s2io.c 214 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2005 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2 and 3.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. ************************************************************************/
  45. #include <linux/module.h>
  46. #include <linux/types.h>
  47. #include <linux/errno.h>
  48. #include <linux/ioport.h>
  49. #include <linux/pci.h>
  50. #include <linux/dma-mapping.h>
  51. #include <linux/kernel.h>
  52. #include <linux/netdevice.h>
  53. #include <linux/etherdevice.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/init.h>
  56. #include <linux/delay.h>
  57. #include <linux/stddef.h>
  58. #include <linux/ioctl.h>
  59. #include <linux/timex.h>
  60. #include <linux/sched.h>
  61. #include <linux/ethtool.h>
  62. #include <linux/workqueue.h>
  63. #include <linux/if_vlan.h>
  64. #include <linux/ip.h>
  65. #include <linux/tcp.h>
  66. #include <net/tcp.h>
  67. #include <asm/system.h>
  68. #include <asm/uaccess.h>
  69. #include <asm/io.h>
  70. #include <asm/div64.h>
  71. /* local include */
  72. #include "s2io.h"
  73. #include "s2io-regs.h"
  74. #define DRV_VERSION "2.0.14.2"
  75. /* S2io Driver name & version. */
  76. static char s2io_driver_name[] = "Neterion";
  77. static char s2io_driver_version[] = DRV_VERSION;
  78. static int rxd_size[4] = {32,48,48,64};
  79. static int rxd_count[4] = {127,85,85,63};
  80. static inline int RXD_IS_UP2DT(RxD_t *rxdp)
  81. {
  82. int ret;
  83. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  84. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  85. return ret;
  86. }
  87. /*
  88. * Cards with following subsystem_id have a link state indication
  89. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  90. * macro below identifies these cards given the subsystem_id.
  91. */
  92. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  93. (dev_type == XFRAME_I_DEVICE) ? \
  94. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  95. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  96. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  97. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  98. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  99. #define PANIC 1
  100. #define LOW 2
  101. static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
  102. {
  103. mac_info_t *mac_control;
  104. mac_control = &sp->mac_control;
  105. if (rxb_size <= rxd_count[sp->rxd_mode])
  106. return PANIC;
  107. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  108. return LOW;
  109. return 0;
  110. }
  111. /* Ethtool related variables and Macros. */
  112. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  113. "Register test\t(offline)",
  114. "Eeprom test\t(offline)",
  115. "Link test\t(online)",
  116. "RLDRAM test\t(offline)",
  117. "BIST Test\t(offline)"
  118. };
  119. static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
  120. {"tmac_frms"},
  121. {"tmac_data_octets"},
  122. {"tmac_drop_frms"},
  123. {"tmac_mcst_frms"},
  124. {"tmac_bcst_frms"},
  125. {"tmac_pause_ctrl_frms"},
  126. {"tmac_ttl_octets"},
  127. {"tmac_ucst_frms"},
  128. {"tmac_nucst_frms"},
  129. {"tmac_any_err_frms"},
  130. {"tmac_ttl_less_fb_octets"},
  131. {"tmac_vld_ip_octets"},
  132. {"tmac_vld_ip"},
  133. {"tmac_drop_ip"},
  134. {"tmac_icmp"},
  135. {"tmac_rst_tcp"},
  136. {"tmac_tcp"},
  137. {"tmac_udp"},
  138. {"rmac_vld_frms"},
  139. {"rmac_data_octets"},
  140. {"rmac_fcs_err_frms"},
  141. {"rmac_drop_frms"},
  142. {"rmac_vld_mcst_frms"},
  143. {"rmac_vld_bcst_frms"},
  144. {"rmac_in_rng_len_err_frms"},
  145. {"rmac_out_rng_len_err_frms"},
  146. {"rmac_long_frms"},
  147. {"rmac_pause_ctrl_frms"},
  148. {"rmac_unsup_ctrl_frms"},
  149. {"rmac_ttl_octets"},
  150. {"rmac_accepted_ucst_frms"},
  151. {"rmac_accepted_nucst_frms"},
  152. {"rmac_discarded_frms"},
  153. {"rmac_drop_events"},
  154. {"rmac_ttl_less_fb_octets"},
  155. {"rmac_ttl_frms"},
  156. {"rmac_usized_frms"},
  157. {"rmac_osized_frms"},
  158. {"rmac_frag_frms"},
  159. {"rmac_jabber_frms"},
  160. {"rmac_ttl_64_frms"},
  161. {"rmac_ttl_65_127_frms"},
  162. {"rmac_ttl_128_255_frms"},
  163. {"rmac_ttl_256_511_frms"},
  164. {"rmac_ttl_512_1023_frms"},
  165. {"rmac_ttl_1024_1518_frms"},
  166. {"rmac_ip"},
  167. {"rmac_ip_octets"},
  168. {"rmac_hdr_err_ip"},
  169. {"rmac_drop_ip"},
  170. {"rmac_icmp"},
  171. {"rmac_tcp"},
  172. {"rmac_udp"},
  173. {"rmac_err_drp_udp"},
  174. {"rmac_xgmii_err_sym"},
  175. {"rmac_frms_q0"},
  176. {"rmac_frms_q1"},
  177. {"rmac_frms_q2"},
  178. {"rmac_frms_q3"},
  179. {"rmac_frms_q4"},
  180. {"rmac_frms_q5"},
  181. {"rmac_frms_q6"},
  182. {"rmac_frms_q7"},
  183. {"rmac_full_q0"},
  184. {"rmac_full_q1"},
  185. {"rmac_full_q2"},
  186. {"rmac_full_q3"},
  187. {"rmac_full_q4"},
  188. {"rmac_full_q5"},
  189. {"rmac_full_q6"},
  190. {"rmac_full_q7"},
  191. {"rmac_pause_cnt"},
  192. {"rmac_xgmii_data_err_cnt"},
  193. {"rmac_xgmii_ctrl_err_cnt"},
  194. {"rmac_accepted_ip"},
  195. {"rmac_err_tcp"},
  196. {"rd_req_cnt"},
  197. {"new_rd_req_cnt"},
  198. {"new_rd_req_rtry_cnt"},
  199. {"rd_rtry_cnt"},
  200. {"wr_rtry_rd_ack_cnt"},
  201. {"wr_req_cnt"},
  202. {"new_wr_req_cnt"},
  203. {"new_wr_req_rtry_cnt"},
  204. {"wr_rtry_cnt"},
  205. {"wr_disc_cnt"},
  206. {"rd_rtry_wr_ack_cnt"},
  207. {"txp_wr_cnt"},
  208. {"txd_rd_cnt"},
  209. {"txd_wr_cnt"},
  210. {"rxd_rd_cnt"},
  211. {"rxd_wr_cnt"},
  212. {"txf_rd_cnt"},
  213. {"rxf_wr_cnt"},
  214. {"rmac_ttl_1519_4095_frms"},
  215. {"rmac_ttl_4096_8191_frms"},
  216. {"rmac_ttl_8192_max_frms"},
  217. {"rmac_ttl_gt_max_frms"},
  218. {"rmac_osized_alt_frms"},
  219. {"rmac_jabber_alt_frms"},
  220. {"rmac_gt_max_alt_frms"},
  221. {"rmac_vlan_frms"},
  222. {"rmac_len_discard"},
  223. {"rmac_fcs_discard"},
  224. {"rmac_pf_discard"},
  225. {"rmac_da_discard"},
  226. {"rmac_red_discard"},
  227. {"rmac_rts_discard"},
  228. {"rmac_ingm_full_discard"},
  229. {"link_fault_cnt"},
  230. {"\n DRIVER STATISTICS"},
  231. {"single_bit_ecc_errs"},
  232. {"double_bit_ecc_errs"},
  233. {"parity_err_cnt"},
  234. {"serious_err_cnt"},
  235. {"soft_reset_cnt"},
  236. {"fifo_full_cnt"},
  237. {"ring_full_cnt"},
  238. ("alarm_transceiver_temp_high"),
  239. ("alarm_transceiver_temp_low"),
  240. ("alarm_laser_bias_current_high"),
  241. ("alarm_laser_bias_current_low"),
  242. ("alarm_laser_output_power_high"),
  243. ("alarm_laser_output_power_low"),
  244. ("warn_transceiver_temp_high"),
  245. ("warn_transceiver_temp_low"),
  246. ("warn_laser_bias_current_high"),
  247. ("warn_laser_bias_current_low"),
  248. ("warn_laser_output_power_high"),
  249. ("warn_laser_output_power_low"),
  250. ("lro_aggregated_pkts"),
  251. ("lro_flush_both_count"),
  252. ("lro_out_of_sequence_pkts"),
  253. ("lro_flush_due_to_max_pkts"),
  254. ("lro_avg_aggr_pkts"),
  255. };
  256. #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
  257. #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
  258. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  259. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  260. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  261. init_timer(&timer); \
  262. timer.function = handle; \
  263. timer.data = (unsigned long) arg; \
  264. mod_timer(&timer, (jiffies + exp)) \
  265. /* Add the vlan */
  266. static void s2io_vlan_rx_register(struct net_device *dev,
  267. struct vlan_group *grp)
  268. {
  269. nic_t *nic = dev->priv;
  270. unsigned long flags;
  271. spin_lock_irqsave(&nic->tx_lock, flags);
  272. nic->vlgrp = grp;
  273. spin_unlock_irqrestore(&nic->tx_lock, flags);
  274. }
  275. /* Unregister the vlan */
  276. static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
  277. {
  278. nic_t *nic = dev->priv;
  279. unsigned long flags;
  280. spin_lock_irqsave(&nic->tx_lock, flags);
  281. if (nic->vlgrp)
  282. nic->vlgrp->vlan_devices[vid] = NULL;
  283. spin_unlock_irqrestore(&nic->tx_lock, flags);
  284. }
  285. /*
  286. * Constants to be programmed into the Xena's registers, to configure
  287. * the XAUI.
  288. */
  289. #define END_SIGN 0x0
  290. static const u64 herc_act_dtx_cfg[] = {
  291. /* Set address */
  292. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  293. /* Write data */
  294. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  295. /* Set address */
  296. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  297. /* Write data */
  298. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  299. /* Set address */
  300. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  301. /* Write data */
  302. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  303. /* Set address */
  304. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  305. /* Write data */
  306. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  307. /* Done */
  308. END_SIGN
  309. };
  310. static const u64 xena_dtx_cfg[] = {
  311. /* Set address */
  312. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  313. /* Write data */
  314. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  315. /* Set address */
  316. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  317. /* Write data */
  318. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  319. /* Set address */
  320. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  321. /* Write data */
  322. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  323. END_SIGN
  324. };
  325. /*
  326. * Constants for Fixing the MacAddress problem seen mostly on
  327. * Alpha machines.
  328. */
  329. static const u64 fix_mac[] = {
  330. 0x0060000000000000ULL, 0x0060600000000000ULL,
  331. 0x0040600000000000ULL, 0x0000600000000000ULL,
  332. 0x0020600000000000ULL, 0x0060600000000000ULL,
  333. 0x0020600000000000ULL, 0x0060600000000000ULL,
  334. 0x0020600000000000ULL, 0x0060600000000000ULL,
  335. 0x0020600000000000ULL, 0x0060600000000000ULL,
  336. 0x0020600000000000ULL, 0x0060600000000000ULL,
  337. 0x0020600000000000ULL, 0x0060600000000000ULL,
  338. 0x0020600000000000ULL, 0x0060600000000000ULL,
  339. 0x0020600000000000ULL, 0x0060600000000000ULL,
  340. 0x0020600000000000ULL, 0x0060600000000000ULL,
  341. 0x0020600000000000ULL, 0x0060600000000000ULL,
  342. 0x0020600000000000ULL, 0x0000600000000000ULL,
  343. 0x0040600000000000ULL, 0x0060600000000000ULL,
  344. END_SIGN
  345. };
  346. /* Module Loadable parameters. */
  347. static unsigned int tx_fifo_num = 1;
  348. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  349. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  350. static unsigned int rx_ring_num = 1;
  351. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  352. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  353. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  354. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  355. static unsigned int rx_ring_mode = 1;
  356. static unsigned int use_continuous_tx_intrs = 1;
  357. static unsigned int rmac_pause_time = 0x100;
  358. static unsigned int mc_pause_threshold_q0q3 = 187;
  359. static unsigned int mc_pause_threshold_q4q7 = 187;
  360. static unsigned int shared_splits;
  361. static unsigned int tmac_util_period = 5;
  362. static unsigned int rmac_util_period = 5;
  363. static unsigned int bimodal = 0;
  364. static unsigned int l3l4hdr_size = 128;
  365. #ifndef CONFIG_S2IO_NAPI
  366. static unsigned int indicate_max_pkts;
  367. #endif
  368. /* Frequency of Rx desc syncs expressed as power of 2 */
  369. static unsigned int rxsync_frequency = 3;
  370. /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
  371. static unsigned int intr_type = 0;
  372. /* Large receive offload feature */
  373. static unsigned int lro = 0;
  374. /* Max pkts to be aggregated by LRO at one time. If not specified,
  375. * aggregation happens until we hit max IP pkt size(64K)
  376. */
  377. static unsigned int lro_max_pkts = 0xFFFF;
  378. /*
  379. * S2IO device table.
  380. * This table lists all the devices that this driver supports.
  381. */
  382. static struct pci_device_id s2io_tbl[] __devinitdata = {
  383. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  384. PCI_ANY_ID, PCI_ANY_ID},
  385. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  386. PCI_ANY_ID, PCI_ANY_ID},
  387. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  388. PCI_ANY_ID, PCI_ANY_ID},
  389. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  390. PCI_ANY_ID, PCI_ANY_ID},
  391. {0,}
  392. };
  393. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  394. static struct pci_driver s2io_driver = {
  395. .name = "S2IO",
  396. .id_table = s2io_tbl,
  397. .probe = s2io_init_nic,
  398. .remove = __devexit_p(s2io_rem_nic),
  399. };
  400. /* A simplifier macro used both by init and free shared_mem Fns(). */
  401. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  402. /**
  403. * init_shared_mem - Allocation and Initialization of Memory
  404. * @nic: Device private variable.
  405. * Description: The function allocates all the memory areas shared
  406. * between the NIC and the driver. This includes Tx descriptors,
  407. * Rx descriptors and the statistics block.
  408. */
  409. static int init_shared_mem(struct s2io_nic *nic)
  410. {
  411. u32 size;
  412. void *tmp_v_addr, *tmp_v_addr_next;
  413. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  414. RxD_block_t *pre_rxd_blk = NULL;
  415. int i, j, blk_cnt, rx_sz, tx_sz;
  416. int lst_size, lst_per_page;
  417. struct net_device *dev = nic->dev;
  418. unsigned long tmp;
  419. buffAdd_t *ba;
  420. mac_info_t *mac_control;
  421. struct config_param *config;
  422. mac_control = &nic->mac_control;
  423. config = &nic->config;
  424. /* Allocation and initialization of TXDLs in FIOFs */
  425. size = 0;
  426. for (i = 0; i < config->tx_fifo_num; i++) {
  427. size += config->tx_cfg[i].fifo_len;
  428. }
  429. if (size > MAX_AVAILABLE_TXDS) {
  430. DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
  431. __FUNCTION__);
  432. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  433. return FAILURE;
  434. }
  435. lst_size = (sizeof(TxD_t) * config->max_txds);
  436. tx_sz = lst_size * size;
  437. lst_per_page = PAGE_SIZE / lst_size;
  438. for (i = 0; i < config->tx_fifo_num; i++) {
  439. int fifo_len = config->tx_cfg[i].fifo_len;
  440. int list_holder_size = fifo_len * sizeof(list_info_hold_t);
  441. mac_control->fifos[i].list_info = kmalloc(list_holder_size,
  442. GFP_KERNEL);
  443. if (!mac_control->fifos[i].list_info) {
  444. DBG_PRINT(ERR_DBG,
  445. "Malloc failed for list_info\n");
  446. return -ENOMEM;
  447. }
  448. memset(mac_control->fifos[i].list_info, 0, list_holder_size);
  449. }
  450. for (i = 0; i < config->tx_fifo_num; i++) {
  451. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  452. lst_per_page);
  453. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  454. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  455. config->tx_cfg[i].fifo_len - 1;
  456. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  457. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  458. config->tx_cfg[i].fifo_len - 1;
  459. mac_control->fifos[i].fifo_no = i;
  460. mac_control->fifos[i].nic = nic;
  461. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  462. for (j = 0; j < page_num; j++) {
  463. int k = 0;
  464. dma_addr_t tmp_p;
  465. void *tmp_v;
  466. tmp_v = pci_alloc_consistent(nic->pdev,
  467. PAGE_SIZE, &tmp_p);
  468. if (!tmp_v) {
  469. DBG_PRINT(ERR_DBG,
  470. "pci_alloc_consistent ");
  471. DBG_PRINT(ERR_DBG, "failed for TxDL\n");
  472. return -ENOMEM;
  473. }
  474. /* If we got a zero DMA address(can happen on
  475. * certain platforms like PPC), reallocate.
  476. * Store virtual address of page we don't want,
  477. * to be freed later.
  478. */
  479. if (!tmp_p) {
  480. mac_control->zerodma_virt_addr = tmp_v;
  481. DBG_PRINT(INIT_DBG,
  482. "%s: Zero DMA address for TxDL. ", dev->name);
  483. DBG_PRINT(INIT_DBG,
  484. "Virtual address %p\n", tmp_v);
  485. tmp_v = pci_alloc_consistent(nic->pdev,
  486. PAGE_SIZE, &tmp_p);
  487. if (!tmp_v) {
  488. DBG_PRINT(ERR_DBG,
  489. "pci_alloc_consistent ");
  490. DBG_PRINT(ERR_DBG, "failed for TxDL\n");
  491. return -ENOMEM;
  492. }
  493. }
  494. while (k < lst_per_page) {
  495. int l = (j * lst_per_page) + k;
  496. if (l == config->tx_cfg[i].fifo_len)
  497. break;
  498. mac_control->fifos[i].list_info[l].list_virt_addr =
  499. tmp_v + (k * lst_size);
  500. mac_control->fifos[i].list_info[l].list_phy_addr =
  501. tmp_p + (k * lst_size);
  502. k++;
  503. }
  504. }
  505. }
  506. nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
  507. if (!nic->ufo_in_band_v)
  508. return -ENOMEM;
  509. /* Allocation and initialization of RXDs in Rings */
  510. size = 0;
  511. for (i = 0; i < config->rx_ring_num; i++) {
  512. if (config->rx_cfg[i].num_rxd %
  513. (rxd_count[nic->rxd_mode] + 1)) {
  514. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  515. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  516. i);
  517. DBG_PRINT(ERR_DBG, "RxDs per Block");
  518. return FAILURE;
  519. }
  520. size += config->rx_cfg[i].num_rxd;
  521. mac_control->rings[i].block_count =
  522. config->rx_cfg[i].num_rxd /
  523. (rxd_count[nic->rxd_mode] + 1 );
  524. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  525. mac_control->rings[i].block_count;
  526. }
  527. if (nic->rxd_mode == RXD_MODE_1)
  528. size = (size * (sizeof(RxD1_t)));
  529. else
  530. size = (size * (sizeof(RxD3_t)));
  531. rx_sz = size;
  532. for (i = 0; i < config->rx_ring_num; i++) {
  533. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  534. mac_control->rings[i].rx_curr_get_info.offset = 0;
  535. mac_control->rings[i].rx_curr_get_info.ring_len =
  536. config->rx_cfg[i].num_rxd - 1;
  537. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  538. mac_control->rings[i].rx_curr_put_info.offset = 0;
  539. mac_control->rings[i].rx_curr_put_info.ring_len =
  540. config->rx_cfg[i].num_rxd - 1;
  541. mac_control->rings[i].nic = nic;
  542. mac_control->rings[i].ring_no = i;
  543. blk_cnt = config->rx_cfg[i].num_rxd /
  544. (rxd_count[nic->rxd_mode] + 1);
  545. /* Allocating all the Rx blocks */
  546. for (j = 0; j < blk_cnt; j++) {
  547. rx_block_info_t *rx_blocks;
  548. int l;
  549. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  550. size = SIZE_OF_BLOCK; //size is always page size
  551. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  552. &tmp_p_addr);
  553. if (tmp_v_addr == NULL) {
  554. /*
  555. * In case of failure, free_shared_mem()
  556. * is called, which should free any
  557. * memory that was alloced till the
  558. * failure happened.
  559. */
  560. rx_blocks->block_virt_addr = tmp_v_addr;
  561. return -ENOMEM;
  562. }
  563. memset(tmp_v_addr, 0, size);
  564. rx_blocks->block_virt_addr = tmp_v_addr;
  565. rx_blocks->block_dma_addr = tmp_p_addr;
  566. rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
  567. rxd_count[nic->rxd_mode],
  568. GFP_KERNEL);
  569. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  570. rx_blocks->rxds[l].virt_addr =
  571. rx_blocks->block_virt_addr +
  572. (rxd_size[nic->rxd_mode] * l);
  573. rx_blocks->rxds[l].dma_addr =
  574. rx_blocks->block_dma_addr +
  575. (rxd_size[nic->rxd_mode] * l);
  576. }
  577. }
  578. /* Interlinking all Rx Blocks */
  579. for (j = 0; j < blk_cnt; j++) {
  580. tmp_v_addr =
  581. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  582. tmp_v_addr_next =
  583. mac_control->rings[i].rx_blocks[(j + 1) %
  584. blk_cnt].block_virt_addr;
  585. tmp_p_addr =
  586. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  587. tmp_p_addr_next =
  588. mac_control->rings[i].rx_blocks[(j + 1) %
  589. blk_cnt].block_dma_addr;
  590. pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
  591. pre_rxd_blk->reserved_2_pNext_RxD_block =
  592. (unsigned long) tmp_v_addr_next;
  593. pre_rxd_blk->pNext_RxD_Blk_physical =
  594. (u64) tmp_p_addr_next;
  595. }
  596. }
  597. if (nic->rxd_mode >= RXD_MODE_3A) {
  598. /*
  599. * Allocation of Storages for buffer addresses in 2BUFF mode
  600. * and the buffers as well.
  601. */
  602. for (i = 0; i < config->rx_ring_num; i++) {
  603. blk_cnt = config->rx_cfg[i].num_rxd /
  604. (rxd_count[nic->rxd_mode]+ 1);
  605. mac_control->rings[i].ba =
  606. kmalloc((sizeof(buffAdd_t *) * blk_cnt),
  607. GFP_KERNEL);
  608. if (!mac_control->rings[i].ba)
  609. return -ENOMEM;
  610. for (j = 0; j < blk_cnt; j++) {
  611. int k = 0;
  612. mac_control->rings[i].ba[j] =
  613. kmalloc((sizeof(buffAdd_t) *
  614. (rxd_count[nic->rxd_mode] + 1)),
  615. GFP_KERNEL);
  616. if (!mac_control->rings[i].ba[j])
  617. return -ENOMEM;
  618. while (k != rxd_count[nic->rxd_mode]) {
  619. ba = &mac_control->rings[i].ba[j][k];
  620. ba->ba_0_org = (void *) kmalloc
  621. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  622. if (!ba->ba_0_org)
  623. return -ENOMEM;
  624. tmp = (unsigned long)ba->ba_0_org;
  625. tmp += ALIGN_SIZE;
  626. tmp &= ~((unsigned long) ALIGN_SIZE);
  627. ba->ba_0 = (void *) tmp;
  628. ba->ba_1_org = (void *) kmalloc
  629. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  630. if (!ba->ba_1_org)
  631. return -ENOMEM;
  632. tmp = (unsigned long) ba->ba_1_org;
  633. tmp += ALIGN_SIZE;
  634. tmp &= ~((unsigned long) ALIGN_SIZE);
  635. ba->ba_1 = (void *) tmp;
  636. k++;
  637. }
  638. }
  639. }
  640. }
  641. /* Allocation and initialization of Statistics block */
  642. size = sizeof(StatInfo_t);
  643. mac_control->stats_mem = pci_alloc_consistent
  644. (nic->pdev, size, &mac_control->stats_mem_phy);
  645. if (!mac_control->stats_mem) {
  646. /*
  647. * In case of failure, free_shared_mem() is called, which
  648. * should free any memory that was alloced till the
  649. * failure happened.
  650. */
  651. return -ENOMEM;
  652. }
  653. mac_control->stats_mem_sz = size;
  654. tmp_v_addr = mac_control->stats_mem;
  655. mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
  656. memset(tmp_v_addr, 0, size);
  657. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  658. (unsigned long long) tmp_p_addr);
  659. return SUCCESS;
  660. }
  661. /**
  662. * free_shared_mem - Free the allocated Memory
  663. * @nic: Device private variable.
  664. * Description: This function is to free all memory locations allocated by
  665. * the init_shared_mem() function and return it to the kernel.
  666. */
  667. static void free_shared_mem(struct s2io_nic *nic)
  668. {
  669. int i, j, blk_cnt, size;
  670. void *tmp_v_addr;
  671. dma_addr_t tmp_p_addr;
  672. mac_info_t *mac_control;
  673. struct config_param *config;
  674. int lst_size, lst_per_page;
  675. struct net_device *dev = nic->dev;
  676. if (!nic)
  677. return;
  678. mac_control = &nic->mac_control;
  679. config = &nic->config;
  680. lst_size = (sizeof(TxD_t) * config->max_txds);
  681. lst_per_page = PAGE_SIZE / lst_size;
  682. for (i = 0; i < config->tx_fifo_num; i++) {
  683. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  684. lst_per_page);
  685. for (j = 0; j < page_num; j++) {
  686. int mem_blks = (j * lst_per_page);
  687. if (!mac_control->fifos[i].list_info)
  688. return;
  689. if (!mac_control->fifos[i].list_info[mem_blks].
  690. list_virt_addr)
  691. break;
  692. pci_free_consistent(nic->pdev, PAGE_SIZE,
  693. mac_control->fifos[i].
  694. list_info[mem_blks].
  695. list_virt_addr,
  696. mac_control->fifos[i].
  697. list_info[mem_blks].
  698. list_phy_addr);
  699. }
  700. /* If we got a zero DMA address during allocation,
  701. * free the page now
  702. */
  703. if (mac_control->zerodma_virt_addr) {
  704. pci_free_consistent(nic->pdev, PAGE_SIZE,
  705. mac_control->zerodma_virt_addr,
  706. (dma_addr_t)0);
  707. DBG_PRINT(INIT_DBG,
  708. "%s: Freeing TxDL with zero DMA addr. ",
  709. dev->name);
  710. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  711. mac_control->zerodma_virt_addr);
  712. }
  713. kfree(mac_control->fifos[i].list_info);
  714. }
  715. size = SIZE_OF_BLOCK;
  716. for (i = 0; i < config->rx_ring_num; i++) {
  717. blk_cnt = mac_control->rings[i].block_count;
  718. for (j = 0; j < blk_cnt; j++) {
  719. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  720. block_virt_addr;
  721. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  722. block_dma_addr;
  723. if (tmp_v_addr == NULL)
  724. break;
  725. pci_free_consistent(nic->pdev, size,
  726. tmp_v_addr, tmp_p_addr);
  727. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  728. }
  729. }
  730. if (nic->rxd_mode >= RXD_MODE_3A) {
  731. /* Freeing buffer storage addresses in 2BUFF mode. */
  732. for (i = 0; i < config->rx_ring_num; i++) {
  733. blk_cnt = config->rx_cfg[i].num_rxd /
  734. (rxd_count[nic->rxd_mode] + 1);
  735. for (j = 0; j < blk_cnt; j++) {
  736. int k = 0;
  737. if (!mac_control->rings[i].ba[j])
  738. continue;
  739. while (k != rxd_count[nic->rxd_mode]) {
  740. buffAdd_t *ba =
  741. &mac_control->rings[i].ba[j][k];
  742. kfree(ba->ba_0_org);
  743. kfree(ba->ba_1_org);
  744. k++;
  745. }
  746. kfree(mac_control->rings[i].ba[j]);
  747. }
  748. kfree(mac_control->rings[i].ba);
  749. }
  750. }
  751. if (mac_control->stats_mem) {
  752. pci_free_consistent(nic->pdev,
  753. mac_control->stats_mem_sz,
  754. mac_control->stats_mem,
  755. mac_control->stats_mem_phy);
  756. }
  757. if (nic->ufo_in_band_v)
  758. kfree(nic->ufo_in_band_v);
  759. }
  760. /**
  761. * s2io_verify_pci_mode -
  762. */
  763. static int s2io_verify_pci_mode(nic_t *nic)
  764. {
  765. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  766. register u64 val64 = 0;
  767. int mode;
  768. val64 = readq(&bar0->pci_mode);
  769. mode = (u8)GET_PCI_MODE(val64);
  770. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  771. return -1; /* Unknown PCI mode */
  772. return mode;
  773. }
  774. #define NEC_VENID 0x1033
  775. #define NEC_DEVID 0x0125
  776. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  777. {
  778. struct pci_dev *tdev = NULL;
  779. while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  780. if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
  781. if (tdev->bus == s2io_pdev->bus->parent)
  782. return 1;
  783. }
  784. }
  785. return 0;
  786. }
  787. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  788. /**
  789. * s2io_print_pci_mode -
  790. */
  791. static int s2io_print_pci_mode(nic_t *nic)
  792. {
  793. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  794. register u64 val64 = 0;
  795. int mode;
  796. struct config_param *config = &nic->config;
  797. val64 = readq(&bar0->pci_mode);
  798. mode = (u8)GET_PCI_MODE(val64);
  799. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  800. return -1; /* Unknown PCI mode */
  801. config->bus_speed = bus_speed[mode];
  802. if (s2io_on_nec_bridge(nic->pdev)) {
  803. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  804. nic->dev->name);
  805. return mode;
  806. }
  807. if (val64 & PCI_MODE_32_BITS) {
  808. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  809. } else {
  810. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  811. }
  812. switch(mode) {
  813. case PCI_MODE_PCI_33:
  814. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  815. break;
  816. case PCI_MODE_PCI_66:
  817. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  818. break;
  819. case PCI_MODE_PCIX_M1_66:
  820. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  821. break;
  822. case PCI_MODE_PCIX_M1_100:
  823. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  824. break;
  825. case PCI_MODE_PCIX_M1_133:
  826. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  827. break;
  828. case PCI_MODE_PCIX_M2_66:
  829. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  830. break;
  831. case PCI_MODE_PCIX_M2_100:
  832. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  833. break;
  834. case PCI_MODE_PCIX_M2_133:
  835. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  836. break;
  837. default:
  838. return -1; /* Unsupported bus speed */
  839. }
  840. return mode;
  841. }
  842. /**
  843. * init_nic - Initialization of hardware
  844. * @nic: device peivate variable
  845. * Description: The function sequentially configures every block
  846. * of the H/W from their reset values.
  847. * Return Value: SUCCESS on success and
  848. * '-1' on failure (endian settings incorrect).
