e1000_main.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20. *******************************************************************************/
  21. #include "e1000.h"
  22. char e1000_driver_name[] = "e1000";
  23. static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  24. #ifndef CONFIG_E1000_NAPI
  25. #define DRIVERNAPI
  26. #else
  27. #define DRIVERNAPI "-NAPI"
  28. #endif
  29. #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
  30. char e1000_driver_version[] = DRV_VERSION;
  31. static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  32. /* e1000_pci_tbl - PCI Device ID Table
  33. *
  34. * Last entry must be all 0s
  35. *
  36. * Macro expands to...
  37. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  38. */
  39. static struct pci_device_id e1000_pci_tbl[] = {
  40. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  41. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  42. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  43. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  44. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  45. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  46. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  47. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  48. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  49. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  50. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  51. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  52. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  53. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  54. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  59. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  60. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  61. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  63. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  64. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  65. INTEL_E1000_ETHERNET_DEVICE(0x105E),
  66. INTEL_E1000_ETHERNET_DEVICE(0x105F),
  67. INTEL_E1000_ETHERNET_DEVICE(0x1060),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  73. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  74. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  75. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  76. INTEL_E1000_ETHERNET_DEVICE(0x107D),
  77. INTEL_E1000_ETHERNET_DEVICE(0x107E),
  78. INTEL_E1000_ETHERNET_DEVICE(0x107F),
  79. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  80. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  81. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1096),
  83. INTEL_E1000_ETHERNET_DEVICE(0x1098),
  84. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85. INTEL_E1000_ETHERNET_DEVICE(0x109A),
  86. INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  87. INTEL_E1000_ETHERNET_DEVICE(0x10B9),
  88. /* required last entry */
  89. {0,}
  90. };
  91. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92. static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  93. struct e1000_tx_ring *txdr);
  94. static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  95. struct e1000_rx_ring *rxdr);
  96. static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  97. struct e1000_tx_ring *tx_ring);
  98. static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  99. struct e1000_rx_ring *rx_ring);
  100. /* Local Function Prototypes */
  101. static int e1000_init_module(void);
  102. static void e1000_exit_module(void);
  103. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  104. static void __devexit e1000_remove(struct pci_dev *pdev);
  105. static int e1000_alloc_queues(struct e1000_adapter *adapter);
  106. static int e1000_sw_init(struct e1000_adapter *adapter);
  107. static int e1000_open(struct net_device *netdev);
  108. static int e1000_close(struct net_device *netdev);
  109. static void e1000_configure_tx(struct e1000_adapter *adapter);
  110. static void e1000_configure_rx(struct e1000_adapter *adapter);
  111. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  112. static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  113. static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  114. static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  115. struct e1000_tx_ring *tx_ring);
  116. static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  117. struct e1000_rx_ring *rx_ring);
  118. static void e1000_set_multi(struct net_device *netdev);
  119. static void e1000_update_phy_info(unsigned long data);
  120. static void e1000_watchdog(unsigned long data);
  121. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  122. static void e1000_82547_tx_fifo_stall(unsigned long data);
  123. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  124. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  125. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  126. static int e1000_set_mac(struct net_device *netdev, void *p);
  127. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  128. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
  129. struct e1000_tx_ring *tx_ring);
  130. #ifdef CONFIG_E1000_NAPI
  131. static int e1000_clean(struct net_device *poll_dev, int *budget);
  132. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  133. struct e1000_rx_ring *rx_ring,
  134. int *work_done, int work_to_do);
  135. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  136. struct e1000_rx_ring *rx_ring,
  137. int *work_done, int work_to_do);
  138. #else
  139. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  140. struct e1000_rx_ring *rx_ring);
  141. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  142. struct e1000_rx_ring *rx_ring);
  143. #endif
  144. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  145. struct e1000_rx_ring *rx_ring,
  146. int cleaned_count);
  147. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  148. struct e1000_rx_ring *rx_ring,
  149. int cleaned_count);
  150. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  151. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  152. int cmd);
  153. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  154. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  155. static void e1000_tx_timeout(struct net_device *dev);
  156. static void e1000_reset_task(struct net_device *dev);
  157. static void e1000_smartspeed(struct e1000_adapter *adapter);
  158. static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  159. struct sk_buff *skb);
  160. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  161. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  162. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  163. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  164. #ifdef CONFIG_PM
  165. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  166. static int e1000_resume(struct pci_dev *pdev);
  167. #endif
  168. static void e1000_shutdown(struct pci_dev *pdev);
  169. #ifdef CONFIG_NET_POLL_CONTROLLER
  170. /* for netdump / net console */
  171. static void e1000_netpoll (struct net_device *netdev);
  172. #endif
  173. static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
  174. pci_channel_state_t state);
  175. static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
  176. static void e1000_io_resume(struct pci_dev *pdev);
  177. static struct pci_error_handlers e1000_err_handler = {
  178. .error_detected = e1000_io_error_detected,
  179. .slot_reset = e1000_io_slot_reset,
  180. .resume = e1000_io_resume,
  181. };
  182. static struct pci_driver e1000_driver = {
  183. .name = e1000_driver_name,
  184. .id_table = e1000_pci_tbl,
  185. .probe = e1000_probe,
  186. .remove = __devexit_p(e1000_remove),
  187. /* Power Managment Hooks */
  188. #ifdef CONFIG_PM
  189. .suspend = e1000_suspend,
  190. .resume = e1000_resume,
  191. #endif
  192. .shutdown = e1000_shutdown,
  193. .err_handler = &e1000_err_handler
  194. };
  195. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  196. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  197. MODULE_LICENSE("GPL");
  198. MODULE_VERSION(DRV_VERSION);
  199. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  200. module_param(debug, int, 0);
  201. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  202. /**
  203. * e1000_init_module - Driver Registration Routine
  204. *
  205. * e1000_init_module is the first routine called when the driver is
  206. * loaded. All it does is register with the PCI subsystem.
  207. **/
  208. static int __init
  209. e1000_init_module(void)
  210. {
  211. int ret;
  212. printk(KERN_INFO "%s - version %s\n",
  213. e1000_driver_string, e1000_driver_version);
  214. printk(KERN_INFO "%s\n", e1000_copyright);
  215. ret = pci_module_init(&e1000_driver);
  216. return ret;
  217. }
  218. module_init(e1000_init_module);
  219. /**
  220. * e1000_exit_module - Driver Exit Cleanup Routine
  221. *
  222. * e1000_exit_module is called just before the driver is removed
  223. * from memory.
  224. **/
  225. static void __exit
  226. e1000_exit_module(void)
  227. {
  228. pci_unregister_driver(&e1000_driver);
  229. }
  230. module_exit(e1000_exit_module);
  231. /**
  232. * e1000_irq_disable - Mask off interrupt generation on the NIC
  233. * @adapter: board private structure
  234. **/
  235. static void
  236. e1000_irq_disable(struct e1000_adapter *adapter)
  237. {
  238. atomic_inc(&adapter->irq_sem);
  239. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  240. E1000_WRITE_FLUSH(&adapter->hw);
  241. synchronize_irq(adapter->pdev->irq);
  242. }
  243. /**
  244. * e1000_irq_enable - Enable default interrupt generation settings
  245. * @adapter: board private structure
  246. **/
  247. static void
  248. e1000_irq_enable(struct e1000_adapter *adapter)
  249. {
  250. if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
  251. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  252. E1000_WRITE_FLUSH(&adapter->hw);
  253. }
  254. }
  255. static void
  256. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  257. {
  258. struct net_device *netdev = adapter->netdev;
  259. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  260. uint16_t old_vid = adapter->mng_vlan_id;
  261. if (adapter->vlgrp) {
  262. if (!adapter->vlgrp->vlan_devices[vid]) {
  263. if (adapter->hw.mng_cookie.status &
  264. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  265. e1000_vlan_rx_add_vid(netdev, vid);
  266. adapter->mng_vlan_id = vid;
  267. } else
  268. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  269. if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  270. (vid != old_vid) &&
  271. !adapter->vlgrp->vlan_devices[old_vid])
  272. e1000_vlan_rx_kill_vid(netdev, old_vid);
  273. } else
  274. adapter->mng_vlan_id = vid;
  275. }
  276. }
  277. /**
  278. * e1000_release_hw_control - release control of the h/w to f/w
  279. * @adapter: address of board private structure
  280. *
  281. * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  282. * For ASF and Pass Through versions of f/w this means that the
  283. * driver is no longer loaded. For AMT version (only with 82573) i
  284. * of the f/w this means that the netowrk i/f is closed.
  285. *
  286. **/
  287. static void
  288. e1000_release_hw_control(struct e1000_adapter *adapter)
  289. {
  290. uint32_t ctrl_ext;
  291. uint32_t swsm;
  292. /* Let firmware taken over control of h/w */
  293. switch (adapter->hw.mac_type) {
  294. case e1000_82571:
  295. case e1000_82572:
  296. case e1000_80003es2lan:
  297. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  298. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  299. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  300. break;
  301. case e1000_82573:
  302. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  303. E1000_WRITE_REG(&adapter->hw, SWSM,
  304. swsm & ~E1000_SWSM_DRV_LOAD);
  305. default:
  306. break;
  307. }
  308. }
  309. /**
  310. * e1000_get_hw_control - get control of the h/w from f/w
  311. * @adapter: address of board private structure
  312. *
  313. * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  314. * For ASF and Pass Through versions of f/w this means that
  315. * the driver is loaded. For AMT version (only with 82573)
  316. * of the f/w this means that the netowrk i/f is open.
