. OUTREG(vblank_reg, *vb);
  1175. OUTREG(vtotal_reg, *vt);
  1176. OUTREG(src_size_reg, *ss);
  1177. /* Enable pipe */
  1178. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1179. /* Enable sync */
  1180. tmp = INREG(ADPA);
  1181. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1182. tmp |= ADPA_DPMS_D0;
  1183. OUTREG(ADPA, tmp);
  1184. /* setup display plane */
  1185. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1186. /*
  1187. * i830M errata: the display plane must be enabled
  1188. * to allow writes to the other bits in the plane
  1189. * control register.
  1190. */
  1191. tmp = INREG(DSPACNTR);
  1192. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1193. tmp |= DISPPLANE_PLANE_ENABLE;
  1194. OUTREG(DSPACNTR, tmp);
  1195. OUTREG(DSPACNTR,
  1196. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1197. mdelay(1);
  1198. }
  1199. }
  1200. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1201. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1202. OUTREG(DSPABASE, hw->disp_a_base);
  1203. /* Enable plane */
  1204. if (!blank) {
  1205. tmp = INREG(DSPACNTR);
  1206. tmp |= DISPPLANE_PLANE_ENABLE;
  1207. OUTREG(DSPACNTR, tmp);
  1208. OUTREG(DSPABASE, hw->disp_a_base);
  1209. }
  1210. return 0;
  1211. }
  1212. /* forward declarations */
  1213. static void refresh_ring(struct intelfb_info *dinfo);
  1214. static void reset_state(struct intelfb_info *dinfo);
  1215. static void do_flush(struct intelfb_info *dinfo);
  1216. static int
  1217. wait_ring(struct intelfb_info *dinfo, int n)
  1218. {
  1219. int i = 0;
  1220. unsigned long end;
  1221. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1222. #if VERBOSE > 0
  1223. DBG_MSG("wait_ring: %d\n", n);
  1224. #endif
  1225. end = jiffies + (HZ * 3);
  1226. while (dinfo->ring_space < n) {
  1227. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1228. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1229. dinfo->ring_space = dinfo->ring_head
  1230. - (dinfo->ring_tail + RING_MIN_FREE);
  1231. else
  1232. dinfo->ring_space = (dinfo->ring.size +
  1233. dinfo->ring_head)
  1234. - (dinfo->ring_tail + RING_MIN_FREE);
  1235. if (dinfo->ring_head != last_head) {
  1236. end = jiffies + (HZ * 3);
  1237. last_head = dinfo->ring_head;
  1238. }
  1239. i++;
  1240. if (time_before(end, jiffies)) {
  1241. if (!i) {
  1242. /* Try again */
  1243. reset_state(dinfo);
  1244. refresh_ring(dinfo);
  1245. do_flush(dinfo);
  1246. end = jiffies + (HZ * 3);
  1247. i = 1;
  1248. } else {
  1249. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1250. dinfo->ring_space, n);
  1251. WRN_MSG("lockup - turning off hardware "
  1252. "acceleration\n");
  1253. dinfo->ring_lockup = 1;
  1254. break;
  1255. }
  1256. }
  1257. udelay(1);
  1258. }
  1259. return i;
  1260. }
  1261. static void
  1262. do_flush(struct intelfb_info *dinfo) {
  1263. START_RING(2);
  1264. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1265. OUT_RING(MI_NOOP);
  1266. ADVANCE_RING();
  1267. }
  1268. void
  1269. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1270. {
  1271. #if VERBOSE > 0
  1272. DBG_MSG("intelfbhw_do_sync\n");
  1273. #endif
  1274. if (!dinfo->accel)
  1275. return;
  1276. /*
  1277. * Send a flush, then wait until the ring is empty. This is what
  1278. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1279. * than the recommended method (both have problems).