  849. */
  850. static int init_nic(struct s2io_nic *nic)
  851. {
  852. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  853. struct net_device *dev = nic->dev;
  854. register u64 val64 = 0;
  855. void __iomem *add;
  856. u32 time;
  857. int i, j;
  858. mac_info_t *mac_control;
  859. struct config_param *config;
  860. int dtx_cnt = 0;
  861. unsigned long long mem_share;
  862. int mem_size;
  863. mac_control = &nic->mac_control;
  864. config = &nic->config;
  865. /* to set the swapper controle on the card */
  866. if(s2io_set_swapper(nic)) {
  867. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  868. return -1;
  869. }
  870. /*
  871. * Herc requires EOI to be removed from reset before XGXS, so..
  872. */
  873. if (nic->device_type & XFRAME_II_DEVICE) {
  874. val64 = 0xA500000000ULL;
  875. writeq(val64, &bar0->sw_reset);
  876. msleep(500);
  877. val64 = readq(&bar0->sw_reset);
  878. }
  879. /* Remove XGXS from reset state */
  880. val64 = 0;
  881. writeq(val64, &bar0->sw_reset);
  882. msleep(500);
  883. val64 = readq(&bar0->sw_reset);
  884. /* Enable Receiving broadcasts */
  885. add = &bar0->mac_cfg;
  886. val64 = readq(&bar0->mac_cfg);
  887. val64 |= MAC_RMAC_BCAST_ENABLE;
  888. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  889. writel((u32) val64, add);
  890. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  891. writel((u32) (val64 >> 32), (add + 4));
  892. /* Read registers in all blocks */
  893. val64 = readq(&bar0->mac_int_mask);
  894. val64 = readq(&bar0->mc_int_mask);
  895. val64 = readq(&bar0->xgxs_int_mask);
  896. /* Set MTU */
  897. val64 = dev->mtu;
  898. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  899. if (nic->device_type & XFRAME_II_DEVICE) {
  900. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  901. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  902. &bar0->dtx_control, UF);
  903. if (dtx_cnt & 0x1)
  904. msleep(1); /* Necessary!! */
  905. dtx_cnt++;
  906. }
  907. } else {
  908. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  909. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  910. &bar0->dtx_control, UF);
  911. val64 = readq(&bar0->dtx_control);
  912. dtx_cnt++;
  913. }
  914. }
  915. /* Tx DMA Initialization */
  916. val64 = 0;
  917. writeq(val64, &bar0->tx_fifo_partition_0);
  918. writeq(val64, &bar0->tx_fifo_partition_1);
  919. writeq(val64, &bar0->tx_fifo_partition_2);
  920. writeq(val64, &bar0->tx_fifo_partition_3);
  921. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  922. val64 |=
  923. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  924. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  925. ((i * 32) + 5), 3);
  926. if (i == (config->tx_fifo_num - 1)) {
  927. if (i % 2 == 0)
  928. i++;
  929. }
  930. switch (i) {
  931. case 1:
  932. writeq(val64, &bar0->tx_fifo_partition_0);
  933. val64 = 0;
  934. break;
  935. case 3:
  936. writeq(val64, &bar0->tx_fifo_partition_1);
  937. val64 = 0;
  938. break;
  939. case 5:
  940. writeq(val64, &bar0->tx_fifo_partition_2);
  941. val64 = 0;
  942. break;
  943. case 7:
  944. writeq(val64, &bar0->tx_fifo_partition_3);
  945. break;
  946. }
  947. }
  948. /*
  949. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  950. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  951. */
  952. if ((nic->device_type == XFRAME_I_DEVICE) &&
  953. (get_xena_rev_id(nic->pdev) < 4))
  954. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  955. val64 = readq(&bar0->tx_fifo_partition_0);
  956. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  957. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  958. /*
  959. * Initialization of Tx_PA_CONFIG register to ignore packet
  960. * integrity checking.
  961. */
  962. val64 = readq(&bar0->tx_pa_cfg);
  963. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  964. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  965. writeq(val64, &bar0->tx_pa_cfg);
  966. /* Rx DMA intialization. */
  967. val64 = 0;
  968. for (i = 0; i < config->rx_ring_num; i++) {
  969. val64 |=
  970. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  971. 3);
  972. }
  973. writeq(val64, &bar0->rx_queue_priority);
  974. /*
  975. * Allocating equal share of memory to all the
  976. * configured Rings.
  977. */
  978. val64 = 0;
  979. if (nic->device_type & XFRAME_II_DEVICE)
  980. mem_size = 32;
  981. else
  982. mem_size = 64;
  983. for (i = 0; i < config->rx_ring_num; i++) {
  984. switch (i) {
  985. case 0:
  986. mem_share = (mem_size / config->rx_ring_num +
  987. mem_size % config->rx_ring_num);
  988. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  989. continue;
  990. case 1:
  991. mem_share = (mem_size / config->rx_ring_num);
  992. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  993. continue;
  994. case 2:
  995. mem_share = (mem_size / config->rx_ring_num);
  996. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  997. continue;
  998. case 3:
  999. mem_share = (mem_size / config->rx_ring_num);
  1000. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1001. continue;
  1002. case 4:
  1003. mem_share = (mem_size / config->rx_ring_num);
  1004. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1005. continue;
  1006. case 5:
  1007. mem_share = (mem_size / config->rx_ring_num);
  1008. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1009. continue;
  1010. case 6:
  1011. mem_share = (mem_size / config->rx_ring_num);
  1012. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1013. continue;
  1014. case 7:
  1015. mem_share = (mem_size / config->rx_ring_num);
  1016. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1017. continue;
  1018. }
  1019. }
  1020. writeq(val64, &bar0->rx_queue_cfg);
  1021. /*
  1022. * Filling Tx round robin registers
  1023. * as per the number of FIFOs
  1024. */
  1025. switch (config->tx_fifo_num) {
  1026. case 1:
  1027. val64 = 0x0000000000000000ULL;
  1028. writeq(val64, &bar0->tx_w_round_robin_0);
  1029. writeq(val64, &bar0->tx_w_round_robin_1);
  1030. writeq(val64, &bar0->tx_w_round_robin_2);
  1031. writeq(val64, &bar0->tx_w_round_robin_3);
  1032. writeq(val64, &bar0->tx_w_round_robin_4);
  1033. break;
  1034. case 2:
  1035. val64 = 0x0000010000010000ULL;
  1036. writeq(val64, &bar0->tx_w_round_robin_0);
  1037. val64 = 0x0100000100000100ULL;
  1038. writeq(val64, &bar0->tx_w_round_robin_1);
  1039. val64 = 0x0001000001000001ULL;
  1040. writeq(val64, &bar0->tx_w_round_robin_2);
  1041. val64 = 0x0000010000010000ULL;
  1042. writeq(val64, &bar0->tx_w_round_robin_3);
  1043. val64 = 0x0100000000000000ULL;
  1044. writeq(val64, &bar0->tx_w_round_robin_4);
  1045. break;
  1046. case 3:
  1047. val64 = 0x0001000102000001ULL;
  1048. writeq(val64, &bar0->tx_w_round_robin_0);
  1049. val64 = 0x0001020000010001ULL;
  1050. writeq(val64, &bar0->tx_w_round_robin_1);
  1051. val64 = 0x0200000100010200ULL;
  1052. writeq(val64, &bar0->tx_w_round_robin_2);
  1053. val64 = 0x0001000102000001ULL;
  1054. writeq(val64, &bar0->tx_w_round_robin_3);
  1055. val64 = 0x0001020000000000ULL;
  1056. writeq(val64, &bar0->tx_w_round_robin_4);
  1057. break;
  1058. case 4:
  1059. val64 = 0x0001020300010200ULL;
  1060. writeq(val64, &bar0->tx_w_round_robin_0);
  1061. val64 = 0x0100000102030001ULL;
  1062. writeq(val64, &bar0->tx_w_round_robin_1);
  1063. val64 = 0x0200010000010203ULL;
  1064. writeq(val64, &bar0->tx_w_round_robin_2);
  1065. val64 = 0x0001020001000001ULL;
  1066. writeq(val64, &bar0->tx_w_round_robin_3);
  1067. val64 = 0x0203000100000000ULL;
  1068. writeq(val64, &bar0->tx_w_round_robin_4);
  1069. break;
  1070. case 5:
  1071. val64 = 0x0001000203000102ULL;
  1072. writeq(val64, &bar0->tx_w_round_robin_0);
  1073. val64 = 0x0001020001030004ULL;
  1074. writeq(val64, &bar0->tx_w_round_robin_1);
  1075. val64 = 0x0001000203000102ULL;
  1076. writeq(val64, &bar0->tx_w_round_robin_2);
  1077. val64 = 0x0001020001030004ULL;
  1078. writeq(val64, &bar0->tx_w_round_robin_3);
  1079. val64 = 0x0001000000000000ULL;
  1080. writeq(val64, &bar0->tx_w_round_robin_4);
  1081. break;
  1082. case 6:
  1083. val64 = 0x0001020304000102ULL;
  1084. writeq(val64, &bar0->tx_w_round_robin_0);
  1085. val64 = 0x0304050001020001ULL;
  1086. writeq(val64, &bar0->tx_w_round_robin_1);
  1087. val64 = 0x0203000100000102ULL;
  1088. writeq(val64, &bar0->tx_w_round_robin_2);
  1089. val64 = 0x0304000102030405ULL;
  1090. writeq(val64, &bar0->tx_w_round_robin_3);
  1091. val64 = 0x0001000200000000ULL;
  1092. writeq(val64, &bar0->tx_w_round_robin_4);
  1093. break;
  1094. case 7:
  1095. val64 = 0x0001020001020300ULL;
  1096. writeq(val64, &bar0->tx_w_round_robin_0);
  1097. val64 = 0x0102030400010203ULL;
  1098. writeq(val64, &bar0->tx_w_round_robin_1);
  1099. val64 = 0x0405060001020001ULL;
  1100. writeq(val64, &bar0->tx_w_round_robin_2);
  1101. val64 = 0x0304050000010200ULL;
  1102. writeq(val64, &bar0->tx_w_round_robin_3);
  1103. val64 = 0x0102030000000000ULL;
  1104. writeq(val64, &bar0->tx_w_round_robin_4);
  1105. break;
  1106. case 8:
  1107. val64 = 0x0001020300040105ULL;
  1108. writeq(val64, &bar0->tx_w_round_robin_0);
  1109. val64 = 0x0200030106000204ULL;
  1110. writeq(val64, &bar0->tx_w_round_robin_1);
  1111. val64 = 0x0103000502010007ULL;
  1112. writeq(val64, &bar0->tx_w_round_robin_2);
  1113. val64 = 0x0304010002060500ULL;
  1114. writeq(val64, &bar0->tx_w_round_robin_3);
  1115. val64 = 0x0103020400000000ULL;
  1116. writeq(val64, &bar0->tx_w_round_robin_4);
  1117. break;
  1118. }
  1119. /* Enable Tx FIFO partition 0. */
  1120. val64 = readq(&bar0->tx_fifo_partition_0);
  1121. val64 |= (TX_FIFO_PARTITION_EN);
  1122. writeq(val64, &bar0->tx_fifo_partition_0);
  1123. /* Filling the Rx round robin registers as per the
  1124. * number of Rings and steering based on QoS.
  1125. */
  1126. switch (config->rx_ring_num) {
  1127. case 1:
  1128. val64 = 0x8080808080808080ULL;
  1129. writeq(val64, &bar0->rts_qos_steering);
  1130. break;
  1131. case 2:
  1132. val64 = 0x0000010000010000ULL;
  1133. writeq(val64, &bar0->rx_w_round_robin_0);
  1134. val64 = 0x0100000100000100ULL;
  1135. writeq(val64, &bar0->rx_w_round_robin_1);
  1136. val64 = 0x0001000001000001ULL;
  1137. writeq(val64, &bar0->rx_w_round_robin_2);
  1138. val64 = 0x0000010000010000ULL;
  1139. writeq(val64, &bar0->rx_w_round_robin_3);
  1140. val64 = 0x0100000000000000ULL;
  1141. writeq(val64, &bar0->rx_w_round_robin_4);
  1142. val64 = 0x8080808040404040ULL;
  1143. writeq(val64, &bar0->rts_qos_steering);
  1144. break;
  1145. case 3:
  1146. val64 = 0x0001000102000001ULL;
  1147. writeq(val64, &bar0->rx_w_round_robin_0);
  1148. val64 = 0x0001020000010001ULL;
  1149. writeq(val64, &bar0->rx_w_round_robin_1);
  1150. val64 = 0x0200000100010200ULL;
  1151. writeq(val64, &bar0->rx_w_round_robin_2);
  1152. val64 = 0x0001000102000001ULL;
  1153. writeq(val64, &bar0->rx_w_round_robin_3);
  1154. val64 = 0x0001020000000000ULL;
  1155. writeq(val64, &bar0->rx_w_round_robin_4);
  1156. val64 = 0x8080804040402020ULL;
  1157. writeq(val64, &bar0->rts_qos_steering);
  1158. break;
  1159. case 4:
  1160. val64 = 0x0001020300010200ULL;
  1161. writeq(val64, &bar0->rx_w_round_robin_0);
  1162. val64 = 0x0100000102030001ULL;
  1163. writeq(val64, &bar0->rx_w_round_robin_1);
  1164. val64 = 0x0200010000010203ULL;
  1165. writeq(val64, &bar0->rx_w_round_robin_2);
  1166. val64 = 0x0001020001000001ULL;
  1167. writeq(val64, &bar0->rx_w_round_robin_3);
  1168. val64 = 0x0203000100000000ULL;
  1169. writeq(val64, &bar0->rx_w_round_robin_4);
  1170. val64 = 0x8080404020201010ULL;
  1171. writeq(val64, &bar0->rts_qos_steering);
  1172. break;
  1173. case 5:
  1174. val64 = 0x0001000203000102ULL;
  1175. writeq(val64, &bar0->rx_w_round_robin_0);
  1176. val64 = 0x0001020001030004ULL;
  1177. writeq(val64, &bar0->rx_w_round_robin_1);
  1178. val64 = 0x0001000203000102ULL;
  1179. writeq(val64, &bar0->rx_w_round_robin_2);
  1180. val64 = 0x0001020001030004ULL;
  1181. writeq(val64, &bar0->rx_w_round_robin_3);
  1182. val64 = 0x0001000000000000ULL;
  1183. writeq(val64, &bar0->rx_w_round_robin_4);
  1184. val64 = 0x8080404020201008ULL;
  1185. writeq(val64, &bar0->rts_qos_steering);
  1186. break;
  1187. case 6:
  1188. val64 = 0x0001020304000102ULL;
  1189. writeq(val64, &bar0->rx_w_round_robin_0);
  1190. val64 = 0x0304050001020001ULL;
  1191. writeq(val64, &bar0->rx_w_round_robin_1);
  1192. val64 = 0x0203000100000102ULL;
  1193. writeq(val64, &bar0->rx_w_round_robin_2);
  1194. val64 = 0x0304000102030405ULL;
  1195. writeq(val64, &bar0->rx_w_round_robin_3);
  1196. val64 = 0x0001000200000000ULL;
  1197. writeq(val64, &bar0->rx_w_round_robin_4);
  1198. val64 = 0x8080404020100804ULL;
  1199. writeq(val64, &bar0->rts_qos_steering);
  1200. break;
  1201. case 7:
  1202. val64 = 0x0001020001020300ULL;
  1203. writeq(val64, &bar0->rx_w_round_robin_0);
  1204. val64 = 0x0102030400010203ULL;
  1205. writeq(val64, &bar0->rx_w_round_robin_1);
  1206. val64 = 0x0405060001020001ULL;
  1207. writeq(val64, &bar0->rx_w_round_robin_2);
  1208. val64 = 0x0304050000010200ULL;
  1209. writeq(val64, &bar0->rx_w_round_robin_3);
  1210. val64 = 0x0102030000000000ULL;
  1211. writeq(val64, &bar0->rx_w_round_robin_4);
  1212. val64 = 0x8080402010080402ULL;
  1213. writeq(val64, &bar0->rts_qos_steering);
  1214. break;
  1215. case 8:
  1216. val64 = 0x0001020300040105ULL;
  1217. writeq(val64, &bar0->rx_w_round_robin_0);
  1218. val64 = 0x0200030106000204ULL;
  1219. writeq(val64, &bar0->rx_w_round_robin_1);
  1220. val64 = 0x0103000502010007ULL;
  1221. writeq(val64, &bar0->rx_w_round_robin_2);
  1222. val64 = 0x0304010002060500ULL;
  1223. writeq(val64, &bar0->rx_w_round_robin_3);
  1224. val64 = 0x0103020400000000ULL;
  1225. writeq(val64, &bar0->rx_w_round_robin_4);
  1226. val64 = 0x8040201008040201ULL;
  1227. writeq(val64, &bar0->rts_qos_steering);
  1228. break;
  1229. }
  1230. /* UDP Fix */
  1231. val64 = 0;
  1232. for (i = 0; i < 8; i++)
  1233. writeq(val64, &bar0->rts_frm_len_n[i]);
  1234. /* Set the default rts frame length for the rings configured */
  1235. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1236. for (i = 0 ; i < config->rx_ring_num ; i++)
  1237. writeq(val64, &bar0->rts_frm_len_n[i]);
  1238. /* Set the frame length for the configured rings
  1239. * desired by the user
  1240. */
  1241. for (i = 0; i < config->rx_ring_num; i++) {
  1242. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1243. * specified frame length steering.
  1244. * If the user provides the frame length then program
  1245. * the rts_frm_len register for those values or else
  1246. * leave it as it is.
  1247. */
  1248. if (rts_frm_len[i] != 0) {
  1249. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1250. &bar0->rts_frm_len_n[i]);
  1251. }
  1252. }
  1253. /* Program statistics memory */
  1254. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1255. if (nic->device_type == XFRAME_II_DEVICE) {
  1256. val64 = STAT_BC(0x320);
  1257. writeq(val64, &bar0->stat_byte_cnt);
  1258. }
  1259. /*
  1260. * Initializing the sampling rate for the device to calculate the
  1261. * bandwidth utilization.
  1262. */
  1263. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1264. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1265. writeq(val64, &bar0->mac_link_util);
  1266. /*
  1267. * Initializing the Transmit and Receive Traffic Interrupt
  1268. * Scheme.
  1269. */
  1270. /*
  1271. * TTI Initialization. Default Tx timer gets us about
  1272. * 250 interrupts per sec. Continuous interrupts are enabled
  1273. * by default.
  1274. */
  1275. if (nic->device_type == XFRAME_II_DEVICE) {
  1276. int count = (nic->config.bus_speed * 125)/2;
  1277. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1278. } else {
  1279. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1280. }
  1281. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1282. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1283. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1284. if (use_continuous_tx_intrs)
  1285. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1286. writeq(val64, &bar0->tti_data1_mem);
  1287. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1288. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1289. TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1290. writeq(val64, &bar0->tti_data2_mem);
  1291. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1292. writeq(val64, &bar0->tti_command_mem);
  1293. /*
  1294. * Once the operation completes, the Strobe bit of the command
  1295. * register will be reset. We poll for this particular condition
  1296. * We wait for a maximum of 500ms for the operation to complete,
  1297. * if it's not complete by then we return error.
  1298. */
  1299. time = 0;
  1300. while (TRUE) {
  1301. val64 = readq(&bar0->tti_command_mem);
  1302. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1303. break;
  1304. }
  1305. if (time > 10) {
  1306. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1307. dev->name);
  1308. return -1;
  1309. }
  1310. msleep(50);
  1311. time++;
  1312. }
  1313. if (nic->config.bimodal) {
  1314. int k = 0;
  1315. for (k = 0; k < config->rx_ring_num; k++) {
  1316. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1317. val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
  1318. writeq(val64, &bar0->tti_command_mem);
  1319. /*
  1320. * Once the operation completes, the Strobe bit of the command
  1321. * register will be reset. We poll for this particular condition
  1322. * We wait for a maximum of 500ms for the operation to complete,
  1323. * if it's not complete by then we return error.
  1324. */
  1325. time = 0;
  1326. while (TRUE) {
  1327. val64 = readq(&bar0->tti_command_mem);
  1328. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1329. break;
  1330. }
  1331. if (time > 10) {
  1332. DBG_PRINT(ERR_DBG,
  1333. "%s: TTI init Failed\n",
  1334. dev->name);
  1335. return -1;
  1336. }
  1337. time++;
  1338. msleep(50);
  1339. }
  1340. }
  1341. } else {
  1342. /* RTI Initialization */
  1343. if (nic->device_type == XFRAME_II_DEVICE) {
  1344. /*
  1345. * Programmed to generate Apprx 500 Intrs per
  1346. * second
  1347. */
  1348. int count = (nic->config.bus_speed * 125)/4;
  1349. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1350. } else {
  1351. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1352. }
  1353. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1354. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1355. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1356. writeq(val64, &bar0->rti_data1_mem);
  1357. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1358. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1359. if (nic->intr_type == MSI_X)
  1360. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1361. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1362. else
  1363. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1364. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1365. writeq(val64, &bar0->rti_data2_mem);
  1366. for (i = 0; i < config->rx_ring_num; i++) {
  1367. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1368. | RTI_CMD_MEM_OFFSET(i);
  1369. writeq(val64, &bar0->rti_command_mem);
  1370. /*
  1371. * Once the operation completes, the Strobe bit of the
  1372. * command register will be reset. We poll for this
  1373. * particular condition. We wait for a maximum of 500ms
  1374. * for the operation to complete, if it's not complete
  1375. * by then we return error.
  1376. */
  1377. time = 0;
  1378. while (TRUE) {
  1379. val64 = readq(&bar0->rti_command_mem);
  1380. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
  1381. break;
  1382. }
  1383. if (time > 10) {
  1384. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1385. dev->name);
  1386. return -1;
  1387. }
  1388. time++;
  1389. msleep(50);
  1390. }
  1391. }
  1392. }
  1393. /*
  1394. * Initializing proper values as Pause threshold into all
  1395. * the 8 Queues on Rx side.
  1396. */
  1397. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1398. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1399. /* Disable RMAC PAD STRIPPING */
  1400. add = &bar0->mac_cfg;
  1401. val64 = readq(&bar0->mac_cfg);
  1402. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1403. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1404. writel((u32) (val64), add);
  1405. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1406. writel((u32) (val64 >> 32), (add + 4));
  1407. val64 = readq(&bar0->mac_cfg);
  1408. /* Enable FCS stripping by adapter */
  1409. add = &bar0->mac_cfg;
  1410. val64 = readq(&bar0->mac_cfg);
  1411. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1412. if (nic->device_type == XFRAME_II_DEVICE)
  1413. writeq(val64, &bar0->mac_cfg);
  1414. else {
  1415. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1416. writel((u32) (val64), add);
  1417. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1418. writel((u32) (val64 >> 32), (add + 4));
  1419. }
  1420. /*
  1421. * Set the time value to be inserted in the pause frame
  1422. * generated by xena.
  1423. */
  1424. val64 = readq(&bar0->rmac_pause_cfg);
  1425. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1426. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1427. writeq(val64, &bar0->rmac_pause_cfg);
  1428. /*
  1429. * Set the Threshold Limit for Generating the pause frame
  1430. * If the amount of data in any Queue exceeds ratio of
  1431. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1432. * pause frame is generated
  1433. */
  1434. val64 = 0;
  1435. for (i = 0; i < 4; i++) {
  1436. val64 |=
  1437. (((u64) 0xFF00 | nic->mac_control.
  1438. mc_pause_threshold_q0q3)
  1439. << (i * 2 * 8));
  1440. }
  1441. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1442. val64 = 0;
  1443. for (i = 0; i < 4; i++) {
  1444. val64 |=
  1445. (((u64) 0xFF00 | nic->mac_control.
  1446. mc_pause_threshold_q4q7)
  1447. << (i * 2 * 8));
  1448. }
  1449. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1450. /*
  1451. * TxDMA will stop Read request if the number of read split has
  1452. * exceeded the limit pointed by shared_splits
  1453. */
  1454. val64 = readq(&bar0->pic_control);
  1455. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1456. writeq(val64, &bar0->pic_control);
  1457. if (nic->config.bus_speed == 266) {
  1458. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1459. writeq(0x0, &bar0->read_retry_delay);
  1460. writeq(0x0, &bar0->write_retry_delay);
  1461. }
  1462. /*
  1463. * Programming the Herc to split every write transaction
  1464. * that does not start on an ADB to reduce disconnects.
  1465. */
  1466. if (nic->device_type == XFRAME_II_DEVICE) {
  1467. val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
  1468. writeq(val64, &bar0->misc_control);
  1469. val64 = readq(&bar0->pic_control2);
  1470. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1471. writeq(val64, &bar0->pic_control2);
  1472. }
  1473. if (strstr(nic->product_name, "CX4")) {
  1474. val64 = TMAC_AVG_IPG(0x17);
  1475. writeq(val64, &bar0->tmac_avg_ipg);
  1476. }
  1477. return SUCCESS;
  1478. }
  1479. #define LINK_UP_DOWN_INTERRUPT 1
  1480. #define MAC_RMAC_ERR_TIMER 2
  1481. static int s2io_link_fault_indication(nic_t *nic)
  1482. {
  1483. if (nic->intr_type != INTA)
  1484. return MAC_RMAC_ERR_TIMER;
  1485. if (nic->device_type == XFRAME_II_DEVICE)
  1486. return LINK_UP_DOWN_INTERRUPT;
  1487. else
  1488. return MAC_RMAC_ERR_TIMER;
  1489. }
  1490. /**
  1491. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1492. * @nic: device private variable,
  1493. * @mask: A mask indicating which Intr block must be modified and,
  1494. * @flag: A flag indicating whether to enable or disable the Intrs.
  1495. * Description: This function will either disable or enable the interrupts
  1496. * depending on the flag argument. The mask argument can be used to
  1497. * enable/disable any Intr block.
  1498. * Return Value: NONE.
  1499. */
  1500. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1501. {
  1502. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  1503. register u64 val64 = 0, temp64 = 0;
  1504. /* Top level interrupt classification */
  1505. /* PIC Interrupts */
  1506. if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
  1507. /* Enable PIC Intrs in the general intr mask register */
  1508. val64 = TXPIC_INT_M | PIC_RX_INT_M;
  1509. if (flag == ENABLE_INTRS) {
  1510. temp64 = readq(&bar0->general_int_mask);
  1511. temp64 &= ~((u64) val64);
  1512. writeq(temp64, &bar0->general_int_mask);
  1513. /*
  1514. * If Hercules adapter enable GPIO otherwise
  1515. * disabled all PCIX, Flash, MDIO, IIC and GPIO
  1516. * interrupts for now.
  1517. * TODO
  1518. */
  1519. if (s2io_link_fault_indication(nic) ==
  1520. LINK_UP_DOWN_INTERRUPT ) {
  1521. temp64 = readq(&bar0->pic_int_mask);
  1522. temp64 &= ~((u64) PIC_INT_GPIO);
  1523. writeq(temp64, &bar0->pic_int_mask);
  1524. temp64 = readq(&bar0->gpio_int_mask);
  1525. temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
  1526. writeq(temp64, &bar0->gpio_int_mask);
  1527. } else {
  1528. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1529. }
  1530. /*
  1531. * No MSI Support is available presently, so TTI and
  1532. * RTI interrupts are also disabled.
  1533. */
  1534. } else if (flag == DISABLE_INTRS) {
  1535. /*
  1536. * Disable PIC Intrs in the general
  1537. * intr mask register
  1538. */
  1539. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1540. temp64 = readq(&bar0->general_int_mask);
  1541. val64 |= temp64;
  1542. writeq(val64, &bar0->general_int_mask);
  1543. }
  1544. }
  1545. /* DMA Interrupts */
  1546. /* Enabling/Disabling Tx DMA interrupts */
  1547. if (mask & TX_DMA_INTR) {
  1548. /* Enable TxDMA Intrs in the general intr mask register */
  1549. val64 = TXDMA_INT_M;
  1550. if (flag == ENABLE_INTRS) {
  1551. temp64 = readq(&bar0->general_int_mask);
  1552. temp64 &= ~((u64) val64);
  1553. writeq(temp64, &bar0->general_int_mask);
  1554. /*
  1555. * Keep all interrupts other than PFC interrupt
  1556. * and PCC interrupt disabled in DMA level.
  1557. */
  1558. val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
  1559. TXDMA_PCC_INT_M);
  1560. writeq(val64, &bar0->txdma_int_mask);
  1561. /*
  1562. * Enable only the MISC error 1 interrupt in PFC block
  1563. */
  1564. val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
  1565. writeq(val64, &bar0->pfc_err_mask);
  1566. /*
  1567. * Enable only the FB_ECC error interrupt in PCC block
  1568. */
  1569. val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
  1570. writeq(val64, &bar0->pcc_err_mask);
  1571. } else if (flag == DISABLE_INTRS) {
  1572. /*
  1573. * Disable TxDMA Intrs in the general intr mask
  1574. * register
  1575. */
  1576. writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
  1577. writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
  1578. temp64 = readq(&bar0->general_int_mask);
  1579. val64 |= temp64;
  1580. writeq(val64, &bar0->general_int_mask);
  1581. }
  1582. }
  1583. /* Enabling/Disabling Rx DMA interrupts */
  1584. if (mask & RX_DMA_INTR) {
  1585. /* Enable RxDMA Intrs in the general intr mask register */
  1586. val64 = RXDMA_INT_M;
  1587. if (flag == ENABLE_INTRS) {
  1588. temp64 = readq(&bar0->general_int_mask);
  1589. temp64 &= ~((u64) val64);
  1590. writeq(temp64, &bar0->general_int_mask);
  1591. /*
  1592. * All RxDMA block interrupts are disabled for now
  1593. * TODO
  1594. */
  1595. writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
  1596. } else if (flag == DISABLE_INTRS) {
  1597. /*
  1598. * Disable RxDMA Intrs in the general intr mask
  1599. * register
  1600. */
  1601. writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
  1602. temp64 = readq(&bar0->general_int_mask);
  1603. val64 |= temp64;
  1604. writeq(val64, &bar0->general_int_mask);
  1605. }
  1606. }
  1607. /* MAC Interrupts */
  1608. /* Enabling/Disabling MAC interrupts */
  1609. if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
  1610. val64 = TXMAC_INT_M | RXMAC_INT_M;
  1611. if (flag == ENABLE_INTRS) {
  1612. temp64 = readq(&bar0->general_int_mask);
  1613. temp64 &= ~((u64) val64);
  1614. writeq(temp64, &bar0->general_int_mask);
  1615. /*
  1616. * All MAC block error interrupts are disabled for now
  1617. * TODO
  1618. */
  1619. } else if (flag == DISABLE_INTRS) {
  1620. /*
  1621. * Disable MAC Intrs in the general intr mask register
  1622. */
  1623. writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
  1624. writeq(DISABLE_ALL_INTRS,
  1625. &bar0->mac_rmac_err_mask);
  1626. temp64 = readq(&bar0->general_int_mask);
  1627. val64 |= temp64;
  1628. writeq(val64, &bar0->general_int_mask);
  1629. }
  1630. }
  1631. /* XGXS Interrupts */
  1632. if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
  1633. val64 = TXXGXS_INT_M | RXXGXS_INT_M;
  1634. if (flag == ENABLE_INTRS) {
  1635. temp64 = readq(&bar0->general_int_mask);
  1636. temp64 &= ~((u64) val64);
  1637. writeq(temp64, &bar0->general_int_mask);
  1638. /*
  1639. * All XGXS block error interrupts are disabled for now
  1640. * TODO
  1641. */
  1642. writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
  1643. } else if (flag == DISABLE_INTRS) {
  1644. /*
  1645. * Disable MC Intrs in the general intr mask register
  1646. */
  1647. writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
  1648. temp64 = readq(&bar0->general_int_mask);
  1649. val64 |= temp64;
  1650. writeq(val64, &bar0->general_int_mask);
  1651. }
  1652. }
  1653. /* Memory Controller(MC) interrupts */
  1654. if (mask & MC_INTR) {
  1655. val64 = MC_INT_M;
  1656. if (flag == ENABLE_INTRS) {
  1657. temp64 = readq(&bar0->general_int_mask);
  1658. temp64 &= ~((u64) val64);
  1659. writeq(temp64, &bar0->general_int_mask);
  1660. /*
  1661. * Enable all MC Intrs.