  317. *
  318. **/
  319. static void
  320. e1000_get_hw_control(struct e1000_adapter *adapter)
  321. {
  322. uint32_t ctrl_ext;
  323. uint32_t swsm;
  324. /* Let firmware know the driver has taken over */
  325. switch (adapter->hw.mac_type) {
  326. case e1000_82571:
  327. case e1000_82572:
  328. case e1000_80003es2lan:
  329. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  330. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  331. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  332. break;
  333. case e1000_82573:
  334. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  335. E1000_WRITE_REG(&adapter->hw, SWSM,
  336. swsm | E1000_SWSM_DRV_LOAD);
  337. break;
  338. default:
  339. break;
  340. }
  341. }
  342. int
  343. e1000_up(struct e1000_adapter *adapter)
  344. {
  345. struct net_device *netdev = adapter->netdev;
  346. int i, err;
  347. /* hardware has been reset, we need to reload some things */
  348. /* Reset the PHY if it was previously powered down */
  349. if (adapter->hw.media_type == e1000_media_type_copper) {
  350. uint16_t mii_reg;
  351. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  352. if (mii_reg & MII_CR_POWER_DOWN)
  353. e1000_phy_hw_reset(&adapter->hw);
  354. }
  355. e1000_set_multi(netdev);
  356. e1000_restore_vlan(adapter);
  357. e1000_configure_tx(adapter);
  358. e1000_setup_rctl(adapter);
  359. e1000_configure_rx(adapter);
  360. /* call E1000_DESC_UNUSED which always leaves
  361. * at least 1 descriptor unused to make sure
  362. * next_to_use != next_to_clean */
  363. for (i = 0; i < adapter->num_rx_queues; i++) {
  364. struct e1000_rx_ring *ring = &adapter->rx_ring[i];
  365. adapter->alloc_rx_buf(adapter, ring,
  366. E1000_DESC_UNUSED(ring));
  367. }
  368. #ifdef CONFIG_PCI_MSI
  369. if (adapter->hw.mac_type > e1000_82547_rev_2) {
  370. adapter->have_msi = TRUE;
  371. if ((err = pci_enable_msi(adapter->pdev))) {
  372. DPRINTK(PROBE, ERR,
  373. "Unable to allocate MSI interrupt Error: %d\n", err);
  374. adapter->have_msi = FALSE;
  375. }
  376. }
  377. #endif
  378. if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
  379. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  380. netdev->name, netdev))) {
  381. DPRINTK(PROBE, ERR,
  382. "Unable to allocate interrupt Error: %d\n", err);
  383. return err;
  384. }
  385. adapter->tx_queue_len = netdev->tx_queue_len;
  386. mod_timer(&adapter->watchdog_timer, jiffies);
  387. #ifdef CONFIG_E1000_NAPI
  388. netif_poll_enable(netdev);
  389. #endif
  390. e1000_irq_enable(adapter);
  391. return 0;
  392. }
  393. void
  394. e1000_down(struct e1000_adapter *adapter)
  395. {
  396. struct net_device *netdev = adapter->netdev;
  397. boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
  398. e1000_check_mng_mode(&adapter->hw);
  399. e1000_irq_disable(adapter);
  400. free_irq(adapter->pdev->irq, netdev);
  401. #ifdef CONFIG_PCI_MSI
  402. if (adapter->hw.mac_type > e1000_82547_rev_2 &&
  403. adapter->have_msi == TRUE)
  404. pci_disable_msi(adapter->pdev);
  405. #endif
  406. del_timer_sync(&adapter->tx_fifo_stall_timer);
  407. del_timer_sync(&adapter->watchdog_timer);
  408. del_timer_sync(&adapter->phy_info_timer);
  409. #ifdef CONFIG_E1000_NAPI
  410. netif_poll_disable(netdev);
  411. #endif
  412. netdev->tx_queue_len = adapter->tx_queue_len;
  413. adapter->link_speed = 0;
  414. adapter->link_duplex = 0;
  415. netif_carrier_off(netdev);
  416. netif_stop_queue(netdev);
  417. e1000_reset(adapter);
  418. e1000_clean_all_tx_rings(adapter);
  419. e1000_clean_all_rx_rings(adapter);
  420. /* Power down the PHY so no link is implied when interface is down *
  421. * The PHY cannot be powered down if any of the following is TRUE *
  422. * (a) WoL is enabled
  423. * (b) AMT is active
  424. * (c) SoL/IDER session is active */
  425. if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  426. adapter->hw.media_type == e1000_media_type_copper &&
  427. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
  428. !mng_mode_enabled &&
  429. !e1000_check_phy_reset_block(&adapter->hw)) {
  430. uint16_t mii_reg;
  431. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  432. mii_reg |= MII_CR_POWER_DOWN;
  433. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  434. mdelay(1);
  435. }
  436. }
  437. void
  438. e1000_reset(struct e1000_adapter *adapter)
  439. {
  440. uint32_t pba, manc;
  441. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  442. /* Repartition Pba for greater than 9k mtu
  443. * To take effect CTRL.RST is required.
  444. */
  445. switch (adapter->hw.mac_type) {
  446. case e1000_82547:
  447. case e1000_82547_rev_2:
  448. pba = E1000_PBA_30K;
  449. break;
  450. case e1000_82571:
  451. case e1000_82572:
  452. case e1000_80003es2lan:
  453. pba = E1000_PBA_38K;
  454. break;
  455. case e1000_82573:
  456. pba = E1000_PBA_12K;
  457. break;
  458. default:
  459. pba = E1000_PBA_48K;
  460. break;
  461. }
  462. if ((adapter->hw.mac_type != e1000_82573) &&
  463. (adapter->netdev->mtu > E1000_RXBUFFER_8192))
  464. pba -= 8; /* allocate more FIFO for Tx */
  465. if (adapter->hw.mac_type == e1000_82547) {
  466. adapter->tx_fifo_head = 0;
  467. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  468. adapter->tx_fifo_size =
  469. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  470. atomic_set(&adapter->tx_fifo_stall, 0);
  471. }
  472. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  473. /* flow control settings */
  474. /* Set the FC high water mark to 90% of the FIFO size.
  475. * Required to clear last 3 LSB */
  476. fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
  477. adapter->hw.fc_high_water = fc_high_water_mark;
  478. adapter->hw.fc_low_water = fc_high_water_mark - 8;
  479. if (adapter->hw.mac_type == e1000_80003es2lan)
  480. adapter->hw.fc_pause_time = 0xFFFF;
  481. else
  482. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  483. adapter->hw.fc_send_xon = 1;
  484. adapter->hw.fc = adapter->hw.original_fc;
  485. /* Allow time for pending master requests to run */
  486. e1000_reset_hw(&adapter->hw);
  487. if (adapter->hw.mac_type >= e1000_82544)
  488. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  489. if (e1000_init_hw(&adapter->hw))
  490. DPRINTK(PROBE, ERR, "Hardware Error\n");
  491. e1000_update_mng_vlan(adapter);
  492. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  493. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  494. e1000_reset_adaptive(&adapter->hw);
  495. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  496. if (adapter->en_mng_pt) {
  497. manc = E1000_READ_REG(&adapter->hw, MANC);
  498. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  499. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  500. }
  501. }
  502. /**
  503. * e1000_probe - Device Initialization Routine
  504. * @pdev: PCI device information struct
  505. * @ent: entry in e1000_pci_tbl
  506. *
  507. * Returns 0 on success, negative on failure
  508. *
  509. * e1000_probe initializes an adapter identified by a pci_dev structure.
  510. * The OS initialization, configuring of the adapter private structure,
  511. * and a hardware reset occur.
  512. **/
  513. static int __devinit
  514. e1000_probe(struct pci_dev *pdev,
  515. const struct pci_device_id *ent)
  516. {
  517. struct net_device *netdev;
  518. struct e1000_adapter *adapter;
  519. unsigned long mmio_start, mmio_len;
  520. static int cards_found = 0;
  521. static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
  522. int i, err, pci_using_dac;
  523. uint16_t eeprom_data;
  524. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  525. if ((err = pci_enable_device(pdev)))
  526. return err;
  527. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  528. pci_using_dac = 1;
  529. } else {
  530. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  531. E1000_ERR("No usable DMA configuration, aborting\n");
  532. return err;
  533. }
  534. pci_using_dac = 0;
  535. }
  536. if ((err = pci_request_regions(pdev, e1000_driver_name)))
  537. return err;
  538. pci_set_master(pdev);
  539. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  540. if (!netdev) {
  541. err = -ENOMEM;
  542. goto err_alloc_etherdev;
  543. }
  544. SET_MODULE_OWNER(netdev);
  545. SET_NETDEV_DEV(netdev, &pdev->dev);
  546. pci_set_drvdata(pdev, netdev);
  547. adapter = netdev_priv(netdev);
  548. adapter->netdev = netdev;
  549. adapter->pdev = pdev;
  550. adapter->hw.back = adapter;
  551. adapter->msg_enable = (1 << debug) - 1;
  552. mmio_start = pci_resource_start(pdev, BAR_0);
  553. mmio_len = pci_resource_len(pdev, BAR_0);
  554. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  555. if (!adapter->hw.hw_addr) {
  556. err = -EIO;
  557. goto err_ioremap;
  558. }
  559. for (i = BAR_1; i <= BAR_5; i++) {
  560. if (pci_resource_len(pdev, i) == 0)
  561. continue;
  562. if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  563. adapter->hw.io_base = pci_resource_start(pdev, i);
  564. break;
  565. }
  566. }
  567. netdev->open = &e1000_open;
  568. netdev->stop = &e1000_close;
  569. netdev->hard_start_xmit = &e1000_xmit_frame;
  570. netdev->get_stats = &e1000_get_stats;
  571. netdev->set_multicast_list = &e1000_set_multi;
  572. netdev->set_mac_address = &e1000_set_mac;
  573. netdev->change_mtu = &e1000_change_mtu;
  574. netdev->do_ioctl = &e1000_ioctl;
  575. e1000_set_ethtool_ops(netdev);
  576. netdev->tx_timeout = &e1000_tx_timeout;
  577. netdev->watchdog_timeo = 5 * HZ;
  578. #ifdef CONFIG_E1000_NAPI
  579. netdev->poll = &e1000_clean;
  580. netdev->weight = 64;
  581. #endif
  582. netdev->vlan_rx_register = e1000_vlan_rx_register;
  583. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  584. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  585. #ifdef CONFIG_NET_POLL_CONTROLLER
  586. netdev->poll_controller = e1000_netpoll;
  587. #endif
  588. strcpy(netdev->name, pci_name(pdev));
  589. netdev->mem_start = mmio_start;
  590. netdev->mem_end = mmio_start + mmio_len;
  591. netdev->base_addr = adapter->hw.io_base;
  592. adapter->bd_number = cards_found;
  593. /* setup the private structure */
  594. if ((err = e1000_sw_init(adapter)))
  595. goto err_sw_init;
  596. if ((err = e1000_check_phy_reset_block(&adapter->hw)))
  597. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  598. /* if ksp3, indicate if it's port a being setup */
  599. if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
  600. e1000_ksp3_port_a == 0)
  601. adapter->ksp3_port_a = 1;
  602. e1000_ksp3_port_a++;
  603. /* Reset for multiple KP3 adapters */
  604. if (e1000_ksp3_port_a == 4)
  605. e1000_ksp3_port_a = 0;
  606. if (adapter->hw.mac_type >= e1000_82543) {
  607. netdev->features = NETIF_F_SG |
  608. NETIF_F_HW_CSUM |
  609. NETIF_F_HW_VLAN_TX |
  610. NETIF_F_HW_VLAN_RX |
  611. NETIF_F_HW_VLAN_FILTER;
  612. }
  613. #ifdef NETIF_F_TSO
  614. if ((adapter->hw.mac_type >= e1000_82544) &&
  615. (adapter->hw.mac_type != e1000_82547))
  616. netdev->features |= NETIF_F_TSO;
  617. #ifdef NETIF_F_TSO_IPV6
  618. if (adapter->hw.mac_type > e1000_82547_rev_2)
  619. netdev->features |= NETIF_F_TSO_IPV6;
  620. #endif
  621. #endif
  622. if (pci_using_dac)
  623. netdev->features |= NETIF_F_HIGHDMA;
  624. /* hard_start_xmit is safe against parallel locking */
  625. netdev->features |= NETIF_F_LLTX;
  626. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  627. /* before reading the EEPROM, reset the controller to
  628. * put the device in a known good starting state */
  629. e1000_reset_hw(&adapter->hw);
  630. /* make sure the EEPROM is good */
  631. if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  632. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  633. err = -EIO;
  634. goto err_eeprom;
  635. }
  636. /* copy the MAC address out of the EEPROM */
  637. if (e1000_read_mac_addr(&adapter->hw))
  638. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  639. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  640. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  641. if (!is_valid_ether_addr(netdev->perm_addr)) {
