fs_enet-main.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/sched.h>
  21. #include <linux/string.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/delay.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/mii.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/bitops.h>
  37. #include <linux/fs.h>
  38. #include <linux/platform_device.h>
  39. #include <linux/vmalloc.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/irq.h>
  43. #include <asm/uaccess.h>
  44. #include "fs_enet.h"
  45. /*************************************************/
  46. static char version[] __devinitdata =
  47. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  48. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  49. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  50. MODULE_LICENSE("GPL");
  51. MODULE_VERSION(DRV_MODULE_VERSION);
  52. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  53. module_param(fs_enet_debug, int, 0);
  54. MODULE_PARM_DESC(fs_enet_debug,
  55. "Freescale bitmapped debugging message enable value");
  56. static void fs_set_multicast_list(struct net_device *dev)
  57. {
  58. struct fs_enet_private *fep = netdev_priv(dev);
  59. (*fep->ops->set_multicast_list)(dev);
  60. }
  61. /* NAPI receive function */
  62. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. const struct fs_platform_info *fpi = fep->fpi;
  66. cbd_t *bdp;
  67. struct sk_buff *skb, *skbn, *skbt;
  68. int received = 0;
  69. u16 pkt_len, sc;
  70. int curidx;
  71. int rx_work_limit = 0; /* pacify gcc */
  72. rx_work_limit = min(dev->quota, *budget);
  73. if (!netif_running(dev))
  74. return 0;
  75. /*
  76. * First, grab all of the stats for the incoming packet.
  77. * These get messed up if we get called due to a busy condition.
  78. */
  79. bdp = fep->cur_rx;
  80. /* clear RX status bits for napi*/
  81. (*fep->ops->napi_clear_rx_event)(dev);
  82. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  83. curidx = bdp - fep->rx_bd_base;
  84. /*
  85. * Since we have allocated space to hold a complete frame,
  86. * the last indicator should be set.
  87. */
  88. if ((sc & BD_ENET_RX_LAST) == 0)
  89. printk(KERN_WARNING DRV_MODULE_NAME
  90. ": %s rcv is not +last\n",
  91. dev->name);
  92. /*
  93. * Check for errors.
  94. */
  95. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  96. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  97. fep->stats.rx_errors++;
  98. /* Frame too long or too short. */
  99. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  100. fep->stats.rx_length_errors++;
  101. /* Frame alignment */
  102. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  103. fep->stats.rx_frame_errors++;
  104. /* CRC Error */
  105. if (sc & BD_ENET_RX_CR)
  106. fep->stats.rx_crc_errors++;
  107. /* FIFO overrun */
  108. if (sc & BD_ENET_RX_OV)
  109. fep->stats.rx_crc_errors++;
  110. skb = fep->rx_skbuff[curidx];
  111. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  112. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  113. DMA_FROM_DEVICE);
  114. skbn = skb;
  115. } else {
  116. /* napi, got packet but no quota */
  117. if (--rx_work_limit < 0)
  118. break;
  119. skb = fep->rx_skbuff[curidx];
  120. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  121. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  122. DMA_FROM_DEVICE);
  123. /*
  124. * Process the incoming frame.
  125. */
  126. fep->stats.rx_packets++;
  127. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  128. fep->stats.rx_bytes += pkt_len + 4;
  129. if (pkt_len <= fpi->rx_copybreak) {
  130. /* +2 to make IP header L1 cache aligned */
  131. skbn = dev_alloc_skb(pkt_len + 2);
  132. if (skbn != NULL) {
  133. skb_reserve(skbn, 2); /* align IP header */
  134. memcpy(skbn->data, skb->data, pkt_len);
  135. /* swap */
  136. skbt = skb;
  137. skb = skbn;
  138. skbn = skbt;
  139. }
  140. } else
  141. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  142. if (skbn != NULL) {
  143. skb->dev = dev;
  144. skb_put(skb, pkt_len); /* Make room */
  145. skb->protocol = eth_type_trans(skb, dev);
  146. received++;
  147. netif_receive_skb(skb);
  148. } else {
  149. printk(KERN_WARNING DRV_MODULE_NAME
  150. ": %s Memory squeeze, dropping packet.\n",
  151. dev->name);
  152. fep->stats.rx_dropped++;
  153. skbn = skb;
  154. }
  155. }
  156. fep->rx_skbuff[curidx] = skbn;
  157. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  158. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  159. DMA_FROM_DEVICE));
  160. CBDW_DATLEN(bdp, 0);
  161. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  162. /*
  163. * Update BD pointer to next entry.