  1662. */
  1663. writeq(0x0, &bar0->mc_int_mask);
  1664. writeq(0x0, &bar0->mc_err_mask);
  1665. } else if (flag == DISABLE_INTRS) {
  1666. /*
  1667. * Disable MC Intrs in the general intr mask register
  1668. */
  1669. writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
  1670. temp64 = readq(&bar0->general_int_mask);
  1671. val64 |= temp64;
  1672. writeq(val64, &bar0->general_int_mask);
  1673. }
  1674. }
  1675. /* Tx traffic interrupts */
  1676. if (mask & TX_TRAFFIC_INTR) {
  1677. val64 = TXTRAFFIC_INT_M;
  1678. if (flag == ENABLE_INTRS) {
  1679. temp64 = readq(&bar0->general_int_mask);
  1680. temp64 &= ~((u64) val64);
  1681. writeq(temp64, &bar0->general_int_mask);
  1682. /*
  1683. * Enable all the Tx side interrupts
  1684. * writing 0 Enables all 64 TX interrupt levels
  1685. */
  1686. writeq(0x0, &bar0->tx_traffic_mask);
  1687. } else if (flag == DISABLE_INTRS) {
  1688. /*
  1689. * Disable Tx Traffic Intrs in the general intr mask
  1690. * register.
  1691. */
  1692. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1693. temp64 = readq(&bar0->general_int_mask);
  1694. val64 |= temp64;
  1695. writeq(val64, &bar0->general_int_mask);
  1696. }
  1697. }
  1698. /* Rx traffic interrupts */
  1699. if (mask & RX_TRAFFIC_INTR) {
  1700. val64 = RXTRAFFIC_INT_M;
  1701. if (flag == ENABLE_INTRS) {
  1702. temp64 = readq(&bar0->general_int_mask);
  1703. temp64 &= ~((u64) val64);
  1704. writeq(temp64, &bar0->general_int_mask);
  1705. /* writing 0 Enables all 8 RX interrupt levels */
  1706. writeq(0x0, &bar0->rx_traffic_mask);
  1707. } else if (flag == DISABLE_INTRS) {
  1708. /*
  1709. * Disable Rx Traffic Intrs in the general intr mask
  1710. * register.
  1711. */
  1712. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1713. temp64 = readq(&bar0->general_int_mask);
  1714. val64 |= temp64;
  1715. writeq(val64, &bar0->general_int_mask);
  1716. }
  1717. }
  1718. }
  1719. static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
  1720. {
  1721. int ret = 0;
  1722. if (flag == FALSE) {
  1723. if ((!herc && (rev_id >= 4)) || herc) {
  1724. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
  1725. ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1726. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1727. ret = 1;
  1728. }
  1729. }else {
  1730. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
  1731. ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1732. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1733. ret = 1;
  1734. }
  1735. }
  1736. } else {
  1737. if ((!herc && (rev_id >= 4)) || herc) {
  1738. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1739. ADAPTER_STATUS_RMAC_PCC_IDLE) &&
  1740. (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
  1741. ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1742. ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
  1743. ret = 1;
  1744. }
  1745. } else {
  1746. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1747. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
  1748. (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
  1749. ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1750. ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
  1751. ret = 1;
  1752. }
  1753. }
  1754. }
  1755. return ret;
  1756. }
  1757. /**
  1758. * verify_xena_quiescence - Checks whether the H/W is ready
  1759. * @val64 : Value read from adapter status register.
  1760. * @flag : indicates if the adapter enable bit was ever written once
  1761. * before.
  1762. * Description: Returns whether the H/W is ready to go or not. Depending
  1763. * on whether adapter enable bit was written or not the comparison
  1764. * differs and the calling function passes the input argument flag to
  1765. * indicate this.
  1766. * Return: 1 If xena is quiescence
  1767. * 0 If Xena is not quiescence
  1768. */
  1769. static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
  1770. {
  1771. int ret = 0, herc;
  1772. u64 tmp64 = ~((u64) val64);
  1773. int rev_id = get_xena_rev_id(sp->pdev);
  1774. herc = (sp->device_type == XFRAME_II_DEVICE);
  1775. if (!
  1776. (tmp64 &
  1777. (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
  1778. ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
  1779. ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
  1780. ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
  1781. ADAPTER_STATUS_P_PLL_LOCK))) {
  1782. ret = check_prc_pcc_state(val64, flag, rev_id, herc);
  1783. }
  1784. return ret;
  1785. }
  1786. /**
  1787. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1788. * @sp: Pointer to device specifc structure
  1789. * Description :
  1790. * New procedure to clear mac address reading problems on Alpha platforms
  1791. *
  1792. */
  1793. static void fix_mac_address(nic_t * sp)
  1794. {
  1795. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  1796. u64 val64;
  1797. int i = 0;
  1798. while (fix_mac[i] != END_SIGN) {
  1799. writeq(fix_mac[i++], &bar0->gpio_control);
  1800. udelay(10);
  1801. val64 = readq(&bar0->gpio_control);
  1802. }
  1803. }
  1804. /**
  1805. * start_nic - Turns the device on
  1806. * @nic : device private variable.
  1807. * Description:
  1808. * This function actually turns the device on. Before this function is
  1809. * called,all Registers are configured from their reset states
  1810. * and shared memory is allocated but the NIC is still quiescent. On
  1811. * calling this function, the device interrupts are cleared and the NIC is
  1812. * literally switched on by writing into the adapter control register.
  1813. * Return Value:
  1814. * SUCCESS on success and -1 on failure.
  1815. */
  1816. static int start_nic(struct s2io_nic *nic)
  1817. {
  1818. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  1819. struct net_device *dev = nic->dev;
  1820. register u64 val64 = 0;
  1821. u16 interruptible;
  1822. u16 subid, i;
  1823. mac_info_t *mac_control;
  1824. struct config_param *config;
  1825. mac_control = &nic->mac_control;
  1826. config = &nic->config;
  1827. /* PRC Initialization and configuration */
  1828. for (i = 0; i < config->rx_ring_num; i++) {
  1829. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1830. &bar0->prc_rxd0_n[i]);
  1831. val64 = readq(&bar0->prc_ctrl_n[i]);
  1832. if (nic->config.bimodal)
  1833. val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
  1834. if (nic->rxd_mode == RXD_MODE_1)
  1835. val64 |= PRC_CTRL_RC_ENABLED;
  1836. else
  1837. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1838. if (nic->device_type == XFRAME_II_DEVICE)
  1839. val64 |= PRC_CTRL_GROUP_READS;
  1840. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1841. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1842. writeq(val64, &bar0->prc_ctrl_n[i]);
  1843. }
  1844. if (nic->rxd_mode == RXD_MODE_3B) {
  1845. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1846. val64 = readq(&bar0->rx_pa_cfg);
  1847. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1848. writeq(val64, &bar0->rx_pa_cfg);
  1849. }
  1850. /*
  1851. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1852. * for around 100ms, which is approximately the time required
  1853. * for the device to be ready for operation.
  1854. */
  1855. val64 = readq(&bar0->mc_rldram_mrs);
  1856. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1857. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1858. val64 = readq(&bar0->mc_rldram_mrs);
  1859. msleep(100); /* Delay by around 100 ms. */
  1860. /* Enabling ECC Protection. */
  1861. val64 = readq(&bar0->adapter_control);
  1862. val64 &= ~ADAPTER_ECC_EN;
  1863. writeq(val64, &bar0->adapter_control);
  1864. /*
  1865. * Clearing any possible Link state change interrupts that
  1866. * could have popped up just before Enabling the card.
  1867. */
  1868. val64 = readq(&bar0->mac_rmac_err_reg);
  1869. if (val64)
  1870. writeq(val64, &bar0->mac_rmac_err_reg);
  1871. /*
  1872. * Verify if the device is ready to be enabled, if so enable
  1873. * it.
  1874. */
  1875. val64 = readq(&bar0->adapter_status);
  1876. if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
  1877. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1878. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1879. (unsigned long long) val64);
  1880. return FAILURE;
  1881. }
  1882. /* Enable select interrupts */
  1883. if (nic->intr_type != INTA)
  1884. en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  1885. else {
  1886. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  1887. interruptible |= TX_PIC_INTR | RX_PIC_INTR;
  1888. interruptible |= TX_MAC_INTR | RX_MAC_INTR;
  1889. en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
  1890. }
  1891. /*
  1892. * With some switches, link might be already up at this point.
  1893. * Because of this weird behavior, when we enable laser,
  1894. * we may not get link. We need to handle this. We cannot
  1895. * figure out which switch is misbehaving. So we are forced to
  1896. * make a global change.
  1897. */
  1898. /* Enabling Laser. */
  1899. val64 = readq(&bar0->adapter_control);
  1900. val64 |= ADAPTER_EOI_TX_ON;
  1901. writeq(val64, &bar0->adapter_control);
  1902. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  1903. /*
  1904. * Dont see link state interrupts initally on some switches,
  1905. * so directly scheduling the link state task here.
  1906. */
  1907. schedule_work(&nic->set_link_task);
  1908. }
  1909. /* SXE-002: Initialize link and activity LED */
  1910. subid = nic->pdev->subsystem_device;
  1911. if (((subid & 0xFF) >= 0x07) &&
  1912. (nic->device_type == XFRAME_I_DEVICE)) {
  1913. val64 = readq(&bar0->gpio_control);
  1914. val64 |= 0x0000800000000000ULL;
  1915. writeq(val64, &bar0->gpio_control);
  1916. val64 = 0x0411040400000000ULL;
  1917. writeq(val64, (void __iomem *)bar0 + 0x2700);
  1918. }
  1919. return SUCCESS;
  1920. }
  1921. /**
  1922. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  1923. */
  1924. static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
  1925. {
  1926. nic_t *nic = fifo_data->nic;
  1927. struct sk_buff *skb;
  1928. TxD_t *txds;
  1929. u16 j, frg_cnt;
  1930. txds = txdlp;
  1931. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  1932. pci_unmap_single(nic->pdev, (dma_addr_t)
  1933. txds->Buffer_Pointer, sizeof(u64),
  1934. PCI_DMA_TODEVICE);
  1935. txds++;
  1936. }
  1937. skb = (struct sk_buff *) ((unsigned long)
  1938. txds->Host_Control);
  1939. if (!skb) {
  1940. memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
  1941. return NULL;
  1942. }
  1943. pci_unmap_single(nic->pdev, (dma_addr_t)
  1944. txds->Buffer_Pointer,
  1945. skb->len - skb->data_len,
  1946. PCI_DMA_TODEVICE);
  1947. frg_cnt = skb_shinfo(skb)->nr_frags;
  1948. if (frg_cnt) {
  1949. txds++;
  1950. for (j = 0; j < frg_cnt; j++, txds++) {
  1951. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  1952. if (!txds->Buffer_Pointer)
  1953. break;
  1954. pci_unmap_page(nic->pdev, (dma_addr_t)
  1955. txds->Buffer_Pointer,
  1956. frag->size, PCI_DMA_TODEVICE);
  1957. }
  1958. }
  1959. txdlp->Host_Control = 0;
  1960. return(skb);
  1961. }
  1962. /**
  1963. * free_tx_buffers - Free all queued Tx buffers
  1964. * @nic : device private variable.
  1965. * Description:
  1966. * Free all queued Tx buffers.
  1967. * Return Value: void
  1968. */
  1969. static void free_tx_buffers(struct s2io_nic *nic)
  1970. {
  1971. struct net_device *dev = nic->dev;
  1972. struct sk_buff *skb;
  1973. TxD_t *txdp;
  1974. int i, j;
  1975. mac_info_t *mac_control;
  1976. struct config_param *config;
  1977. int cnt = 0;
  1978. mac_control = &nic->mac_control;
  1979. config = &nic->config;
  1980. for (i = 0; i < config->tx_fifo_num; i++) {
  1981. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  1982. txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
  1983. list_virt_addr;
  1984. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  1985. if (skb) {
  1986. dev_kfree_skb(skb);
  1987. cnt++;
  1988. }
  1989. }
  1990. DBG_PRINT(INTR_DBG,
  1991. "%s:forcibly freeing %d skbs on FIFO%d\n",
  1992. dev->name, cnt, i);
  1993. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  1994. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  1995. }
  1996. }
  1997. /**
  1998. * stop_nic - To stop the nic
  1999. * @nic ; device private variable.
  2000. * Description:
  2001. * This function does exactly the opposite of what the start_nic()
  2002. * function does. This function is called to stop the device.
  2003. * Return Value:
  2004. * void.
  2005. */
  2006. static void stop_nic(struct s2io_nic *nic)
  2007. {
  2008. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  2009. register u64 val64 = 0;
  2010. u16 interruptible;
  2011. mac_info_t *mac_control;
  2012. struct config_param *config;
  2013. mac_control = &nic->mac_control;
  2014. config = &nic->config;
  2015. /* Disable all interrupts */
  2016. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2017. interruptible |= TX_PIC_INTR | RX_PIC_INTR;
  2018. interruptible |= TX_MAC_INTR | RX_MAC_INTR;
  2019. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2020. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2021. val64 = readq(&bar0->adapter_control);
  2022. val64 &= ~(ADAPTER_CNTL_EN);
  2023. writeq(val64, &bar0->adapter_control);
  2024. }
  2025. static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
  2026. {
  2027. struct net_device *dev = nic->dev;
  2028. struct sk_buff *frag_list;
  2029. void *tmp;
  2030. /* Buffer-1 receives L3/L4 headers */
  2031. ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
  2032. (nic->pdev, skb->data, l3l4hdr_size + 4,
  2033. PCI_DMA_FROMDEVICE);
  2034. /* skb_shinfo(skb)->frag_list will have L4 data payload */
  2035. skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
  2036. if (skb_shinfo(skb)->frag_list == NULL) {
  2037. DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
  2038. return -ENOMEM ;
  2039. }
  2040. frag_list = skb_shinfo(skb)->frag_list;
  2041. frag_list->next = NULL;
  2042. tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
  2043. frag_list->data = tmp;
  2044. frag_list->tail = tmp;
  2045. /* Buffer-2 receives L4 data payload */
  2046. ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
  2047. frag_list->data, dev->mtu,
  2048. PCI_DMA_FROMDEVICE);
  2049. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
  2050. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
  2051. return SUCCESS;
  2052. }
  2053. /**
  2054. * fill_rx_buffers - Allocates the Rx side skbs
  2055. * @nic: device private variable
  2056. * @ring_no: ring number
  2057. * Description:
  2058. * The function allocates Rx side skbs and puts the physical
  2059. * address of these buffers into the RxD buffer pointers, so that the NIC
  2060. * can DMA the received frame into these locations.
  2061. * The NIC supports 3 receive modes, viz
  2062. * 1. single buffer,
  2063. * 2. three buffer and
  2064. * 3. Five buffer modes.
  2065. * Each mode defines how many fragments the received frame will be split
  2066. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2067. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2068. * is split into 3 fragments. As of now only single buffer mode is
  2069. * supported.
  2070. * Return Value:
  2071. * SUCCESS on success or an appropriate -ve value on failure.
  2072. */
  2073. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2074. {
  2075. struct net_device *dev = nic->dev;
  2076. struct sk_buff *skb;
  2077. RxD_t *rxdp;
  2078. int off, off1, size, block_no, block_no1;
  2079. u32 alloc_tab = 0;
  2080. u32 alloc_cnt;
  2081. mac_info_t *mac_control;
  2082. struct config_param *config;
  2083. u64 tmp;
  2084. buffAdd_t *ba;
  2085. #ifndef CONFIG_S2IO_NAPI
  2086. unsigned long flags;
  2087. #endif
  2088. RxD_t *first_rxdp = NULL;
  2089. mac_control = &nic->mac_control;
  2090. config = &nic->config;
  2091. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2092. atomic_read(&nic->rx_bufs_left[ring_no]);
  2093. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2094. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2095. while (alloc_tab < alloc_cnt) {
  2096. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2097. block_index;
  2098. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2099. rxdp = mac_control->rings[ring_no].
  2100. rx_blocks[block_no].rxds[off].virt_addr;
  2101. if ((block_no == block_no1) && (off == off1) &&
  2102. (rxdp->Host_Control)) {
  2103. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2104. dev->name);
  2105. DBG_PRINT(INTR_DBG, " info equated\n");
  2106. goto end;
  2107. }
  2108. if (off && (off == rxd_count[nic->rxd_mode])) {
  2109. mac_control->rings[ring_no].rx_curr_put_info.
  2110. block_index++;
  2111. if (mac_control->rings[ring_no].rx_curr_put_info.
  2112. block_index == mac_control->rings[ring_no].
  2113. block_count)
  2114. mac_control->rings[ring_no].rx_curr_put_info.
  2115. block_index = 0;
  2116. block_no = mac_control->rings[ring_no].
  2117. rx_curr_put_info.block_index;
  2118. if (off == rxd_count[nic->rxd_mode])
  2119. off = 0;
  2120. mac_control->rings[ring_no].rx_curr_put_info.
  2121. offset = off;
  2122. rxdp = mac_control->rings[ring_no].
  2123. rx_blocks[block_no].block_virt_addr;
  2124. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2125. dev->name, rxdp);
  2126. }
  2127. #ifndef CONFIG_S2IO_NAPI
  2128. spin_lock_irqsave(&nic->put_lock, flags);
  2129. mac_control->rings[ring_no].put_pos =
  2130. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2131. spin_unlock_irqrestore(&nic->put_lock, flags);
  2132. #endif
  2133. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2134. ((nic->rxd_mode >= RXD_MODE_3A) &&
  2135. (rxdp->Control_2 & BIT(0)))) {
  2136. mac_control->rings[ring_no].rx_curr_put_info.
  2137. offset = off;
  2138. goto end;
  2139. }
  2140. /* calculate size of skb based on ring mode */
  2141. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2142. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2143. if (nic->rxd_mode == RXD_MODE_1)
  2144. size += NET_IP_ALIGN;
  2145. else if (nic->rxd_mode == RXD_MODE_3B)
  2146. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2147. else
  2148. size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
  2149. /* allocate skb */
  2150. skb = dev_alloc_skb(size);
  2151. if(!skb) {
  2152. DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
  2153. DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
  2154. if (first_rxdp) {
  2155. wmb();
  2156. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2157. }
  2158. return -ENOMEM ;
  2159. }
  2160. if (nic->rxd_mode == RXD_MODE_1) {
  2161. /* 1 buffer mode - normal operation mode */
  2162. memset(rxdp, 0, sizeof(RxD1_t));
  2163. skb_reserve(skb, NET_IP_ALIGN);
  2164. ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
  2165. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2166. PCI_DMA_FROMDEVICE);
  2167. rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2168. } else if (nic->rxd_mode >= RXD_MODE_3A) {
  2169. /*
  2170. * 2 or 3 buffer mode -
  2171. * Both 2 buffer mode and 3 buffer mode provides 128
  2172. * byte aligned receive buffers.
  2173. *
  2174. * 3 buffer mode provides header separation where in
  2175. * skb->data will have L3/L4 headers where as
  2176. * skb_shinfo(skb)->frag_list will have the L4 data
  2177. * payload
  2178. */
  2179. memset(rxdp, 0, sizeof(RxD3_t));
  2180. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2181. skb_reserve(skb, BUF0_LEN);
  2182. tmp = (u64)(unsigned long) skb->data;
  2183. tmp += ALIGN_SIZE;
  2184. tmp &= ~ALIGN_SIZE;
  2185. skb->data = (void *) (unsigned long)tmp;
  2186. skb->tail = (void *) (unsigned long)tmp;
  2187. ((RxD3_t*)rxdp)->Buffer0_ptr =
  2188. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2189. PCI_DMA_FROMDEVICE);
  2190. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2191. if (nic->rxd_mode == RXD_MODE_3B) {
  2192. /* Two buffer mode */
  2193. /*
  2194. * Buffer2 will have L3/L4 header plus
  2195. * L4 payload
  2196. */
  2197. ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
  2198. (nic->pdev, skb->data, dev->mtu + 4,
  2199. PCI_DMA_FROMDEVICE);
  2200. /* Buffer-1 will be dummy buffer not used */
  2201. ((RxD3_t*)rxdp)->Buffer1_ptr =
  2202. pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
  2203. PCI_DMA_FROMDEVICE);
  2204. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2205. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2206. (dev->mtu + 4);
  2207. } else {
  2208. /* 3 buffer mode */
  2209. if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
  2210. dev_kfree_skb_irq(skb);
  2211. if (first_rxdp) {
  2212. wmb();
  2213. first_rxdp->Control_1 |=
  2214. RXD_OWN_XENA;
  2215. }
  2216. return -ENOMEM ;
  2217. }
  2218. }
  2219. rxdp->Control_2 |= BIT(0);
  2220. }
  2221. rxdp->Host_Control = (unsigned long) (skb);
  2222. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2223. rxdp->Control_1 |= RXD_OWN_XENA;
  2224. off++;
  2225. if (off == (rxd_count[nic->rxd_mode] + 1))
  2226. off = 0;
  2227. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2228. rxdp->Control_2 |= SET_RXD_MARKER;
  2229. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2230. if (first_rxdp) {
  2231. wmb();
  2232. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2233. }
  2234. first_rxdp = rxdp;
  2235. }
  2236. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2237. alloc_tab++;
  2238. }
  2239. end:
  2240. /* Transfer ownership of first descriptor to adapter just before
  2241. * exiting. Before that, use memory barrier so that ownership
  2242. * and other fields are seen by adapter correctly.
  2243. */
  2244. if (first_rxdp) {
  2245. wmb();
  2246. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2247. }
  2248. return SUCCESS;
  2249. }
  2250. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2251. {
  2252. struct net_device *dev = sp->dev;
  2253. int j;
  2254. struct sk_buff *skb;
  2255. RxD_t *rxdp;
  2256. mac_info_t *mac_control;
  2257. buffAdd_t *ba;
  2258. mac_control = &sp->mac_control;
  2259. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2260. rxdp = mac_control->rings[ring_no].
  2261. rx_blocks[blk].rxds[j].virt_addr;
  2262. skb = (struct sk_buff *)
  2263. ((unsigned long) rxdp->Host_Control);
  2264. if (!skb) {
  2265. continue;
  2266. }
  2267. if (sp->rxd_mode == RXD_MODE_1) {
  2268. pci_unmap_single(sp->pdev, (dma_addr_t)
  2269. ((RxD1_t*)rxdp)->Buffer0_ptr,
  2270. dev->mtu +
  2271. HEADER_ETHERNET_II_802_3_SIZE
  2272. + HEADER_802_2_SIZE +
  2273. HEADER_SNAP_SIZE,
  2274. PCI_DMA_FROMDEVICE);
  2275. memset(rxdp, 0, sizeof(RxD1_t));
  2276. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2277. ba = &mac_control->rings[ring_no].
  2278. ba[blk][j];
  2279. pci_unmap_single(sp->pdev, (dma_addr_t)
  2280. ((RxD3_t*)rxdp)->Buffer0_ptr,
  2281. BUF0_LEN,
  2282. PCI_DMA_FROMDEVICE);
  2283. pci_unmap_single(sp->pdev, (dma_addr_t)
  2284. ((RxD3_t*)rxdp)->Buffer1_ptr,
  2285. BUF1_LEN,
  2286. PCI_DMA_FROMDEVICE);
  2287. pci_unmap_single(sp->pdev, (dma_addr_t)
  2288. ((RxD3_t*)rxdp)->Buffer2_ptr,
  2289. dev->mtu + 4,
  2290. PCI_DMA_FROMDEVICE);
  2291. memset(rxdp, 0, sizeof(RxD3_t));
  2292. } else {
  2293. pci_unmap_single(sp->pdev, (dma_addr_t)
  2294. ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
  2295. PCI_DMA_FROMDEVICE);
  2296. pci_unmap_single(sp->pdev, (dma_addr_t)
  2297. ((RxD3_t*)rxdp)->Buffer1_ptr,
  2298. l3l4hdr_size + 4,
  2299. PCI_DMA_FROMDEVICE);
  2300. pci_unmap_single(sp->pdev, (dma_addr_t)
  2301. ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
  2302. PCI_DMA_FROMDEVICE);
  2303. memset(rxdp, 0, sizeof(RxD3_t));
  2304. }
  2305. dev_kfree_skb(skb);
  2306. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2307. }
  2308. }
  2309. /**
  2310. * free_rx_buffers - Frees all Rx buffers
  2311. * @sp: device private variable.
  2312. * Description:
  2313. * This function will free all Rx buffers allocated by host.
  2314. * Return Value:
  2315. * NONE.
  2316. */
  2317. static void free_rx_buffers(struct s2io_nic *sp)
  2318. {
  2319. struct net_device *dev = sp->dev;
  2320. int i, blk = 0, buf_cnt = 0;
  2321. mac_info_t *mac_control;
  2322. struct config_param *config;
  2323. mac_control = &sp->mac_control;
  2324. config = &sp->config;
  2325. for (i = 0; i < config->rx_ring_num; i++) {
  2326. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2327. free_rxd_blk(sp,i,blk);
  2328. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2329. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2330. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2331. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2332. atomic_set(&sp->rx_bufs_left[i], 0);
  2333. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2334. dev->name, buf_cnt, i);
  2335. }
  2336. }
  2337. /**
  2338. * s2io_poll - Rx interrupt handler for NAPI support
  2339. * @dev : pointer to the device structure.
  2340. * @budget : The number of packets that were budgeted to be processed
  2341. * during one pass through the 'Poll" function.
  2342. * Description:
  2343. * Comes into picture only if NAPI support has been incorporated. It does
  2344. * the same thing that rx_intr_handler does, but not in a interrupt context
  2345. * also It will process only a given number of packets.
  2346. * Return value:
  2347. * 0 on success and 1 if there are No Rx packets to be processed.
  2348. */
  2349. #if defined(CONFIG_S2IO_NAPI)
  2350. static int s2io_poll(struct net_device *dev, int *budget)
  2351. {
  2352. nic_t *nic = dev->priv;
  2353. int pkt_cnt = 0, org_pkts_to_process;
  2354. mac_info_t *mac_control;
  2355. struct config_param *config;
  2356. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  2357. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2358. int i;
  2359. atomic_inc(&nic->isr_cnt);
  2360. mac_control = &nic->mac_control;
  2361. config = &nic->config;
  2362. nic->pkts_to_process = *budget;
  2363. if (nic->pkts_to_process > dev->quota)
  2364. nic->pkts_to_process = dev->quota;
  2365. org_pkts_to_process = nic->pkts_to_process;
  2366. writeq(val64, &bar0->rx_traffic_int);
  2367. val64 = readl(&bar0->rx_traffic_int);
  2368. for (i = 0; i < config->rx_ring_num; i++) {
  2369. rx_intr_handler(&mac_control->rings[i]);
  2370. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2371. if (!nic->pkts_to_process) {
  2372. /* Quota for the current iteration has been met */
  2373. goto no_rx;
  2374. }
  2375. }
  2376. if (!pkt_cnt)
  2377. pkt_cnt = 1;
  2378. dev->quota -= pkt_cnt;
  2379. *budget -= pkt_cnt;
  2380. netif_rx_complete(dev);
  2381. for (i = 0; i < config->rx_ring_num; i++) {
  2382. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2383. DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
  2384. DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
  2385. break;
  2386. }
  2387. }
  2388. /* Re enable the Rx interrupts. */
  2389. writeq(0x0, &bar0->rx_traffic_mask);
  2390. val64 = readl(&bar0->rx_traffic_mask);
  2391. atomic_dec(&nic->isr_cnt);
  2392. return 0;
  2393. no_rx:
  2394. dev->quota -= pkt_cnt;
  2395. *budget -= pkt_cnt;
  2396. for (i = 0; i < config->rx_ring_num; i++) {
  2397. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2398. DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
  2399. DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
  2400. break;
  2401. }
  2402. }
  2403. atomic_dec(&nic->isr_cnt);
  2404. return 1;
  2405. }
  2406. #endif
  2407. /**
  2408. * s2io_netpoll - Rx interrupt service handler for netpoll support
  2409. * @dev : pointer to the device structure.
  2410. * Description:
  2411. * Polling 'interrupt' - used by things like netconsole to send skbs
  2412. * without having to re-enable interrupts. It's not called while
  2413. * the interrupt routine is executing.
  2414. */
  2415. #ifdef CONFIG_NET_POLL_CONTROLLER
  2416. static void s2io_netpoll(struct net_device *dev)
  2417. {
  2418. nic_t *nic = dev->priv;
  2419. mac_info_t *mac_control;
  2420. struct config_param *config;
  2421. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  2422. u64 val64;
  2423. int i;
  2424. disable_irq(dev->irq);
  2425. atomic_inc(&nic->isr_cnt);
  2426. mac_control = &nic->mac_control;
  2427. config = &nic->config;
  2428. val64 = readq(&bar0->rx_traffic_int);
  2429. writeq(val64, &bar0->rx_traffic_int);
  2430. for (i = 0; i < config->rx_ring_num; i++)
  2431. rx_intr_handler(&mac_control->rings[i]);
  2432. for (i = 0; i < config->rx_ring_num; i++) {
  2433. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2434. DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
  2435. DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
  2436. break;
  2437. }
  2438. }
  2439. atomic_dec(&nic->isr_cnt);
  2440. enable_irq(dev->irq);
  2441. return;
  2442. }
  2443. #endif
  2444. /**
  2445. * rx_intr_handler - Rx interrupt handler
  2446. * @nic: device private variable.
  2447. * Description:
  2448. * If the interrupt is because of a received frame or if the
  2449. * receive ring contains fresh as yet un-processed frames,this function is
  2450. * called. It picks out the RxD at which place the last Rx processing had
  2451. * stopped and sends the skb to the OSM's Rx handler and then increments
  2452. * the offset.
  2453. * Return Value:
  2454. * NONE.