  642. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  643. err = -EIO;
  644. goto err_eeprom;
  645. }
  646. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  647. e1000_get_bus_info(&adapter->hw);
  648. init_timer(&adapter->tx_fifo_stall_timer);
  649. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  650. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  651. init_timer(&adapter->watchdog_timer);
  652. adapter->watchdog_timer.function = &e1000_watchdog;
  653. adapter->watchdog_timer.data = (unsigned long) adapter;
  654. INIT_WORK(&adapter->watchdog_task,
  655. (void (*)(void *))e1000_watchdog_task, adapter);
  656. init_timer(&adapter->phy_info_timer);
  657. adapter->phy_info_timer.function = &e1000_update_phy_info;
  658. adapter->phy_info_timer.data = (unsigned long) adapter;
  659. INIT_WORK(&adapter->reset_task,
  660. (void (*)(void *))e1000_reset_task, netdev);
  661. /* we're going to reset, so assume we have no link for now */
  662. netif_carrier_off(netdev);
  663. netif_stop_queue(netdev);
  664. e1000_check_options(adapter);
  665. /* Initial Wake on LAN setting
  666. * If APM wake is enabled in the EEPROM,
  667. * enable the ACPI Magic Packet filter
  668. */
  669. switch (adapter->hw.mac_type) {
  670. case e1000_82542_rev2_0:
  671. case e1000_82542_rev2_1:
  672. case e1000_82543:
  673. break;
  674. case e1000_82544:
  675. e1000_read_eeprom(&adapter->hw,
  676. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  677. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  678. break;
  679. case e1000_82546:
  680. case e1000_82546_rev_3:
  681. case e1000_82571:
  682. case e1000_80003es2lan:
  683. if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
  684. e1000_read_eeprom(&adapter->hw,
  685. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  686. break;
  687. }
  688. /* Fall Through */
  689. default:
  690. e1000_read_eeprom(&adapter->hw,
  691. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  692. break;
  693. }
  694. if (eeprom_data & eeprom_apme_mask)
  695. adapter->wol |= E1000_WUFC_MAG;
  696. /* print bus type/speed/width info */
  697. {
  698. struct e1000_hw *hw = &adapter->hw;
  699. DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
  700. ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
  701. (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
  702. ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  703. (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
  704. (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
  705. (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
  706. (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
  707. ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
  708. (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
  709. (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
  710. "32-bit"));
  711. }
  712. for (i = 0; i < 6; i++)
  713. printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
  714. /* reset the hardware with the new settings */
  715. e1000_reset(adapter);
  716. /* If the controller is 82573 and f/w is AMT, do not set
  717. * DRV_LOAD until the interface is up. For all other cases,
  718. * let the f/w know that the h/w is now under the control
  719. * of the driver. */
  720. if (adapter->hw.mac_type != e1000_82573 ||
  721. !e1000_check_mng_mode(&adapter->hw))
  722. e1000_get_hw_control(adapter);
  723. strcpy(netdev->name, "eth%d");
  724. if ((err = register_netdev(netdev)))
  725. goto err_register;
  726. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  727. cards_found++;
  728. return 0;
  729. err_register:
  730. err_sw_init:
  731. err_eeprom:
  732. iounmap(adapter->hw.hw_addr);
  733. err_ioremap:
  734. free_netdev(netdev);
  735. err_alloc_etherdev:
  736. pci_release_regions(pdev);
  737. return err;
  738. }
  739. /**
  740. * e1000_remove - Device Removal Routine
  741. * @pdev: PCI device information struct
  742. *
  743. * e1000_remove is called by the PCI subsystem to alert the driver
  744. * that it should release a PCI device. The could be caused by a
  745. * Hot-Plug event, or because the driver is going to be removed from
  746. * memory.
  747. **/
  748. static void __devexit
  749. e1000_remove(struct pci_dev *pdev)
  750. {
  751. struct net_device *netdev = pci_get_drvdata(pdev);
  752. struct e1000_adapter *adapter = netdev_priv(netdev);
  753. uint32_t manc;
  754. #ifdef CONFIG_E1000_NAPI
  755. int i;
  756. #endif
  757. flush_scheduled_work();
  758. if (adapter->hw.mac_type >= e1000_82540 &&
  759. adapter->hw.media_type == e1000_media_type_copper) {
  760. manc = E1000_READ_REG(&adapter->hw, MANC);
  761. if (manc & E1000_MANC_SMBUS_EN) {
  762. manc |= E1000_MANC_ARP_EN;
  763. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  764. }
  765. }
  766. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  767. * would have already happened in close and is redundant. */
  768. e1000_release_hw_control(adapter);
  769. unregister_netdev(netdev);
  770. #ifdef CONFIG_E1000_NAPI
  771. for (i = 0; i < adapter->num_rx_queues; i++)
  772. dev_put(&adapter->polling_netdev[i]);
  773. #endif
  774. if (!e1000_check_phy_reset_block(&adapter->hw))
  775. e1000_phy_hw_reset(&adapter->hw);
  776. kfree(adapter->tx_ring);
  777. kfree(adapter->rx_ring);
  778. #ifdef CONFIG_E1000_NAPI
  779. kfree(adapter->polling_netdev);
  780. #endif
  781. iounmap(adapter->hw.hw_addr);
  782. pci_release_regions(pdev);
  783. free_netdev(netdev);
  784. pci_disable_device(pdev);
  785. }
  786. /**
  787. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  788. * @adapter: board private structure to initialize
  789. *
  790. * e1000_sw_init initializes the Adapter private data structure.
  791. * Fields are initialized based on PCI device information and
  792. * OS network device settings (MTU size).
  793. **/
  794. static int __devinit
  795. e1000_sw_init(struct e1000_adapter *adapter)
  796. {
  797. struct e1000_hw *hw = &adapter->hw;
  798. struct net_device *netdev = adapter->netdev;
  799. struct pci_dev *pdev = adapter->pdev;
  800. #ifdef CONFIG_E1000_NAPI
  801. int i;
  802. #endif
  803. /* PCI config space info */
  804. hw->vendor_id = pdev->vendor;
  805. hw->device_id = pdev->device;
  806. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  807. hw->subsystem_id = pdev->subsystem_device;
  808. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  809. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  810. adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
  811. adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
  812. hw->max_frame_size = netdev->mtu +
  813. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  814. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  815. /* identify the MAC */
  816. if (e1000_set_mac_type(hw)) {
  817. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  818. return -EIO;
  819. }
  820. /* initialize eeprom parameters */
  821. if (e1000_init_eeprom_params(hw)) {
  822. E1000_ERR("EEPROM initialization failed\n");
  823. return -EIO;
  824. }
  825. switch (hw->mac_type) {
  826. default:
  827. break;
  828. case e1000_82541:
  829. case e1000_82547:
  830. case e1000_82541_rev_2:
  831. case e1000_82547_rev_2:
  832. hw->phy_init_script = 1;
  833. break;
  834. }
  835. e1000_set_media_type(hw);
  836. hw->wait_autoneg_complete = FALSE;
  837. hw->tbi_compatibility_en = TRUE;
  838. hw->adaptive_ifs = TRUE;
  839. /* Copper options */
  840. if (hw->media_type == e1000_media_type_copper) {
  841. hw->mdix = AUTO_ALL_MODES;
  842. hw->disable_polarity_correction = FALSE;
  843. hw->master_slave = E1000_MASTER_SLAVE;
  844. }
  845. adapter->num_tx_queues = 1;
  846. adapter->num_rx_queues = 1;
  847. if (e1000_alloc_queues(adapter)) {
  848. DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
  849. return -ENOMEM;
  850. }
  851. #ifdef CONFIG_E1000_NAPI
  852. for (i = 0; i < adapter->num_rx_queues; i++) {
  853. adapter->polling_netdev[i].priv = adapter;
  854. adapter->polling_netdev[i].poll = &e1000_clean;
  855. adapter->polling_netdev[i].weight = 64;
  856. dev_hold(&adapter->polling_netdev[i]);
  857. set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
  858. }
  859. spin_lock_init(&adapter->tx_queue_lock);
  860. #endif
  861. atomic_set(&adapter->irq_sem, 1);
  862. spin_lock_init(&adapter->stats_lock);
  863. return 0;
  864. }
  865. /**
  866. * e1000_alloc_queues - Allocate memory for all rings
  867. * @adapter: board private structure to initialize
  868. *
  869. * We allocate one ring per queue at run-time since we don't know the
  870. * number of queues at compile-time. The polling_netdev array is
  871. * intended for Multiqueue, but should work fine with a single queue.
  872. **/
  873. static int __devinit
  874. e1000_alloc_queues(struct e1000_adapter *adapter)
  875. {
  876. int size;
  877. size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  878. adapter->tx_ring = kmalloc(size, GFP_KERNEL);
  879. if (!adapter->tx_ring)
  880. return -ENOMEM;
  881. memset(adapter->tx_ring, 0, size);
  882. size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  883. adapter->rx_ring = kmalloc(size, GFP_KERNEL);
  884. if (!adapter->rx_ring) {
  885. kfree(adapter->tx_ring);
  886. return -ENOMEM;
  887. }
  888. memset(adapter->rx_ring, 0, size);
  889. #ifdef CONFIG_E1000_NAPI
  890. size = sizeof(struct net_device) * adapter->num_rx_queues;
  891. adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
  892. if (!adapter->polling_netdev) {
  893. kfree(adapter->tx_ring);
  894. kfree(adapter->rx_ring);
  895. return -ENOMEM;
  896. }
  897. memset(adapter->polling_netdev, 0, size);
  898. #endif
  899. return E1000_SUCCESS;
  900. }
  901. /**
  902. * e1000_open - Called when a network interface is made active
  903. * @netdev: network interface device structure
  904. *
  905. * Returns 0 on success, negative value on failure
  906. *
  907. * The open entry point is called when a network interface is made
  908. * active by the system (IFF_UP). At this point all resources needed
  909. * for transmit and receive operations are allocated, the interrupt
  910. * handler is registered with the OS, the watchdog timer is started,
  911. * and the stack is notified that the interface is ready.
  912. **/
  913. static int
  914. e1000_open(struct net_device *netdev)
  915. {
  916. struct e1000_adapter *adapter = netdev_priv(netdev);
  917. int err;
  918. /* allocate transmit descriptors */
  919. if ((err = e1000_setup_all_tx_resources(adapter)))
  920. goto err_setup_tx;
  921. /* allocate receive descriptors */
  922. if ((err = e1000_setup_all_rx_resources(adapter)))
  923. goto err_setup_rx;
  924. if ((err = e1000_up(adapter)))
  925. goto err_up;
  926. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  927. if ((adapter->hw.mng_cookie.status &
  928. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  929. e1000_update_mng_vlan(adapter);
  930. }
  931. /* If AMT is enabled, let the firmware know that the network
  932. * interface is now open */
  933. if (adapter->hw.mac_type == e1000_82573 &&
  934. e1000_check_mng_mode(&adapter->hw))
  935. e1000_get_hw_control(adapter);
  936. return E1000_SUCCESS;
  937. err_up:
  938. e1000_free_all_rx_resources(adapter);
  939. err_setup_rx:
  940. e1000_free_all_tx_resources(adapter);
  941. err_setup_tx:
  942. e1000_reset(adapter);
  943. return err;
  944. }
  945. /**
  946. * e1000_close - Disables a network interface
  947. * @netdev: network interface device structure
  948. *
  949. * Returns 0, this is not allowed to fail
  950. *
  951. * The close entry point is called when an interface is de-activated
  952. * by the OS. The hardware is still under the drivers control, but
  953. * needs to be disabled. A global MAC reset is issued to stop the
  954. * hardware, and all transmit and receive resources are freed.