  164. */
  165. if ((sc & BD_ENET_RX_WRAP) == 0)
  166. bdp++;
  167. else
  168. bdp = fep->rx_bd_base;
  169. (*fep->ops->rx_bd_done)(dev);
  170. }
  171. fep->cur_rx = bdp;
  172. dev->quota -= received;
  173. *budget -= received;
  174. if (rx_work_limit < 0)
  175. return 1; /* not done */
  176. /* done */
  177. netif_rx_complete(dev);
  178. (*fep->ops->napi_enable_rx)(dev);
  179. return 0;
  180. }
  181. /* non NAPI receive function */
  182. static int fs_enet_rx_non_napi(struct net_device *dev)
  183. {
  184. struct fs_enet_private *fep = netdev_priv(dev);
  185. const struct fs_platform_info *fpi = fep->fpi;
  186. cbd_t *bdp;
  187. struct sk_buff *skb, *skbn, *skbt;
  188. int received = 0;
  189. u16 pkt_len, sc;
  190. int curidx;
  191. /*
  192. * First, grab all of the stats for the incoming packet.
  193. * These get messed up if we get called due to a busy condition.
  194. */
  195. bdp = fep->cur_rx;
  196. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  197. curidx = bdp - fep->rx_bd_base;
  198. /*
  199. * Since we have allocated space to hold a complete frame,
  200. * the last indicator should be set.
  201. */
  202. if ((sc & BD_ENET_RX_LAST) == 0)
  203. printk(KERN_WARNING DRV_MODULE_NAME
  204. ": %s rcv is not +last\n",
  205. dev->name);
  206. /*
  207. * Check for errors.
  208. */
  209. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  210. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  211. fep->stats.rx_errors++;
  212. /* Frame too long or too short. */
  213. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  214. fep->stats.rx_length_errors++;
  215. /* Frame alignment */
  216. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  217. fep->stats.rx_frame_errors++;
  218. /* CRC Error */
  219. if (sc & BD_ENET_RX_CR)
  220. fep->stats.rx_crc_errors++;
  221. /* FIFO overrun */
  222. if (sc & BD_ENET_RX_OV)
  223. fep->stats.rx_crc_errors++;
  224. skb = fep->rx_skbuff[curidx];
  225. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  226. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  227. DMA_FROM_DEVICE);
  228. skbn = skb;
  229. } else {
  230. skb = fep->rx_skbuff[curidx];
  231. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  232. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  233. DMA_FROM_DEVICE);
  234. /*
  235. * Process the incoming frame.
  236. */
  237. fep->stats.rx_packets++;
  238. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  239. fep->stats.rx_bytes += pkt_len + 4;
  240. if (pkt_len <= fpi->rx_copybreak) {
  241. /* +2 to make IP header L1 cache aligned */
  242. skbn = dev_alloc_skb(pkt_len + 2);
  243. if (skbn != NULL) {
  244. skb_reserve(skbn, 2); /* align IP header */
  245. memcpy(skbn->data, skb->data, pkt_len);
  246. /* swap */
  247. skbt = skb;
  248. skb = skbn;
  249. skbn = skbt;
  250. }
  251. } else
  252. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  253. if (skbn != NULL) {
  254. skb->dev = dev;
  255. skb_put(skb, pkt_len); /* Make room */
  256. skb->protocol = eth_type_trans(skb, dev);
  257. received++;
  258. netif_rx(skb);
  259. } else {
  260. printk(KERN_WARNING DRV_MODULE_NAME
  261. ": %s Memory squeeze, dropping packet.\n",
  262. dev->name);
  263. fep->stats.rx_dropped++;
  264. skbn = skb;
  265. }
  266. }
  267. fep->rx_skbuff[curidx] = skbn;
  268. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  269. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  270. DMA_FROM_DEVICE));
  271. CBDW_DATLEN(bdp, 0);
  272. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  273. /*
  274. * Update BD pointer to next entry.