  2455. */
  2456. static void rx_intr_handler(ring_info_t *ring_data)
  2457. {
  2458. nic_t *nic = ring_data->nic;
  2459. struct net_device *dev = (struct net_device *) nic->dev;
  2460. int get_block, put_block, put_offset;
  2461. rx_curr_get_info_t get_info, put_info;
  2462. RxD_t *rxdp;
  2463. struct sk_buff *skb;
  2464. #ifndef CONFIG_S2IO_NAPI
  2465. int pkt_cnt = 0;
  2466. #endif
  2467. int i;
  2468. spin_lock(&nic->rx_lock);
  2469. if (atomic_read(&nic->card_state) == CARD_DOWN) {
  2470. DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
  2471. __FUNCTION__, dev->name);
  2472. spin_unlock(&nic->rx_lock);
  2473. return;
  2474. }
  2475. get_info = ring_data->rx_curr_get_info;
  2476. get_block = get_info.block_index;
  2477. put_info = ring_data->rx_curr_put_info;
  2478. put_block = put_info.block_index;
  2479. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2480. #ifndef CONFIG_S2IO_NAPI
  2481. spin_lock(&nic->put_lock);
  2482. put_offset = ring_data->put_pos;
  2483. spin_unlock(&nic->put_lock);
  2484. #else
  2485. put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
  2486. put_info.offset;
  2487. #endif
  2488. while (RXD_IS_UP2DT(rxdp)) {
  2489. /* If your are next to put index then it's FIFO full condition */
  2490. if ((get_block == put_block) &&
  2491. (get_info.offset + 1) == put_info.offset) {
  2492. DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
  2493. break;
  2494. }
  2495. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2496. if (skb == NULL) {
  2497. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2498. dev->name);
  2499. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2500. spin_unlock(&nic->rx_lock);
  2501. return;
  2502. }
  2503. if (nic->rxd_mode == RXD_MODE_1) {
  2504. pci_unmap_single(nic->pdev, (dma_addr_t)
  2505. ((RxD1_t*)rxdp)->Buffer0_ptr,
  2506. dev->mtu +
  2507. HEADER_ETHERNET_II_802_3_SIZE +
  2508. HEADER_802_2_SIZE +
  2509. HEADER_SNAP_SIZE,
  2510. PCI_DMA_FROMDEVICE);
  2511. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2512. pci_unmap_single(nic->pdev, (dma_addr_t)
  2513. ((RxD3_t*)rxdp)->Buffer0_ptr,
  2514. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2515. pci_unmap_single(nic->pdev, (dma_addr_t)
  2516. ((RxD3_t*)rxdp)->Buffer1_ptr,
  2517. BUF1_LEN, PCI_DMA_FROMDEVICE);
  2518. pci_unmap_single(nic->pdev, (dma_addr_t)
  2519. ((RxD3_t*)rxdp)->Buffer2_ptr,
  2520. dev->mtu + 4,
  2521. PCI_DMA_FROMDEVICE);
  2522. } else {
  2523. pci_unmap_single(nic->pdev, (dma_addr_t)
  2524. ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
  2525. PCI_DMA_FROMDEVICE);
  2526. pci_unmap_single(nic->pdev, (dma_addr_t)
  2527. ((RxD3_t*)rxdp)->Buffer1_ptr,
  2528. l3l4hdr_size + 4,
  2529. PCI_DMA_FROMDEVICE);
  2530. pci_unmap_single(nic->pdev, (dma_addr_t)
  2531. ((RxD3_t*)rxdp)->Buffer2_ptr,
  2532. dev->mtu, PCI_DMA_FROMDEVICE);
  2533. }
  2534. prefetch(skb->data);
  2535. rx_osm_handler(ring_data, rxdp);
  2536. get_info.offset++;
  2537. ring_data->rx_curr_get_info.offset = get_info.offset;
  2538. rxdp = ring_data->rx_blocks[get_block].
  2539. rxds[get_info.offset].virt_addr;
  2540. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2541. get_info.offset = 0;
  2542. ring_data->rx_curr_get_info.offset = get_info.offset;
  2543. get_block++;
  2544. if (get_block == ring_data->block_count)
  2545. get_block = 0;
  2546. ring_data->rx_curr_get_info.block_index = get_block;
  2547. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2548. }
  2549. #ifdef CONFIG_S2IO_NAPI
  2550. nic->pkts_to_process -= 1;
  2551. if (!nic->pkts_to_process)
  2552. break;
  2553. #else
  2554. pkt_cnt++;
  2555. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2556. break;
  2557. #endif
  2558. }
  2559. if (nic->lro) {
  2560. /* Clear all LRO sessions before exiting */
  2561. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2562. lro_t *lro = &nic->lro0_n[i];
  2563. if (lro->in_use) {
  2564. update_L3L4_header(nic, lro);
  2565. queue_rx_frame(lro->parent);
  2566. clear_lro_session(lro);
  2567. }
  2568. }
  2569. }
  2570. spin_unlock(&nic->rx_lock);
  2571. }
  2572. /**
  2573. * tx_intr_handler - Transmit interrupt handler
  2574. * @nic : device private variable
  2575. * Description:
  2576. * If an interrupt was raised to indicate DMA complete of the
  2577. * Tx packet, this function is called. It identifies the last TxD
  2578. * whose buffer was freed and frees all skbs whose data have already
  2579. * DMA'ed into the NICs internal memory.
  2580. * Return Value:
  2581. * NONE
  2582. */
  2583. static void tx_intr_handler(fifo_info_t *fifo_data)
  2584. {
  2585. nic_t *nic = fifo_data->nic;
  2586. struct net_device *dev = (struct net_device *) nic->dev;
  2587. tx_curr_get_info_t get_info, put_info;
  2588. struct sk_buff *skb;
  2589. TxD_t *txdlp;
  2590. get_info = fifo_data->tx_curr_get_info;
  2591. put_info = fifo_data->tx_curr_put_info;
  2592. txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
  2593. list_virt_addr;
  2594. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2595. (get_info.offset != put_info.offset) &&
  2596. (txdlp->Host_Control)) {
  2597. /* Check for TxD errors */
  2598. if (txdlp->Control_1 & TXD_T_CODE) {
  2599. unsigned long long err;
  2600. err = txdlp->Control_1 & TXD_T_CODE;
  2601. if (err & 0x1) {
  2602. nic->mac_control.stats_info->sw_stat.
  2603. parity_err_cnt++;
  2604. }
  2605. if ((err >> 48) == 0xA) {
  2606. DBG_PRINT(TX_DBG, "TxD returned due \
  2607. to loss of link\n");
  2608. }
  2609. else {
  2610. DBG_PRINT(ERR_DBG, "***TxD error \
  2611. %llx\n", err);
  2612. }
  2613. }
  2614. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2615. if (skb == NULL) {
  2616. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2617. __FUNCTION__);
  2618. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2619. return;
  2620. }
  2621. /* Updating the statistics block */
  2622. nic->stats.tx_bytes += skb->len;
  2623. dev_kfree_skb_irq(skb);
  2624. get_info.offset++;
  2625. if (get_info.offset == get_info.fifo_len + 1)
  2626. get_info.offset = 0;
  2627. txdlp = (TxD_t *) fifo_data->list_info
  2628. [get_info.offset].list_virt_addr;
  2629. fifo_data->tx_curr_get_info.offset =
  2630. get_info.offset;
  2631. }
  2632. spin_lock(&nic->tx_lock);
  2633. if (netif_queue_stopped(dev))
  2634. netif_wake_queue(dev);
  2635. spin_unlock(&nic->tx_lock);
  2636. }
  2637. /**
  2638. * s2io_mdio_write - Function to write in to MDIO registers
  2639. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2640. * @addr : address value
  2641. * @value : data value
  2642. * @dev : pointer to net_device structure
  2643. * Description:
  2644. * This function is used to write values to the MDIO registers
  2645. * NONE
  2646. */
  2647. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2648. {
  2649. u64 val64 = 0x0;
  2650. nic_t *sp = dev->priv;
  2651. XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
  2652. //address transaction
  2653. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2654. | MDIO_MMD_DEV_ADDR(mmd_type)
  2655. | MDIO_MMS_PRT_ADDR(0x0);
  2656. writeq(val64, &bar0->mdio_control);
  2657. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2658. writeq(val64, &bar0->mdio_control);
  2659. udelay(100);
  2660. //Data transaction
  2661. val64 = 0x0;
  2662. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2663. | MDIO_MMD_DEV_ADDR(mmd_type)
  2664. | MDIO_MMS_PRT_ADDR(0x0)
  2665. | MDIO_MDIO_DATA(value)
  2666. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2667. writeq(val64, &bar0->mdio_control);
  2668. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2669. writeq(val64, &bar0->mdio_control);
  2670. udelay(100);
  2671. val64 = 0x0;
  2672. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2673. | MDIO_MMD_DEV_ADDR(mmd_type)
  2674. | MDIO_MMS_PRT_ADDR(0x0)
  2675. | MDIO_OP(MDIO_OP_READ_TRANS);
  2676. writeq(val64, &bar0->mdio_control);
  2677. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2678. writeq(val64, &bar0->mdio_control);
  2679. udelay(100);
  2680. }
  2681. /**
  2682. * s2io_mdio_read - Function to write in to MDIO registers
  2683. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2684. * @addr : address value
  2685. * @dev : pointer to net_device structure
  2686. * Description:
  2687. * This function is used to read values to the MDIO registers
  2688. * NONE
  2689. */
  2690. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2691. {
  2692. u64 val64 = 0x0;
  2693. u64 rval64 = 0x0;
  2694. nic_t *sp = dev->priv;
  2695. XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
  2696. /* address transaction */
  2697. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2698. | MDIO_MMD_DEV_ADDR(mmd_type)
  2699. | MDIO_MMS_PRT_ADDR(0x0);
  2700. writeq(val64, &bar0->mdio_control);
  2701. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2702. writeq(val64, &bar0->mdio_control);
  2703. udelay(100);
  2704. /* Data transaction */
  2705. val64 = 0x0;
  2706. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2707. | MDIO_MMD_DEV_ADDR(mmd_type)
  2708. | MDIO_MMS_PRT_ADDR(0x0)
  2709. | MDIO_OP(MDIO_OP_READ_TRANS);
  2710. writeq(val64, &bar0->mdio_control);
  2711. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2712. writeq(val64, &bar0->mdio_control);
  2713. udelay(100);
  2714. /* Read the value from regs */
  2715. rval64 = readq(&bar0->mdio_control);
  2716. rval64 = rval64 & 0xFFFF0000;
  2717. rval64 = rval64 >> 16;
  2718. return rval64;
  2719. }
  2720. /**
  2721. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2722. * @counter : couter value to be updated
  2723. * @flag : flag to indicate the status
  2724. * @type : counter type
  2725. * Description:
  2726. * This function is to check the status of the xpak counters value
  2727. * NONE
  2728. */
  2729. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2730. {
  2731. u64 mask = 0x3;
  2732. u64 val64;
  2733. int i;
  2734. for(i = 0; i <index; i++)
  2735. mask = mask << 0x2;
  2736. if(flag > 0)
  2737. {
  2738. *counter = *counter + 1;
  2739. val64 = *regs_stat & mask;
  2740. val64 = val64 >> (index * 0x2);
  2741. val64 = val64 + 1;
  2742. if(val64 == 3)
  2743. {
  2744. switch(type)
  2745. {
  2746. case 1:
  2747. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2748. "service. Excessive temperatures may "
  2749. "result in premature transceiver "
  2750. "failure \n");
  2751. break;
  2752. case 2:
  2753. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2754. "service Excessive bias currents may "
  2755. "indicate imminent laser diode "
  2756. "failure \n");
  2757. break;
  2758. case 3:
  2759. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2760. "service Excessive laser output "
  2761. "power may saturate far-end "
  2762. "receiver\n");
  2763. break;
  2764. default:
  2765. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2766. "type \n");
  2767. }
  2768. val64 = 0x0;
  2769. }
  2770. val64 = val64 << (index * 0x2);
  2771. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2772. } else {
  2773. *regs_stat = *regs_stat & (~mask);
  2774. }
  2775. }
  2776. /**
  2777. * s2io_updt_xpak_counter - Function to update the xpak counters
  2778. * @dev : pointer to net_device struct
  2779. * Description:
  2780. * This function is to upate the status of the xpak counters value
  2781. * NONE
  2782. */
  2783. static void s2io_updt_xpak_counter(struct net_device *dev)
  2784. {
  2785. u16 flag = 0x0;
  2786. u16 type = 0x0;
  2787. u16 val16 = 0x0;
  2788. u64 val64 = 0x0;
  2789. u64 addr = 0x0;
  2790. nic_t *sp = dev->priv;
  2791. StatInfo_t *stat_info = sp->mac_control.stats_info;
  2792. /* Check the communication with the MDIO slave */
  2793. addr = 0x0000;
  2794. val64 = 0x0;
  2795. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2796. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2797. {
  2798. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2799. "Returned %llx\n", (unsigned long long)val64);
  2800. return;
  2801. }
  2802. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2803. if(val64 != 0x2040)
  2804. {
  2805. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2806. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2807. (unsigned long long)val64);
  2808. return;
  2809. }
  2810. /* Loading the DOM register to MDIO register */
  2811. addr = 0xA100;
  2812. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2813. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2814. /* Reading the Alarm flags */
  2815. addr = 0xA070;
  2816. val64 = 0x0;
  2817. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2818. flag = CHECKBIT(val64, 0x7);
  2819. type = 1;
  2820. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2821. &stat_info->xpak_stat.xpak_regs_stat,
  2822. 0x0, flag, type);
  2823. if(CHECKBIT(val64, 0x6))
  2824. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2825. flag = CHECKBIT(val64, 0x3);
  2826. type = 2;
  2827. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2828. &stat_info->xpak_stat.xpak_regs_stat,
  2829. 0x2, flag, type);
  2830. if(CHECKBIT(val64, 0x2))
  2831. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2832. flag = CHECKBIT(val64, 0x1);
  2833. type = 3;
  2834. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2835. &stat_info->xpak_stat.xpak_regs_stat,
  2836. 0x4, flag, type);
  2837. if(CHECKBIT(val64, 0x0))
  2838. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2839. /* Reading the Warning flags */
  2840. addr = 0xA074;
  2841. val64 = 0x0;
  2842. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2843. if(CHECKBIT(val64, 0x7))
  2844. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2845. if(CHECKBIT(val64, 0x6))
  2846. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2847. if(CHECKBIT(val64, 0x3))
  2848. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2849. if(CHECKBIT(val64, 0x2))
  2850. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2851. if(CHECKBIT(val64, 0x1))
  2852. stat_info->xpak_stat.warn_laser_output_power_high++;
  2853. if(CHECKBIT(val64, 0x0))
  2854. stat_info->xpak_stat.warn_laser_output_power_low++;
  2855. }
  2856. /**
  2857. * alarm_intr_handler - Alarm Interrrupt handler
  2858. * @nic: device private variable
  2859. * Description: If the interrupt was neither because of Rx packet or Tx
  2860. * complete, this function is called. If the interrupt was to indicate
  2861. * a loss of link, the OSM link status handler is invoked for any other
  2862. * alarm interrupt the block that raised the interrupt is displayed
  2863. * and a H/W reset is issued.
  2864. * Return Value:
  2865. * NONE
  2866. */
  2867. static void alarm_intr_handler(struct s2io_nic *nic)
  2868. {
  2869. struct net_device *dev = (struct net_device *) nic->dev;
  2870. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  2871. register u64 val64 = 0, err_reg = 0;
  2872. u64 cnt;
  2873. int i;
  2874. nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
  2875. /* Handling the XPAK counters update */
  2876. if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
  2877. /* waiting for an hour */
  2878. nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
  2879. } else {
  2880. s2io_updt_xpak_counter(dev);
  2881. /* reset the count to zero */
  2882. nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
  2883. }
  2884. /* Handling link status change error Intr */
  2885. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2886. err_reg = readq(&bar0->mac_rmac_err_reg);
  2887. writeq(err_reg, &bar0->mac_rmac_err_reg);
  2888. if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
  2889. schedule_work(&nic->set_link_task);
  2890. }
  2891. }
  2892. /* Handling Ecc errors */
  2893. val64 = readq(&bar0->mc_err_reg);
  2894. writeq(val64, &bar0->mc_err_reg);
  2895. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  2896. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  2897. nic->mac_control.stats_info->sw_stat.
  2898. double_ecc_errs++;
  2899. DBG_PRINT(INIT_DBG, "%s: Device indicates ",
  2900. dev->name);
  2901. DBG_PRINT(INIT_DBG, "double ECC error!!\n");
  2902. if (nic->device_type != XFRAME_II_DEVICE) {
  2903. /* Reset XframeI only if critical error */
  2904. if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  2905. MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
  2906. netif_stop_queue(dev);
  2907. schedule_work(&nic->rst_timer_task);
  2908. nic->mac_control.stats_info->sw_stat.
  2909. soft_reset_cnt++;
  2910. }
  2911. }
  2912. } else {
  2913. nic->mac_control.stats_info->sw_stat.
  2914. single_ecc_errs++;
  2915. }
  2916. }
  2917. /* In case of a serious error, the device will be Reset. */
  2918. val64 = readq(&bar0->serr_source);
  2919. if (val64 & SERR_SOURCE_ANY) {
  2920. nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
  2921. DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
  2922. DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
  2923. (unsigned long long)val64);
  2924. netif_stop_queue(dev);
  2925. schedule_work(&nic->rst_timer_task);
  2926. nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  2927. }
  2928. /*
  2929. * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
  2930. * Error occurs, the adapter will be recycled by disabling the
  2931. * adapter enable bit and enabling it again after the device
  2932. * becomes Quiescent.
  2933. */
  2934. val64 = readq(&bar0->pcc_err_reg);
  2935. writeq(val64, &bar0->pcc_err_reg);
  2936. if (val64 & PCC_FB_ECC_DB_ERR) {
  2937. u64 ac = readq(&bar0->adapter_control);
  2938. ac &= ~(ADAPTER_CNTL_EN);
  2939. writeq(ac, &bar0->adapter_control);
  2940. ac = readq(&bar0->adapter_control);
  2941. schedule_work(&nic->set_link_task);
  2942. }
  2943. /* Check for data parity error */
  2944. val64 = readq(&bar0->pic_int_status);
  2945. if (val64 & PIC_INT_GPIO) {
  2946. val64 = readq(&bar0->gpio_int_reg);
  2947. if (val64 & GPIO_INT_REG_DP_ERR_INT) {
  2948. nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
  2949. schedule_work(&nic->rst_timer_task);
  2950. nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  2951. }
  2952. }
  2953. /* Check for ring full counter */
  2954. if (nic->device_type & XFRAME_II_DEVICE) {
  2955. val64 = readq(&bar0->ring_bump_counter1);
  2956. for (i=0; i<4; i++) {
  2957. cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
  2958. cnt >>= 64 - ((i+1)*16);
  2959. nic->mac_control.stats_info->sw_stat.ring_full_cnt
  2960. += cnt;
  2961. }
  2962. val64 = readq(&bar0->ring_bump_counter2);
  2963. for (i=0; i<4; i++) {
  2964. cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
  2965. cnt >>= 64 - ((i+1)*16);
  2966. nic->mac_control.stats_info->sw_stat.ring_full_cnt
  2967. += cnt;
  2968. }
  2969. }
  2970. /* Other type of interrupts are not being handled now, TODO */
  2971. }
  2972. /**
  2973. * wait_for_cmd_complete - waits for a command to complete.
  2974. * @sp : private member of the device structure, which is a pointer to the
  2975. * s2io_nic structure.
  2976. * Description: Function that waits for a command to Write into RMAC
  2977. * ADDR DATA registers to be completed and returns either success or
  2978. * error depending on whether the command was complete or not.
  2979. * Return value:
  2980. * SUCCESS on success and FAILURE on failure.
  2981. */
  2982. static int wait_for_cmd_complete(void *addr, u64 busy_bit)
  2983. {
  2984. int ret = FAILURE, cnt = 0;
  2985. u64 val64;
  2986. while (TRUE) {
  2987. val64 = readq(addr);
  2988. if (!(val64 & busy_bit)) {
  2989. ret = SUCCESS;
  2990. break;
  2991. }
  2992. if(in_interrupt())
  2993. mdelay(50);
  2994. else
  2995. msleep(50);
  2996. if (cnt++ > 10)
  2997. break;
  2998. }
  2999. return ret;
  3000. }
  3001. /**
  3002. * s2io_reset - Resets the card.
  3003. * @sp : private member of the device structure.
  3004. * Description: Function to Reset the card. This function then also
  3005. * restores the previously saved PCI configuration space registers as
  3006. * the card reset also resets the configuration space.
  3007. * Return value:
  3008. * void.
  3009. */
  3010. static void s2io_reset(nic_t * sp)
  3011. {
  3012. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  3013. u64 val64;
  3014. u16 subid, pci_cmd;
  3015. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3016. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3017. val64 = SW_RESET_ALL;
  3018. writeq(val64, &bar0->sw_reset);
  3019. /*
  3020. * At this stage, if the PCI write is indeed completed, the
  3021. * card is reset and so is the PCI Config space of the device.
  3022. * So a read cannot be issued at this stage on any of the
  3023. * registers to ensure the write into "sw_reset" register
  3024. * has gone through.
  3025. * Question: Is there any system call that will explicitly force
  3026. * all the write commands still pending on the bus to be pushed
  3027. * through?
  3028. * As of now I'am just giving a 250ms delay and hoping that the
  3029. * PCI write to sw_reset register is done by this time.
  3030. */
  3031. msleep(250);
  3032. if (strstr(sp->product_name, "CX4")) {
  3033. msleep(750);
  3034. }
  3035. /* Restore the PCI state saved during initialization. */
  3036. pci_restore_state(sp->pdev);
  3037. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  3038. pci_cmd);
  3039. s2io_init_pci(sp);
  3040. msleep(250);
  3041. /* Set swapper to enable I/O register access */
  3042. s2io_set_swapper(sp);
  3043. /* Restore the MSIX table entries from local variables */
  3044. restore_xmsi_data(sp);
  3045. /* Clear certain PCI/PCI-X fields after reset */
  3046. if (sp->device_type == XFRAME_II_DEVICE) {
  3047. /* Clear parity err detect bit */
  3048. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3049. /* Clearing PCIX Ecc status register */
  3050. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3051. /* Clearing PCI_STATUS error reflected here */
  3052. writeq(BIT(62), &bar0->txpic_int_reg);
  3053. }
  3054. /* Reset device statistics maintained by OS */
  3055. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3056. /* SXE-002: Configure link and activity LED to turn it off */
  3057. subid = sp->pdev->subsystem_device;
  3058. if (((subid & 0xFF) >= 0x07) &&
  3059. (sp->device_type == XFRAME_I_DEVICE)) {
  3060. val64 = readq(&bar0->gpio_control);
  3061. val64 |= 0x0000800000000000ULL;
  3062. writeq(val64, &bar0->gpio_control);
  3063. val64 = 0x0411040400000000ULL;
  3064. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3065. }
  3066. /*
  3067. * Clear spurious ECC interrupts that would have occured on
  3068. * XFRAME II cards after reset.
  3069. */
  3070. if (sp->device_type == XFRAME_II_DEVICE) {
  3071. val64 = readq(&bar0->pcc_err_reg);
  3072. writeq(val64, &bar0->pcc_err_reg);
  3073. }
  3074. sp->device_enabled_once = FALSE;
  3075. }
  3076. /**
  3077. * s2io_set_swapper - to set the swapper controle on the card
  3078. * @sp : private member of the device structure,
  3079. * pointer to the s2io_nic structure.
  3080. * Description: Function to set the swapper control on the card
  3081. * correctly depending on the 'endianness' of the system.
  3082. * Return value:
  3083. * SUCCESS on success and FAILURE on failure.
  3084. */
  3085. static int s2io_set_swapper(nic_t * sp)
  3086. {
  3087. struct net_device *dev = sp->dev;
  3088. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  3089. u64 val64, valt, valr;
  3090. /*
  3091. * Set proper endian settings and verify the same by reading
  3092. * the PIF Feed-back register.
  3093. */
  3094. val64 = readq(&bar0->pif_rd_swapper_fb);
  3095. if (val64 != 0x0123456789ABCDEFULL) {
  3096. int i = 0;
  3097. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3098. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3099. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3100. 0}; /* FE=0, SE=0 */
  3101. while(i<4) {
  3102. writeq(value[i], &bar0->swapper_ctrl);
  3103. val64 = readq(&bar0->pif_rd_swapper_fb);
  3104. if (val64 == 0x0123456789ABCDEFULL)
  3105. break;
  3106. i++;
  3107. }
  3108. if (i == 4) {
  3109. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3110. dev->name);
  3111. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3112. (unsigned long long) val64);
  3113. return FAILURE;
  3114. }
  3115. valr = value[i];
  3116. } else {
  3117. valr = readq(&bar0->swapper_ctrl);
  3118. }
  3119. valt = 0x0123456789ABCDEFULL;
  3120. writeq(valt, &bar0->xmsi_address);
  3121. val64 = readq(&bar0->xmsi_address);
  3122. if(val64 != valt) {
  3123. int i = 0;
  3124. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3125. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3126. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3127. 0}; /* FE=0, SE=0 */
  3128. while(i<4) {
  3129. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3130. writeq(valt, &bar0->xmsi_address);
  3131. val64 = readq(&bar0->xmsi_address);
  3132. if(val64 == valt)
  3133. break;
  3134. i++;
  3135. }
  3136. if(i == 4) {
  3137. unsigned long long x = val64;
  3138. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3139. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3140. return FAILURE;
  3141. }
  3142. }
  3143. val64 = readq(&bar0->swapper_ctrl);
  3144. val64 &= 0xFFFF000000000000ULL;
  3145. #ifdef __BIG_ENDIAN
  3146. /*
  3147. * The device by default set to a big endian format, so a
  3148. * big endian driver need not set anything.
  3149. */
  3150. val64 |= (SWAPPER_CTRL_TXP_FE |
  3151. SWAPPER_CTRL_TXP_SE |
  3152. SWAPPER_CTRL_TXD_R_FE |
  3153. SWAPPER_CTRL_TXD_W_FE |
  3154. SWAPPER_CTRL_TXF_R_FE |
  3155. SWAPPER_CTRL_RXD_R_FE |
  3156. SWAPPER_CTRL_RXD_W_FE |
  3157. SWAPPER_CTRL_RXF_W_FE |
  3158. SWAPPER_CTRL_XMSI_FE |
  3159. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3160. if (sp->intr_type == INTA)
  3161. val64 |= SWAPPER_CTRL_XMSI_SE;
  3162. writeq(val64, &bar0->swapper_ctrl);
  3163. #else
  3164. /*
  3165. * Initially we enable all bits to make it accessible by the
  3166. * driver, then we selectively enable only those bits that
  3167. * we want to set.
  3168. */
  3169. val64 |= (SWAPPER_CTRL_TXP_FE |
  3170. SWAPPER_CTRL_TXP_SE |
  3171. SWAPPER_CTRL_TXD_R_FE |
  3172. SWAPPER_CTRL_TXD_R_SE |
  3173. SWAPPER_CTRL_TXD_W_FE |
  3174. SWAPPER_CTRL_TXD_W_SE |
  3175. SWAPPER_CTRL_TXF_R_FE |
  3176. SWAPPER_CTRL_RXD_R_FE |
  3177. SWAPPER_CTRL_RXD_R_SE |
  3178. SWAPPER_CTRL_RXD_W_FE |
  3179. SWAPPER_CTRL_RXD_W_SE |
  3180. SWAPPER_CTRL_RXF_W_FE |
  3181. SWAPPER_CTRL_XMSI_FE |
  3182. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3183. if (sp->intr_type == INTA)
  3184. val64 |= SWAPPER_CTRL_XMSI_SE;
  3185. writeq(val64, &bar0->swapper_ctrl);
  3186. #endif
  3187. val64 = readq(&bar0->swapper_ctrl);
  3188. /*
  3189. * Verifying if endian settings are accurate by reading a
  3190. * feedback register.
  3191. */
  3192. val64 = readq(&bar0->pif_rd_swapper_fb);
  3193. if (val64 != 0x0123456789ABCDEFULL) {
  3194. /* Endian settings are incorrect, calls for another dekko. */
  3195. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3196. dev->name);
  3197. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3198. (unsigned long long) val64);
  3199. return FAILURE;
  3200. }
  3201. return SUCCESS;
  3202. }
  3203. static int wait_for_msix_trans(nic_t *nic, int i)
  3204. {
  3205. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  3206. u64 val64;
  3207. int ret = 0, cnt = 0;
  3208. do {
  3209. val64 = readq(&bar0->xmsi_access);
  3210. if (!(val64 & BIT(15)))
  3211. break;
  3212. mdelay(1);
  3213. cnt++;
  3214. } while(cnt < 5);
  3215. if (cnt == 5) {
  3216. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3217. ret = 1;
  3218. }
  3219. return ret;
  3220. }
  3221. static void restore_xmsi_data(nic_t *nic)
  3222. {
  3223. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  3224. u64 val64;
  3225. int i;
  3226. for (i=0; i< nic->avail_msix_vectors; i++) {
  3227. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3228. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3229. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3230. writeq(val64, &bar0->xmsi_access);
  3231. if (wait_for_msix_trans(nic, i)) {
  3232. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3233. continue;
  3234. }
  3235. }
  3236. }
  3237. static void store_xmsi_data(nic_t *nic)
  3238. {
  3239. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  3240. u64 val64, addr, data;
  3241. int i;
  3242. /* Store and display */
  3243. for (i=0; i< nic->avail_msix_vectors; i++) {
  3244. val64 = (BIT(15) | vBIT(i, 26, 6));
  3245. writeq(val64, &bar0->xmsi_access);
  3246. if (wait_for_msix_trans(nic, i)) {
  3247. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3248. continue;
  3249. }
  3250. addr = readq(&bar0->xmsi_address);
  3251. data = readq(&bar0->xmsi_data);
  3252. if (addr && data) {
  3253. nic->msix_info[i].addr = addr;
  3254. nic->msix_info[i].data = data;
  3255. }
  3256. }
  3257. }
  3258. int s2io_enable_msi(nic_t *nic)
  3259. {
  3260. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  3261. u16 msi_ctrl, msg_val;
  3262. struct config_param *config = &nic->config;
  3263. struct net_device *dev = nic->dev;
  3264. u64 val64, tx_mat, rx_mat;
  3265. int i, err;
  3266. val64 = readq(&bar0->pic_control);
  3267. val64 &= ~BIT(1);
  3268. writeq(val64, &bar0->pic_control);
  3269. err = pci_enable_msi(nic->pdev);
  3270. if (err) {
  3271. DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
  3272. nic->dev->name);
  3273. return err;
  3274. }
  3275. /*
  3276. * Enable MSI and use MSI-1 in stead of the standard MSI-0
  3277. * for interrupt handling.