  1280. */
  1281. do_flush(dinfo);
  1282. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1283. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1284. }
  1285. static void
  1286. refresh_ring(struct intelfb_info *dinfo)
  1287. {
  1288. #if VERBOSE > 0
  1289. DBG_MSG("refresh_ring\n");
  1290. #endif
  1291. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1292. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1293. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1294. dinfo->ring_space = dinfo->ring_head
  1295. - (dinfo->ring_tail + RING_MIN_FREE);
  1296. else
  1297. dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
  1298. - (dinfo->ring_tail + RING_MIN_FREE);
  1299. }
  1300. static void
  1301. reset_state(struct intelfb_info *dinfo)
  1302. {
  1303. int i;
  1304. u32 tmp;
  1305. #if VERBOSE > 0
  1306. DBG_MSG("reset_state\n");
  1307. #endif
  1308. for (i = 0; i < FENCE_NUM; i++)
  1309. OUTREG(FENCE + (i << 2), 0);
  1310. /* Flush the ring buffer if it's enabled. */
  1311. tmp = INREG(PRI_RING_LENGTH);
  1312. if (tmp & RING_ENABLE) {
  1313. #if VERBOSE > 0
  1314. DBG_MSG("reset_state: ring was enabled\n");
  1315. #endif
  1316. refresh_ring(dinfo);
  1317. intelfbhw_do_sync(dinfo);
  1318. DO_RING_IDLE();
  1319. }
  1320. OUTREG(PRI_RING_LENGTH, 0);
  1321. OUTREG(PRI_RING_HEAD, 0);
  1322. OUTREG(PRI_RING_TAIL, 0);
  1323. OUTREG(PRI_RING_START, 0);
  1324. }
  1325. /* Stop the 2D engine, and turn off the ring buffer. */
  1326. void
  1327. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1328. {
  1329. #if VERBOSE > 0
  1330. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1331. dinfo->ring_active);
  1332. #endif
  1333. if (!dinfo->accel)
  1334. return;
  1335. dinfo->ring_active = 0;
  1336. reset_state(dinfo);
  1337. }
  1338. /*
  1339. * Enable the ring buffer, and initialise the 2D engine.
  1340. * It is assumed that the graphics engine has been stopped by previously
  1341. * calling intelfb_2d_stop().
  1342. */
  1343. void
  1344. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1345. {
  1346. #if VERBOSE > 0
  1347. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1348. dinfo->accel, dinfo->ring_active);
  1349. #endif
  1350. if (!dinfo->accel)
  1351. return;
  1352. /* Initialise the primary ring buffer. */
  1353. OUTREG(PRI_RING_LENGTH, 0);
  1354. OUTREG(PRI_RING_TAIL, 0);
  1355. OUTREG(PRI_RING_HEAD, 0);
  1356. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1357. OUTREG(PRI_RING_LENGTH,
  1358. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1359. RING_NO_REPORT | RING_ENABLE);
  1360. refresh_ring(dinfo);
  1361. dinfo->ring_active = 1;
  1362. }
  1363. /* 2D fillrect (solid fill or invert) */
  1364. void
  1365. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1366. u32 color, u32 pitch, u32 bpp, u32 rop)
  1367. {
  1368. u32 br00, br09, br13, br14, br16;
  1369. #if VERBOSE > 0
  1370. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1371. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1372. #endif
  1373. br00 = COLOR_BLT_CMD;
  1374. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1375. br13 = (rop << ROP_SHIFT) | pitch;
  1376. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1377. br16 = color;
  1378. switch (bpp) {
  1379. case 8:
  1380. br13 |= COLOR_DEPTH_8;
  1381. break;
  1382. case 16:
  1383. br13 |= COLOR_DEPTH_16;
  1384. break;
  1385. case 32:
  1386. br13 |= COLOR_DEPTH_32;
  1387. br00 |= WRITE_ALPHA | WRITE_RGB;
  1388. break;
  1389. }
  1390. START_RING(6);
  1391. OUT_RING(br00);
  1392. OUT_RING(br13);
  1393. OUT_RING(br14);
  1394. OUT_RING(br09);
  1395. OUT_RING(br16);
  1396. OUT_RING(MI_NOOP);
  1397. ADVANCE_RING();
  1398. #if VERBOSE > 0
  1399. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1400. dinfo->ring_tail, dinfo->ring_space);
  1401. #endif
  1402. }
  1403. void
  1404. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1405. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1406. {
  1407. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1408. #if VERBOSE > 0