  275. */
  276. if ((sc & BD_ENET_RX_WRAP) == 0)
  277. bdp++;
  278. else
  279. bdp = fep->rx_bd_base;
  280. (*fep->ops->rx_bd_done)(dev);
  281. }
  282. fep->cur_rx = bdp;
  283. return 0;
  284. }
  285. static void fs_enet_tx(struct net_device *dev)
  286. {
  287. struct fs_enet_private *fep = netdev_priv(dev);
  288. cbd_t *bdp;
  289. struct sk_buff *skb;
  290. int dirtyidx, do_wake, do_restart;
  291. u16 sc;
  292. spin_lock(&fep->lock);
  293. bdp = fep->dirty_tx;
  294. do_wake = do_restart = 0;
  295. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  296. dirtyidx = bdp - fep->tx_bd_base;
  297. if (fep->tx_free == fep->tx_ring)
  298. break;
  299. skb = fep->tx_skbuff[dirtyidx];
  300. /*
  301. * Check for errors.
  302. */
  303. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  304. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  305. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  306. fep->stats.tx_heartbeat_errors++;
  307. if (sc & BD_ENET_TX_LC) /* Late collision */
  308. fep->stats.tx_window_errors++;
  309. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  310. fep->stats.tx_aborted_errors++;
  311. if (sc & BD_ENET_TX_UN) /* Underrun */
  312. fep->stats.tx_fifo_errors++;
  313. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  314. fep->stats.tx_carrier_errors++;
  315. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  316. fep->stats.tx_errors++;
  317. do_restart = 1;
  318. }
  319. } else
  320. fep->stats.tx_packets++;
  321. if (sc & BD_ENET_TX_READY)
  322. printk(KERN_WARNING DRV_MODULE_NAME
  323. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  324. dev->name);
  325. /*
  326. * Deferred means some collisions occurred during transmit,
  327. * but we eventually sent the packet OK.
  328. */
  329. if (sc & BD_ENET_TX_DEF)
  330. fep->stats.collisions++;
  331. /* unmap */
  332. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  333. skb->len, DMA_TO_DEVICE);
  334. /*
  335. * Free the sk buffer associated with this last transmit.
  336. */
  337. dev_kfree_skb_irq(skb);
  338. fep->tx_skbuff[dirtyidx] = NULL;
  339. /*
  340. * Update pointer to next buffer descriptor to be transmitted.
  341. */
  342. if ((sc & BD_ENET_TX_WRAP) == 0)
  343. bdp++;
  344. else
  345. bdp = fep->tx_bd_base;
  346. /*
  347. * Since we have freed up a buffer, the ring is no longer
  348. * full.
  349. */
  350. if (!fep->tx_free++)
  351. do_wake = 1;
  352. }
  353. fep->dirty_tx = bdp;
  354. if (do_restart)
  355. (*fep->ops->tx_restart)(dev);
  356. spin_unlock(&fep->lock);
  357. if (do_wake)
  358. netif_wake_queue(dev);
  359. }
  360. /*
  361. * The interrupt handler.
  362. * This is called from the MPC core interrupt.
  363. */
  364. static irqreturn_t
  365. fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  366. {
  367. struct net_device *dev = dev_id;
  368. struct fs_enet_private *fep;
  369. const struct fs_platform_info *fpi;
  370. u32 int_events;
  371. u32 int_clr_events;
  372. int nr, napi_ok;
  373. int handled;
  374. fep = netdev_priv(dev);
  375. fpi = fep->fpi;
  376. nr = 0;
  377. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  378. nr++;
  379. int_clr_events = int_events;
  380. if (fpi->use_napi)
  381. int_clr_events &= ~fep->ev_napi_rx;
  382. (*fep->ops->clear_int_events)(dev, int_clr_events);
  383. if (int_events & fep->ev_err)
  384. (*fep->ops->ev_error)(dev, int_events);
  385. if (int_events & fep->ev_rx) {
  386. if (!fpi->use_napi)
  387. fs_enet_rx_non_napi(dev);
  388. else {
  389. napi_ok = netif_rx_schedule_prep(dev);
  390. (*fep->ops->napi_disable_rx)(dev);
  391. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  392. /* NOTE: it is possible for FCCs in NAPI mode */
  393. /* to submit a spurious interrupt while in poll */
  394. if (napi_ok)
  395. __netif_rx_schedule(dev);
  396. }
  397. }
  398. if (int_events & fep->ev_tx)
  399. fs_enet_tx(dev);
  400. }
  401. handled = nr > 0;
  402. return IRQ_RETVAL(handled);
  403. }
  404. void fs_init_bds(struct net_device *dev)
  405. {
  406. struct fs_enet_private *fep = netdev_priv(dev);
  407. cbd_t *bdp;
  408. struct sk_buff *skb;
  409. int i;
  410. fs_cleanup_bds(dev);
  411. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  412. fep->tx_free = fep->tx_ring;
  413. fep->cur_rx = fep->rx_bd_base;
  414. /*
  415. * Initialize the receive buffer descriptors.