  3278. */
  3279. pci_read_config_word(nic->pdev, 0x4c, &msg_val);
  3280. msg_val ^= 0x1;
  3281. pci_write_config_word(nic->pdev, 0x4c, msg_val);
  3282. pci_read_config_word(nic->pdev, 0x4c, &msg_val);
  3283. pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
  3284. msi_ctrl |= 0x10;
  3285. pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
  3286. /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
  3287. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3288. for (i=0; i<config->tx_fifo_num; i++) {
  3289. tx_mat |= TX_MAT_SET(i, 1);
  3290. }
  3291. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3292. rx_mat = readq(&bar0->rx_mat);
  3293. for (i=0; i<config->rx_ring_num; i++) {
  3294. rx_mat |= RX_MAT_SET(i, 1);
  3295. }
  3296. writeq(rx_mat, &bar0->rx_mat);
  3297. dev->irq = nic->pdev->irq;
  3298. return 0;
  3299. }
  3300. static int s2io_enable_msi_x(nic_t *nic)
  3301. {
  3302. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  3303. u64 tx_mat, rx_mat;
  3304. u16 msi_control; /* Temp variable */
  3305. int ret, i, j, msix_indx = 1;
  3306. nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
  3307. GFP_KERNEL);
  3308. if (nic->entries == NULL) {
  3309. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
  3310. return -ENOMEM;
  3311. }
  3312. memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3313. nic->s2io_entries =
  3314. kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
  3315. GFP_KERNEL);
  3316. if (nic->s2io_entries == NULL) {
  3317. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
  3318. kfree(nic->entries);
  3319. return -ENOMEM;
  3320. }
  3321. memset(nic->s2io_entries, 0,
  3322. MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3323. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3324. nic->entries[i].entry = i;
  3325. nic->s2io_entries[i].entry = i;
  3326. nic->s2io_entries[i].arg = NULL;
  3327. nic->s2io_entries[i].in_use = 0;
  3328. }
  3329. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3330. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3331. tx_mat |= TX_MAT_SET(i, msix_indx);
  3332. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3333. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3334. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3335. }
  3336. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3337. if (!nic->config.bimodal) {
  3338. rx_mat = readq(&bar0->rx_mat);
  3339. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3340. rx_mat |= RX_MAT_SET(j, msix_indx);
  3341. nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
  3342. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3343. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3344. }
  3345. writeq(rx_mat, &bar0->rx_mat);
  3346. } else {
  3347. tx_mat = readq(&bar0->tx_mat0_n[7]);
  3348. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3349. tx_mat |= TX_MAT_SET(i, msix_indx);
  3350. nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
  3351. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3352. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3353. }
  3354. writeq(tx_mat, &bar0->tx_mat0_n[7]);
  3355. }
  3356. nic->avail_msix_vectors = 0;
  3357. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3358. /* We fail init if error or we get less vectors than min required */
  3359. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3360. nic->avail_msix_vectors = ret;
  3361. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3362. }
  3363. if (ret) {
  3364. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3365. kfree(nic->entries);
  3366. kfree(nic->s2io_entries);
  3367. nic->entries = NULL;
  3368. nic->s2io_entries = NULL;
  3369. nic->avail_msix_vectors = 0;
  3370. return -ENOMEM;
  3371. }
  3372. if (!nic->avail_msix_vectors)
  3373. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3374. /*
  3375. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3376. * in the herc NIC. (Temp change, needs to be removed later)
  3377. */
  3378. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3379. msi_control |= 0x1; /* Enable MSI */
  3380. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3381. return 0;
  3382. }
  3383. /* ********************************************************* *
  3384. * Functions defined below concern the OS part of the driver *
  3385. * ********************************************************* */
  3386. /**
  3387. * s2io_open - open entry point of the driver
  3388. * @dev : pointer to the device structure.
  3389. * Description:
  3390. * This function is the open entry point of the driver. It mainly calls a
  3391. * function to allocate Rx buffers and inserts them into the buffer
  3392. * descriptors and then enables the Rx part of the NIC.
  3393. * Return value:
  3394. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3395. * file on failure.
  3396. */
  3397. static int s2io_open(struct net_device *dev)
  3398. {
  3399. nic_t *sp = dev->priv;
  3400. int err = 0;
  3401. /*
  3402. * Make sure you have link off by default every time
  3403. * Nic is initialized
  3404. */
  3405. netif_carrier_off(dev);
  3406. sp->last_link_state = 0;
  3407. /* Initialize H/W and enable interrupts */
  3408. err = s2io_card_up(sp);
  3409. if (err) {
  3410. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3411. dev->name);
  3412. if (err == -ENODEV)
  3413. goto hw_init_failed;
  3414. else
  3415. goto hw_enable_failed;
  3416. }
  3417. /* Store the values of the MSIX table in the nic_t structure */
  3418. store_xmsi_data(sp);
  3419. /* After proper initialization of H/W, register ISR */
  3420. if (sp->intr_type == MSI) {
  3421. err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
  3422. IRQF_SHARED, sp->name, dev);
  3423. if (err) {
  3424. DBG_PRINT(ERR_DBG, "%s: MSI registration \
  3425. failed\n", dev->name);
  3426. goto isr_registration_failed;
  3427. }
  3428. }
  3429. if (sp->intr_type == MSI_X) {
  3430. int i;
  3431. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  3432. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  3433. sprintf(sp->desc1, "%s:MSI-X-%d-TX",
  3434. dev->name, i);
  3435. err = request_irq(sp->entries[i].vector,
  3436. s2io_msix_fifo_handle, 0, sp->desc1,
  3437. sp->s2io_entries[i].arg);
  3438. DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
  3439. (unsigned long long)sp->msix_info[i].addr);
  3440. } else {
  3441. sprintf(sp->desc2, "%s:MSI-X-%d-RX",
  3442. dev->name, i);
  3443. err = request_irq(sp->entries[i].vector,
  3444. s2io_msix_ring_handle, 0, sp->desc2,
  3445. sp->s2io_entries[i].arg);
  3446. DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
  3447. (unsigned long long)sp->msix_info[i].addr);
  3448. }
  3449. if (err) {
  3450. DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
  3451. failed\n", dev->name, i);
  3452. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  3453. goto isr_registration_failed;
  3454. }
  3455. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  3456. }
  3457. }
  3458. if (sp->intr_type == INTA) {
  3459. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  3460. sp->name, dev);
  3461. if (err) {
  3462. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  3463. dev->name);
  3464. goto isr_registration_failed;
  3465. }
  3466. }
  3467. if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
  3468. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3469. err = -ENODEV;
  3470. goto setting_mac_address_failed;
  3471. }
  3472. netif_start_queue(dev);
  3473. return 0;
  3474. setting_mac_address_failed:
  3475. if (sp->intr_type != MSI_X)
  3476. free_irq(sp->pdev->irq, dev);
  3477. isr_registration_failed:
  3478. del_timer_sync(&sp->alarm_timer);
  3479. if (sp->intr_type == MSI_X) {
  3480. int i;
  3481. u16 msi_control; /* Temp variable */
  3482. for (i=1; (sp->s2io_entries[i].in_use ==
  3483. MSIX_REGISTERED_SUCCESS); i++) {
  3484. int vector = sp->entries[i].vector;
  3485. void *arg = sp->s2io_entries[i].arg;
  3486. free_irq(vector, arg);
  3487. }
  3488. pci_disable_msix(sp->pdev);
  3489. /* Temp */
  3490. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3491. msi_control &= 0xFFFE; /* Disable MSI */
  3492. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3493. }
  3494. else if (sp->intr_type == MSI)
  3495. pci_disable_msi(sp->pdev);
  3496. hw_enable_failed:
  3497. s2io_reset(sp);
  3498. hw_init_failed:
  3499. if (sp->intr_type == MSI_X) {
  3500. if (sp->entries)
  3501. kfree(sp->entries);
  3502. if (sp->s2io_entries)
  3503. kfree(sp->s2io_entries);
  3504. }
  3505. return err;
  3506. }
  3507. /**
  3508. * s2io_close -close entry point of the driver
  3509. * @dev : device pointer.
  3510. * Description:
  3511. * This is the stop entry point of the driver. It needs to undo exactly
  3512. * whatever was done by the open entry point,thus it's usually referred to
  3513. * as the close function.Among other things this function mainly stops the
  3514. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3515. * Return value:
  3516. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3517. * file on failure.
  3518. */
  3519. static int s2io_close(struct net_device *dev)
  3520. {
  3521. nic_t *sp = dev->priv;
  3522. flush_scheduled_work();
  3523. netif_stop_queue(dev);
  3524. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3525. s2io_card_down(sp, 1);
  3526. sp->device_close_flag = TRUE; /* Device is shut down. */
  3527. return 0;
  3528. }
  3529. /**
  3530. * s2io_xmit - Tx entry point of te driver
  3531. * @skb : the socket buffer containing the Tx data.
  3532. * @dev : device pointer.
  3533. * Description :
  3534. * This function is the Tx entry point of the driver. S2IO NIC supports
  3535. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3536. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3537. * not be upadted.
  3538. * Return value:
  3539. * 0 on success & 1 on failure.
  3540. */
  3541. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3542. {
  3543. nic_t *sp = dev->priv;
  3544. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3545. register u64 val64;
  3546. TxD_t *txdp;
  3547. TxFIFO_element_t __iomem *tx_fifo;
  3548. unsigned long flags;
  3549. #ifdef NETIF_F_TSO
  3550. int mss;
  3551. #endif
  3552. u16 vlan_tag = 0;
  3553. int vlan_priority = 0;
  3554. mac_info_t *mac_control;
  3555. struct config_param *config;
  3556. mac_control = &sp->mac_control;
  3557. config = &sp->config;
  3558. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3559. spin_lock_irqsave(&sp->tx_lock, flags);
  3560. if (atomic_read(&sp->card_state) == CARD_DOWN) {
  3561. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3562. dev->name);
  3563. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3564. dev_kfree_skb(skb);
  3565. return 0;
  3566. }
  3567. queue = 0;
  3568. /* Get Fifo number to Transmit based on vlan priority */
  3569. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3570. vlan_tag = vlan_tx_tag_get(skb);
  3571. vlan_priority = vlan_tag >> 13;
  3572. queue = config->fifo_mapping[vlan_priority];
  3573. }
  3574. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3575. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3576. txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
  3577. list_virt_addr;
  3578. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3579. /* Avoid "put" pointer going beyond "get" pointer */
  3580. if (txdp->Host_Control ||
  3581. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3582. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3583. netif_stop_queue(dev);
  3584. dev_kfree_skb(skb);
  3585. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3586. return 0;
  3587. }
  3588. /* A buffer with no data will be dropped */
  3589. if (!skb->len) {
  3590. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3591. dev_kfree_skb(skb);
  3592. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3593. return 0;
  3594. }
  3595. txdp->Control_1 = 0;
  3596. txdp->Control_2 = 0;
  3597. #ifdef NETIF_F_TSO
  3598. mss = skb_shinfo(skb)->gso_size;
  3599. if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3600. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3601. txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
  3602. }
  3603. #endif
  3604. if (skb->ip_summed == CHECKSUM_HW) {
  3605. txdp->Control_2 |=
  3606. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3607. TXD_TX_CKO_UDP_EN);
  3608. }
  3609. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3610. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3611. txdp->Control_2 |= config->tx_intr_type;
  3612. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3613. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3614. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3615. }
  3616. frg_len = skb->len - skb->data_len;
  3617. if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP) {
  3618. int ufo_size;
  3619. ufo_size = skb_shinfo(skb)->gso_size;
  3620. ufo_size &= ~7;
  3621. txdp->Control_1 |= TXD_UFO_EN;
  3622. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3623. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3624. #ifdef __BIG_ENDIAN
  3625. sp->ufo_in_band_v[put_off] =
  3626. (u64)skb_shinfo(skb)->ip6_frag_id;
  3627. #else
  3628. sp->ufo_in_band_v[put_off] =
  3629. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3630. #endif
  3631. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3632. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3633. sp->ufo_in_band_v,
  3634. sizeof(u64), PCI_DMA_TODEVICE);
  3635. txdp++;
  3636. txdp->Control_1 = 0;
  3637. txdp->Control_2 = 0;
  3638. }
  3639. txdp->Buffer_Pointer = pci_map_single
  3640. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3641. txdp->Host_Control = (unsigned long) skb;
  3642. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3643. if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
  3644. txdp->Control_1 |= TXD_UFO_EN;
  3645. frg_cnt = skb_shinfo(skb)->nr_frags;
  3646. /* For fragmented SKB. */
  3647. for (i = 0; i < frg_cnt; i++) {
  3648. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3649. /* A '0' length fragment will be ignored */
  3650. if (!frag->size)
  3651. continue;
  3652. txdp++;
  3653. txdp->Buffer_Pointer = (u64) pci_map_page
  3654. (sp->pdev, frag->page, frag->page_offset,
  3655. frag->size, PCI_DMA_TODEVICE);
  3656. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3657. if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
  3658. txdp->Control_1 |= TXD_UFO_EN;
  3659. }
  3660. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3661. if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
  3662. frg_cnt++; /* as Txd0 was used for inband header */
  3663. tx_fifo = mac_control->tx_FIFO_start[queue];
  3664. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3665. writeq(val64, &tx_fifo->TxDL_Pointer);
  3666. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3667. TX_FIFO_LAST_LIST);
  3668. #ifdef NETIF_F_TSO
  3669. if (mss)
  3670. val64 |= TX_FIFO_SPECIAL_FUNC;
  3671. #endif
  3672. if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
  3673. val64 |= TX_FIFO_SPECIAL_FUNC;
  3674. writeq(val64, &tx_fifo->List_Control);
  3675. mmiowb();
  3676. put_off++;
  3677. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3678. put_off = 0;
  3679. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3680. /* Avoid "put" pointer going beyond "get" pointer */
  3681. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3682. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3683. DBG_PRINT(TX_DBG,
  3684. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3685. put_off, get_off);
  3686. netif_stop_queue(dev);
  3687. }
  3688. dev->trans_start = jiffies;
  3689. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3690. return 0;
  3691. }
  3692. static void
  3693. s2io_alarm_handle(unsigned long data)
  3694. {
  3695. nic_t *sp = (nic_t *)data;
  3696. alarm_intr_handler(sp);
  3697. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3698. }
  3699. static irqreturn_t
  3700. s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
  3701. {
  3702. struct net_device *dev = (struct net_device *) dev_id;
  3703. nic_t *sp = dev->priv;
  3704. int i;
  3705. int ret;
  3706. mac_info_t *mac_control;
  3707. struct config_param *config;
  3708. atomic_inc(&sp->isr_cnt);
  3709. mac_control = &sp->mac_control;
  3710. config = &sp->config;
  3711. DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
  3712. /* If Intr is because of Rx Traffic */
  3713. for (i = 0; i < config->rx_ring_num; i++)
  3714. rx_intr_handler(&mac_control->rings[i]);
  3715. /* If Intr is because of Tx Traffic */
  3716. for (i = 0; i < config->tx_fifo_num; i++)
  3717. tx_intr_handler(&mac_control->fifos[i]);
  3718. /*
  3719. * If the Rx buffer count is below the panic threshold then
  3720. * reallocate the buffers from the interrupt handler itself,
  3721. * else schedule a tasklet to reallocate the buffers.
  3722. */
  3723. for (i = 0; i < config->rx_ring_num; i++) {
  3724. if (!sp->lro) {
  3725. int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
  3726. int level = rx_buffer_level(sp, rxb_size, i);
  3727. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3728. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
  3729. dev->name);
  3730. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3731. if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
  3732. DBG_PRINT(ERR_DBG, "%s:Out of memory",
  3733. dev->name);
  3734. DBG_PRINT(ERR_DBG, " in ISR!!\n");
  3735. clear_bit(0, (&sp->tasklet_status));
  3736. atomic_dec(&sp->isr_cnt);
  3737. return IRQ_HANDLED;
  3738. }
  3739. clear_bit(0, (&sp->tasklet_status));
  3740. } else if (level == LOW) {
  3741. tasklet_schedule(&sp->task);
  3742. }
  3743. }
  3744. else if (fill_rx_buffers(sp, i) == -ENOMEM) {
  3745. DBG_PRINT(ERR_DBG, "%s:Out of memory",
  3746. dev->name);
  3747. DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
  3748. break;
  3749. }
  3750. }
  3751. atomic_dec(&sp->isr_cnt);
  3752. return IRQ_HANDLED;
  3753. }
  3754. static irqreturn_t
  3755. s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
  3756. {
  3757. ring_info_t *ring = (ring_info_t *)dev_id;
  3758. nic_t *sp = ring->nic;
  3759. struct net_device *dev = (struct net_device *) dev_id;
  3760. int rxb_size, level, rng_n;
  3761. atomic_inc(&sp->isr_cnt);
  3762. rx_intr_handler(ring);
  3763. rng_n = ring->ring_no;
  3764. if (!sp->lro) {
  3765. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3766. level = rx_buffer_level(sp, rxb_size, rng_n);
  3767. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3768. int ret;
  3769. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3770. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3771. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3772. DBG_PRINT(ERR_DBG, "Out of memory in %s",
  3773. __FUNCTION__);
  3774. clear_bit(0, (&sp->tasklet_status));
  3775. return IRQ_HANDLED;
  3776. }
  3777. clear_bit(0, (&sp->tasklet_status));
  3778. } else if (level == LOW) {
  3779. tasklet_schedule(&sp->task);
  3780. }
  3781. }
  3782. else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3783. DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
  3784. DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
  3785. }
  3786. atomic_dec(&sp->isr_cnt);
  3787. return IRQ_HANDLED;
  3788. }
  3789. static irqreturn_t
  3790. s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
  3791. {
  3792. fifo_info_t *fifo = (fifo_info_t *)dev_id;
  3793. nic_t *sp = fifo->nic;
  3794. atomic_inc(&sp->isr_cnt);
  3795. tx_intr_handler(fifo);
  3796. atomic_dec(&sp->isr_cnt);
  3797. return IRQ_HANDLED;
  3798. }
  3799. static void s2io_txpic_intr_handle(nic_t *sp)
  3800. {
  3801. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  3802. u64 val64;
  3803. val64 = readq(&bar0->pic_int_status);
  3804. if (val64 & PIC_INT_GPIO) {
  3805. val64 = readq(&bar0->gpio_int_reg);
  3806. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3807. (val64 & GPIO_INT_REG_LINK_UP)) {
  3808. /*
  3809. * This is unstable state so clear both up/down
  3810. * interrupt and adapter to re-evaluate the link state.
  3811. */
  3812. val64 |= GPIO_INT_REG_LINK_DOWN;
  3813. val64 |= GPIO_INT_REG_LINK_UP;
  3814. writeq(val64, &bar0->gpio_int_reg);
  3815. val64 = readq(&bar0->gpio_int_mask);
  3816. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3817. GPIO_INT_MASK_LINK_DOWN);
  3818. writeq(val64, &bar0->gpio_int_mask);
  3819. }
  3820. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3821. val64 = readq(&bar0->adapter_status);
  3822. if (verify_xena_quiescence(sp, val64,
  3823. sp->device_enabled_once)) {
  3824. /* Enable Adapter */
  3825. val64 = readq(&bar0->adapter_control);
  3826. val64 |= ADAPTER_CNTL_EN;
  3827. writeq(val64, &bar0->adapter_control);
  3828. val64 |= ADAPTER_LED_ON;
  3829. writeq(val64, &bar0->adapter_control);
  3830. if (!sp->device_enabled_once)
  3831. sp->device_enabled_once = 1;
  3832. s2io_link(sp, LINK_UP);
  3833. /*
  3834. * unmask link down interrupt and mask link-up
  3835. * intr
  3836. */
  3837. val64 = readq(&bar0->gpio_int_mask);
  3838. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3839. val64 |= GPIO_INT_MASK_LINK_UP;
  3840. writeq(val64, &bar0->gpio_int_mask);
  3841. }
  3842. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3843. val64 = readq(&bar0->adapter_status);
  3844. if (verify_xena_quiescence(sp, val64,
  3845. sp->device_enabled_once)) {
  3846. s2io_link(sp, LINK_DOWN);
  3847. /* Link is down so unmaks link up interrupt */
  3848. val64 = readq(&bar0->gpio_int_mask);
  3849. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3850. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3851. writeq(val64, &bar0->gpio_int_mask);
  3852. }
  3853. }
  3854. }
  3855. val64 = readq(&bar0->gpio_int_mask);
  3856. }
  3857. /**
  3858. * s2io_isr - ISR handler of the device .
  3859. * @irq: the irq of the device.
  3860. * @dev_id: a void pointer to the dev structure of the NIC.
  3861. * @pt_regs: pointer to the registers pushed on the stack.
  3862. * Description: This function is the ISR handler of the device. It
  3863. * identifies the reason for the interrupt and calls the relevant
  3864. * service routines. As a contongency measure, this ISR allocates the
  3865. * recv buffers, if their numbers are below the panic value which is
  3866. * presently set to 25% of the original number of rcv buffers allocated.
  3867. * Return value:
  3868. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  3869. * IRQ_NONE: will be returned if interrupt is not from our device
  3870. */
  3871. static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
  3872. {
  3873. struct net_device *dev = (struct net_device *) dev_id;
  3874. nic_t *sp = dev->priv;
  3875. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  3876. int i;
  3877. u64 reason = 0, val64, org_mask;
  3878. mac_info_t *mac_control;
  3879. struct config_param *config;
  3880. atomic_inc(&sp->isr_cnt);
  3881. mac_control = &sp->mac_control;
  3882. config = &sp->config;
  3883. /*
  3884. * Identify the cause for interrupt and call the appropriate
  3885. * interrupt handler. Causes for the interrupt could be;
  3886. * 1. Rx of packet.
  3887. * 2. Tx complete.
  3888. * 3. Link down.
  3889. * 4. Error in any functional blocks of the NIC.
  3890. */
  3891. reason = readq(&bar0->general_int_status);
  3892. if (!reason) {
  3893. /* The interrupt was not raised by Xena. */
  3894. atomic_dec(&sp->isr_cnt);
  3895. return IRQ_NONE;
  3896. }
  3897. val64 = 0xFFFFFFFFFFFFFFFFULL;
  3898. /* Store current mask before masking all interrupts */
  3899. org_mask = readq(&bar0->general_int_mask);
  3900. writeq(val64, &bar0->general_int_mask);
  3901. #ifdef CONFIG_S2IO_NAPI
  3902. if (reason & GEN_INTR_RXTRAFFIC) {
  3903. if (netif_rx_schedule_prep(dev)) {
  3904. writeq(val64, &bar0->rx_traffic_mask);
  3905. __netif_rx_schedule(dev);
  3906. }
  3907. }
  3908. #else
  3909. /*
  3910. * Rx handler is called by default, without checking for the
  3911. * cause of interrupt.
  3912. * rx_traffic_int reg is an R1 register, writing all 1's
  3913. * will ensure that the actual interrupt causing bit get's
  3914. * cleared and hence a read can be avoided.
  3915. */
  3916. writeq(val64, &bar0->rx_traffic_int);
  3917. for (i = 0; i < config->rx_ring_num; i++) {
  3918. rx_intr_handler(&mac_control->rings[i]);
  3919. }
  3920. #endif
  3921. /*
  3922. * tx_traffic_int reg is an R1 register, writing all 1's
  3923. * will ensure that the actual interrupt causing bit get's
  3924. * cleared and hence a read can be avoided.
  3925. */
  3926. writeq(val64, &bar0->tx_traffic_int);
  3927. for (i = 0; i < config->tx_fifo_num; i++)
  3928. tx_intr_handler(&mac_control->fifos[i]);
  3929. if (reason & GEN_INTR_TXPIC)
  3930. s2io_txpic_intr_handle(sp);
  3931. /*
  3932. * If the Rx buffer count is below the panic threshold then
  3933. * reallocate the buffers from the interrupt handler itself,
  3934. * else schedule a tasklet to reallocate the buffers.
  3935. */
  3936. #ifndef CONFIG_S2IO_NAPI
  3937. for (i = 0; i < config->rx_ring_num; i++) {
  3938. if (!sp->lro) {
  3939. int ret;
  3940. int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
  3941. int level = rx_buffer_level(sp, rxb_size, i);
  3942. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3943. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
  3944. dev->name);
  3945. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3946. if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
  3947. DBG_PRINT(ERR_DBG, "%s:Out of memory",
  3948. dev->name);
  3949. DBG_PRINT(ERR_DBG, " in ISR!!\n");
  3950. clear_bit(0, (&sp->tasklet_status));
  3951. atomic_dec(&sp->isr_cnt);
  3952. writeq(org_mask, &bar0->general_int_mask);
  3953. return IRQ_HANDLED;
  3954. }
  3955. clear_bit(0, (&sp->tasklet_status));
  3956. } else if (level == LOW) {
  3957. tasklet_schedule(&sp->task);
  3958. }
  3959. }
  3960. else if (fill_rx_buffers(sp, i) == -ENOMEM) {
  3961. DBG_PRINT(ERR_DBG, "%s:Out of memory",
  3962. dev->name);
  3963. DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
  3964. break;
  3965. }
  3966. }
  3967. #endif
  3968. writeq(org_mask, &bar0->general_int_mask);
  3969. atomic_dec(&sp->isr_cnt);
  3970. return IRQ_HANDLED;
  3971. }
  3972. /**
  3973. * s2io_updt_stats -
  3974. */
  3975. static void s2io_updt_stats(nic_t *sp)
  3976. {
  3977. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  3978. u64 val64;
  3979. int cnt = 0;
  3980. if (atomic_read(&sp->card_state) == CARD_UP) {
  3981. /* Apprx 30us on a 133 MHz bus */
  3982. val64 = SET_UPDT_CLICKS(10) |
  3983. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  3984. writeq(val64, &bar0->stat_cfg);
  3985. do {
  3986. udelay(100);
  3987. val64 = readq(&bar0->stat_cfg);
  3988. if (!(val64 & BIT(0)))
  3989. break;
  3990. cnt++;
  3991. if (cnt == 5)
  3992. break; /* Updt failed */
  3993. } while(1);
  3994. }
  3995. }
  3996. /**
  3997. * s2io_get_stats - Updates the device statistics structure.
  3998. * @dev : pointer to the device structure.
  3999. * Description:
  4000. * This function updates the device statistics structure in the s2io_nic
  4001. * structure and returns a pointer to the same.
  4002. * Return value:
  4003. * pointer to the updated net_device_stats structure.
  4004. */
  4005. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4006. {
  4007. nic_t *sp = dev->priv;
  4008. mac_info_t *mac_control;
  4009. struct config_param *config;
  4010. mac_control = &sp->mac_control;
  4011. config = &sp->config;
  4012. /* Configure Stats for immediate updt */
  4013. s2io_updt_stats(sp);
  4014. sp->stats.tx_packets =
  4015. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4016. sp->stats.tx_errors =
  4017. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4018. sp->stats.rx_errors =
  4019. le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4020. sp->stats.multicast =
  4021. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4022. sp->stats.rx_length_errors =
  4023. le32_to_cpu(mac_control->stats_info->rmac_long_frms);
  4024. return (&sp->stats);
  4025. }
  4026. /**
  4027. * s2io_set_multicast - entry point for multicast address enable/disable.
  4028. * @dev : pointer to the device structure
  4029. * Description:
  4030. * This function is a driver entry point which gets called by the kernel
  4031. * whenever multicast addresses must be enabled/disabled. This also gets
  4032. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4033. * determine, if multicast address must be enabled or if promiscuous mode
  4034. * is to be disabled etc.
  4035. * Return value:
  4036. * void.
  4037. */
  4038. static void s2io_set_multicast(struct net_device *dev)
  4039. {
  4040. int i, j, prev_cnt;
  4041. struct dev_mc_list *mclist;
  4042. nic_t *sp = dev->priv;
  4043. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4044. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4045. 0xfeffffffffffULL;
  4046. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4047. void __iomem *add;
  4048. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4049. /* Enable all Multicast addresses */
  4050. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4051. &bar0->rmac_addr_data0_mem);
  4052. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4053. &bar0->rmac_addr_data1_mem);
  4054. val64 = RMAC_ADDR_CMD_MEM_WE |
  4055. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4056. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4057. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4058. /* Wait till command completes */
  4059. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4060. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
  4061. sp->m_cast_flg = 1;
  4062. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4063. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4064. /* Disable all Multicast addresses */
  4065. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4066. &bar0->rmac_addr_data0_mem);
  4067. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4068. &bar0->rmac_addr_data1_mem);
  4069. val64 = RMAC_ADDR_CMD_MEM_WE |
  4070. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4071. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4072. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4073. /* Wait till command completes */
  4074. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4075. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
  4076. sp->m_cast_flg = 0;
  4077. sp->all_multi_pos = 0;
  4078. }
  4079. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4080. /* Put the NIC into promiscuous mode */
  4081. add = &bar0->mac_cfg;
  4082. val64 = readq(&bar0->mac_cfg);
  4083. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4084. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4085. writel((u32) val64, add);
  4086. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4087. writel((u32) (val64 >> 32), (add + 4));
  4088. val64 = readq(&bar0->mac_cfg);
  4089. sp->promisc_flg = 1;
  4090. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4091. dev->name);
  4092. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4093. /* Remove the NIC from promiscuous mode */
  4094. add = &bar0->mac_cfg;
  4095. val64 = readq(&bar0->mac_cfg);
  4096. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4097. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4098. writel((u32) val64, add);
  4099. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4100. writel((u32) (val64 >> 32), (add + 4));
  4101. val64 = readq(&bar0->mac_cfg);
  4102. sp->promisc_flg = 0;
  4103. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4104. dev->name);
  4105. }
  4106. /* Update individual M_CAST address list */
  4107. if ((!sp->m_cast_flg) && dev->mc_count) {
  4108. if (dev->mc_count >
  4109. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4110. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4111. dev->name);
  4112. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4113. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4114. return;
  4115. }
  4116. prev_cnt = sp->mc_addr_count;
  4117. sp->mc_addr_count = dev->mc_count;
  4118. /* Clear out the previous list of Mc in the H/W. */
  4119. for (i = 0; i < prev_cnt; i++) {
  4120. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4121. &bar0->rmac_addr_data0_mem);
  4122. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4123. &bar0->rmac_addr_data1_mem);
  4124. val64 = RMAC_ADDR_CMD_MEM_WE |
  4125. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4126. RMAC_ADDR_CMD_MEM_OFFSET
  4127. (MAC_MC_ADDR_START_OFFSET + i);
  4128. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4129. /* Wait for command completes */
  4130. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4131. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
  4132. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4133. dev->name);
  4134. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4135. return;
  4136. }
  4137. }
  4138. /* Create the new Rx filter list and update the same in H/W. */
  4139. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4140. i++, mclist = mclist->next) {
  4141. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4142. ETH_ALEN);
  4143. mac_addr = 0;
  4144. for (j = 0; j < ETH_ALEN; j++) {
  4145. mac_addr |= mclist->dmi_addr[j];
  4146. mac_addr <<= 8;
  4147. }
  4148. mac_addr >>= 8;
  4149. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4150. &bar0->rmac_addr_data0_mem);
  4151. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4152. &bar0->rmac_addr_data1_mem);
  4153. val64 = RMAC_ADDR_CMD_MEM_WE |
  4154. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4155. RMAC_ADDR_CMD_MEM_OFFSET
  4156. (i + MAC_MC_ADDR_START_OFFSET);
  4157. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4158. /* Wait for command completes */
  4159. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4160. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
  4161. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4162. dev->name);
  4163. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4164. return;
  4165. }
  4166. }
  4167. }
  4168. }
  4169. /**
  4170. * s2io_set_mac_addr - Programs the Xframe mac address
  4171. * @dev : pointer to the device structure.