  955. **/
  956. static int
  957. e1000_close(struct net_device *netdev)
  958. {
  959. struct e1000_adapter *adapter = netdev_priv(netdev);
  960. e1000_down(adapter);
  961. e1000_free_all_tx_resources(adapter);
  962. e1000_free_all_rx_resources(adapter);
  963. if ((adapter->hw.mng_cookie.status &
  964. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  965. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  966. }
  967. /* If AMT is enabled, let the firmware know that the network
  968. * interface is now closed */
  969. if (adapter->hw.mac_type == e1000_82573 &&
  970. e1000_check_mng_mode(&adapter->hw))
  971. e1000_release_hw_control(adapter);
  972. return 0;
  973. }
  974. /**
  975. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  976. * @adapter: address of board private structure
  977. * @start: address of beginning of memory
  978. * @len: length of memory
  979. **/
  980. static boolean_t
  981. e1000_check_64k_bound(struct e1000_adapter *adapter,
  982. void *start, unsigned long len)
  983. {
  984. unsigned long begin = (unsigned long) start;
  985. unsigned long end = begin + len;
  986. /* First rev 82545 and 82546 need to not allow any memory
  987. * write location to cross 64k boundary due to errata 23 */
  988. if (adapter->hw.mac_type == e1000_82545 ||
  989. adapter->hw.mac_type == e1000_82546) {
  990. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  991. }
  992. return TRUE;
  993. }
  994. /**
  995. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  996. * @adapter: board private structure
  997. * @txdr: tx descriptor ring (for a specific queue) to setup
  998. *
  999. * Return 0 on success, negative on failure
  1000. **/
  1001. static int
  1002. e1000_setup_tx_resources(struct e1000_adapter *adapter,
  1003. struct e1000_tx_ring *txdr)
  1004. {
  1005. struct pci_dev *pdev = adapter->pdev;
  1006. int size;
  1007. size = sizeof(struct e1000_buffer) * txdr->count;
  1008. txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1009. if (!txdr->buffer_info) {
  1010. DPRINTK(PROBE, ERR,
  1011. "Unable to allocate memory for the transmit descriptor ring\n");
  1012. return -ENOMEM;
  1013. }
  1014. memset(txdr->buffer_info, 0, size);
  1015. /* round up to nearest 4K */
  1016. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  1017. E1000_ROUNDUP(txdr->size, 4096);
  1018. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1019. if (!txdr->desc) {
  1020. setup_tx_desc_die:
  1021. vfree(txdr->buffer_info);
  1022. DPRINTK(PROBE, ERR,
  1023. "Unable to allocate memory for the transmit descriptor ring\n");
  1024. return -ENOMEM;
  1025. }
  1026. /* Fix for errata 23, can't cross 64kB boundary */
  1027. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1028. void *olddesc = txdr->desc;
  1029. dma_addr_t olddma = txdr->dma;
  1030. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  1031. "at %p\n", txdr->size, txdr->desc);
  1032. /* Try again, without freeing the previous */
  1033. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1034. /* Failed allocation, critical failure */
  1035. if (!txdr->desc) {
  1036. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1037. goto setup_tx_desc_die;
  1038. }
  1039. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1040. /* give up */
  1041. pci_free_consistent(pdev, txdr->size, txdr->desc,
  1042. txdr->dma);
  1043. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1044. DPRINTK(PROBE, ERR,
  1045. "Unable to allocate aligned memory "
  1046. "for the transmit descriptor ring\n");
  1047. vfree(txdr->buffer_info);
  1048. return -ENOMEM;
  1049. } else {
  1050. /* Free old allocation, new allocation was successful */
  1051. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1052. }
  1053. }
  1054. memset(txdr->desc, 0, txdr->size);
  1055. txdr->next_to_use = 0;
  1056. txdr->next_to_clean = 0;
  1057. spin_lock_init(&txdr->tx_lock);
  1058. return 0;
  1059. }
  1060. /**
  1061. * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
  1062. * (Descriptors) for all queues
  1063. * @adapter: board private structure
  1064. *
  1065. * If this function returns with an error, then it's possible one or
  1066. * more of the rings is populated (while the rest are not). It is the
  1067. * callers duty to clean those orphaned rings.
  1068. *
  1069. * Return 0 on success, negative on failure
  1070. **/
  1071. int
  1072. e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
  1073. {
  1074. int i, err = 0;
  1075. for (i = 0; i < adapter->num_tx_queues; i++) {
  1076. err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  1077. if (err) {
  1078. DPRINTK(PROBE, ERR,
  1079. "Allocation for Tx Queue %u failed\n", i);
  1080. break;
  1081. }
  1082. }
  1083. return err;
  1084. }
  1085. /**
  1086. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  1087. * @adapter: board private structure
  1088. *
  1089. * Configure the Tx unit of the MAC after a reset.
  1090. **/
  1091. static void
  1092. e1000_configure_tx(struct e1000_adapter *adapter)
  1093. {
  1094. uint64_t tdba;
  1095. struct e1000_hw *hw = &adapter->hw;
  1096. uint32_t tdlen, tctl, tipg, tarc;
  1097. uint32_t ipgr1, ipgr2;
  1098. /* Setup the HW Tx Head and Tail descriptor pointers */
  1099. switch (adapter->num_tx_queues) {
  1100. case 1:
  1101. default:
  1102. tdba = adapter->tx_ring[0].dma;
  1103. tdlen = adapter->tx_ring[0].count *
  1104. sizeof(struct e1000_tx_desc);
  1105. E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  1106. E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
  1107. E1000_WRITE_REG(hw, TDLEN, tdlen);
  1108. E1000_WRITE_REG(hw, TDH, 0);
  1109. E1000_WRITE_REG(hw, TDT, 0);
  1110. adapter->tx_ring[0].tdh = E1000_TDH;
  1111. adapter->tx_ring[0].tdt = E1000_TDT;
  1112. break;
  1113. }
  1114. /* Set the default values for the Tx Inter Packet Gap timer */
  1115. if (hw->media_type == e1000_media_type_fiber ||
  1116. hw->media_type == e1000_media_type_internal_serdes)
  1117. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  1118. else
  1119. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  1120. switch (hw->mac_type) {
  1121. case e1000_82542_rev2_0:
  1122. case e1000_82542_rev2_1:
  1123. tipg = DEFAULT_82542_TIPG_IPGT;
  1124. ipgr1 = DEFAULT_82542_TIPG_IPGR1;
  1125. ipgr2 = DEFAULT_82542_TIPG_IPGR2;
  1126. break;
  1127. case e1000_80003es2lan:
  1128. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1129. ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
  1130. break;
  1131. default:
  1132. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1133. ipgr2 = DEFAULT_82543_TIPG_IPGR2;
  1134. break;
  1135. }
  1136. tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
  1137. tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
  1138. E1000_WRITE_REG(hw, TIPG, tipg);
  1139. /* Set the Tx Interrupt Delay register */
  1140. E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
  1141. if (hw->mac_type >= e1000_82540)
  1142. E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
  1143. /* Program the Transmit Control Register */
  1144. tctl = E1000_READ_REG(hw, TCTL);
  1145. tctl &= ~E1000_TCTL_CT;
  1146. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  1147. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  1148. #ifdef DISABLE_MULR
  1149. /* disable Multiple Reads for debugging */
  1150. tctl &= ~E1000_TCTL_MULR;
  1151. #endif
  1152. if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
  1153. tarc = E1000_READ_REG(hw, TARC0);
  1154. tarc |= ((1 << 25) | (1 << 21));
  1155. E1000_WRITE_REG(hw, TARC0, tarc);
  1156. tarc = E1000_READ_REG(hw, TARC1);
  1157. tarc |= (1 << 25);
  1158. if (tctl & E1000_TCTL_MULR)
  1159. tarc &= ~(1 << 28);
  1160. else
  1161. tarc |= (1 << 28);
  1162. E1000_WRITE_REG(hw, TARC1, tarc);
  1163. } else if (hw->mac_type == e1000_80003es2lan) {
  1164. tarc = E1000_READ_REG(hw, TARC0);
  1165. tarc |= 1;
  1166. if (hw->media_type == e1000_media_type_internal_serdes)
  1167. tarc |= (1 << 20);
  1168. E1000_WRITE_REG(hw, TARC0, tarc);
  1169. tarc = E1000_READ_REG(hw, TARC1);
  1170. tarc |= 1;
  1171. E1000_WRITE_REG(hw, TARC1, tarc);
  1172. }
  1173. e1000_config_collision_dist(hw);
  1174. /* Setup Transmit Descriptor Settings for eop descriptor */
  1175. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  1176. E1000_TXD_CMD_IFCS;
  1177. if (hw->mac_type < e1000_82543)
  1178. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  1179. else
  1180. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  1181. /* Cache if we're 82544 running in PCI-X because we'll
  1182. * need this to apply a workaround later in the send path. */
  1183. if (hw->mac_type == e1000_82544 &&
  1184. hw->bus_type == e1000_bus_type_pcix)
  1185. adapter->pcix_82544 = 1;
  1186. E1000_WRITE_REG(hw, TCTL, tctl);
  1187. }
  1188. /**
  1189. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  1190. * @adapter: board private structure
  1191. * @rxdr: rx descriptor ring (for a specific queue) to setup
  1192. *
  1193. * Returns 0 on success, negative on failure
  1194. **/
  1195. static int
  1196. e1000_setup_rx_resources(struct e1000_adapter *adapter,
  1197. struct e1000_rx_ring *rxdr)
  1198. {
  1199. struct pci_dev *pdev = adapter->pdev;
  1200. int size, desc_len;
  1201. size = sizeof(struct e1000_buffer) * rxdr->count;
  1202. rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1203. if (!rxdr->buffer_info) {
  1204. DPRINTK(PROBE, ERR,
  1205. "Unable to allocate memory for the receive descriptor ring\n");
  1206. return -ENOMEM;
  1207. }
  1208. memset(rxdr->buffer_info, 0, size);
  1209. size = sizeof(struct e1000_ps_page) * rxdr->count;
  1210. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  1211. if (!rxdr->ps_page) {
  1212. vfree(rxdr->buffer_info);
  1213. DPRINTK(PROBE, ERR,
  1214. "Unable to allocate memory for the receive descriptor ring\n");
  1215. return -ENOMEM;
  1216. }
  1217. memset(rxdr->ps_page, 0, size);
  1218. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  1219. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  1220. if (!rxdr->ps_page_dma) {
  1221. vfree(rxdr->buffer_info);
  1222. kfree(rxdr->ps_page);
  1223. DPRINTK(PROBE, ERR,
  1224. "Unable to allocate memory for the receive descriptor ring\n");
  1225. return -ENOMEM;
  1226. }
  1227. memset(rxdr->ps_page_dma, 0, size);
  1228. if (adapter->hw.mac_type <= e1000_82547_rev_2)
  1229. desc_len = sizeof(struct e1000_rx_desc);
  1230. else
  1231. desc_len = sizeof(union e1000_rx_desc_packet_split);
  1232. /* Round up to nearest 4K */
  1233. rxdr->size = rxdr->count * desc_len;
  1234. E1000_ROUNDUP(rxdr->size, 4096);
  1235. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1236. if (!rxdr->desc) {
  1237. DPRINTK(PROBE, ERR,
  1238. "Unable to allocate memory for the receive descriptor ring\n");
  1239. setup_rx_desc_die:
  1240. vfree(rxdr->buffer_info);
  1241. kfree(rxdr->ps_page);
  1242. kfree(rxdr->ps_page_dma);
  1243. return -ENOMEM;
  1244. }
  1245. /* Fix for errata 23, can't cross 64kB boundary */
  1246. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1247. void *olddesc = rxdr->desc;
  1248. dma_addr_t olddma = rxdr->dma;
  1249. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  1250. "at %p\n", rxdr->size, rxdr->desc);
  1251. /* Try again, without freeing the previous */
  1252. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1253. /* Failed allocation, critical failure */
  1254. if (!rxdr->desc) {
  1255. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1256. DPRINTK(PROBE, ERR,
  1257. "Unable to allocate memory "
  1258. "for the receive descriptor ring\n");
  1259. goto setup_rx_desc_die;
  1260. }
  1261. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1262. /* give up */
  1263. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  1264. rxdr->dma);
  1265. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1266. DPRINTK(PROBE, ERR,
  1267. "Unable to allocate aligned memory "
  1268. "for the receive descriptor ring\n");
  1269. goto setup_rx_desc_die;
  1270. } else {
  1271. /* Free old allocation, new allocation was successful */
  1272. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1273. }
  1274. }
  1275. memset(rxdr->desc, 0, rxdr->size);
  1276. rxdr->next_to_clean = 0;
  1277. rxdr->next_to_use = 0;
  1278. return 0;
  1279. }
  1280. /**
  1281. * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
  1282. * (Descriptors) for all queues
  1283. * @adapter: board private structure
  1284. *
  1285. * If this function returns with an error, then it's possible one or
  1286. * more of the rings is populated (while the rest are not). It is the
  1287. * callers duty to clean those orphaned rings.