  416. */
  417. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  418. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  419. if (skb == NULL) {
  420. printk(KERN_WARNING DRV_MODULE_NAME
  421. ": %s Memory squeeze, unable to allocate skb\n",
  422. dev->name);
  423. break;
  424. }
  425. fep->rx_skbuff[i] = skb;
  426. skb->dev = dev;
  427. CBDW_BUFADDR(bdp,
  428. dma_map_single(fep->dev, skb->data,
  429. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  430. DMA_FROM_DEVICE));
  431. CBDW_DATLEN(bdp, 0); /* zero */
  432. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  433. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  434. }
  435. /*
  436. * if we failed, fillup remainder
  437. */
  438. for (; i < fep->rx_ring; i++, bdp++) {
  439. fep->rx_skbuff[i] = NULL;
  440. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  441. }
  442. /*
  443. * ...and the same for transmit.
  444. */
  445. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  446. fep->tx_skbuff[i] = NULL;
  447. CBDW_BUFADDR(bdp, 0);
  448. CBDW_DATLEN(bdp, 0);
  449. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  450. }
  451. }
  452. void fs_cleanup_bds(struct net_device *dev)
  453. {
  454. struct fs_enet_private *fep = netdev_priv(dev);
  455. struct sk_buff *skb;
  456. cbd_t *bdp;
  457. int i;
  458. /*
  459. * Reset SKB transmit buffers.
  460. */
  461. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  462. if ((skb = fep->tx_skbuff[i]) == NULL)
  463. continue;
  464. /* unmap */
  465. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  466. skb->len, DMA_TO_DEVICE);
  467. fep->tx_skbuff[i] = NULL;
  468. dev_kfree_skb(skb);
  469. }
  470. /*
  471. * Reset SKB receive buffers
  472. */
  473. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  474. if ((skb = fep->rx_skbuff[i]) == NULL)
  475. continue;
  476. /* unmap */
  477. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  478. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  479. DMA_FROM_DEVICE);
  480. fep->rx_skbuff[i] = NULL;
  481. dev_kfree_skb(skb);
  482. }
  483. }
  484. /**********************************************************************************/
  485. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  486. {
  487. struct fs_enet_private *fep = netdev_priv(dev);
  488. cbd_t *bdp;
  489. int curidx;
  490. u16 sc;
  491. unsigned long flags;
  492. spin_lock_irqsave(&fep->tx_lock, flags);
  493. /*
  494. * Fill in a Tx ring entry
  495. */
  496. bdp = fep->cur_tx;
  497. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  498. netif_stop_queue(dev);
  499. spin_unlock_irqrestore(&fep->tx_lock, flags);
  500. /*
  501. * Ooops. All transmit buffers are full. Bail out.
  502. * This should not happen, since the tx queue should be stopped.
  503. */
  504. printk(KERN_WARNING DRV_MODULE_NAME
  505. ": %s tx queue full!.\n", dev->name);
  506. return NETDEV_TX_BUSY;
  507. }
  508. curidx = bdp - fep->tx_bd_base;
  509. /*
  510. * Clear all of the status flags.
  511. */
  512. CBDC_SC(bdp, BD_ENET_TX_STATS);
  513. /*
  514. * Save skb pointer.
  515. */
  516. fep->tx_skbuff[curidx] = skb;
  517. fep->stats.tx_bytes += skb->len;
  518. /*
  519. * Push the data cache so the CPM does not get stale memory data.
  520. */
  521. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  522. skb->data, skb->len, DMA_TO_DEVICE));
  523. CBDW_DATLEN(bdp, skb->len);
  524. dev->trans_start = jiffies;
  525. /*
  526. * If this was the last BD in the ring, start at the beginning again.