  4172. * @addr: a uchar pointer to the new mac address which is to be set.
  4173. * Description : This procedure will program the Xframe to receive
  4174. * frames with new Mac Address
  4175. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4176. * as defined in errno.h file on failure.
  4177. */
  4178. static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
  4179. {
  4180. nic_t *sp = dev->priv;
  4181. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4182. register u64 val64, mac_addr = 0;
  4183. int i;
  4184. /*
  4185. * Set the new MAC address as the new unicast filter and reflect this
  4186. * change on the device address registered with the OS. It will be
  4187. * at offset 0.
  4188. */
  4189. for (i = 0; i < ETH_ALEN; i++) {
  4190. mac_addr <<= 8;
  4191. mac_addr |= addr[i];
  4192. }
  4193. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4194. &bar0->rmac_addr_data0_mem);
  4195. val64 =
  4196. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4197. RMAC_ADDR_CMD_MEM_OFFSET(0);
  4198. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4199. /* Wait till command completes */
  4200. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4201. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
  4202. DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
  4203. return FAILURE;
  4204. }
  4205. return SUCCESS;
  4206. }
  4207. /**
  4208. * s2io_ethtool_sset - Sets different link parameters.
  4209. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4210. * @info: pointer to the structure with parameters given by ethtool to set
  4211. * link information.
  4212. * Description:
  4213. * The function sets different link parameters provided by the user onto
  4214. * the NIC.
  4215. * Return value:
  4216. * 0 on success.
  4217. */
  4218. static int s2io_ethtool_sset(struct net_device *dev,
  4219. struct ethtool_cmd *info)
  4220. {
  4221. nic_t *sp = dev->priv;
  4222. if ((info->autoneg == AUTONEG_ENABLE) ||
  4223. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4224. return -EINVAL;
  4225. else {
  4226. s2io_close(sp->dev);
  4227. s2io_open(sp->dev);
  4228. }
  4229. return 0;
  4230. }
  4231. /**
  4232. * s2io_ethtol_gset - Return link specific information.
  4233. * @sp : private member of the device structure, pointer to the
  4234. * s2io_nic structure.
  4235. * @info : pointer to the structure with parameters given by ethtool
  4236. * to return link information.
  4237. * Description:
  4238. * Returns link specific information like speed, duplex etc.. to ethtool.
  4239. * Return value :
  4240. * return 0 on success.
  4241. */
  4242. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4243. {
  4244. nic_t *sp = dev->priv;
  4245. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4246. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4247. info->port = PORT_FIBRE;
  4248. /* info->transceiver?? TODO */
  4249. if (netif_carrier_ok(sp->dev)) {
  4250. info->speed = 10000;
  4251. info->duplex = DUPLEX_FULL;
  4252. } else {
  4253. info->speed = -1;
  4254. info->duplex = -1;
  4255. }
  4256. info->autoneg = AUTONEG_DISABLE;
  4257. return 0;
  4258. }
  4259. /**
  4260. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4261. * @sp : private member of the device structure, which is a pointer to the
  4262. * s2io_nic structure.
  4263. * @info : pointer to the structure with parameters given by ethtool to
  4264. * return driver information.
  4265. * Description:
  4266. * Returns driver specefic information like name, version etc.. to ethtool.
  4267. * Return value:
  4268. * void
  4269. */
  4270. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4271. struct ethtool_drvinfo *info)
  4272. {
  4273. nic_t *sp = dev->priv;
  4274. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4275. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4276. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4277. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4278. info->regdump_len = XENA_REG_SPACE;
  4279. info->eedump_len = XENA_EEPROM_SPACE;
  4280. info->testinfo_len = S2IO_TEST_LEN;
  4281. info->n_stats = S2IO_STAT_LEN;
  4282. }
  4283. /**
  4284. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4285. * @sp: private member of the device structure, which is a pointer to the
  4286. * s2io_nic structure.
  4287. * @regs : pointer to the structure with parameters given by ethtool for
  4288. * dumping the registers.
  4289. * @reg_space: The input argumnet into which all the registers are dumped.
  4290. * Description:
  4291. * Dumps the entire register space of xFrame NIC into the user given
  4292. * buffer area.
  4293. * Return value :
  4294. * void .
  4295. */
  4296. static void s2io_ethtool_gregs(struct net_device *dev,
  4297. struct ethtool_regs *regs, void *space)
  4298. {
  4299. int i;
  4300. u64 reg;
  4301. u8 *reg_space = (u8 *) space;
  4302. nic_t *sp = dev->priv;
  4303. regs->len = XENA_REG_SPACE;
  4304. regs->version = sp->pdev->subsystem_device;
  4305. for (i = 0; i < regs->len; i += 8) {
  4306. reg = readq(sp->bar0 + i);
  4307. memcpy((reg_space + i), &reg, 8);
  4308. }
  4309. }
  4310. /**
  4311. * s2io_phy_id - timer function that alternates adapter LED.
  4312. * @data : address of the private member of the device structure, which
  4313. * is a pointer to the s2io_nic structure, provided as an u32.
  4314. * Description: This is actually the timer function that alternates the
  4315. * adapter LED bit of the adapter control bit to set/reset every time on
  4316. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4317. * once every second.
  4318. */
  4319. static void s2io_phy_id(unsigned long data)
  4320. {
  4321. nic_t *sp = (nic_t *) data;
  4322. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4323. u64 val64 = 0;
  4324. u16 subid;
  4325. subid = sp->pdev->subsystem_device;
  4326. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4327. ((subid & 0xFF) >= 0x07)) {
  4328. val64 = readq(&bar0->gpio_control);
  4329. val64 ^= GPIO_CTRL_GPIO_0;
  4330. writeq(val64, &bar0->gpio_control);
  4331. } else {
  4332. val64 = readq(&bar0->adapter_control);
  4333. val64 ^= ADAPTER_LED_ON;
  4334. writeq(val64, &bar0->adapter_control);
  4335. }
  4336. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4337. }
  4338. /**
  4339. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4340. * @sp : private member of the device structure, which is a pointer to the
  4341. * s2io_nic structure.
  4342. * @id : pointer to the structure with identification parameters given by
  4343. * ethtool.
  4344. * Description: Used to physically identify the NIC on the system.
  4345. * The Link LED will blink for a time specified by the user for
  4346. * identification.
  4347. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4348. * identification is possible only if it's link is up.
  4349. * Return value:
  4350. * int , returns 0 on success
  4351. */
  4352. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4353. {
  4354. u64 val64 = 0, last_gpio_ctrl_val;
  4355. nic_t *sp = dev->priv;
  4356. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4357. u16 subid;
  4358. subid = sp->pdev->subsystem_device;
  4359. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4360. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4361. ((subid & 0xFF) < 0x07)) {
  4362. val64 = readq(&bar0->adapter_control);
  4363. if (!(val64 & ADAPTER_CNTL_EN)) {
  4364. printk(KERN_ERR
  4365. "Adapter Link down, cannot blink LED\n");
  4366. return -EFAULT;
  4367. }
  4368. }
  4369. if (sp->id_timer.function == NULL) {
  4370. init_timer(&sp->id_timer);
  4371. sp->id_timer.function = s2io_phy_id;
  4372. sp->id_timer.data = (unsigned long) sp;
  4373. }
  4374. mod_timer(&sp->id_timer, jiffies);
  4375. if (data)
  4376. msleep_interruptible(data * HZ);
  4377. else
  4378. msleep_interruptible(MAX_FLICKER_TIME);
  4379. del_timer_sync(&sp->id_timer);
  4380. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4381. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4382. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4383. }
  4384. return 0;
  4385. }
  4386. /**
  4387. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4388. * @sp : private member of the device structure, which is a pointer to the
  4389. * s2io_nic structure.
  4390. * @ep : pointer to the structure with pause parameters given by ethtool.
  4391. * Description:
  4392. * Returns the Pause frame generation and reception capability of the NIC.
  4393. * Return value:
  4394. * void
  4395. */
  4396. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4397. struct ethtool_pauseparam *ep)
  4398. {
  4399. u64 val64;
  4400. nic_t *sp = dev->priv;
  4401. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4402. val64 = readq(&bar0->rmac_pause_cfg);
  4403. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4404. ep->tx_pause = TRUE;
  4405. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4406. ep->rx_pause = TRUE;
  4407. ep->autoneg = FALSE;
  4408. }
  4409. /**
  4410. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4411. * @sp : private member of the device structure, which is a pointer to the
  4412. * s2io_nic structure.
  4413. * @ep : pointer to the structure with pause parameters given by ethtool.
  4414. * Description:
  4415. * It can be used to set or reset Pause frame generation or reception
  4416. * support of the NIC.
  4417. * Return value:
  4418. * int, returns 0 on Success
  4419. */
  4420. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4421. struct ethtool_pauseparam *ep)
  4422. {
  4423. u64 val64;
  4424. nic_t *sp = dev->priv;
  4425. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4426. val64 = readq(&bar0->rmac_pause_cfg);
  4427. if (ep->tx_pause)
  4428. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4429. else
  4430. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4431. if (ep->rx_pause)
  4432. val64 |= RMAC_PAUSE_RX_ENABLE;
  4433. else
  4434. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4435. writeq(val64, &bar0->rmac_pause_cfg);
  4436. return 0;
  4437. }
  4438. /**
  4439. * read_eeprom - reads 4 bytes of data from user given offset.
  4440. * @sp : private member of the device structure, which is a pointer to the
  4441. * s2io_nic structure.
  4442. * @off : offset at which the data must be written
  4443. * @data : Its an output parameter where the data read at the given
  4444. * offset is stored.
  4445. * Description:
  4446. * Will read 4 bytes of data from the user given offset and return the
  4447. * read data.
  4448. * NOTE: Will allow to read only part of the EEPROM visible through the
  4449. * I2C bus.
  4450. * Return value:
  4451. * -1 on failure and 0 on success.
  4452. */
  4453. #define S2IO_DEV_ID 5
  4454. static int read_eeprom(nic_t * sp, int off, u64 * data)
  4455. {
  4456. int ret = -1;
  4457. u32 exit_cnt = 0;
  4458. u64 val64;
  4459. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4460. if (sp->device_type == XFRAME_I_DEVICE) {
  4461. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4462. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4463. I2C_CONTROL_CNTL_START;
  4464. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4465. while (exit_cnt < 5) {
  4466. val64 = readq(&bar0->i2c_control);
  4467. if (I2C_CONTROL_CNTL_END(val64)) {
  4468. *data = I2C_CONTROL_GET_DATA(val64);
  4469. ret = 0;
  4470. break;
  4471. }
  4472. msleep(50);
  4473. exit_cnt++;
  4474. }
  4475. }
  4476. if (sp->device_type == XFRAME_II_DEVICE) {
  4477. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4478. SPI_CONTROL_BYTECNT(0x3) |
  4479. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4480. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4481. val64 |= SPI_CONTROL_REQ;
  4482. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4483. while (exit_cnt < 5) {
  4484. val64 = readq(&bar0->spi_control);
  4485. if (val64 & SPI_CONTROL_NACK) {
  4486. ret = 1;
  4487. break;
  4488. } else if (val64 & SPI_CONTROL_DONE) {
  4489. *data = readq(&bar0->spi_data);
  4490. *data &= 0xffffff;
  4491. ret = 0;
  4492. break;
  4493. }
  4494. msleep(50);
  4495. exit_cnt++;
  4496. }
  4497. }
  4498. return ret;
  4499. }
  4500. /**
  4501. * write_eeprom - actually writes the relevant part of the data value.
  4502. * @sp : private member of the device structure, which is a pointer to the
  4503. * s2io_nic structure.
  4504. * @off : offset at which the data must be written
  4505. * @data : The data that is to be written
  4506. * @cnt : Number of bytes of the data that are actually to be written into
  4507. * the Eeprom. (max of 3)
  4508. * Description:
  4509. * Actually writes the relevant part of the data value into the Eeprom
  4510. * through the I2C bus.
  4511. * Return value:
  4512. * 0 on success, -1 on failure.
  4513. */
  4514. static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
  4515. {
  4516. int exit_cnt = 0, ret = -1;
  4517. u64 val64;
  4518. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4519. if (sp->device_type == XFRAME_I_DEVICE) {
  4520. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4521. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4522. I2C_CONTROL_CNTL_START;
  4523. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4524. while (exit_cnt < 5) {
  4525. val64 = readq(&bar0->i2c_control);
  4526. if (I2C_CONTROL_CNTL_END(val64)) {
  4527. if (!(val64 & I2C_CONTROL_NACK))
  4528. ret = 0;
  4529. break;
  4530. }
  4531. msleep(50);
  4532. exit_cnt++;
  4533. }
  4534. }
  4535. if (sp->device_type == XFRAME_II_DEVICE) {
  4536. int write_cnt = (cnt == 8) ? 0 : cnt;
  4537. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4538. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4539. SPI_CONTROL_BYTECNT(write_cnt) |
  4540. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4541. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4542. val64 |= SPI_CONTROL_REQ;
  4543. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4544. while (exit_cnt < 5) {
  4545. val64 = readq(&bar0->spi_control);
  4546. if (val64 & SPI_CONTROL_NACK) {
  4547. ret = 1;
  4548. break;
  4549. } else if (val64 & SPI_CONTROL_DONE) {
  4550. ret = 0;
  4551. break;
  4552. }
  4553. msleep(50);
  4554. exit_cnt++;
  4555. }
  4556. }
  4557. return ret;
  4558. }
  4559. static void s2io_vpd_read(nic_t *nic)
  4560. {
  4561. u8 vpd_data[256],data;
  4562. int i=0, cnt, fail = 0;
  4563. int vpd_addr = 0x80;
  4564. if (nic->device_type == XFRAME_II_DEVICE) {
  4565. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4566. vpd_addr = 0x80;
  4567. }
  4568. else {
  4569. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4570. vpd_addr = 0x50;
  4571. }
  4572. for (i = 0; i < 256; i +=4 ) {
  4573. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4574. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4575. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4576. for (cnt = 0; cnt <5; cnt++) {
  4577. msleep(2);
  4578. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4579. if (data == 0x80)
  4580. break;
  4581. }
  4582. if (cnt >= 5) {
  4583. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4584. fail = 1;
  4585. break;
  4586. }
  4587. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4588. (u32 *)&vpd_data[i]);
  4589. }
  4590. if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
  4591. memset(nic->product_name, 0, vpd_data[1]);
  4592. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4593. }
  4594. }
  4595. /**
  4596. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4597. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4598. * @eeprom : pointer to the user level structure provided by ethtool,
  4599. * containing all relevant information.
  4600. * @data_buf : user defined value to be written into Eeprom.
  4601. * Description: Reads the values stored in the Eeprom at given offset
  4602. * for a given length. Stores these values int the input argument data
  4603. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4604. * Return value:
  4605. * int 0 on success
  4606. */
  4607. static int s2io_ethtool_geeprom(struct net_device *dev,
  4608. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4609. {
  4610. u32 i, valid;
  4611. u64 data;
  4612. nic_t *sp = dev->priv;
  4613. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4614. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4615. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4616. for (i = 0; i < eeprom->len; i += 4) {
  4617. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4618. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4619. return -EFAULT;
  4620. }
  4621. valid = INV(data);
  4622. memcpy((data_buf + i), &valid, 4);
  4623. }
  4624. return 0;
  4625. }
  4626. /**
  4627. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4628. * @sp : private member of the device structure, which is a pointer to the
  4629. * s2io_nic structure.
  4630. * @eeprom : pointer to the user level structure provided by ethtool,
  4631. * containing all relevant information.
  4632. * @data_buf ; user defined value to be written into Eeprom.
  4633. * Description:
  4634. * Tries to write the user provided value in the Eeprom, at the offset
  4635. * given by the user.
  4636. * Return value:
  4637. * 0 on success, -EFAULT on failure.
  4638. */
  4639. static int s2io_ethtool_seeprom(struct net_device *dev,
  4640. struct ethtool_eeprom *eeprom,
  4641. u8 * data_buf)
  4642. {
  4643. int len = eeprom->len, cnt = 0;
  4644. u64 valid = 0, data;
  4645. nic_t *sp = dev->priv;
  4646. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4647. DBG_PRINT(ERR_DBG,
  4648. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4649. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4650. eeprom->magic);
  4651. return -EFAULT;
  4652. }
  4653. while (len) {
  4654. data = (u32) data_buf[cnt] & 0x000000FF;
  4655. if (data) {
  4656. valid = (u32) (data << 24);
  4657. } else
  4658. valid = data;
  4659. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4660. DBG_PRINT(ERR_DBG,
  4661. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4662. DBG_PRINT(ERR_DBG,
  4663. "write into the specified offset\n");
  4664. return -EFAULT;
  4665. }
  4666. cnt++;
  4667. len--;
  4668. }
  4669. return 0;
  4670. }
  4671. /**
  4672. * s2io_register_test - reads and writes into all clock domains.
  4673. * @sp : private member of the device structure, which is a pointer to the
  4674. * s2io_nic structure.
  4675. * @data : variable that returns the result of each of the test conducted b
  4676. * by the driver.
  4677. * Description:
  4678. * Read and write into all clock domains. The NIC has 3 clock domains,
  4679. * see that registers in all the three regions are accessible.
  4680. * Return value:
  4681. * 0 on success.
  4682. */
  4683. static int s2io_register_test(nic_t * sp, uint64_t * data)
  4684. {
  4685. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4686. u64 val64 = 0, exp_val;
  4687. int fail = 0;
  4688. val64 = readq(&bar0->pif_rd_swapper_fb);
  4689. if (val64 != 0x123456789abcdefULL) {
  4690. fail = 1;
  4691. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4692. }
  4693. val64 = readq(&bar0->rmac_pause_cfg);
  4694. if (val64 != 0xc000ffff00000000ULL) {
  4695. fail = 1;
  4696. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4697. }
  4698. val64 = readq(&bar0->rx_queue_cfg);
  4699. if (sp->device_type == XFRAME_II_DEVICE)
  4700. exp_val = 0x0404040404040404ULL;
  4701. else
  4702. exp_val = 0x0808080808080808ULL;
  4703. if (val64 != exp_val) {
  4704. fail = 1;
  4705. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4706. }
  4707. val64 = readq(&bar0->xgxs_efifo_cfg);
  4708. if (val64 != 0x000000001923141EULL) {
  4709. fail = 1;
  4710. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4711. }
  4712. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4713. writeq(val64, &bar0->xmsi_data);
  4714. val64 = readq(&bar0->xmsi_data);
  4715. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  4716. fail = 1;
  4717. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  4718. }
  4719. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  4720. writeq(val64, &bar0->xmsi_data);
  4721. val64 = readq(&bar0->xmsi_data);
  4722. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  4723. fail = 1;
  4724. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  4725. }
  4726. *data = fail;
  4727. return fail;
  4728. }
  4729. /**
  4730. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  4731. * @sp : private member of the device structure, which is a pointer to the
  4732. * s2io_nic structure.
  4733. * @data:variable that returns the result of each of the test conducted by
  4734. * the driver.
  4735. * Description:
  4736. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  4737. * register.
  4738. * Return value:
  4739. * 0 on success.
  4740. */
  4741. static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
  4742. {
  4743. int fail = 0;
  4744. u64 ret_data, org_4F0, org_7F0;
  4745. u8 saved_4F0 = 0, saved_7F0 = 0;
  4746. struct net_device *dev = sp->dev;
  4747. /* Test Write Error at offset 0 */
  4748. /* Note that SPI interface allows write access to all areas
  4749. * of EEPROM. Hence doing all negative testing only for Xframe I.
  4750. */
  4751. if (sp->device_type == XFRAME_I_DEVICE)
  4752. if (!write_eeprom(sp, 0, 0, 3))
  4753. fail = 1;
  4754. /* Save current values at offsets 0x4F0 and 0x7F0 */
  4755. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  4756. saved_4F0 = 1;
  4757. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  4758. saved_7F0 = 1;
  4759. /* Test Write at offset 4f0 */
  4760. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  4761. fail = 1;
  4762. if (read_eeprom(sp, 0x4F0, &ret_data))
  4763. fail = 1;
  4764. if (ret_data != 0x012345) {
  4765. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  4766. "Data written %llx Data read %llx\n",
  4767. dev->name, (unsigned long long)0x12345,
  4768. (unsigned long long)ret_data);
  4769. fail = 1;
  4770. }
  4771. /* Reset the EEPROM data go FFFF */
  4772. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  4773. /* Test Write Request Error at offset 0x7c */
  4774. if (sp->device_type == XFRAME_I_DEVICE)
  4775. if (!write_eeprom(sp, 0x07C, 0, 3))
  4776. fail = 1;
  4777. /* Test Write Request at offset 0x7f0 */
  4778. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  4779. fail = 1;
  4780. if (read_eeprom(sp, 0x7F0, &ret_data))
  4781. fail = 1;
  4782. if (ret_data != 0x012345) {
  4783. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  4784. "Data written %llx Data read %llx\n",
  4785. dev->name, (unsigned long long)0x12345,
  4786. (unsigned long long)ret_data);
  4787. fail = 1;
  4788. }
  4789. /* Reset the EEPROM data go FFFF */
  4790. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  4791. if (sp->device_type == XFRAME_I_DEVICE) {
  4792. /* Test Write Error at offset 0x80 */
  4793. if (!write_eeprom(sp, 0x080, 0, 3))
  4794. fail = 1;
  4795. /* Test Write Error at offset 0xfc */
  4796. if (!write_eeprom(sp, 0x0FC, 0, 3))
  4797. fail = 1;
  4798. /* Test Write Error at offset 0x100 */
  4799. if (!write_eeprom(sp, 0x100, 0, 3))
  4800. fail = 1;
  4801. /* Test Write Error at offset 4ec */
  4802. if (!write_eeprom(sp, 0x4EC, 0, 3))
  4803. fail = 1;
  4804. }
  4805. /* Restore values at offsets 0x4F0 and 0x7F0 */
  4806. if (saved_4F0)
  4807. write_eeprom(sp, 0x4F0, org_4F0, 3);
  4808. if (saved_7F0)
  4809. write_eeprom(sp, 0x7F0, org_7F0, 3);
  4810. *data = fail;
  4811. return fail;
  4812. }
  4813. /**
  4814. * s2io_bist_test - invokes the MemBist test of the card .
  4815. * @sp : private member of the device structure, which is a pointer to the
  4816. * s2io_nic structure.
  4817. * @data:variable that returns the result of each of the test conducted by
  4818. * the driver.
  4819. * Description:
  4820. * This invokes the MemBist test of the card. We give around
  4821. * 2 secs time for the Test to complete. If it's still not complete
  4822. * within this peiod, we consider that the test failed.
  4823. * Return value:
  4824. * 0 on success and -1 on failure.
  4825. */
  4826. static int s2io_bist_test(nic_t * sp, uint64_t * data)
  4827. {
  4828. u8 bist = 0;
  4829. int cnt = 0, ret = -1;
  4830. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  4831. bist |= PCI_BIST_START;
  4832. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  4833. while (cnt < 20) {
  4834. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  4835. if (!(bist & PCI_BIST_START)) {
  4836. *data = (bist & PCI_BIST_CODE_MASK);
  4837. ret = 0;
  4838. break;
  4839. }
  4840. msleep(100);
  4841. cnt++;
  4842. }
  4843. return ret;
  4844. }
  4845. /**
  4846. * s2io-link_test - verifies the link state of the nic
  4847. * @sp ; private member of the device structure, which is a pointer to the
  4848. * s2io_nic structure.
  4849. * @data: variable that returns the result of each of the test conducted by
  4850. * the driver.
  4851. * Description:
  4852. * The function verifies the link state of the NIC and updates the input
  4853. * argument 'data' appropriately.
  4854. * Return value:
  4855. * 0 on success.
  4856. */
  4857. static int s2io_link_test(nic_t * sp, uint64_t * data)
  4858. {
  4859. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4860. u64 val64;
  4861. val64 = readq(&bar0->adapter_status);
  4862. if(!(LINK_IS_UP(val64)))
  4863. *data = 1;
  4864. else
  4865. *data = 0;
  4866. return 0;
  4867. }
  4868. /**
  4869. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  4870. * @sp - private member of the device structure, which is a pointer to the
  4871. * s2io_nic structure.
  4872. * @data - variable that returns the result of each of the test
  4873. * conducted by the driver.
  4874. * Description:
  4875. * This is one of the offline test that tests the read and write
  4876. * access to the RldRam chip on the NIC.
  4877. * Return value:
  4878. * 0 on success.
  4879. */
  4880. static int s2io_rldram_test(nic_t * sp, uint64_t * data)
  4881. {
  4882. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  4883. u64 val64;
  4884. int cnt, iteration = 0, test_fail = 0;
  4885. val64 = readq(&bar0->adapter_control);
  4886. val64 &= ~ADAPTER_ECC_EN;
  4887. writeq(val64, &bar0->adapter_control);
  4888. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4889. val64 |= MC_RLDRAM_TEST_MODE;
  4890. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4891. val64 = readq(&bar0->mc_rldram_mrs);
  4892. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  4893. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  4894. val64 |= MC_RLDRAM_MRS_ENABLE;
  4895. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  4896. while (iteration < 2) {
  4897. val64 = 0x55555555aaaa0000ULL;
  4898. if (iteration == 1) {
  4899. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  4900. }
  4901. writeq(val64, &bar0->mc_rldram_test_d0);
  4902. val64 = 0xaaaa5a5555550000ULL;
  4903. if (iteration == 1) {
  4904. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  4905. }
  4906. writeq(val64, &bar0->mc_rldram_test_d1);
  4907. val64 = 0x55aaaaaaaa5a0000ULL;
  4908. if (iteration == 1) {
  4909. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  4910. }
  4911. writeq(val64, &bar0->mc_rldram_test_d2);
  4912. val64 = (u64) (0x0000003ffffe0100ULL);
  4913. writeq(val64, &bar0->mc_rldram_test_add);
  4914. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  4915. MC_RLDRAM_TEST_GO;
  4916. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4917. for (cnt = 0; cnt < 5; cnt++) {
  4918. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4919. if (val64 & MC_RLDRAM_TEST_DONE)
  4920. break;
  4921. msleep(200);
  4922. }
  4923. if (cnt == 5)
  4924. break;
  4925. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  4926. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  4927. for (cnt = 0; cnt < 5; cnt++) {
  4928. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4929. if (val64 & MC_RLDRAM_TEST_DONE)
  4930. break;
  4931. msleep(500);
  4932. }
  4933. if (cnt == 5)
  4934. break;
  4935. val64 = readq(&bar0->mc_rldram_test_ctrl);
  4936. if (!(val64 & MC_RLDRAM_TEST_PASS))
  4937. test_fail = 1;
  4938. iteration++;
  4939. }
  4940. *data = test_fail;
  4941. /* Bring the adapter out of test mode */
  4942. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  4943. return test_fail;
  4944. }
  4945. /**
  4946. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  4947. * @sp : private member of the device structure, which is a pointer to the
  4948. * s2io_nic structure.
  4949. * @ethtest : pointer to a ethtool command specific structure that will be
  4950. * returned to the user.
  4951. * @data : variable that returns the result of each of the test
  4952. * conducted by the driver.
  4953. * Description:
  4954. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  4955. * the health of the card.
  4956. * Return value:
  4957. * void
  4958. */
  4959. static void s2io_ethtool_test(struct net_device *dev,
  4960. struct ethtool_test *ethtest,
  4961. uint64_t * data)
  4962. {
  4963. nic_t *sp = dev->priv;
  4964. int orig_state = netif_running(sp->dev);
  4965. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  4966. /* Offline Tests. */
  4967. if (orig_state)
  4968. s2io_close(sp->dev);
  4969. if (s2io_register_test(sp, &data[0]))
  4970. ethtest->flags |= ETH_TEST_FL_FAILED;
  4971. s2io_reset(sp);
  4972. if (s2io_rldram_test(sp, &data[3]))
  4973. ethtest->flags |= ETH_TEST_FL_FAILED;
  4974. s2io_reset(sp);
  4975. if (s2io_eeprom_test(sp, &data[1]))
  4976. ethtest->flags |= ETH_TEST_FL_FAILED;
  4977. if (s2io_bist_test(sp, &data[4]))
  4978. ethtest->flags |= ETH_TEST_FL_FAILED;
  4979. if (orig_state)
  4980. s2io_open(sp->dev);
  4981. data[2] = 0;
  4982. } else {
  4983. /* Online Tests. */
  4984. if (!orig_state) {
  4985. DBG_PRINT(ERR_DBG,
  4986. "%s: is not up, cannot run test\n",
  4987. dev->name);
  4988. data[0] = -1;
  4989. data[1] = -1;
  4990. data[2] = -1;
  4991. data[3] = -1;
  4992. data[4] = -1;
  4993. }
  4994. if (s2io_link_test(sp, &data[2]))
  4995. ethtest->flags |= ETH_TEST_FL_FAILED;
  4996. data[0] = 0;
  4997. data[1] = 0;
  4998. data[3] = 0;
  4999. data[4] = 0;
  5000. }
  5001. }
  5002. static void s2io_get_ethtool_stats(struct net_device *dev,
  5003. struct ethtool_stats *estats,
  5004. u64 * tmp_stats)
  5005. {
  5006. int i = 0;
  5007. nic_t *sp = dev->priv;
  5008. StatInfo_t *stat_info = sp->mac_control.stats_info;
  5009. s2io_updt_stats(sp);
  5010. tmp_stats[i++] =
  5011. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5012. le32_to_cpu(stat_info->tmac_frms);
  5013. tmp_stats[i++] =
  5014. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5015. le32_to_cpu(stat_info->tmac_data_octets);
  5016. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5017. tmp_stats[i++] =
  5018. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5019. le32_to_cpu(stat_info->tmac_mcst_frms);
  5020. tmp_stats[i++] =
  5021. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5022. le32_to_cpu(stat_info->tmac_bcst_frms);
  5023. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5024. tmp_stats[i++] =
  5025. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5026. le32_to_cpu(stat_info->tmac_ttl_octets);
  5027. tmp_stats[i++] =
  5028. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5029. le32_to_cpu(stat_info->tmac_ucst_frms);
  5030. tmp_stats[i++] =
  5031. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5032. le32_to_cpu(stat_info->tmac_nucst_frms);
  5033. tmp_stats[i++] =
  5034. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5035. le32_to_cpu(stat_info->tmac_any_err_frms);
  5036. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5037. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5038. tmp_stats[i++] =
  5039. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5040. le32_to_cpu(stat_info->tmac_vld_ip);
  5041. tmp_stats[i++] =
  5042. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5043. le32_to_cpu(stat_info->tmac_drop_ip);
  5044. tmp_stats[i++] =
  5045. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5046. le32_to_cpu(stat_info->tmac_icmp);
  5047. tmp_stats[i++] =
  5048. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5049. le32_to_cpu(stat_info->tmac_rst_tcp);
  5050. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5051. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5052. le32_to_cpu(stat_info->tmac_udp);
  5053. tmp_stats[i++] =
  5054. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5055. le32_to_cpu(stat_info->rmac_vld_frms);
  5056. tmp_stats[i++] =
  5057. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5058. le32_to_cpu(stat_info->rmac_data_octets);
  5059. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5060. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5061. tmp_stats[i++] =
  5062. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5063. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5064. tmp_stats[i++] =
  5065. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5066. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5067. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5068. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5069. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5070. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5071. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5072. tmp_stats[i++] =
  5073. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5074. le32_to_cpu(stat_info->rmac_ttl_octets);
  5075. tmp_stats[i++] =
  5076. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5077. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5078. tmp_stats[i++] =
  5079. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5080. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5081. tmp_stats[i++] =
  5082. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5083. le32_to_cpu(stat_info->rmac_discarded_frms);
  5084. tmp_stats[i++] =
  5085. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5086. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5087. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5088. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5089. tmp_stats[i++] =
  5090. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5091. le32_to_cpu(stat_info->rmac_usized_frms);
  5092. tmp_stats[i++] =
  5093. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5094. le32_to_cpu(stat_info->rmac_osized_frms);
  5095. tmp_stats[i++] =
  5096. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5097. le32_to_cpu(stat_info->rmac_frag_frms);
  5098. tmp_stats[i++] =
  5099. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5100. le32_to_cpu(stat_info->rmac_jabber_frms);
  5101. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5102. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5103. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5104. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5105. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5106. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5107. tmp_stats[i++] =
  5108. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5109. le32_to_cpu(stat_info->rmac_ip);
  5110. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5111. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5112. tmp_stats[i++] =
  5113. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5114. le32_to_cpu(stat_info->rmac_drop_ip);
  5115. tmp_stats[i++] =
  5116. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5117. le32_to_cpu(stat_info->rmac_icmp);
  5118. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5119. tmp_stats[i++] =
  5120. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5121. le32_to_cpu(stat_info->rmac_udp);
  5122. tmp_stats[i++] =
  5123. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5124. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5125. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5126. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5127. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5128. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5129. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5130. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5131. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5132. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5133. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5134. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5135. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5136. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5137. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5138. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5139. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5140. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5141. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5142. tmp_stats[i++] =
  5143. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5144. le32_to_cpu(stat_info->rmac_pause_cnt);
  5145. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5146. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5147. tmp_stats[i++] =
  5148. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5149. le32_to_cpu(stat_info->rmac_accepted_ip);
  5150. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5151. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5152. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5153. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5154. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5155. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5156. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5157. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5158. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5159. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5160. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5161. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5162. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5163. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5164. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5165. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5166. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5167. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5168. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5169. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5170. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5171. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5172. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5173. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5174. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5175. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5176. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5177. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5178. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5179. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5180. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5181. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5182. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5183. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5184. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5185. tmp_stats[i++] = 0;
  5186. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5187. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5188. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5189. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5190. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5191. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5192. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
  5193. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5194. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5195. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5196. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5197. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5198. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5199. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5200. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5201. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5202. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5203. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5204. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5205. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5206. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5207. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5208. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5209. if (stat_info->sw_stat.num_aggregations) {
  5210. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5211. int count = 0;
  5212. /*
  5213. * Since 64-bit divide does not work on all platforms,
  5214. * do repeated subtraction.