  1409. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1410. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1411. #endif
  1412. br00 = XY_SRC_COPY_BLT_CMD;
  1413. br09 = dinfo->fb_start;
  1414. br11 = (pitch << PITCH_SHIFT);
  1415. br12 = dinfo->fb_start;
  1416. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1417. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1418. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1419. ((dsty + h) << HEIGHT_SHIFT);
  1420. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1421. switch (bpp) {
  1422. case 8:
  1423. br13 |= COLOR_DEPTH_8;
  1424. break;
  1425. case 16:
  1426. br13 |= COLOR_DEPTH_16;
  1427. break;
  1428. case 32:
  1429. br13 |= COLOR_DEPTH_32;
  1430. br00 |= WRITE_ALPHA | WRITE_RGB;
  1431. break;
  1432. }
  1433. START_RING(8);
  1434. OUT_RING(br00);
  1435. OUT_RING(br13);
  1436. OUT_RING(br22);
  1437. OUT_RING(br23);
  1438. OUT_RING(br09);
  1439. OUT_RING(br26);
  1440. OUT_RING(br11);
  1441. OUT_RING(br12);
  1442. ADVANCE_RING();
  1443. }
  1444. int
  1445. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1446. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1447. {
  1448. int nbytes, ndwords, pad, tmp;
  1449. u32 br00, br09, br13, br18, br19, br22, br23;
  1450. int dat, ix, iy, iw;
  1451. int i, j;
  1452. #if VERBOSE > 0
  1453. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1454. #endif
  1455. /* size in bytes of a padded scanline */
  1456. nbytes = ROUND_UP_TO(w, 16) / 8;
  1457. /* Total bytes of padded scanline data to write out. */
  1458. nbytes = nbytes * h;
  1459. /*
  1460. * Check if the glyph data exceeds the immediate mode limit.
  1461. * It would take a large font (1K pixels) to hit this limit.
  1462. */
  1463. if (nbytes > MAX_MONO_IMM_SIZE)
  1464. return 0;
  1465. /* Src data is packaged a dword (32-bit) at a time. */
  1466. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1467. /*
  1468. * Ring has to be padded to a quad word. But because the command starts
  1469. with 7 bytes, pad only if there is an even number of ndwords
  1470. */
  1471. pad = !(ndwords % 2);
  1472. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1473. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1474. br09 = dinfo->fb_start;
  1475. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1476. br18 = bg;
  1477. br19 = fg;
  1478. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1479. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1480. switch (bpp) {
  1481. case 8:
  1482. br13 |= COLOR_DEPTH_8;
  1483. break;
  1484. case 16:
  1485. br13 |= COLOR_DEPTH_16;
  1486. break;
  1487. case 32:
  1488. br13 |= COLOR_DEPTH_32;
  1489. br00 |= WRITE_ALPHA | WRITE_RGB;
  1490. break;
  1491. }
  1492. START_RING(8 + ndwords);
  1493. OUT_RING(br00);
  1494. OUT_RING(br13);
  1495. OUT_RING(br22);
  1496. OUT_RING(br23);
  1497. OUT_RING(br09);
  1498. OUT_RING(br18);
  1499. OUT_RING(br19);
  1500. ix = iy = 0;
  1501. iw = ROUND_UP_TO(w, 8) / 8;
  1502. while (ndwords--) {
  1503. dat = 0;
  1504. for (j = 0; j < 2; ++j) {
  1505. for (i = 0; i < 2; ++i) {
  1506. if (ix != iw || i == 0)
  1507. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1508. }
  1509. if (ix == iw && iy != (h-1)) {
  1510. ix = 0;
  1511. ++iy;
  1512. }
  1513. }
  1514. OUT_RING(dat);
  1515. }
  1516. if (pad)
  1517. OUT_RING(MI_NOOP);
  1518. ADVANCE_RING();
  1519. return 1;
  1520. }
  1521. /* HW cursor functions. */
  1522. void
  1523. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1524. {
  1525. u32 tmp;
  1526. #if VERBOSE > 0
  1527. DBG_MSG("intelfbhw_cursor_init\n");
  1528. #endif
  1529. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1530. if (!dinfo->cursor.physical)
  1531. return;
  1532. tmp = INREG(CURSOR_A_CONTROL);
  1533. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1534. CURSOR_MEM_TYPE_LOCAL |
  1535. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1536. tmp |= CURSOR_MODE_DISABLE;
  1537. OUTREG(CURSOR_A_CONTROL, tmp);
  1538. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1539. } else {
  1540. tmp = INREG(CURSOR_CONTROL);