  527. */
  528. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  529. fep->cur_tx++;
  530. else
  531. fep->cur_tx = fep->tx_bd_base;
  532. if (!--fep->tx_free)
  533. netif_stop_queue(dev);
  534. /* Trigger transmission start */
  535. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  536. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  537. /* note that while FEC does not have this bit
  538. * it marks it as available for software use
  539. * yay for hw reuse :) */
  540. if (skb->len <= 60)
  541. sc |= BD_ENET_TX_PAD;
  542. CBDS_SC(bdp, sc);
  543. (*fep->ops->tx_kickstart)(dev);
  544. spin_unlock_irqrestore(&fep->tx_lock, flags);
  545. return NETDEV_TX_OK;
  546. }
  547. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  548. irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
  549. {
  550. struct fs_enet_private *fep = netdev_priv(dev);
  551. (*fep->ops->pre_request_irq)(dev, irq);
  552. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  553. }
  554. static void fs_free_irq(struct net_device *dev, int irq)
  555. {
  556. struct fs_enet_private *fep = netdev_priv(dev);
  557. free_irq(irq, dev);
  558. (*fep->ops->post_free_irq)(dev, irq);
  559. }
  560. /**********************************************************************************/
  561. /* This interrupt occurs when the PHY detects a link change. */
  562. static irqreturn_t
  563. fs_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  564. {
  565. struct net_device *dev = dev_id;
  566. struct fs_enet_private *fep;
  567. const struct fs_platform_info *fpi;
  568. fep = netdev_priv(dev);
  569. fpi = fep->fpi;
  570. /*
  571. * Acknowledge the interrupt if possible. If we have not
  572. * found the PHY yet we can't process or acknowledge the
  573. * interrupt now. Instead we ignore this interrupt for now,
  574. * which we can do since it is edge triggered. It will be
  575. * acknowledged later by fs_enet_open().
  576. */
  577. if (!fep->phy)
  578. return IRQ_NONE;
  579. fs_mii_ack_int(dev);
  580. fs_mii_link_status_change_check(dev, 0);
  581. return IRQ_HANDLED;
  582. }
  583. static void fs_timeout(struct net_device *dev)
  584. {
  585. struct fs_enet_private *fep = netdev_priv(dev);
  586. unsigned long flags;
  587. int wake = 0;
  588. fep->stats.tx_errors++;
  589. spin_lock_irqsave(&fep->lock, flags);
  590. if (dev->flags & IFF_UP) {
  591. (*fep->ops->stop)(dev);
  592. (*fep->ops->restart)(dev);
  593. }
  594. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  595. spin_unlock_irqrestore(&fep->lock, flags);
  596. if (wake)
  597. netif_wake_queue(dev);
  598. }
  599. static int fs_enet_open(struct net_device *dev)
  600. {
  601. struct fs_enet_private *fep = netdev_priv(dev);
  602. const struct fs_platform_info *fpi = fep->fpi;
  603. int r;
  604. /* Install our interrupt handler. */
  605. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  606. if (r != 0) {
  607. printk(KERN_ERR DRV_MODULE_NAME
  608. ": %s Could not allocate FEC IRQ!", dev->name);
  609. return -EINVAL;
  610. }
  611. /* Install our phy interrupt handler */
  612. if (fpi->phy_irq != -1) {
  613. r = fs_request_irq(dev, fpi->phy_irq, "fs_enet-phy", fs_mii_link_interrupt);
  614. if (r != 0) {
  615. printk(KERN_ERR DRV_MODULE_NAME
  616. ": %s Could not allocate PHY IRQ!", dev->name);
  617. fs_free_irq(dev, fep->interrupt);
  618. return -EINVAL;
  619. }
  620. }
  621. fs_mii_startup(dev);
  622. netif_carrier_off(dev);
  623. fs_mii_link_status_change_check(dev, 1);
  624. return 0;
  625. }
  626. static int fs_enet_close(struct net_device *dev)
  627. {
  628. struct fs_enet_private *fep = netdev_priv(dev);
  629. const struct fs_platform_info *fpi = fep->fpi;
  630. unsigned long flags;
  631. netif_stop_queue(dev);
  632. netif_carrier_off(dev);
  633. fs_mii_shutdown(dev);