  5215. */
  5216. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5217. tmp -= stat_info->sw_stat.num_aggregations;
  5218. count++;
  5219. }
  5220. tmp_stats[i++] = count;
  5221. }
  5222. else
  5223. tmp_stats[i++] = 0;
  5224. }
  5225. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5226. {
  5227. return (XENA_REG_SPACE);
  5228. }
  5229. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5230. {
  5231. nic_t *sp = dev->priv;
  5232. return (sp->rx_csum);
  5233. }
  5234. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5235. {
  5236. nic_t *sp = dev->priv;
  5237. if (data)
  5238. sp->rx_csum = 1;
  5239. else
  5240. sp->rx_csum = 0;
  5241. return 0;
  5242. }
  5243. static int s2io_get_eeprom_len(struct net_device *dev)
  5244. {
  5245. return (XENA_EEPROM_SPACE);
  5246. }
  5247. static int s2io_ethtool_self_test_count(struct net_device *dev)
  5248. {
  5249. return (S2IO_TEST_LEN);
  5250. }
  5251. static void s2io_ethtool_get_strings(struct net_device *dev,
  5252. u32 stringset, u8 * data)
  5253. {
  5254. switch (stringset) {
  5255. case ETH_SS_TEST:
  5256. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5257. break;
  5258. case ETH_SS_STATS:
  5259. memcpy(data, &ethtool_stats_keys,
  5260. sizeof(ethtool_stats_keys));
  5261. }
  5262. }
  5263. static int s2io_ethtool_get_stats_count(struct net_device *dev)
  5264. {
  5265. return (S2IO_STAT_LEN);
  5266. }
  5267. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5268. {
  5269. if (data)
  5270. dev->features |= NETIF_F_IP_CSUM;
  5271. else
  5272. dev->features &= ~NETIF_F_IP_CSUM;
  5273. return 0;
  5274. }
  5275. static struct ethtool_ops netdev_ethtool_ops = {
  5276. .get_settings = s2io_ethtool_gset,
  5277. .set_settings = s2io_ethtool_sset,
  5278. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5279. .get_regs_len = s2io_ethtool_get_regs_len,
  5280. .get_regs = s2io_ethtool_gregs,
  5281. .get_link = ethtool_op_get_link,
  5282. .get_eeprom_len = s2io_get_eeprom_len,
  5283. .get_eeprom = s2io_ethtool_geeprom,
  5284. .set_eeprom = s2io_ethtool_seeprom,
  5285. .get_pauseparam = s2io_ethtool_getpause_data,
  5286. .set_pauseparam = s2io_ethtool_setpause_data,
  5287. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5288. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5289. .get_tx_csum = ethtool_op_get_tx_csum,
  5290. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5291. .get_sg = ethtool_op_get_sg,
  5292. .set_sg = ethtool_op_set_sg,
  5293. #ifdef NETIF_F_TSO
  5294. .get_tso = ethtool_op_get_tso,
  5295. .set_tso = ethtool_op_set_tso,
  5296. #endif
  5297. .get_ufo = ethtool_op_get_ufo,
  5298. .set_ufo = ethtool_op_set_ufo,
  5299. .self_test_count = s2io_ethtool_self_test_count,
  5300. .self_test = s2io_ethtool_test,
  5301. .get_strings = s2io_ethtool_get_strings,
  5302. .phys_id = s2io_ethtool_idnic,
  5303. .get_stats_count = s2io_ethtool_get_stats_count,
  5304. .get_ethtool_stats = s2io_get_ethtool_stats
  5305. };
  5306. /**
  5307. * s2io_ioctl - Entry point for the Ioctl
  5308. * @dev : Device pointer.
  5309. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5310. * a proprietary structure used to pass information to the driver.
  5311. * @cmd : This is used to distinguish between the different commands that
  5312. * can be passed to the IOCTL functions.
  5313. * Description:
  5314. * Currently there are no special functionality supported in IOCTL, hence
  5315. * function always return EOPNOTSUPPORTED
  5316. */
  5317. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5318. {
  5319. return -EOPNOTSUPP;
  5320. }
  5321. /**
  5322. * s2io_change_mtu - entry point to change MTU size for the device.
  5323. * @dev : device pointer.
  5324. * @new_mtu : the new MTU size for the device.
  5325. * Description: A driver entry point to change MTU size for the device.
  5326. * Before changing the MTU the device must be stopped.
  5327. * Return value:
  5328. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5329. * file on failure.
  5330. */
  5331. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5332. {
  5333. nic_t *sp = dev->priv;
  5334. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5335. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5336. dev->name);
  5337. return -EPERM;
  5338. }
  5339. dev->mtu = new_mtu;
  5340. if (netif_running(dev)) {
  5341. s2io_card_down(sp, 0);
  5342. netif_stop_queue(dev);
  5343. if (s2io_card_up(sp)) {
  5344. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5345. __FUNCTION__);
  5346. }
  5347. if (netif_queue_stopped(dev))
  5348. netif_wake_queue(dev);
  5349. } else { /* Device is down */
  5350. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  5351. u64 val64 = new_mtu;
  5352. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5353. }
  5354. return 0;
  5355. }
  5356. /**
  5357. * s2io_tasklet - Bottom half of the ISR.
  5358. * @dev_adr : address of the device structure in dma_addr_t format.
  5359. * Description:
  5360. * This is the tasklet or the bottom half of the ISR. This is
  5361. * an extension of the ISR which is scheduled by the scheduler to be run
  5362. * when the load on the CPU is low. All low priority tasks of the ISR can
  5363. * be pushed into the tasklet. For now the tasklet is used only to
  5364. * replenish the Rx buffers in the Rx buffer descriptors.
  5365. * Return value:
  5366. * void.
  5367. */
  5368. static void s2io_tasklet(unsigned long dev_addr)
  5369. {
  5370. struct net_device *dev = (struct net_device *) dev_addr;
  5371. nic_t *sp = dev->priv;
  5372. int i, ret;
  5373. mac_info_t *mac_control;
  5374. struct config_param *config;
  5375. mac_control = &sp->mac_control;
  5376. config = &sp->config;
  5377. if (!TASKLET_IN_USE) {
  5378. for (i = 0; i < config->rx_ring_num; i++) {
  5379. ret = fill_rx_buffers(sp, i);
  5380. if (ret == -ENOMEM) {
  5381. DBG_PRINT(ERR_DBG, "%s: Out of ",
  5382. dev->name);
  5383. DBG_PRINT(ERR_DBG, "memory in tasklet\n");
  5384. break;
  5385. } else if (ret == -EFILL) {
  5386. DBG_PRINT(ERR_DBG,
  5387. "%s: Rx Ring %d is full\n",
  5388. dev->name, i);
  5389. break;
  5390. }
  5391. }
  5392. clear_bit(0, (&sp->tasklet_status));
  5393. }
  5394. }
  5395. /**
  5396. * s2io_set_link - Set the LInk status
  5397. * @data: long pointer to device private structue
  5398. * Description: Sets the link status for the adapter
  5399. */
  5400. static void s2io_set_link(unsigned long data)
  5401. {
  5402. nic_t *nic = (nic_t *) data;
  5403. struct net_device *dev = nic->dev;
  5404. XENA_dev_config_t __iomem *bar0 = nic->bar0;
  5405. register u64 val64;
  5406. u16 subid;
  5407. if (test_and_set_bit(0, &(nic->link_state))) {
  5408. /* The card is being reset, no point doing anything */
  5409. return;
  5410. }
  5411. subid = nic->pdev->subsystem_device;
  5412. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5413. /*
  5414. * Allow a small delay for the NICs self initiated
  5415. * cleanup to complete.
  5416. */
  5417. msleep(100);
  5418. }
  5419. val64 = readq(&bar0->adapter_status);
  5420. if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
  5421. if (LINK_IS_UP(val64)) {
  5422. val64 = readq(&bar0->adapter_control);
  5423. val64 |= ADAPTER_CNTL_EN;
  5424. writeq(val64, &bar0->adapter_control);
  5425. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5426. subid)) {
  5427. val64 = readq(&bar0->gpio_control);
  5428. val64 |= GPIO_CTRL_GPIO_0;
  5429. writeq(val64, &bar0->gpio_control);
  5430. val64 = readq(&bar0->gpio_control);
  5431. } else {
  5432. val64 |= ADAPTER_LED_ON;
  5433. writeq(val64, &bar0->adapter_control);
  5434. }
  5435. if (s2io_link_fault_indication(nic) ==
  5436. MAC_RMAC_ERR_TIMER) {
  5437. val64 = readq(&bar0->adapter_status);
  5438. if (!LINK_IS_UP(val64)) {
  5439. DBG_PRINT(ERR_DBG, "%s:", dev->name);
  5440. DBG_PRINT(ERR_DBG, " Link down");
  5441. DBG_PRINT(ERR_DBG, "after ");
  5442. DBG_PRINT(ERR_DBG, "enabling ");
  5443. DBG_PRINT(ERR_DBG, "device \n");
  5444. }
  5445. }
  5446. if (nic->device_enabled_once == FALSE) {
  5447. nic->device_enabled_once = TRUE;
  5448. }
  5449. s2io_link(nic, LINK_UP);
  5450. } else {
  5451. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5452. subid)) {
  5453. val64 = readq(&bar0->gpio_control);
  5454. val64 &= ~GPIO_CTRL_GPIO_0;
  5455. writeq(val64, &bar0->gpio_control);
  5456. val64 = readq(&bar0->gpio_control);
  5457. }
  5458. s2io_link(nic, LINK_DOWN);
  5459. }
  5460. } else { /* NIC is not Quiescent. */
  5461. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5462. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5463. netif_stop_queue(dev);
  5464. }
  5465. clear_bit(0, &(nic->link_state));
  5466. }
  5467. static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
  5468. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5469. u64 *temp2, int size)
  5470. {
  5471. struct net_device *dev = sp->dev;
  5472. struct sk_buff *frag_list;
  5473. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5474. /* allocate skb */
  5475. if (*skb) {
  5476. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5477. /*
  5478. * As Rx frame are not going to be processed,
  5479. * using same mapped address for the Rxd
  5480. * buffer pointer
  5481. */
  5482. ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
  5483. } else {
  5484. *skb = dev_alloc_skb(size);
  5485. if (!(*skb)) {
  5486. DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
  5487. DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
  5488. return -ENOMEM ;
  5489. }
  5490. /* storing the mapped addr in a temp variable
  5491. * such it will be used for next rxd whose
  5492. * Host Control is NULL
  5493. */
  5494. ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
  5495. pci_map_single( sp->pdev, (*skb)->data,
  5496. size - NET_IP_ALIGN,
  5497. PCI_DMA_FROMDEVICE);
  5498. rxdp->Host_Control = (unsigned long) (*skb);
  5499. }
  5500. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5501. /* Two buffer Mode */
  5502. if (*skb) {
  5503. ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
  5504. ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
  5505. ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
  5506. } else {
  5507. *skb = dev_alloc_skb(size);
  5508. ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
  5509. pci_map_single(sp->pdev, (*skb)->data,
  5510. dev->mtu + 4,
  5511. PCI_DMA_FROMDEVICE);
  5512. ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
  5513. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5514. PCI_DMA_FROMDEVICE);
  5515. rxdp->Host_Control = (unsigned long) (*skb);
  5516. /* Buffer-1 will be dummy buffer not used */
  5517. ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
  5518. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5519. PCI_DMA_FROMDEVICE);
  5520. }
  5521. } else if ((rxdp->Host_Control == 0)) {
  5522. /* Three buffer mode */
  5523. if (*skb) {
  5524. ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
  5525. ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
  5526. ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
  5527. } else {
  5528. *skb = dev_alloc_skb(size);
  5529. ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
  5530. pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
  5531. PCI_DMA_FROMDEVICE);
  5532. /* Buffer-1 receives L3/L4 headers */
  5533. ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
  5534. pci_map_single( sp->pdev, (*skb)->data,
  5535. l3l4hdr_size + 4,
  5536. PCI_DMA_FROMDEVICE);
  5537. /*
  5538. * skb_shinfo(skb)->frag_list will have L4
  5539. * data payload
  5540. */
  5541. skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
  5542. ALIGN_SIZE);
  5543. if (skb_shinfo(*skb)->frag_list == NULL) {
  5544. DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
  5545. failed\n ", dev->name);
  5546. return -ENOMEM ;
  5547. }
  5548. frag_list = skb_shinfo(*skb)->frag_list;
  5549. frag_list->next = NULL;
  5550. /*
  5551. * Buffer-2 receives L4 data payload
  5552. */
  5553. ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
  5554. pci_map_single( sp->pdev, frag_list->data,
  5555. dev->mtu, PCI_DMA_FROMDEVICE);
  5556. }
  5557. }
  5558. return 0;
  5559. }
  5560. static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
  5561. {
  5562. struct net_device *dev = sp->dev;
  5563. if (sp->rxd_mode == RXD_MODE_1) {
  5564. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5565. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5566. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5567. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5568. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5569. } else {
  5570. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5571. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
  5572. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
  5573. }
  5574. }
  5575. static int rxd_owner_bit_reset(nic_t *sp)
  5576. {
  5577. int i, j, k, blk_cnt = 0, size;
  5578. mac_info_t * mac_control = &sp->mac_control;
  5579. struct config_param *config = &sp->config;
  5580. struct net_device *dev = sp->dev;
  5581. RxD_t *rxdp = NULL;
  5582. struct sk_buff *skb = NULL;
  5583. buffAdd_t *ba = NULL;
  5584. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5585. /* Calculate the size based on ring mode */
  5586. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5587. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5588. if (sp->rxd_mode == RXD_MODE_1)
  5589. size += NET_IP_ALIGN;
  5590. else if (sp->rxd_mode == RXD_MODE_3B)
  5591. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5592. else
  5593. size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
  5594. for (i = 0; i < config->rx_ring_num; i++) {
  5595. blk_cnt = config->rx_cfg[i].num_rxd /
  5596. (rxd_count[sp->rxd_mode] +1);
  5597. for (j = 0; j < blk_cnt; j++) {
  5598. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5599. rxdp = mac_control->rings[i].
  5600. rx_blocks[j].rxds[k].virt_addr;
  5601. if(sp->rxd_mode >= RXD_MODE_3A)
  5602. ba = &mac_control->rings[i].ba[j][k];
  5603. set_rxd_buffer_pointer(sp, rxdp, ba,
  5604. &skb,(u64 *)&temp0_64,
  5605. (u64 *)&temp1_64,
  5606. (u64 *)&temp2_64, size);
  5607. set_rxd_buffer_size(sp, rxdp, size);
  5608. wmb();
  5609. /* flip the Ownership bit to Hardware */
  5610. rxdp->Control_1 |= RXD_OWN_XENA;
  5611. }
  5612. }
  5613. }
  5614. return 0;
  5615. }
  5616. static void s2io_card_down(nic_t * sp, int flag)
  5617. {
  5618. int cnt = 0;
  5619. XENA_dev_config_t __iomem *bar0 = sp->bar0;
  5620. unsigned long flags;
  5621. register u64 val64 = 0;
  5622. struct net_device *dev = sp->dev;
  5623. del_timer_sync(&sp->alarm_timer);
  5624. /* If s2io_set_link task is executing, wait till it completes. */
  5625. while (test_and_set_bit(0, &(sp->link_state))) {
  5626. msleep(50);
  5627. }
  5628. atomic_set(&sp->card_state, CARD_DOWN);
  5629. /* disable Tx and Rx traffic on the NIC */
  5630. stop_nic(sp);
  5631. if (flag) {
  5632. if (sp->intr_type == MSI_X) {
  5633. int i;
  5634. u16 msi_control;
  5635. for (i=1; (sp->s2io_entries[i].in_use ==
  5636. MSIX_REGISTERED_SUCCESS); i++) {
  5637. int vector = sp->entries[i].vector;
  5638. void *arg = sp->s2io_entries[i].arg;
  5639. free_irq(vector, arg);
  5640. }
  5641. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  5642. msi_control &= 0xFFFE; /* Disable MSI */
  5643. pci_write_config_word(sp->pdev, 0x42, msi_control);
  5644. pci_disable_msix(sp->pdev);
  5645. } else {
  5646. free_irq(sp->pdev->irq, dev);
  5647. if (sp->intr_type == MSI)
  5648. pci_disable_msi(sp->pdev);
  5649. }
  5650. }
  5651. /* Waiting till all Interrupt handlers are complete */
  5652. cnt = 0;
  5653. do {
  5654. msleep(10);
  5655. if (!atomic_read(&sp->isr_cnt))
  5656. break;
  5657. cnt++;
  5658. } while(cnt < 5);
  5659. /* Kill tasklet. */
  5660. tasklet_kill(&sp->task);
  5661. /* Check if the device is Quiescent and then Reset the NIC */
  5662. do {
  5663. /* As per the HW requirement we need to replenish the
  5664. * receive buffer to avoid the ring bump. Since there is
  5665. * no intention of processing the Rx frame at this pointwe are
  5666. * just settting the ownership bit of rxd in Each Rx
  5667. * ring to HW and set the appropriate buffer size
  5668. * based on the ring mode
  5669. */
  5670. rxd_owner_bit_reset(sp);
  5671. val64 = readq(&bar0->adapter_status);
  5672. if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
  5673. break;
  5674. }
  5675. msleep(50);
  5676. cnt++;
  5677. if (cnt == 10) {
  5678. DBG_PRINT(ERR_DBG,
  5679. "s2io_close:Device not Quiescent ");
  5680. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  5681. (unsigned long long) val64);
  5682. break;
  5683. }
  5684. } while (1);
  5685. s2io_reset(sp);
  5686. spin_lock_irqsave(&sp->tx_lock, flags);
  5687. /* Free all Tx buffers */
  5688. free_tx_buffers(sp);
  5689. spin_unlock_irqrestore(&sp->tx_lock, flags);
  5690. /* Free all Rx buffers */
  5691. spin_lock_irqsave(&sp->rx_lock, flags);
  5692. free_rx_buffers(sp);
  5693. spin_unlock_irqrestore(&sp->rx_lock, flags);
  5694. clear_bit(0, &(sp->link_state));
  5695. }
  5696. static int s2io_card_up(nic_t * sp)
  5697. {
  5698. int i, ret = 0;
  5699. mac_info_t *mac_control;
  5700. struct config_param *config;
  5701. struct net_device *dev = (struct net_device *) sp->dev;
  5702. /* Initialize the H/W I/O registers */
  5703. if (init_nic(sp) != 0) {
  5704. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  5705. dev->name);
  5706. return -ENODEV;
  5707. }
  5708. if (sp->intr_type == MSI)
  5709. ret = s2io_enable_msi(sp);
  5710. else if (sp->intr_type == MSI_X)
  5711. ret = s2io_enable_msi_x(sp);
  5712. if (ret) {
  5713. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5714. sp->intr_type = INTA;
  5715. }
  5716. /*
  5717. * Initializing the Rx buffers. For now we are considering only 1
  5718. * Rx ring and initializing buffers into 30 Rx blocks
  5719. */
  5720. mac_control = &sp->mac_control;
  5721. config = &sp->config;
  5722. for (i = 0; i < config->rx_ring_num; i++) {
  5723. if ((ret = fill_rx_buffers(sp, i))) {
  5724. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  5725. dev->name);
  5726. s2io_reset(sp);
  5727. free_rx_buffers(sp);
  5728. return -ENOMEM;
  5729. }
  5730. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  5731. atomic_read(&sp->rx_bufs_left[i]));
  5732. }
  5733. /* Setting its receive mode */
  5734. s2io_set_multicast(dev);
  5735. if (sp->lro) {
  5736. /* Initialize max aggregatable pkts based on MTU */
  5737. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  5738. /* Check if we can use(if specified) user provided value */
  5739. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  5740. sp->lro_max_aggr_per_sess = lro_max_pkts;
  5741. }
  5742. /* Enable tasklet for the device */
  5743. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  5744. /* Enable Rx Traffic and interrupts on the NIC */
  5745. if (start_nic(sp)) {
  5746. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  5747. tasklet_kill(&sp->task);
  5748. s2io_reset(sp);
  5749. free_irq(dev->irq, dev);
  5750. free_rx_buffers(sp);
  5751. return -ENODEV;
  5752. }
  5753. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  5754. atomic_set(&sp->card_state, CARD_UP);
  5755. return 0;
  5756. }
  5757. /**
  5758. * s2io_restart_nic - Resets the NIC.
  5759. * @data : long pointer to the device private structure
  5760. * Description:
  5761. * This function is scheduled to be run by the s2io_tx_watchdog
  5762. * function after 0.5 secs to reset the NIC. The idea is to reduce
  5763. * the run time of the watch dog routine which is run holding a
  5764. * spin lock.
  5765. */
  5766. static void s2io_restart_nic(unsigned long data)
  5767. {
  5768. struct net_device *dev = (struct net_device *) data;
  5769. nic_t *sp = dev->priv;
  5770. s2io_card_down(sp, 0);
  5771. if (s2io_card_up(sp)) {
  5772. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5773. dev->name);
  5774. }
  5775. netif_wake_queue(dev);
  5776. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  5777. dev->name);
  5778. }
  5779. /**
  5780. * s2io_tx_watchdog - Watchdog for transmit side.
  5781. * @dev : Pointer to net device structure
  5782. * Description:
  5783. * This function is triggered if the Tx Queue is stopped
  5784. * for a pre-defined amount of time when the Interface is still up.
  5785. * If the Interface is jammed in such a situation, the hardware is
  5786. * reset (by s2io_close) and restarted again (by s2io_open) to
  5787. * overcome any problem that might have been caused in the hardware.
  5788. * Return value:
  5789. * void
  5790. */
  5791. static void s2io_tx_watchdog(struct net_device *dev)
  5792. {
  5793. nic_t *sp = dev->priv;
  5794. if (netif_carrier_ok(dev)) {
  5795. schedule_work(&sp->rst_timer_task);
  5796. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  5797. }
  5798. }
  5799. /**
  5800. * rx_osm_handler - To perform some OS related operations on SKB.
  5801. * @sp: private member of the device structure,pointer to s2io_nic structure.
  5802. * @skb : the socket buffer pointer.
  5803. * @len : length of the packet
  5804. * @cksum : FCS checksum of the frame.
  5805. * @ring_no : the ring from which this RxD was extracted.
  5806. * Description:
  5807. * This function is called by the Tx interrupt serivce routine to perform
  5808. * some OS related operations on the SKB before passing it to the upper
  5809. * layers. It mainly checks if the checksum is OK, if so adds it to the
  5810. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  5811. * to the upper layer. If the checksum is wrong, it increments the Rx
  5812. * packet error count, frees the SKB and returns error.
  5813. * Return value:
  5814. * SUCCESS on success and -1 on failure.
  5815. */
  5816. static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
  5817. {
  5818. nic_t *sp = ring_data->nic;
  5819. struct net_device *dev = (struct net_device *) sp->dev;
  5820. struct sk_buff *skb = (struct sk_buff *)
  5821. ((unsigned long) rxdp->Host_Control);
  5822. int ring_no = ring_data->ring_no;
  5823. u16 l3_csum, l4_csum;
  5824. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  5825. lro_t *lro;
  5826. skb->dev = dev;
  5827. if (err) {
  5828. /* Check for parity error */
  5829. if (err & 0x1) {
  5830. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  5831. }
  5832. /*
  5833. * Drop the packet if bad transfer code. Exception being
  5834. * 0x5, which could be due to unsupported IPv6 extension header.
  5835. * In this case, we let stack handle the packet.
  5836. * Note that in this case, since checksum will be incorrect,
  5837. * stack will validate the same.
  5838. */
  5839. if (err && ((err >> 48) != 0x5)) {
  5840. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
  5841. dev->name, err);
  5842. sp->stats.rx_crc_errors++;
  5843. dev_kfree_skb(skb);
  5844. atomic_dec(&sp->rx_bufs_left[ring_no]);
  5845. rxdp->Host_Control = 0;
  5846. return 0;
  5847. }
  5848. }
  5849. /* Updating statistics */
  5850. rxdp->Host_Control = 0;
  5851. sp->rx_pkt_count++;
  5852. sp->stats.rx_packets++;
  5853. if (sp->rxd_mode == RXD_MODE_1) {
  5854. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  5855. sp->stats.rx_bytes += len;
  5856. skb_put(skb, len);
  5857. } else if (sp->rxd_mode >= RXD_MODE_3A) {
  5858. int get_block = ring_data->rx_curr_get_info.block_index;
  5859. int get_off = ring_data->rx_curr_get_info.offset;
  5860. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  5861. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  5862. unsigned char *buff = skb_push(skb, buf0_len);
  5863. buffAdd_t *ba = &ring_data->ba[get_block][get_off];
  5864. sp->stats.rx_bytes += buf0_len + buf2_len;
  5865. memcpy(buff, ba->ba_0, buf0_len);
  5866. if (sp->rxd_mode == RXD_MODE_3A) {
  5867. int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
  5868. skb_put(skb, buf1_len);
  5869. skb->len += buf2_len;
  5870. skb->data_len += buf2_len;
  5871. skb->truesize += buf2_len;
  5872. skb_put(skb_shinfo(skb)->frag_list, buf2_len);
  5873. sp->stats.rx_bytes += buf1_len;
  5874. } else
  5875. skb_put(skb, buf2_len);
  5876. }
  5877. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  5878. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  5879. (sp->rx_csum)) {
  5880. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  5881. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  5882. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  5883. /*
  5884. * NIC verifies if the Checksum of the received
  5885. * frame is Ok or not and accordingly returns
  5886. * a flag in the RxD.
  5887. */
  5888. skb->ip_summed = CHECKSUM_UNNECESSARY;
  5889. if (sp->lro) {
  5890. u32 tcp_len;
  5891. u8 *tcp;
  5892. int ret = 0;
  5893. ret = s2io_club_tcp_session(skb->data, &tcp,
  5894. &tcp_len, &lro, rxdp, sp);
  5895. switch (ret) {
  5896. case 3: /* Begin anew */
  5897. lro->parent = skb;
  5898. goto aggregate;
  5899. case 1: /* Aggregate */
  5900. {
  5901. lro_append_pkt(sp, lro,
  5902. skb, tcp_len);
  5903. goto aggregate;
  5904. }
  5905. case 4: /* Flush session */
  5906. {
  5907. lro_append_pkt(sp, lro,
  5908. skb, tcp_len);
  5909. queue_rx_frame(lro->parent);
  5910. clear_lro_session(lro);
  5911. sp->mac_control.stats_info->
  5912. sw_stat.flush_max_pkts++;
  5913. goto aggregate;
  5914. }
  5915. case 2: /* Flush both */
  5916. lro->parent->data_len =
  5917. lro->frags_len;
  5918. sp->mac_control.stats_info->
  5919. sw_stat.sending_both++;
  5920. queue_rx_frame(lro->parent);
  5921. clear_lro_session(lro);
  5922. goto send_up;
  5923. case 0: /* sessions exceeded */
  5924. case -1: /* non-TCP or not
  5925. * L2 aggregatable
  5926. */
  5927. case 5: /*
  5928. * First pkt in session not
  5929. * L3/L4 aggregatable
  5930. */
  5931. break;
  5932. default:
  5933. DBG_PRINT(ERR_DBG,
  5934. "%s: Samadhana!!\n",
  5935. __FUNCTION__);
  5936. BUG();
  5937. }
  5938. }
  5939. } else {
  5940. /*
  5941. * Packet with erroneous checksum, let the
  5942. * upper layers deal with it.