  1288. *
  1289. * Return 0 on success, negative on failure
  1290. **/
  1291. int
  1292. e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
  1293. {
  1294. int i, err = 0;
  1295. for (i = 0; i < adapter->num_rx_queues; i++) {
  1296. err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  1297. if (err) {
  1298. DPRINTK(PROBE, ERR,
  1299. "Allocation for Rx Queue %u failed\n", i);
  1300. break;
  1301. }
  1302. }
  1303. return err;
  1304. }
  1305. /**
  1306. * e1000_setup_rctl - configure the receive control registers
  1307. * @adapter: Board private structure
  1308. **/
  1309. #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
  1310. (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
  1311. static void
  1312. e1000_setup_rctl(struct e1000_adapter *adapter)
  1313. {
  1314. uint32_t rctl, rfctl;
  1315. uint32_t psrctl = 0;
  1316. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1317. uint32_t pages = 0;
  1318. #endif
  1319. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1320. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1321. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1322. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1323. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1324. if (adapter->hw.mac_type > e1000_82543)
  1325. rctl |= E1000_RCTL_SECRC;
  1326. if (adapter->hw.tbi_compatibility_on == 1)
  1327. rctl |= E1000_RCTL_SBP;
  1328. else
  1329. rctl &= ~E1000_RCTL_SBP;
  1330. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1331. rctl &= ~E1000_RCTL_LPE;
  1332. else
  1333. rctl |= E1000_RCTL_LPE;
  1334. /* Setup buffer sizes */
  1335. rctl &= ~E1000_RCTL_SZ_4096;
  1336. rctl |= E1000_RCTL_BSEX;
  1337. switch (adapter->rx_buffer_len) {
  1338. case E1000_RXBUFFER_256:
  1339. rctl |= E1000_RCTL_SZ_256;
  1340. rctl &= ~E1000_RCTL_BSEX;
  1341. break;
  1342. case E1000_RXBUFFER_512:
  1343. rctl |= E1000_RCTL_SZ_512;
  1344. rctl &= ~E1000_RCTL_BSEX;
  1345. break;
  1346. case E1000_RXBUFFER_1024:
  1347. rctl |= E1000_RCTL_SZ_1024;
  1348. rctl &= ~E1000_RCTL_BSEX;
  1349. break;
  1350. case E1000_RXBUFFER_2048:
  1351. default:
  1352. rctl |= E1000_RCTL_SZ_2048;
  1353. rctl &= ~E1000_RCTL_BSEX;
  1354. break;
  1355. case E1000_RXBUFFER_4096:
  1356. rctl |= E1000_RCTL_SZ_4096;
  1357. break;
  1358. case E1000_RXBUFFER_8192:
  1359. rctl |= E1000_RCTL_SZ_8192;
  1360. break;
  1361. case E1000_RXBUFFER_16384:
  1362. rctl |= E1000_RCTL_SZ_16384;
  1363. break;
  1364. }
  1365. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1366. /* 82571 and greater support packet-split where the protocol
  1367. * header is placed in skb->data and the packet data is
  1368. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1369. * In the case of a non-split, skb->data is linearly filled,
  1370. * followed by the page buffers. Therefore, skb->data is
  1371. * sized to hold the largest protocol header.
  1372. */
  1373. pages = PAGE_USE_COUNT(adapter->netdev->mtu);
  1374. if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
  1375. PAGE_SIZE <= 16384)
  1376. adapter->rx_ps_pages = pages;
  1377. else
  1378. adapter->rx_ps_pages = 0;
  1379. #endif
  1380. if (adapter->rx_ps_pages) {
  1381. /* Configure extra packet-split registers */
  1382. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1383. rfctl |= E1000_RFCTL_EXTEN;
  1384. /* disable IPv6 packet split support */
  1385. rfctl |= E1000_RFCTL_IPV6_DIS;
  1386. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1387. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1388. psrctl |= adapter->rx_ps_bsize0 >>
  1389. E1000_PSRCTL_BSIZE0_SHIFT;
  1390. switch (adapter->rx_ps_pages) {
  1391. case 3:
  1392. psrctl |= PAGE_SIZE <<
  1393. E1000_PSRCTL_BSIZE3_SHIFT;
  1394. case 2:
  1395. psrctl |= PAGE_SIZE <<
  1396. E1000_PSRCTL_BSIZE2_SHIFT;
  1397. case 1:
  1398. psrctl |= PAGE_SIZE >>
  1399. E1000_PSRCTL_BSIZE1_SHIFT;
  1400. break;
  1401. }
  1402. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1403. }
  1404. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1405. }
  1406. /**
  1407. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1408. * @adapter: board private structure
  1409. *
  1410. * Configure the Rx unit of the MAC after a reset.
  1411. **/
  1412. static void
  1413. e1000_configure_rx(struct e1000_adapter *adapter)
  1414. {
  1415. uint64_t rdba;
  1416. struct e1000_hw *hw = &adapter->hw;
  1417. uint32_t rdlen, rctl, rxcsum, ctrl_ext;
  1418. if (adapter->rx_ps_pages) {
  1419. /* this is a 32 byte descriptor */
  1420. rdlen = adapter->rx_ring[0].count *
  1421. sizeof(union e1000_rx_desc_packet_split);
  1422. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1423. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1424. } else {
  1425. rdlen = adapter->rx_ring[0].count *
  1426. sizeof(struct e1000_rx_desc);
  1427. adapter->clean_rx = e1000_clean_rx_irq;
  1428. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1429. }
  1430. /* disable receives while setting up the descriptors */
  1431. rctl = E1000_READ_REG(hw, RCTL);
  1432. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  1433. /* set the Receive Delay Timer Register */
  1434. E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
  1435. if (hw->mac_type >= e1000_82540) {
  1436. E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
  1437. if (adapter->itr > 1)
  1438. E1000_WRITE_REG(hw, ITR,
  1439. 1000000000 / (adapter->itr * 256));
  1440. }
  1441. if (hw->mac_type >= e1000_82571) {
  1442. ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
  1443. /* Reset delay timers after every interrupt */
  1444. ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
  1445. #ifdef CONFIG_E1000_NAPI
  1446. /* Auto-Mask interrupts upon ICR read. */
  1447. ctrl_ext |= E1000_CTRL_EXT_IAME;
  1448. #endif
  1449. E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
  1450. E1000_WRITE_REG(hw, IAM, ~0);
  1451. E1000_WRITE_FLUSH(hw);
  1452. }
  1453. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1454. * the Base and Length of the Rx Descriptor Ring */
  1455. switch (adapter->num_rx_queues) {
  1456. case 1:
  1457. default:
  1458. rdba = adapter->rx_ring[0].dma;
  1459. E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1460. E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
  1461. E1000_WRITE_REG(hw, RDLEN, rdlen);
  1462. E1000_WRITE_REG(hw, RDH, 0);
  1463. E1000_WRITE_REG(hw, RDT, 0);
  1464. adapter->rx_ring[0].rdh = E1000_RDH;
  1465. adapter->rx_ring[0].rdt = E1000_RDT;
  1466. break;
  1467. }
  1468. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1469. if (hw->mac_type >= e1000_82543) {
  1470. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1471. if (adapter->rx_csum == TRUE) {
  1472. rxcsum |= E1000_RXCSUM_TUOFL;
  1473. /* Enable 82571 IPv4 payload checksum for UDP fragments
  1474. * Must be used in conjunction with packet-split. */
  1475. if ((hw->mac_type >= e1000_82571) &&
  1476. (adapter->rx_ps_pages)) {
  1477. rxcsum |= E1000_RXCSUM_IPPCSE;
  1478. }
  1479. } else {
  1480. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1481. /* don't need to clear IPPCSE as it defaults to 0 */
  1482. }
  1483. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1484. }
  1485. if (hw->mac_type == e1000_82573)
  1486. E1000_WRITE_REG(hw, ERT, 0x0100);
  1487. /* Enable Receives */
  1488. E1000_WRITE_REG(hw, RCTL, rctl);
  1489. }
  1490. /**
  1491. * e1000_free_tx_resources - Free Tx Resources per Queue
  1492. * @adapter: board private structure
  1493. * @tx_ring: Tx descriptor ring for a specific queue
  1494. *
  1495. * Free all transmit software resources
  1496. **/
  1497. static void
  1498. e1000_free_tx_resources(struct e1000_adapter *adapter,
  1499. struct e1000_tx_ring *tx_ring)
  1500. {
  1501. struct pci_dev *pdev = adapter->pdev;
  1502. e1000_clean_tx_ring(adapter, tx_ring);
  1503. vfree(tx_ring->buffer_info);
  1504. tx_ring->buffer_info = NULL;
  1505. pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
  1506. tx_ring->desc = NULL;
  1507. }
  1508. /**
  1509. * e1000_free_all_tx_resources - Free Tx Resources for All Queues
  1510. * @adapter: board private structure
  1511. *
  1512. * Free all transmit software resources
  1513. **/
  1514. void
  1515. e1000_free_all_tx_resources(struct e1000_adapter *adapter)
  1516. {
  1517. int i;
  1518. for (i = 0; i < adapter->num_tx_queues; i++)
  1519. e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
  1520. }
  1521. static void
  1522. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1523. struct e1000_buffer *buffer_info)
  1524. {