  634. spin_lock_irqsave(&fep->lock, flags);
  635. (*fep->ops->stop)(dev);
  636. spin_unlock_irqrestore(&fep->lock, flags);
  637. /* release any irqs */
  638. if (fpi->phy_irq != -1)
  639. fs_free_irq(dev, fpi->phy_irq);
  640. fs_free_irq(dev, fep->interrupt);
  641. return 0;
  642. }
  643. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  644. {
  645. struct fs_enet_private *fep = netdev_priv(dev);
  646. return &fep->stats;
  647. }
  648. /*************************************************************************/
  649. static void fs_get_drvinfo(struct net_device *dev,
  650. struct ethtool_drvinfo *info)
  651. {
  652. strcpy(info->driver, DRV_MODULE_NAME);
  653. strcpy(info->version, DRV_MODULE_VERSION);
  654. }
  655. static int fs_get_regs_len(struct net_device *dev)
  656. {
  657. struct fs_enet_private *fep = netdev_priv(dev);
  658. return (*fep->ops->get_regs_len)(dev);
  659. }
  660. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  661. void *p)
  662. {
  663. struct fs_enet_private *fep = netdev_priv(dev);
  664. unsigned long flags;
  665. int r, len;
  666. len = regs->len;
  667. spin_lock_irqsave(&fep->lock, flags);
  668. r = (*fep->ops->get_regs)(dev, p, &len);
  669. spin_unlock_irqrestore(&fep->lock, flags);
  670. if (r == 0)
  671. regs->version = 0;
  672. }
  673. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  674. {
  675. struct fs_enet_private *fep = netdev_priv(dev);
  676. unsigned long flags;
  677. int rc;
  678. spin_lock_irqsave(&fep->lock, flags);
  679. rc = mii_ethtool_gset(&fep->mii_if, cmd);
  680. spin_unlock_irqrestore(&fep->lock, flags);
  681. return rc;
  682. }
  683. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  684. {
  685. struct fs_enet_private *fep = netdev_priv(dev);
  686. unsigned long flags;
  687. int rc;
  688. spin_lock_irqsave(&fep->lock, flags);
  689. rc = mii_ethtool_sset(&fep->mii_if, cmd);
  690. spin_unlock_irqrestore(&fep->lock, flags);
  691. return rc;
  692. }
  693. static int fs_nway_reset(struct net_device *dev)
  694. {
  695. struct fs_enet_private *fep = netdev_priv(dev);
  696. return mii_nway_restart(&fep->mii_if);
  697. }
  698. static u32 fs_get_msglevel(struct net_device *dev)
  699. {
  700. struct fs_enet_private *fep = netdev_priv(dev);
  701. return fep->msg_enable;
  702. }
  703. static void fs_set_msglevel(struct net_device *dev, u32 value)
  704. {
  705. struct fs_enet_private *fep = netdev_priv(dev);
  706. fep->msg_enable = value;
  707. }
  708. static struct ethtool_ops fs_ethtool_ops = {
  709. .get_drvinfo = fs_get_drvinfo,
  710. .get_regs_len = fs_get_regs_len,
  711. .get_settings = fs_get_settings,
  712. .set_settings = fs_set_settings,
  713. .nway_reset = fs_nway_reset,
  714. .get_link = ethtool_op_get_link,
  715. .get_msglevel = fs_get_msglevel,
  716. .set_msglevel = fs_set_msglevel,
  717. .get_tx_csum = ethtool_op_get_tx_csum,
  718. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  719. .get_sg = ethtool_op_get_sg,
  720. .set_sg = ethtool_op_set_sg,
  721. .get_regs = fs_get_regs,
  722. };
  723. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  724. {
  725. struct fs_enet_private *fep = netdev_priv(dev);
  726. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  727. unsigned long flags;
  728. int rc;
  729. if (!netif_running(dev))
  730. return -EINVAL;
  731. spin_lock_irqsave(&fep->lock, flags);
  732. rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
  733. spin_unlock_irqrestore(&fep->lock, flags);
  734. return rc;
  735. }
  736. extern int fs_mii_connect(struct net_device *dev);
  737. extern void fs_mii_disconnect(struct net_device *dev);
  738. static struct net_device *fs_init_instance(struct device *dev,
  739. const struct fs_platform_info *fpi)
  740. {
  741. struct net_device *ndev = NULL;
  742. struct fs_enet_private *fep = NULL;