  5943. */
  5944. skb->ip_summed = CHECKSUM_NONE;
  5945. }
  5946. } else {
  5947. skb->ip_summed = CHECKSUM_NONE;
  5948. }
  5949. if (!sp->lro) {
  5950. skb->protocol = eth_type_trans(skb, dev);
  5951. #ifdef CONFIG_S2IO_NAPI
  5952. if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
  5953. /* Queueing the vlan frame to the upper layer */
  5954. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  5955. RXD_GET_VLAN_TAG(rxdp->Control_2));
  5956. } else {
  5957. netif_receive_skb(skb);
  5958. }
  5959. #else
  5960. if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
  5961. /* Queueing the vlan frame to the upper layer */
  5962. vlan_hwaccel_rx(skb, sp->vlgrp,
  5963. RXD_GET_VLAN_TAG(rxdp->Control_2));
  5964. } else {
  5965. netif_rx(skb);
  5966. }
  5967. #endif
  5968. } else {
  5969. send_up:
  5970. queue_rx_frame(skb);
  5971. }
  5972. dev->last_rx = jiffies;
  5973. aggregate:
  5974. atomic_dec(&sp->rx_bufs_left[ring_no]);
  5975. return SUCCESS;
  5976. }
  5977. /**
  5978. * s2io_link - stops/starts the Tx queue.
  5979. * @sp : private member of the device structure, which is a pointer to the
  5980. * s2io_nic structure.
  5981. * @link : inidicates whether link is UP/DOWN.
  5982. * Description:
  5983. * This function stops/starts the Tx queue depending on whether the link
  5984. * status of the NIC is is down or up. This is called by the Alarm
  5985. * interrupt handler whenever a link change interrupt comes up.
  5986. * Return value:
  5987. * void.
  5988. */
  5989. static void s2io_link(nic_t * sp, int link)
  5990. {
  5991. struct net_device *dev = (struct net_device *) sp->dev;
  5992. if (link != sp->last_link_state) {
  5993. if (link == LINK_DOWN) {
  5994. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  5995. netif_carrier_off(dev);
  5996. } else {
  5997. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  5998. netif_carrier_on(dev);
  5999. }
  6000. }
  6001. sp->last_link_state = link;
  6002. }
  6003. /**
  6004. * get_xena_rev_id - to identify revision ID of xena.
  6005. * @pdev : PCI Dev structure
  6006. * Description:
  6007. * Function to identify the Revision ID of xena.
  6008. * Return value:
  6009. * returns the revision ID of the device.
  6010. */
  6011. static int get_xena_rev_id(struct pci_dev *pdev)
  6012. {
  6013. u8 id = 0;
  6014. int ret;
  6015. ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
  6016. return id;
  6017. }
  6018. /**
  6019. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6020. * @sp : private member of the device structure, which is a pointer to the
  6021. * s2io_nic structure.
  6022. * Description:
  6023. * This function initializes a few of the PCI and PCI-X configuration registers
  6024. * with recommended values.
  6025. * Return value:
  6026. * void
  6027. */
  6028. static void s2io_init_pci(nic_t * sp)
  6029. {
  6030. u16 pci_cmd = 0, pcix_cmd = 0;
  6031. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6032. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6033. &(pcix_cmd));
  6034. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6035. (pcix_cmd | 1));
  6036. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6037. &(pcix_cmd));
  6038. /* Set the PErr Response bit in PCI command register. */
  6039. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6040. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6041. (pci_cmd | PCI_COMMAND_PARITY));
  6042. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6043. }
  6044. MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
  6045. MODULE_LICENSE("GPL");
  6046. MODULE_VERSION(DRV_VERSION);
  6047. module_param(tx_fifo_num, int, 0);
  6048. module_param(rx_ring_num, int, 0);
  6049. module_param(rx_ring_mode, int, 0);
  6050. module_param_array(tx_fifo_len, uint, NULL, 0);
  6051. module_param_array(rx_ring_sz, uint, NULL, 0);
  6052. module_param_array(rts_frm_len, uint, NULL, 0);
  6053. module_param(use_continuous_tx_intrs, int, 1);
  6054. module_param(rmac_pause_time, int, 0);
  6055. module_param(mc_pause_threshold_q0q3, int, 0);
  6056. module_param(mc_pause_threshold_q4q7, int, 0);
  6057. module_param(shared_splits, int, 0);
  6058. module_param(tmac_util_period, int, 0);
  6059. module_param(rmac_util_period, int, 0);
  6060. module_param(bimodal, bool, 0);
  6061. module_param(l3l4hdr_size, int , 0);
  6062. #ifndef CONFIG_S2IO_NAPI
  6063. module_param(indicate_max_pkts, int, 0);
  6064. #endif
  6065. module_param(rxsync_frequency, int, 0);
  6066. module_param(intr_type, int, 0);
  6067. module_param(lro, int, 0);
  6068. module_param(lro_max_pkts, int, 0);
  6069. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6070. {
  6071. if ( tx_fifo_num > 8) {
  6072. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6073. "supported\n");
  6074. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6075. tx_fifo_num = 8;
  6076. }
  6077. if ( rx_ring_num > 8) {
  6078. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6079. "supported\n");
  6080. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6081. rx_ring_num = 8;
  6082. }
  6083. #ifdef CONFIG_S2IO_NAPI
  6084. if (*dev_intr_type != INTA) {
  6085. DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
  6086. "MSI/MSI-X is enabled. Defaulting to INTA\n");
  6087. *dev_intr_type = INTA;
  6088. }
  6089. #endif
  6090. #ifndef CONFIG_PCI_MSI
  6091. if (*dev_intr_type != INTA) {
  6092. DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
  6093. "MSI/MSI-X. Defaulting to INTA\n");
  6094. *dev_intr_type = INTA;
  6095. }
  6096. #else
  6097. if (*dev_intr_type > MSI_X) {
  6098. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6099. "Defaulting to INTA\n");
  6100. *dev_intr_type = INTA;
  6101. }
  6102. #endif
  6103. if ((*dev_intr_type == MSI_X) &&
  6104. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6105. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6106. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6107. "Defaulting to INTA\n");
  6108. *dev_intr_type = INTA;
  6109. }
  6110. if (rx_ring_mode > 3) {
  6111. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6112. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
  6113. rx_ring_mode = 3;
  6114. }
  6115. return SUCCESS;
  6116. }
  6117. /**
  6118. * s2io_init_nic - Initialization of the adapter .
  6119. * @pdev : structure containing the PCI related information of the device.
  6120. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6121. * Description:
  6122. * The function initializes an adapter identified by the pci_dec structure.
  6123. * All OS related initialization including memory and device structure and
  6124. * initlaization of the device private variable is done. Also the swapper
  6125. * control register is initialized to enable read and write into the I/O
  6126. * registers of the device.
  6127. * Return value:
  6128. * returns 0 on success and negative on failure.
  6129. */
  6130. static int __devinit
  6131. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6132. {
  6133. nic_t *sp;
  6134. struct net_device *dev;
  6135. int i, j, ret;
  6136. int dma_flag = FALSE;
  6137. u32 mac_up, mac_down;
  6138. u64 val64 = 0, tmp64 = 0;
  6139. XENA_dev_config_t __iomem *bar0 = NULL;
  6140. u16 subid;
  6141. mac_info_t *mac_control;
  6142. struct config_param *config;
  6143. int mode;
  6144. u8 dev_intr_type = intr_type;
  6145. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6146. return ret;
  6147. if ((ret = pci_enable_device(pdev))) {
  6148. DBG_PRINT(ERR_DBG,
  6149. "s2io_init_nic: pci_enable_device failed\n");
  6150. return ret;
  6151. }
  6152. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6153. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6154. dma_flag = TRUE;
  6155. if (pci_set_consistent_dma_mask
  6156. (pdev, DMA_64BIT_MASK)) {
  6157. DBG_PRINT(ERR_DBG,
  6158. "Unable to obtain 64bit DMA for \
  6159. consistent allocations\n");
  6160. pci_disable_device(pdev);
  6161. return -ENOMEM;
  6162. }
  6163. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6164. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6165. } else {
  6166. pci_disable_device(pdev);
  6167. return -ENOMEM;
  6168. }
  6169. if (dev_intr_type != MSI_X) {
  6170. if (pci_request_regions(pdev, s2io_driver_name)) {
  6171. DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
  6172. pci_disable_device(pdev);
  6173. return -ENODEV;
  6174. }
  6175. }
  6176. else {
  6177. if (!(request_mem_region(pci_resource_start(pdev, 0),
  6178. pci_resource_len(pdev, 0), s2io_driver_name))) {
  6179. DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
  6180. pci_disable_device(pdev);
  6181. return -ENODEV;
  6182. }
  6183. if (!(request_mem_region(pci_resource_start(pdev, 2),
  6184. pci_resource_len(pdev, 2), s2io_driver_name))) {
  6185. DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
  6186. release_mem_region(pci_resource_start(pdev, 0),
  6187. pci_resource_len(pdev, 0));
  6188. pci_disable_device(pdev);
  6189. return -ENODEV;
  6190. }
  6191. }
  6192. dev = alloc_etherdev(sizeof(nic_t));
  6193. if (dev == NULL) {
  6194. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6195. pci_disable_device(pdev);
  6196. pci_release_regions(pdev);
  6197. return -ENODEV;
  6198. }
  6199. pci_set_master(pdev);
  6200. pci_set_drvdata(pdev, dev);
  6201. SET_MODULE_OWNER(dev);
  6202. SET_NETDEV_DEV(dev, &pdev->dev);
  6203. /* Private member variable initialized to s2io NIC structure */
  6204. sp = dev->priv;
  6205. memset(sp, 0, sizeof(nic_t));
  6206. sp->dev = dev;
  6207. sp->pdev = pdev;
  6208. sp->high_dma_flag = dma_flag;
  6209. sp->device_enabled_once = FALSE;
  6210. if (rx_ring_mode == 1)
  6211. sp->rxd_mode = RXD_MODE_1;
  6212. if (rx_ring_mode == 2)
  6213. sp->rxd_mode = RXD_MODE_3B;
  6214. if (rx_ring_mode == 3)
  6215. sp->rxd_mode = RXD_MODE_3A;
  6216. sp->intr_type = dev_intr_type;
  6217. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6218. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6219. sp->device_type = XFRAME_II_DEVICE;
  6220. else
  6221. sp->device_type = XFRAME_I_DEVICE;
  6222. sp->lro = lro;
  6223. /* Initialize some PCI/PCI-X fields of the NIC. */
  6224. s2io_init_pci(sp);
  6225. /*
  6226. * Setting the device configuration parameters.
  6227. * Most of these parameters can be specified by the user during
  6228. * module insertion as they are module loadable parameters. If
  6229. * these parameters are not not specified during load time, they
  6230. * are initialized with default values.
  6231. */
  6232. mac_control = &sp->mac_control;
  6233. config = &sp->config;
  6234. /* Tx side parameters. */
  6235. config->tx_fifo_num = tx_fifo_num;
  6236. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6237. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6238. config->tx_cfg[i].fifo_priority = i;
  6239. }
  6240. /* mapping the QoS priority to the configured fifos */
  6241. for (i = 0; i < MAX_TX_FIFOS; i++)
  6242. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6243. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6244. for (i = 0; i < config->tx_fifo_num; i++) {
  6245. config->tx_cfg[i].f_no_snoop =
  6246. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6247. if (config->tx_cfg[i].fifo_len < 65) {
  6248. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6249. break;
  6250. }
  6251. }
  6252. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6253. config->max_txds = MAX_SKB_FRAGS + 2;
  6254. /* Rx side parameters. */
  6255. config->rx_ring_num = rx_ring_num;
  6256. for (i = 0; i < MAX_RX_RINGS; i++) {
  6257. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6258. (rxd_count[sp->rxd_mode] + 1);
  6259. config->rx_cfg[i].ring_priority = i;
  6260. }
  6261. for (i = 0; i < rx_ring_num; i++) {
  6262. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6263. config->rx_cfg[i].f_no_snoop =
  6264. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6265. }
  6266. /* Setting Mac Control parameters */
  6267. mac_control->rmac_pause_time = rmac_pause_time;
  6268. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6269. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6270. /* Initialize Ring buffer parameters. */
  6271. for (i = 0; i < config->rx_ring_num; i++)
  6272. atomic_set(&sp->rx_bufs_left[i], 0);
  6273. /* Initialize the number of ISRs currently running */
  6274. atomic_set(&sp->isr_cnt, 0);
  6275. /* initialize the shared memory used by the NIC and the host */
  6276. if (init_shared_mem(sp)) {
  6277. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6278. __FUNCTION__);
  6279. ret = -ENOMEM;
  6280. goto mem_alloc_failed;
  6281. }
  6282. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6283. pci_resource_len(pdev, 0));
  6284. if (!sp->bar0) {
  6285. DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
  6286. dev->name);
  6287. ret = -ENOMEM;
  6288. goto bar0_remap_failed;
  6289. }
  6290. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6291. pci_resource_len(pdev, 2));
  6292. if (!sp->bar1) {
  6293. DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
  6294. dev->name);
  6295. ret = -ENOMEM;
  6296. goto bar1_remap_failed;
  6297. }
  6298. dev->irq = pdev->irq;
  6299. dev->base_addr = (unsigned long) sp->bar0;
  6300. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6301. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6302. mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
  6303. (sp->bar1 + (j * 0x00020000));
  6304. }
  6305. /* Driver entry points */
  6306. dev->open = &s2io_open;
  6307. dev->stop = &s2io_close;
  6308. dev->hard_start_xmit = &s2io_xmit;
  6309. dev->get_stats = &s2io_get_stats;
  6310. dev->set_multicast_list = &s2io_set_multicast;
  6311. dev->do_ioctl = &s2io_ioctl;
  6312. dev->change_mtu = &s2io_change_mtu;
  6313. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6314. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6315. dev->vlan_rx_register = s2io_vlan_rx_register;
  6316. dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
  6317. /*
  6318. * will use eth_mac_addr() for dev->set_mac_address
  6319. * mac address will be set every time dev->open() is called
  6320. */
  6321. #if defined(CONFIG_S2IO_NAPI)
  6322. dev->poll = s2io_poll;
  6323. dev->weight = 32;
  6324. #endif
  6325. #ifdef CONFIG_NET_POLL_CONTROLLER
  6326. dev->poll_controller = s2io_netpoll;
  6327. #endif
  6328. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6329. if (sp->high_dma_flag == TRUE)
  6330. dev->features |= NETIF_F_HIGHDMA;
  6331. #ifdef NETIF_F_TSO
  6332. dev->features |= NETIF_F_TSO;
  6333. #endif
  6334. #ifdef NETIF_F_TSO6
  6335. dev->features |= NETIF_F_TSO6;
  6336. #endif
  6337. if (sp->device_type & XFRAME_II_DEVICE) {
  6338. dev->features |= NETIF_F_UFO;
  6339. dev->features |= NETIF_F_HW_CSUM;
  6340. }
  6341. dev->tx_timeout = &s2io_tx_watchdog;
  6342. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6343. INIT_WORK(&sp->rst_timer_task,
  6344. (void (*)(void *)) s2io_restart_nic, dev);
  6345. INIT_WORK(&sp->set_link_task,
  6346. (void (*)(void *)) s2io_set_link, sp);
  6347. pci_save_state(sp->pdev);
  6348. /* Setting swapper control on the NIC, for proper reset operation */
  6349. if (s2io_set_swapper(sp)) {
  6350. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6351. dev->name);
  6352. ret = -EAGAIN;
  6353. goto set_swap_failed;
  6354. }
  6355. /* Verify if the Herc works on the slot its placed into */
  6356. if (sp->device_type & XFRAME_II_DEVICE) {
  6357. mode = s2io_verify_pci_mode(sp);
  6358. if (mode < 0) {
  6359. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6360. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6361. ret = -EBADSLT;
  6362. goto set_swap_failed;
  6363. }
  6364. }
  6365. /* Not needed for Herc */
  6366. if (sp->device_type & XFRAME_I_DEVICE) {
  6367. /*
  6368. * Fix for all "FFs" MAC address problems observed on
  6369. * Alpha platforms
  6370. */
  6371. fix_mac_address(sp);
  6372. s2io_reset(sp);
  6373. }
  6374. /*
  6375. * MAC address initialization.
  6376. * For now only one mac address will be read and used.
  6377. */
  6378. bar0 = sp->bar0;
  6379. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6380. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6381. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6382. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6383. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
  6384. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6385. mac_down = (u32) tmp64;
  6386. mac_up = (u32) (tmp64 >> 32);
  6387. memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
  6388. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6389. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6390. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6391. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6392. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6393. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6394. /* Set the factory defined MAC address initially */
  6395. dev->addr_len = ETH_ALEN;
  6396. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6397. /*
  6398. * Initialize the tasklet status and link state flags
  6399. * and the card state parameter
  6400. */
  6401. atomic_set(&(sp->card_state), 0);
  6402. sp->tasklet_status = 0;
  6403. sp->link_state = 0;
  6404. /* Initialize spinlocks */
  6405. spin_lock_init(&sp->tx_lock);
  6406. #ifndef CONFIG_S2IO_NAPI
  6407. spin_lock_init(&sp->put_lock);
  6408. #endif
  6409. spin_lock_init(&sp->rx_lock);
  6410. /*
  6411. * SXE-002: Configure link and activity LED to init state
  6412. * on driver load.
  6413. */
  6414. subid = sp->pdev->subsystem_device;
  6415. if ((subid & 0xFF) >= 0x07) {
  6416. val64 = readq(&bar0->gpio_control);
  6417. val64 |= 0x0000800000000000ULL;
  6418. writeq(val64, &bar0->gpio_control);
  6419. val64 = 0x0411040400000000ULL;
  6420. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6421. val64 = readq(&bar0->gpio_control);
  6422. }
  6423. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6424. if (register_netdev(dev)) {
  6425. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6426. ret = -ENODEV;
  6427. goto register_failed;
  6428. }
  6429. s2io_vpd_read(sp);
  6430. DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
  6431. DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
  6432. get_xena_rev_id(sp->pdev),
  6433. s2io_driver_version);
  6434. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
  6435. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
  6436. "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
  6437. sp->def_mac_addr[0].mac_addr[0],
  6438. sp->def_mac_addr[0].mac_addr[1],
  6439. sp->def_mac_addr[0].mac_addr[2],
  6440. sp->def_mac_addr[0].mac_addr[3],
  6441. sp->def_mac_addr[0].mac_addr[4],
  6442. sp->def_mac_addr[0].mac_addr[5]);
  6443. if (sp->device_type & XFRAME_II_DEVICE) {
  6444. mode = s2io_print_pci_mode(sp);
  6445. if (mode < 0) {
  6446. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6447. ret = -EBADSLT;
  6448. unregister_netdev(dev);
  6449. goto set_swap_failed;
  6450. }
  6451. }
  6452. switch(sp->rxd_mode) {
  6453. case RXD_MODE_1:
  6454. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6455. dev->name);
  6456. break;
  6457. case RXD_MODE_3B:
  6458. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6459. dev->name);
  6460. break;
  6461. case RXD_MODE_3A:
  6462. DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
  6463. dev->name);
  6464. break;
  6465. }
  6466. #ifdef CONFIG_S2IO_NAPI
  6467. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6468. #endif
  6469. switch(sp->intr_type) {
  6470. case INTA:
  6471. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6472. break;
  6473. case MSI:
  6474. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
  6475. break;
  6476. case MSI_X:
  6477. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6478. break;
  6479. }
  6480. if (sp->lro)
  6481. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6482. dev->name);
  6483. /* Initialize device name */
  6484. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6485. /* Initialize bimodal Interrupts */
  6486. sp->config.bimodal = bimodal;
  6487. if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
  6488. sp->config.bimodal = 0;
  6489. DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
  6490. dev->name);
  6491. }
  6492. /*
  6493. * Make Link state as off at this point, when the Link change
  6494. * interrupt comes the state will be automatically changed to
  6495. * the right state.
  6496. */
  6497. netif_carrier_off(dev);
  6498. return 0;
  6499. register_failed:
  6500. set_swap_failed:
  6501. iounmap(sp->bar1);
  6502. bar1_remap_failed:
  6503. iounmap(sp->bar0);
  6504. bar0_remap_failed:
  6505. mem_alloc_failed:
  6506. free_shared_mem(sp);
  6507. pci_disable_device(pdev);
  6508. if (dev_intr_type != MSI_X)
  6509. pci_release_regions(pdev);
  6510. else {
  6511. release_mem_region(pci_resource_start(pdev, 0),
  6512. pci_resource_len(pdev, 0));
  6513. release_mem_region(pci_resource_start(pdev, 2),
  6514. pci_resource_len(pdev, 2));
  6515. }
  6516. pci_set_drvdata(pdev, NULL);
  6517. free_netdev(dev);
  6518. return ret;
  6519. }
  6520. /**
  6521. * s2io_rem_nic - Free the PCI device
  6522. * @pdev: structure containing the PCI related information of the device.
  6523. * Description: This function is called by the Pci subsystem to release a
  6524. * PCI device and free up all resource held up by the device. This could
  6525. * be in response to a Hot plug event or when the driver is to be removed
  6526. * from memory.
  6527. */
  6528. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6529. {
  6530. struct net_device *dev =
  6531. (struct net_device *) pci_get_drvdata(pdev);
  6532. nic_t *sp;
  6533. if (dev == NULL) {
  6534. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6535. return;
  6536. }
  6537. sp = dev->priv;
  6538. unregister_netdev(dev);
  6539. free_shared_mem(sp);
  6540. iounmap(sp->bar0);
  6541. iounmap(sp->bar1);
  6542. pci_disable_device(pdev);
  6543. if (sp->intr_type != MSI_X)
  6544. pci_release_regions(pdev);
  6545. else {
  6546. release_mem_region(pci_resource_start(pdev, 0),
  6547. pci_resource_len(pdev, 0));
  6548. release_mem_region(pci_resource_start(pdev, 2),
  6549. pci_resource_len(pdev, 2));
  6550. }
  6551. pci_set_drvdata(pdev, NULL);
  6552. free_netdev(dev);
  6553. }
  6554. /**
  6555. * s2io_starter - Entry point for the driver
  6556. * Description: This function is the entry point for the driver. It verifies
  6557. * the module loadable parameters and initializes PCI configuration space.
  6558. */
  6559. int __init s2io_starter(void)
  6560. {
  6561. return pci_module_init(&s2io_driver);
  6562. }
  6563. /**
  6564. * s2io_closer - Cleanup routine for the driver
  6565. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  6566. */
  6567. static void s2io_closer(void)
  6568. {
  6569. pci_unregister_driver(&s2io_driver);
  6570. DBG_PRINT(INIT_DBG, "cleanup done\n");
  6571. }
  6572. module_init(s2io_starter);
  6573. module_exit(s2io_closer);
  6574. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  6575. struct tcphdr **tcp, RxD_t *rxdp)
  6576. {
  6577. int ip_off;
  6578. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  6579. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  6580. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  6581. __FUNCTION__);
  6582. return -1;
  6583. }
  6584. /* TODO:
  6585. * By default the VLAN field in the MAC is stripped by the card, if this
  6586. * feature is turned off in rx_pa_cfg register, then the ip_off field
  6587. * has to be shifted by a further 2 bytes
  6588. */
  6589. switch (l2_type) {
  6590. case 0: /* DIX type */
  6591. case 4: /* DIX type with VLAN */
  6592. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  6593. break;
  6594. /* LLC, SNAP etc are considered non-mergeable */
  6595. default:
  6596. return -1;
  6597. }
  6598. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  6599. ip_len = (u8)((*ip)->ihl);
  6600. ip_len <<= 2;
  6601. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  6602. return 0;
  6603. }
  6604. static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
  6605. struct tcphdr *tcp)
  6606. {
  6607. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6608. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  6609. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  6610. return -1;
  6611. return 0;
  6612. }
  6613. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  6614. {
  6615. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  6616. }
  6617. static void initiate_new_session(lro_t *lro, u8 *l2h,
  6618. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  6619. {
  6620. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6621. lro->l2h = l2h;
  6622. lro->iph = ip;
  6623. lro->tcph = tcp;
  6624. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  6625. lro->tcp_ack = ntohl(tcp->ack_seq);
  6626. lro->sg_num = 1;
  6627. lro->total_len = ntohs(ip->tot_len);
  6628. lro->frags_len = 0;
  6629. /*
  6630. * check if we saw TCP timestamp. Other consistency checks have
  6631. * already been done.
  6632. */
  6633. if (tcp->doff == 8) {
  6634. u32 *ptr;
  6635. ptr = (u32 *)(tcp+1);
  6636. lro->saw_ts = 1;
  6637. lro->cur_tsval = *(ptr+1);
  6638. lro->cur_tsecr = *(ptr+2);
  6639. }
  6640. lro->in_use = 1;
  6641. }
  6642. static void update_L3L4_header(nic_t *sp, lro_t *lro)
  6643. {
  6644. struct iphdr *ip = lro->iph;
  6645. struct tcphdr *tcp = lro->tcph;
  6646. u16 nchk;
  6647. StatInfo_t *statinfo = sp->mac_control.stats_info;
  6648. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6649. /* Update L3 header */
  6650. ip->tot_len = htons(lro->total_len);
  6651. ip->check = 0;
  6652. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  6653. ip->check = nchk;
  6654. /* Update L4 header */
  6655. tcp->ack_seq = lro->tcp_ack;
  6656. tcp->window = lro->window;
  6657. /* Update tsecr field if this session has timestamps enabled */
  6658. if (lro->saw_ts) {
  6659. u32 *ptr = (u32 *)(tcp + 1);
  6660. *(ptr+2) = lro->cur_tsecr;
  6661. }
  6662. /* Update counters required for calculation of
  6663. * average no. of packets aggregated.
  6664. */
  6665. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  6666. statinfo->sw_stat.num_aggregations++;
  6667. }
  6668. static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
  6669. struct tcphdr *tcp, u32 l4_pyld)
  6670. {
  6671. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6672. lro->total_len += l4_pyld;
  6673. lro->frags_len += l4_pyld;
  6674. lro->tcp_next_seq += l4_pyld;
  6675. lro->sg_num++;
  6676. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  6677. lro->tcp_ack = tcp->ack_seq;
  6678. lro->window = tcp->window;
  6679. if (lro->saw_ts) {
  6680. u32 *ptr;
  6681. /* Update tsecr and tsval from this packet */
  6682. ptr = (u32 *) (tcp + 1);
  6683. lro->cur_tsval = *(ptr + 1);
  6684. lro->cur_tsecr = *(ptr + 2);
  6685. }
  6686. }
  6687. static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
  6688. struct tcphdr *tcp, u32 tcp_pyld_len)
  6689. {
  6690. u8 *ptr;
  6691. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  6692. if (!tcp_pyld_len) {
  6693. /* Runt frame or a pure ack */
  6694. return -1;
  6695. }
  6696. if (ip->ihl != 5) /* IP has options */
  6697. return -1;
  6698. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  6699. !tcp->ack) {
  6700. /*
  6701. * Currently recognize only the ack control word and
  6702. * any other control field being set would result in
  6703. * flushing the LRO session
  6704. */
  6705. return -1;
  6706. }
  6707. /*
  6708. * Allow only one TCP timestamp option. Don't aggregate if
  6709. * any other options are detected.
  6710. */
  6711. if (tcp->doff != 5 && tcp->doff != 8)
  6712. return -1;
  6713. if (tcp->doff == 8) {
  6714. ptr = (u8 *)(tcp + 1);
  6715. while (*ptr == TCPOPT_NOP)
  6716. ptr++;
  6717. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  6718. return -1;
  6719. /* Ensure timestamp value increases monotonically */
  6720. if (l_lro)
  6721. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  6722. return -1;
  6723. /* timestamp echo reply should be non-zero */
  6724. if (*((u32 *)(ptr+6)) == 0)
  6725. return -1;
  6726. }
  6727. return 0;
  6728. }
  6729. static int
  6730. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
  6731. RxD_t *rxdp, nic_t *sp)
  6732. {
  6733. struct iphdr *ip;
  6734. struct tcphdr *tcph;
  6735. int ret = 0, i;
  6736. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  6737. rxdp))) {
  6738. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  6739. ip->saddr, ip->daddr);
  6740. } else {
  6741. return ret;
  6742. }
  6743. tcph = (struct tcphdr *)*tcp;
  6744. *tcp_len = get_l4_pyld_length(ip, tcph);
  6745. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  6746. lro_t *l_lro = &sp->lro0_n[i];
  6747. if (l_lro->in_use) {
  6748. if (check_for_socket_match(l_lro, ip, tcph))
  6749. continue;
  6750. /* Sock pair matched */
  6751. *lro = l_lro;
  6752. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  6753. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  6754. "0x%x, actual 0x%x\n", __FUNCTION__,
  6755. (*lro)->tcp_next_seq,
  6756. ntohl(tcph->seq));
  6757. sp->mac_control.stats_info->
  6758. sw_stat.outof_sequence_pkts++;
  6759. ret = 2;
  6760. break;
  6761. }
  6762. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  6763. ret = 1; /* Aggregate */
  6764. else
  6765. ret = 2; /* Flush both */
  6766. break;
  6767. }
  6768. }
  6769. if (ret == 0) {
  6770. /* Before searching for available LRO objects,
  6771. * check if the pkt is L3/L4 aggregatable. If not
  6772. * don't create new LRO session. Just send this
  6773. * packet up.
  6774. */
  6775. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  6776. return 5;
  6777. }
  6778. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  6779. lro_t *l_lro = &sp->lro0_n[i];
  6780. if (!(l_lro->in_use)) {
  6781. *lro = l_lro;
  6782. ret = 3; /* Begin anew */
  6783. break;
  6784. }
  6785. }
  6786. }
  6787. if (ret == 0) { /* sessions exceeded */
  6788. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  6789. __FUNCTION__);
  6790. *lro = NULL;
  6791. return ret;
  6792. }
  6793. switch (ret) {
  6794. case 3:
  6795. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  6796. break;
  6797. case 2:
  6798. update_L3L4_header(sp, *lro);
  6799. break;
  6800. case 1:
  6801. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  6802. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  6803. update_L3L4_header(sp, *lro);
  6804. ret = 4; /* Flush the LRO */
  6805. }
  6806. break;
  6807. default:
  6808. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  6809. __FUNCTION__);
  6810. break;
  6811. }
  6812. return ret;
  6813. }
  6814. static void clear_lro_session(lro_t *lro)
  6815. {
  6816. static u16 lro_struct_size = sizeof(lro_t);
  6817. memset(lro, 0, lro_struct_size);
  6818. }
  6819. static void queue_rx_frame(struct sk_buff *skb)
  6820. {
  6821. struct net_device *dev = skb->dev;
  6822. skb->protocol = eth_type_trans(skb, dev);
  6823. #ifdef CONFIG_S2IO_NAPI
  6824. netif_receive_skb(skb);
  6825. #else
  6826. netif_rx(skb);
  6827. #endif
  6828. }
  6829. static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
  6830. u32 tcp_len)
  6831. {
  6832. struct sk_buff *tmp, *first = lro->parent;
  6833. first->len += tcp_len;
  6834. first->data_len = lro->frags_len;
  6835. skb_pull(skb, (skb->len - tcp_len));
  6836. if ((tmp = skb_shinfo(first)->frag_list)) {
  6837. while (tmp->next)
  6838. tmp = tmp->next;
  6839. tmp->next = skb;
  6840. }
  6841. else
  6842. skb_shinfo(first)->frag_list = skb;
  6843. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  6844. return;
  6845. }