  1525. if (buffer_info->dma) {
  1526. pci_unmap_page(adapter->pdev,
  1527. buffer_info->dma,
  1528. buffer_info->length,
  1529. PCI_DMA_TODEVICE);
  1530. }
  1531. if (buffer_info->skb)
  1532. dev_kfree_skb_any(buffer_info->skb);
  1533. memset(buffer_info, 0, sizeof(struct e1000_buffer));
  1534. }
  1535. /**
  1536. * e1000_clean_tx_ring - Free Tx Buffers
  1537. * @adapter: board private structure
  1538. * @tx_ring: ring to be cleaned
  1539. **/
  1540. static void
  1541. e1000_clean_tx_ring(struct e1000_adapter *adapter,
  1542. struct e1000_tx_ring *tx_ring)
  1543. {
  1544. struct e1000_buffer *buffer_info;
  1545. unsigned long size;
  1546. unsigned int i;
  1547. /* Free all the Tx ring sk_buffs */
  1548. for (i = 0; i < tx_ring->count; i++) {
  1549. buffer_info = &tx_ring->buffer_info[i];
  1550. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1551. }
  1552. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1553. memset(tx_ring->buffer_info, 0, size);
  1554. /* Zero out the descriptor ring */
  1555. memset(tx_ring->desc, 0, tx_ring->size);
  1556. tx_ring->next_to_use = 0;
  1557. tx_ring->next_to_clean = 0;
  1558. tx_ring->last_tx_tso = 0;
  1559. writel(0, adapter->hw.hw_addr + tx_ring->tdh);
  1560. writel(0, adapter->hw.hw_addr + tx_ring->tdt);
  1561. }
  1562. /**
  1563. * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
  1564. * @adapter: board private structure
  1565. **/
  1566. static void
  1567. e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
  1568. {
  1569. int i;
  1570. for (i = 0; i < adapter->num_tx_queues; i++)
  1571. e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1572. }
  1573. /**
  1574. * e1000_free_rx_resources - Free Rx Resources
  1575. * @adapter: board private structure
  1576. * @rx_ring: ring to clean the resources from
  1577. *
  1578. * Free all receive software resources
  1579. **/
  1580. static void
  1581. e1000_free_rx_resources(struct e1000_adapter *adapter,
  1582. struct e1000_rx_ring *rx_ring)
  1583. {
  1584. struct pci_dev *pdev = adapter->pdev;
  1585. e1000_clean_rx_ring(adapter, rx_ring);
  1586. vfree(rx_ring->buffer_info);
  1587. rx_ring->buffer_info = NULL;
  1588. kfree(rx_ring->ps_page);
  1589. rx_ring->ps_page = NULL;
  1590. kfree(rx_ring->ps_page_dma);
  1591. rx_ring->ps_page_dma = NULL;
  1592. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1593. rx_ring->desc = NULL;
  1594. }
  1595. /**
  1596. * e1000_free_all_rx_resources - Free Rx Resources for All Queues
  1597. * @adapter: board private structure
  1598. *
  1599. * Free all receive software resources
  1600. **/
  1601. void
  1602. e1000_free_all_rx_resources(struct e1000_adapter *adapter)
  1603. {
  1604. int i;
  1605. for (i = 0; i < adapter->num_rx_queues; i++)
  1606. e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
  1607. }
  1608. /**
  1609. * e1000_clean_rx_ring - Free Rx Buffers per Queue
  1610. * @adapter: board private structure
  1611. * @rx_ring: ring to free buffers from
  1612. **/
  1613. static void
  1614. e1000_clean_rx_ring(struct e1000_adapter *adapter,
  1615. struct e1000_rx_ring *rx_ring)
  1616. {
  1617. struct e1000_buffer *buffer_info;
  1618. struct e1000_ps_page *ps_page;
  1619. struct e1000_ps_page_dma *ps_page_dma;
  1620. struct pci_dev *pdev = adapter->pdev;
  1621. unsigned long size;
  1622. unsigned int i, j;
  1623. /* Free all the Rx ring sk_buffs */
  1624. for (i = 0; i < rx_ring->count; i++) {
  1625. buffer_info = &rx_ring->buffer_info[i];
  1626. if (buffer_info->skb) {
  1627. pci_unmap_single(pdev,
  1628. buffer_info->dma,
  1629. buffer_info->length,
  1630. PCI_DMA_FROMDEVICE);
  1631. dev_kfree_skb(buffer_info->skb);
  1632. buffer_info->skb = NULL;
  1633. }
  1634. ps_page = &rx_ring->ps_page[i];
  1635. ps_page_dma = &rx_ring->ps_page_dma[i];
  1636. for (j = 0; j < adapter->rx_ps_pages; j++) {
  1637. if (!ps_page->ps_page[j]) break;
  1638. pci_unmap_page(pdev,
  1639. ps_page_dma->ps_page_dma[j],
  1640. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1641. ps_page_dma->ps_page_dma[j] = 0;
  1642. put_page(ps_page->ps_page[j]);
  1643. ps_page->ps_page[j] = NULL;
  1644. }
  1645. }
  1646. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1647. memset(rx_ring->buffer_info, 0, size);
  1648. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1649. memset(rx_ring->ps_page, 0, size);
  1650. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1651. memset(rx_ring->ps_page_dma, 0, size);
  1652. /* Zero out the descriptor ring */
  1653. memset(rx_ring->desc, 0, rx_ring->size);
  1654. rx_ring->next_to_clean = 0;
  1655. rx_ring->next_to_use = 0;
  1656. writel(0, adapter->hw.hw_addr + rx_ring->rdh);
  1657. writel(0, adapter->hw.hw_addr + rx_ring->rdt);
  1658. }
  1659. /**
  1660. * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
  1661. * @adapter: board private structure
  1662. **/
  1663. static void
  1664. e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
  1665. {
  1666. int i;
  1667. for (i = 0; i < adapter->num_rx_queues; i++)
  1668. e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1669. }
  1670. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1671. * and memory write and invalidate disabled for certain operations
  1672. */
  1673. static void
  1674. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1675. {
  1676. struct net_device *netdev = adapter->netdev;
  1677. uint32_t rctl;
  1678. e1000_pci_clear_mwi(&adapter->hw);
  1679. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1680. rctl |= E1000_RCTL_RST;
  1681. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1682. E1000_WRITE_FLUSH(&adapter->hw);
  1683. mdelay(5);
  1684. if (netif_running(netdev))
  1685. e1000_clean_all_rx_rings(adapter);
  1686. }
  1687. static void
  1688. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1689. {
  1690. struct net_device *netdev = adapter->netdev;
  1691. uint32_t rctl;
  1692. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1693. rctl &= ~E1000_RCTL_RST;
  1694. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1695. E1000_WRITE_FLUSH(&adapter->hw);
  1696. mdelay(5);
  1697. if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1698. e1000_pci_set_mwi(&adapter->hw);
  1699. if (netif_running(netdev)) {
  1700. /* No need to loop, because 82542 supports only 1 queue */
  1701. struct e1000_rx_ring *ring = &adapter->rx_ring[0];
  1702. e1000_configure_rx(adapter);
  1703. adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
  1704. }
  1705. }
  1706. /**
  1707. * e1000_set_mac - Change the Ethernet Address of the NIC
  1708. * @netdev: network interface device structure
  1709. * @p: pointer to an address structure
  1710. *
  1711. * Returns 0 on success, negative on failure
  1712. **/
  1713. static int
  1714. e1000_set_mac(struct net_device *netdev, void *p)
  1715. {
  1716. struct e1000_adapter *adapter = netdev_priv(netdev);
  1717. struct sockaddr *addr = p;
  1718. if (!is_valid_ether_addr(addr->sa_data))
  1719. return -EADDRNOTAVAIL;
  1720. /* 82542 2.0 needs to be in reset to write receive address registers */
  1721. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1722. e1000_enter_82542_rst(adapter);
  1723. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1724. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1725. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1726. /* With 82571 controllers, LAA may be overwritten (with the default)
  1727. * due to controller reset from the other port. */
  1728. if (adapter->hw.mac_type == e1000_82571) {
  1729. /* activate the work around */
  1730. adapter->hw.laa_is_present = 1;
  1731. /* Hold a copy of the LAA in RAR[14] This is done so that
  1732. * between the time RAR[0] gets clobbered and the time it
  1733. * gets fixed (in e1000_watchdog), the actual LAA is in one
  1734. * of the RARs and no incoming packets directed to this port
  1735. * are dropped. Eventaully the LAA will be in RAR[0] and
  1736. * RAR[14] */
  1737. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
  1738. E1000_RAR_ENTRIES - 1);
  1739. }
  1740. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1741. e1000_leave_82542_rst(adapter);
  1742. return 0;
  1743. }
  1744. /**
  1745. * e1000_set_multi - Multicast and Promiscuous mode set
  1746. * @netdev: network interface device structure
  1747. *
  1748. * The set_multi entry point is called whenever the multicast address
  1749. * list or the network interface flags are updated. This routine is
  1750. * responsible for configuring the hardware for proper multicast,
  1751. * promiscuous mode, and all-multi behavior.