  1541. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1542. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1543. tmp = CURSOR_FORMAT_3C;
  1544. OUTREG(CURSOR_CONTROL, tmp);
  1545. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1546. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1547. (64 << CURSOR_SIZE_V_SHIFT);
  1548. OUTREG(CURSOR_SIZE, tmp);
  1549. }
  1550. }
  1551. void
  1552. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1553. {
  1554. u32 tmp;
  1555. #if VERBOSE > 0
  1556. DBG_MSG("intelfbhw_cursor_hide\n");
  1557. #endif
  1558. dinfo->cursor_on = 0;
  1559. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1560. if (!dinfo->cursor.physical)
  1561. return;
  1562. tmp = INREG(CURSOR_A_CONTROL);
  1563. tmp &= ~CURSOR_MODE_MASK;
  1564. tmp |= CURSOR_MODE_DISABLE;
  1565. OUTREG(CURSOR_A_CONTROL, tmp);
  1566. /* Flush changes */
  1567. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1568. } else {
  1569. tmp = INREG(CURSOR_CONTROL);
  1570. tmp &= ~CURSOR_ENABLE;
  1571. OUTREG(CURSOR_CONTROL, tmp);
  1572. }
  1573. }
  1574. void
  1575. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1576. {
  1577. u32 tmp;
  1578. #if VERBOSE > 0
  1579. DBG_MSG("intelfbhw_cursor_show\n");
  1580. #endif
  1581. dinfo->cursor_on = 1;
  1582. if (dinfo->cursor_blanked)
  1583. return;
  1584. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1585. if (!dinfo->cursor.physical)
  1586. return;
  1587. tmp = INREG(CURSOR_A_CONTROL);
  1588. tmp &= ~CURSOR_MODE_MASK;
  1589. tmp |= CURSOR_MODE_64_4C_AX;
  1590. OUTREG(CURSOR_A_CONTROL, tmp);
  1591. /* Flush changes */
  1592. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1593. } else {
  1594. tmp = INREG(CURSOR_CONTROL);
  1595. tmp |= CURSOR_ENABLE;
  1596. OUTREG(CURSOR_CONTROL, tmp);
  1597. }
  1598. }
  1599. void
  1600. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1601. {
  1602. u32 tmp;
  1603. #if VERBOSE > 0
  1604. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1605. #endif
  1606. /*
  1607. * Sets the position. The coordinates are assumed to already
  1608. * have any offset adjusted. Assume that the cursor is never
  1609. * completely off-screen, and that x, y are always >= 0.
  1610. */
  1611. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1612. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1613. OUTREG(CURSOR_A_POSITION, tmp);
  1614. if (IS_I9XX(dinfo)) {
  1615. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1616. }
  1617. }
  1618. void
  1619. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1620. {
  1621. #if VERBOSE > 0
  1622. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1623. #endif
  1624. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1625. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1626. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1627. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1628. }
  1629. void
  1630. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1631. u8 *data)
  1632. {
  1633. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1634. int i, j, w = width / 8;
  1635. int mod = width % 8, t_mask, d_mask;
  1636. #if VERBOSE > 0
  1637. DBG_MSG("intelfbhw_cursor_load\n");
  1638. #endif
  1639. if (!dinfo->cursor.virtual)
  1640. return;
  1641. t_mask = 0xff >> mod;
  1642. d_mask = ~(0xff >> mod);
  1643. for (i = height; i--; ) {
  1644. for (j = 0; j < w; j++) {
  1645. writeb(0x00, addr + j);
  1646. writeb(*(data++), addr + j+8);
  1647. }
  1648. if (mod) {
  1649. writeb(t_mask, addr + j);
  1650. writeb(*(data++) & d_mask, addr + j+8);
  1651. }
  1652. addr += 16;
  1653. }
  1654. }
  1655. void
  1656. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1657. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1658. int i, j;
  1659. #if VERBOSE > 0
  1660. DBG_MSG("intelfbhw_cursor_reset\n");
  1661. #endif
  1662. if (!dinfo->cursor.virtual)
  1663. return;
  1664. for (i = 64; i--; ) {
  1665. for (j = 0; j < 8; j++) {
  1666. writeb(0xff, addr + j+0);
  1667. writeb(0x00, addr + j+8);
  1668. }
  1669. addr += 16;
  1670. }
  1671. }