  743. int privsize, i, r, err = 0, registered = 0;
  744. /* guard */
  745. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  746. return ERR_PTR(-EINVAL);
  747. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  748. (fpi->rx_ring + fpi->tx_ring));
  749. ndev = alloc_etherdev(privsize);
  750. if (!ndev) {
  751. err = -ENOMEM;
  752. goto err;
  753. }
  754. SET_MODULE_OWNER(ndev);
  755. fep = netdev_priv(ndev);
  756. memset(fep, 0, privsize); /* clear everything */
  757. fep->dev = dev;
  758. dev_set_drvdata(dev, ndev);
  759. fep->fpi = fpi;
  760. if (fpi->init_ioports)
  761. fpi->init_ioports();
  762. #ifdef CONFIG_FS_ENET_HAS_FEC
  763. if (fs_get_fec_index(fpi->fs_no) >= 0)
  764. fep->ops = &fs_fec_ops;
  765. #endif
  766. #ifdef CONFIG_FS_ENET_HAS_SCC
  767. if (fs_get_scc_index(fpi->fs_no) >=0 )
  768. fep->ops = &fs_scc_ops;
  769. #endif
  770. #ifdef CONFIG_FS_ENET_HAS_FCC
  771. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  772. fep->ops = &fs_fcc_ops;
  773. #endif
  774. if (fep->ops == NULL) {
  775. printk(KERN_ERR DRV_MODULE_NAME
  776. ": %s No matching ops found (%d).\n",
  777. ndev->name, fpi->fs_no);
  778. err = -EINVAL;
  779. goto err;
  780. }
  781. r = (*fep->ops->setup_data)(ndev);
  782. if (r != 0) {
  783. printk(KERN_ERR DRV_MODULE_NAME
  784. ": %s setup_data failed\n",
  785. ndev->name);
  786. err = r;
  787. goto err;
  788. }
  789. /* point rx_skbuff, tx_skbuff */
  790. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  791. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  792. /* init locks */
  793. spin_lock_init(&fep->lock);
  794. spin_lock_init(&fep->tx_lock);
  795. /*
  796. * Set the Ethernet address.
  797. */
  798. for (i = 0; i < 6; i++)
  799. ndev->dev_addr[i] = fpi->macaddr[i];
  800. r = (*fep->ops->allocate_bd)(ndev);
  801. if (fep->ring_base == NULL) {
  802. printk(KERN_ERR DRV_MODULE_NAME
  803. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  804. err = r;
  805. goto err;
  806. }
  807. /*
  808. * Set receive and transmit descriptor base.
  809. */
  810. fep->rx_bd_base = fep->ring_base;
  811. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  812. /* initialize ring size variables */
  813. fep->tx_ring = fpi->tx_ring;
  814. fep->rx_ring = fpi->rx_ring;
  815. /*
  816. * The FEC Ethernet specific entries in the device structure.
  817. */
  818. ndev->open = fs_enet_open;
  819. ndev->hard_start_xmit = fs_enet_start_xmit;
  820. ndev->tx_timeout = fs_timeout;
  821. ndev->watchdog_timeo = 2 * HZ;
  822. ndev->stop = fs_enet_close;
  823. ndev->get_stats = fs_enet_get_stats;
  824. ndev->set_multicast_list = fs_set_multicast_list;
  825. if (fpi->use_napi) {
  826. ndev->poll = fs_enet_rx_napi;
  827. ndev->weight = fpi->napi_weight;
  828. }
  829. ndev->ethtool_ops = &fs_ethtool_ops;
  830. ndev->do_ioctl = fs_ioctl;
  831. init_timer(&fep->phy_timer_list);
  832. netif_carrier_off(ndev);
  833. err = register_netdev(ndev);
  834. if (err != 0) {
  835. printk(KERN_ERR DRV_MODULE_NAME
  836. ": %s register_netdev failed.\n", ndev->name);
  837. goto err;
  838. }
  839. registered = 1;
  840. err = fs_mii_connect(ndev);
  841. if (err != 0) {
  842. printk(KERN_ERR DRV_MODULE_NAME
  843. ": %s fs_mii_connect failed.\n", ndev->name);
  844. goto err;
  845. }
  846. return ndev;
  847. err:
  848. if (ndev != NULL) {
  849. if (registered)
  850. unregister_netdev(ndev);
  851. if (fep != NULL) {
  852. (*fep->ops->free_bd)(ndev);
  853. (*fep->ops->cleanup_data)(ndev);
  854. }
  855. free_netdev(ndev);
  856. }
  857. dev_set_drvdata(dev, NULL);
  858. return ERR_PTR(err);
  859. }
  860. static int fs_cleanup_instance(struct net_device *ndev)
  861. {
  862. struct fs_enet_private *fep;
  863. const struct fs_platform_info *fpi;
  864. struct device *dev;
  865. if (ndev == NULL)