  1752. **/
  1753. static void
  1754. e1000_set_multi(struct net_device *netdev)
  1755. {
  1756. struct e1000_adapter *adapter = netdev_priv(netdev);
  1757. struct e1000_hw *hw = &adapter->hw;
  1758. struct dev_mc_list *mc_ptr;
  1759. uint32_t rctl;
  1760. uint32_t hash_value;
  1761. int i, rar_entries = E1000_RAR_ENTRIES;
  1762. /* reserve RAR[14] for LAA over-write work-around */
  1763. if (adapter->hw.mac_type == e1000_82571)
  1764. rar_entries--;
  1765. /* Check for Promiscuous and All Multicast modes */
  1766. rctl = E1000_READ_REG(hw, RCTL);
  1767. if (netdev->flags & IFF_PROMISC) {
  1768. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1769. } else if (netdev->flags & IFF_ALLMULTI) {
  1770. rctl |= E1000_RCTL_MPE;
  1771. rctl &= ~E1000_RCTL_UPE;
  1772. } else {
  1773. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1774. }
  1775. E1000_WRITE_REG(hw, RCTL, rctl);
  1776. /* 82542 2.0 needs to be in reset to write receive address registers */
  1777. if (hw->mac_type == e1000_82542_rev2_0)
  1778. e1000_enter_82542_rst(adapter);
  1779. /* load the first 14 multicast address into the exact filters 1-14
  1780. * RAR 0 is used for the station MAC adddress
  1781. * if there are not 14 addresses, go ahead and clear the filters
  1782. * -- with 82571 controllers only 0-13 entries are filled here
  1783. */
  1784. mc_ptr = netdev->mc_list;
  1785. for (i = 1; i < rar_entries; i++) {
  1786. if (mc_ptr) {
  1787. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1788. mc_ptr = mc_ptr->next;
  1789. } else {
  1790. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1791. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1792. }
  1793. }
  1794. /* clear the old settings from the multicast hash table */
  1795. for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1796. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1797. /* load any remaining addresses into the hash table */
  1798. for (; mc_ptr; mc_ptr = mc_ptr->next) {
  1799. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1800. e1000_mta_set(hw, hash_value);
  1801. }
  1802. if (hw->mac_type == e1000_82542_rev2_0)
  1803. e1000_leave_82542_rst(adapter);
  1804. }
  1805. /* Need to wait a few seconds after link up to get diagnostic information from
  1806. * the phy */
  1807. static void
  1808. e1000_update_phy_info(unsigned long data)
  1809. {
  1810. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1811. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1812. }
  1813. /**
  1814. * e1000_82547_tx_fifo_stall - Timer Call-back
  1815. * @data: pointer to adapter cast into an unsigned long
  1816. **/
  1817. static void
  1818. e1000_82547_tx_fifo_stall(unsigned long data)
  1819. {
  1820. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1821. struct net_device *netdev = adapter->netdev;
  1822. uint32_t tctl;
  1823. if (atomic_read(&adapter->tx_fifo_stall)) {
  1824. if ((E1000_READ_REG(&adapter->hw, TDT) ==
  1825. E1000_READ_REG(&adapter->hw, TDH)) &&
  1826. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1827. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1828. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1829. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1830. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1831. E1000_WRITE_REG(&adapter->hw, TCTL,
  1832. tctl & ~E1000_TCTL_EN);
  1833. E1000_WRITE_REG(&adapter->hw, TDFT,
  1834. adapter->tx_head_addr);
  1835. E1000_WRITE_REG(&adapter->hw, TDFH,
  1836. adapter->tx_head_addr);
  1837. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1838. adapter->tx_head_addr);
  1839. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1840. adapter->tx_head_addr);
  1841. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1842. E1000_WRITE_FLUSH(&adapter->hw);
  1843. adapter->tx_fifo_head = 0;
  1844. atomic_set(&adapter->tx_fifo_stall, 0);
  1845. netif_wake_queue(netdev);
  1846. } else {
  1847. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1848. }
  1849. }
  1850. }
  1851. /**
  1852. * e1000_watchdog - Timer Call-back
  1853. * @data: pointer to adapter cast into an unsigned long
  1854. **/
  1855. static void
  1856. e1000_watchdog(unsigned long data)
  1857. {
  1858. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1859. /* Do the rest outside of interrupt context */
  1860. schedule_work(&adapter->watchdog_task);
  1861. }
  1862. static void
  1863. e1000_watchdog_task(struct e1000_adapter *adapter)
  1864. {
  1865. struct net_device *netdev = adapter->netdev;
  1866. struct e1000_tx_ring *txdr = adapter->tx_ring;
  1867. uint32_t link, tctl;
  1868. e1000_check_for_link(&adapter->hw);
  1869. if (adapter->hw.mac_type == e1000_82573) {
  1870. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1871. if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1872. e1000_update_mng_vlan(adapter);
  1873. }
  1874. if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1875. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1876. link = !adapter->hw.serdes_link_down;
  1877. else
  1878. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1879. if (link) {
  1880. if (!netif_carrier_ok(netdev)) {
  1881. boolean_t txb2b = 1;
  1882. e1000_get_speed_and_duplex(&adapter->hw,
  1883. &adapter->link_speed,
  1884. &adapter->link_duplex);
  1885. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1886. adapter->link_speed,
  1887. adapter->link_duplex == FULL_DUPLEX ?
  1888. "Full Duplex" : "Half Duplex");
  1889. /* tweak tx_queue_len according to speed/duplex
  1890. * and adjust the timeout factor */
  1891. netdev->tx_queue_len = adapter->tx_queue_len;
  1892. adapter->tx_timeout_factor = 1;
  1893. switch (adapter->link_speed) {
  1894. case SPEED_10:
  1895. txb2b = 0;
  1896. netdev->tx_queue_len = 10;
  1897. adapter->tx_timeout_factor = 8;
  1898. break;
  1899. case SPEED_100:
  1900. txb2b = 0;
  1901. netdev->tx_queue_len = 100;
  1902. /* maybe add some timeout factor ? */
  1903. break;
  1904. }
  1905. if ((adapter->hw.mac_type == e1000_82571 ||
  1906. adapter->hw.mac_type == e1000_82572) &&
  1907. txb2b == 0) {
  1908. #define SPEED_MODE_BIT (1 << 21)
  1909. uint32_t tarc0;
  1910. tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
  1911. tarc0 &= ~SPEED_MODE_BIT;
  1912. E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
  1913. }
  1914. #ifdef NETIF_F_TSO
  1915. /* disable TSO for pcie and 10/100 speeds, to avoid
  1916. * some hardware issues */
  1917. if (!adapter->tso_force &&
  1918. adapter->hw.bus_type == e1000_bus_type_pci_express){
  1919. switch (adapter->link_speed) {
  1920. case SPEED_10:
  1921. case SPEED_100:
  1922. DPRINTK(PROBE,INFO,
  1923. "10/100 speed: disabling TSO\n");
  1924. netdev->features &= ~NETIF_F_TSO;
  1925. break;
  1926. case SPEED_1000:
  1927. netdev->features |= NETIF_F_TSO;
  1928. break;
  1929. default:
  1930. /* oops */
  1931. break;
  1932. }
  1933. }
  1934. #endif
  1935. /* enable transmits in the hardware, need to do this
  1936. * after setting TARC0 */
  1937. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1938. tctl |= E1000_TCTL_EN;
  1939. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1940. netif_carrier_on(netdev);
  1941. netif_wake_queue(netdev);
  1942. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1943. adapter->smartspeed = 0;
  1944. }
  1945. } else {
  1946. if (netif_carrier_ok(netdev)) {
  1947. adapter->link_speed = 0;
  1948. adapter->link_duplex = 0;
  1949. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1950. netif_carrier_off(netdev);
  1951. netif_stop_queue(netdev);
  1952. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1953. /* 80003ES2LAN workaround--
  1954. * For packet buffer work-around on link down event;
  1955. * disable receives in the ISR and
  1956. * reset device here in the watchdog
  1957. */
  1958. if (adapter->hw.mac_type == e1000_80003es2lan) {
  1959. /* reset device */
  1960. schedule_work(&adapter->reset_task);
  1961. }
  1962. }
  1963. e1000_smartspeed(adapter);
  1964. }
  1965. e1000_update_stats(adapter);
  1966. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1967. adapter->tpt_old = adapter->stats.tpt;
  1968. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1969. adapter->colc_old = adapter->stats.colc;
  1970. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1971. adapter->gorcl_old = adapter->stats.gorcl;
  1972. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1973. adapter->gotcl_old = adapter->stats.gotcl;
  1974. e1000_update_adaptive(&adapter->hw);
  1975. if (!netif_carrier_ok(netdev)) {
  1976. if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1977. /* We've lost link, so the controller stops DMA,
  1978. * but we've got queued Tx work that's never going
  1979. * to get done, so reset controller to flush Tx.
  1980. * (Do the reset outside of interrupt context). */
  1981. adapter->tx_timeout_count++;
  1982. schedule_work(&adapter->reset_task);
  1983. }
  1984. }
  1985. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1986. if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1987. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1988. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1989. * else is between 2000-8000. */
  1990. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1991. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1992. adapter->gotcl - adapter->gorcl :
  1993. adapter->gorcl - adapter->gotcl) / 10000;
  1994. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1995. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1996. }
  1997. /* Cause software interrupt to ensure rx ring is cleaned */
  1998. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1999. /* Force detection of hung controller every watchdog period */
  2000. adapter->detect_tx_hung = TRUE;
  2001. /* With 82571 controllers, LAA may be overwritten due to controller
  2002. * reset from the other port. Set the appropriate LAA in RAR[0] */
  2003. if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
  2004. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  2005. /* Reset the timer */
  2006. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2007. }
  2008. #define E1000_TX_FLAGS_CSUM 0x00000001
  2009. #define E1000_TX_FLAGS_VLAN 0x00000002
  2010. #define E1000_TX_FLAGS_TSO 0x00000004
  2011. #define E1000_TX_FLAGS_IPV4 0x00000008
  2012. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  2013. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  2014. static int
  2015. e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2016. struct sk_buff *skb)
  2017. {
  2018. #ifdef NETIF_F_TSO
  2019. struct e1000_context_desc *context_desc;
  2020. struct e1000_buffer *buffer_info;
  2021. unsigned int i;
  2022. uint32_t cmd_length = 0;
  2023. uint16_t ipcse = 0, tucse, mss;
  2024. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  2025. int err;
  2026. if (skb_shinfo(skb)->gso_size) {
  2027. if (skb_header_cloned(skb)) {
  2028. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2029. if (err)
  2030. return err;
  2031. }
  2032. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2033. mss = skb_shinfo(skb)->gso_size;
  2034. if (skb->protocol == htons(ETH_P_IP)) {
  2035. skb->nh.iph->tot_len = 0;
  2036. skb->nh.iph->check = 0;
  2037. skb->h.th->check =
  2038. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  2039. skb->nh.iph->daddr,
  2040. 0,
  2041. IPPROTO_TCP,
  2042. 0);
  2043. cmd_length = E1000_TXD_CMD_IP;
  2044. ipcse = skb->h.raw - skb->data - 1;
  2045. #ifdef NETIF_F_TSO_IPV6
  2046. } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
  2047. skb->nh.ipv6h->payload_len = 0;
  2048. skb->h.th->check =
  2049. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  2050. &skb->nh.ipv6h->daddr,
  2051. 0,
  2052. IPPROTO_TCP,
  2053. 0);
  2054. ipcse = 0;
  2055. #endif
  2056. }
  2057. ipcss = skb->nh.raw - skb->data;
  2058. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  2059. tucss = skb->h.raw - skb->data;
  2060. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  2061. tucse = 0;
  2062. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  2063. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  2064. i = tx_ring->next_to_use;
  2065. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2066. buffer_info = &tx_ring->buffer_info[i];
  2067. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  2068. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  2069. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  2070. context_desc->upper_setup.tcp_fields.tucss = tucss;
  2071. context_desc->upper_setup.tcp_fields.tucso = tucso;
  2072. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  2073. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  2074. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  2075. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  2076. buffer_info->time_stamp = jiffies;
  2077. if (++i == tx_ring->count) i = 0;
  2078. tx_ring->next_to_use = i;
  2079. return TRUE;
  2080. }
  2081. #endif
  2082. return FALSE;
  2083. }
  2084. static boolean_t
  2085. e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2086. struct sk_buff *skb)
  2087. {
  2088. struct e1000_context_desc *context_desc;
  2089. struct e1000_buffer *buffer_info;
  2090. unsigned int i;
  2091. uint8_t css;
  2092. if (likely(skb->ip_summed == CHECKSUM_HW)) {
  2093. css = skb->h.raw - skb->data;
  2094. i = tx_ring->next_to_use;
  2095. buffer_info = &tx_ring->buffer_info[i];
  2096. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2097. context_desc->upper_setup.tcp_fields.tucss = css;
  2098. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  2099. context_desc->upper_setup.tcp_fields.tucse = 0;
  2100. context_desc->tcp_seg_setup.data = 0;
  2101. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  2102. buffer_info->time_stamp = jiffies;
  2103. if (unlikely(++i == tx_ring->count)) i = 0;
  2104. tx_ring->next_to_use = i;
  2105. return TRUE;
  2106. }
  2107. return FALSE;
  2108. }
  2109. #define E1000_MAX_TXD_PWR 12
  2110. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  2111. static int
  2112. e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2113. struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
  2114. unsigned int nr_frags, unsigned int mss)
  2115. {
  2116. struct e1000_buffer *buffer_info;
  2117. unsigned int len = skb->len;
  2118. unsigned int offset = 0, size, count = 0, i;
  2119. unsigned int f;
  2120. len -= skb->data_len;
  2121. i = tx_ring->next_to_use;
  2122. while (len) {
  2123. buffer_info = &tx_ring->buffer_info[i];
  2124. size = min(len, max_per_txd);
  2125. #ifdef NETIF_F_TSO
  2126. /* Workaround for Controller erratum --
  2127. * descriptor for non-tso packet in a linear SKB that follows a
  2128. * tso gets written back prematurely before the data is fully
  2129. * DMA'd to the controller */
  2130. if (!skb->data_len && tx_ring->last_tx_tso &&
  2131. !skb_shinfo(skb)->gso_size) {
  2132. tx_ring->last_tx_tso = 0;
  2133. size -= 4;
  2134. }
  2135. /* Workaround for premature desc write-backs
  2136. * in TSO mode. Append 4-byte sentinel desc */
  2137. if (unlikely(mss && !nr_frags && size == len && size > 8))
  2138. size -= 4;
  2139. #endif
  2140. /* work-around for errata 10 and it applies
  2141. * to all controllers in PCI-X mode
  2142. * The fix is to make sure that the first descriptor of a
  2143. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  2144. */
  2145. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2146. (size > 2015) && count == 0))
  2147. size = 2015;
  2148. /* Workaround for potential 82544 hang in PCI-X. Avoid
  2149. * terminating buffers within evenly-aligned dwords. */
  2150. if (unlikely(adapter->pcix_82544 &&
  2151. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  2152. size > 4))
  2153. size -= 4;
  2154. buffer_info->length = size;
  2155. buffer_info->dma =
  2156. pci_map_single(adapter->pdev,
  2157. skb->data + offset,
  2158. size,
  2159. PCI_DMA_TODEVICE);
  2160. buffer_info->time_stamp = jiffies;
  2161. len -= size;
  2162. offset += size;
  2163. count++;
  2164. if (unlikely(++i == tx_ring->count)) i = 0;
  2165. }
  2166. for (f = 0; f < nr_frags; f++) {
  2167. struct skb_frag_struct *frag;
  2168. frag = &skb_shinfo(skb)->frags[f];
  2169. len = frag->size;
  2170. offset = frag->page_offset;
  2171. while (len) {
  2172. buffer_info = &tx_ring->buffer_info[i];
  2173. size = min(len, max_per_txd);
  2174. #ifdef NETIF_F_TSO
  2175. /* Workaround for premature desc write-backs
  2176. * in TSO mode. Append 4-byte sentinel desc */
  2177. if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  2178. size -= 4;
  2179. #endif
  2180. /* Workaround for potential 82544 hang in PCI-X.