  866. return -EINVAL;
  867. fep = netdev_priv(ndev);
  868. if (fep == NULL)
  869. return -EINVAL;
  870. fpi = fep->fpi;
  871. fs_mii_disconnect(ndev);
  872. unregister_netdev(ndev);
  873. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  874. fep->ring_base, fep->ring_mem_addr);
  875. /* reset it */
  876. (*fep->ops->cleanup_data)(ndev);
  877. dev = fep->dev;
  878. if (dev != NULL) {
  879. dev_set_drvdata(dev, NULL);
  880. fep->dev = NULL;
  881. }
  882. free_netdev(ndev);
  883. return 0;
  884. }
  885. /**************************************************************************************/
  886. /* handy pointer to the immap */
  887. void *fs_enet_immap = NULL;
  888. static int setup_immap(void)
  889. {
  890. phys_addr_t paddr = 0;
  891. unsigned long size = 0;
  892. #ifdef CONFIG_CPM1
  893. paddr = IMAP_ADDR;
  894. size = 0x10000; /* map 64K */
  895. #endif
  896. #ifdef CONFIG_CPM2
  897. paddr = CPM_MAP_ADDR;
  898. size = 0x40000; /* map 256 K */
  899. #endif
  900. fs_enet_immap = ioremap(paddr, size);
  901. if (fs_enet_immap == NULL)
  902. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  903. return 0;
  904. }
  905. static void cleanup_immap(void)
  906. {
  907. if (fs_enet_immap != NULL) {
  908. iounmap(fs_enet_immap);
  909. fs_enet_immap = NULL;
  910. }
  911. }
  912. /**************************************************************************************/
  913. static int __devinit fs_enet_probe(struct device *dev)
  914. {
  915. struct net_device *ndev;
  916. /* no fixup - no device */
  917. if (dev->platform_data == NULL) {
  918. printk(KERN_INFO "fs_enet: "
  919. "probe called with no platform data; "
  920. "remove unused devices\n");
  921. return -ENODEV;
  922. }
  923. ndev = fs_init_instance(dev, dev->platform_data);
  924. if (IS_ERR(ndev))
  925. return PTR_ERR(ndev);
  926. return 0;
  927. }
  928. static int fs_enet_remove(struct device *dev)
  929. {
  930. return fs_cleanup_instance(dev_get_drvdata(dev));
  931. }
  932. static struct device_driver fs_enet_fec_driver = {
  933. .name = "fsl-cpm-fec",
  934. .bus = &platform_bus_type,
  935. .probe = fs_enet_probe,
  936. .remove = fs_enet_remove,
  937. #ifdef CONFIG_PM
  938. /* .suspend = fs_enet_suspend, TODO */
  939. /* .resume = fs_enet_resume, TODO */
  940. #endif
  941. };
  942. static struct device_driver fs_enet_scc_driver = {
  943. .name = "fsl-cpm-scc",
  944. .bus = &platform_bus_type,
  945. .probe = fs_enet_probe,
  946. .remove = fs_enet_remove,
  947. #ifdef CONFIG_PM
  948. /* .suspend = fs_enet_suspend, TODO */
  949. /* .resume = fs_enet_resume, TODO */
  950. #endif
  951. };
  952. static struct device_driver fs_enet_fcc_driver = {
  953. .name = "fsl-cpm-fcc",
  954. .bus = &platform_bus_type,
  955. .probe = fs_enet_probe,
  956. .remove = fs_enet_remove,
  957. #ifdef CONFIG_PM
  958. /* .suspend = fs_enet_suspend, TODO */
  959. /* .resume = fs_enet_resume, TODO */
  960. #endif
  961. };
  962. static int __init fs_init(void)
  963. {
  964. int r;
  965. printk(KERN_INFO
  966. "%s", version);
  967. r = setup_immap();
  968. if (r != 0)
  969. return r;
  970. r = driver_register(&fs_enet_fec_driver);
  971. if (r != 0)
  972. goto err;
  973. r = driver_register(&fs_enet_fcc_driver);
  974. if (r != 0)
  975. goto err;
  976. r = driver_register(&fs_enet_scc_driver);
  977. if (r != 0)
  978. goto err;
  979. return 0;
  980. err:
  981. cleanup_immap();
  982. return r;
  983. }
  984. static void __exit fs_cleanup(void)
  985. {
  986. driver_unregister(&fs_enet_fec_driver);
  987. driver_unregister(&fs_enet_fcc_driver);
  988. driver_unregister(&fs_enet_scc_driver);
  989. cleanup_immap();
  990. }
  991. /**************************************************************************************/
  992. module_init(fs_init);
  993. module_exit(fs_cleanup);