  2181. * Avoid terminating buffers within evenly-aligned
  2182. * dwords. */
  2183. if (unlikely(adapter->pcix_82544 &&
  2184. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  2185. size > 4))
  2186. size -= 4;
  2187. buffer_info->length = size;
  2188. buffer_info->dma =
  2189. pci_map_page(adapter->pdev,
  2190. frag->page,
  2191. offset,
  2192. size,
  2193. PCI_DMA_TODEVICE);
  2194. buffer_info->time_stamp = jiffies;
  2195. len -= size;
  2196. offset += size;
  2197. count++;
  2198. if (unlikely(++i == tx_ring->count)) i = 0;
  2199. }
  2200. }
  2201. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  2202. tx_ring->buffer_info[i].skb = skb;
  2203. tx_ring->buffer_info[first].next_to_watch = i;
  2204. return count;
  2205. }
  2206. static void
  2207. e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2208. int tx_flags, int count)
  2209. {
  2210. struct e1000_tx_desc *tx_desc = NULL;
  2211. struct e1000_buffer *buffer_info;
  2212. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  2213. unsigned int i;
  2214. if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  2215. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  2216. E1000_TXD_CMD_TSE;
  2217. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2218. if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
  2219. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  2220. }
  2221. if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  2222. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  2223. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2224. }
  2225. if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  2226. txd_lower |= E1000_TXD_CMD_VLE;
  2227. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  2228. }
  2229. i = tx_ring->next_to_use;
  2230. while (count--) {
  2231. buffer_info = &tx_ring->buffer_info[i];
  2232. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2233. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2234. tx_desc->lower.data =
  2235. cpu_to_le32(txd_lower | buffer_info->length);
  2236. tx_desc->upper.data = cpu_to_le32(txd_upper);
  2237. if (unlikely(++i == tx_ring->count)) i = 0;
  2238. }
  2239. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  2240. /* Force memory writes to complete before letting h/w
  2241. * know there are new descriptors to fetch. (Only
  2242. * applicable for weak-ordered memory model archs,
  2243. * such as IA-64). */
  2244. wmb();
  2245. tx_ring->next_to_use = i;
  2246. writel(i, adapter->hw.hw_addr + tx_ring->tdt);
  2247. }
  2248. /**
  2249. * 82547 workaround to avoid controller hang in half-duplex environment.
  2250. * The workaround is to avoid queuing a large packet that would span
  2251. * the internal Tx FIFO ring boundary by notifying the stack to resend
  2252. * the packet at a later time. This gives the Tx FIFO an opportunity to
  2253. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  2254. * to the beginning of the Tx FIFO.
  2255. **/
  2256. #define E1000_FIFO_HDR 0x10
  2257. #define E1000_82547_PAD_LEN 0x3E0
  2258. static int
  2259. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  2260. {
  2261. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  2262. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  2263. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  2264. if (adapter->link_duplex != HALF_DUPLEX)
  2265. goto no_fifo_stall_required;
  2266. if (atomic_read(&adapter->tx_fifo_stall))
  2267. return 1;
  2268. if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  2269. atomic_set(&adapter->tx_fifo_stall, 1);
  2270. return 1;
  2271. }
  2272. no_fifo_stall_required:
  2273. adapter->tx_fifo_head += skb_fifo_len;
  2274. if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
  2275. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  2276. return 0;
  2277. }
  2278. #define MINIMUM_DHCP_PACKET_SIZE 282
  2279. static int
  2280. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  2281. {
  2282. struct e1000_hw *hw = &adapter->hw;
  2283. uint16_t length, offset;
  2284. if (vlan_tx_tag_present(skb)) {
  2285. if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  2286. ( adapter->hw.mng_cookie.status &
  2287. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  2288. return 0;
  2289. }
  2290. if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
  2291. struct ethhdr *eth = (struct ethhdr *) skb->data;
  2292. if ((htons(ETH_P_IP) == eth->h_proto)) {
  2293. const struct iphdr *ip =
  2294. (struct iphdr *)((uint8_t *)skb->data+14);
  2295. if (IPPROTO_UDP == ip->protocol) {
  2296. struct udphdr *udp =
  2297. (struct udphdr *)((uint8_t *)ip +
  2298. (ip->ihl << 2));
  2299. if (ntohs(udp->dest) == 67) {
  2300. offset = (uint8_t *)udp + 8 - skb->data;
  2301. length = skb->len - offset;
  2302. return e1000_mng_write_dhcp_info(hw,
  2303. (uint8_t *)udp + 8,
  2304. length);
  2305. }
  2306. }
  2307. }
  2308. }
  2309. return 0;
  2310. }
  2311. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  2312. static int
  2313. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2314. {
  2315. struct e1000_adapter *adapter = netdev_priv(netdev);
  2316. struct e1000_tx_ring *tx_ring;
  2317. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  2318. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  2319. unsigned int tx_flags = 0;
  2320. unsigned int len = skb->len;
  2321. unsigned long flags;
  2322. unsigned int nr_frags = 0;
  2323. unsigned int mss = 0;
  2324. int count = 0;
  2325. int tso;
  2326. unsigned int f;
  2327. len -= skb->data_len;
  2328. tx_ring = adapter->tx_ring;
  2329. if (unlikely(skb->len <= 0)) {
  2330. dev_kfree_skb_any(skb);
  2331. return NETDEV_TX_OK;
  2332. }
  2333. #ifdef NETIF_F_TSO
  2334. mss = skb_shinfo(skb)->gso_size;
  2335. /* The controller does a simple calculation to
  2336. * make sure there is enough room in the FIFO before
  2337. * initiating the DMA for each buffer. The calc is:
  2338. * 4 = ceil(buffer len/mss). To make sure we don't
  2339. * overrun the FIFO, adjust the max buffer len if mss
  2340. * drops. */
  2341. if (mss) {
  2342. uint8_t hdr_len;
  2343. max_per_txd = min(mss << 2, max_per_txd);
  2344. max_txd_pwr = fls(max_per_txd) - 1;
  2345. /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
  2346. * points to just header, pull a few bytes of payload from
  2347. * frags into skb->data */
  2348. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2349. if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
  2350. switch (adapter->hw.mac_type) {
  2351. unsigned int pull_size;
  2352. case e1000_82571:
  2353. case e1000_82572:
  2354. case e1000_82573:
  2355. pull_size = min((unsigned int)4, skb->data_len);
  2356. if (!__pskb_pull_tail(skb, pull_size)) {
  2357. printk(KERN_ERR
  2358. "__pskb_pull_tail failed.\n");
  2359. dev_kfree_skb_any(skb);
  2360. return NETDEV_TX_OK;
  2361. }
  2362. len = skb->len - skb->data_len;
  2363. break;
  2364. default:
  2365. /* do nothing */
  2366. break;
  2367. }
  2368. }
  2369. }
  2370. /* reserve a descriptor for the offload context */
  2371. if ((mss) || (skb->ip_summed == CHECKSUM_HW))
  2372. count++;
  2373. count++;
  2374. #else
  2375. if (skb->ip_summed == CHECKSUM_HW)
  2376. count++;
  2377. #endif
  2378. #ifdef NETIF_F_TSO
  2379. /* Controller Erratum workaround */
  2380. if (!skb->data_len && tx_ring->last_tx_tso &&
  2381. !skb_shinfo(skb)->gso_size)
  2382. count++;
  2383. #endif
  2384. count += TXD_USE_COUNT(len, max_txd_pwr);
  2385. if (adapter->pcix_82544)
  2386. count++;
  2387. /* work-around for errata 10 and it applies to all controllers
  2388. * in PCI-X mode, so add one more descriptor to the count
  2389. */
  2390. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2391. (len > 2015)))
  2392. count++;
  2393. nr_frags = skb_shinfo(skb)->nr_frags;
  2394. for (f = 0; f < nr_frags; f++)
  2395. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  2396. max_txd_pwr);
  2397. if (adapter->pcix_82544)
  2398. count += nr_frags;
  2399. if (adapter->hw.tx_pkt_filtering &&
  2400. (adapter->hw.mac_type == e1000_82573))
  2401. e1000_transfer_dhcp_info(adapter, skb);
  2402. local_irq_save(flags);
  2403. if (!spin_trylock(&tx_ring->tx_lock)) {
  2404. /* Collision - tell upper layer to requeue */
  2405. local_irq_restore(flags);
  2406. return NETDEV_TX_LOCKED;
  2407. }
  2408. /* need: count + 2 desc gap to keep tail from touching
  2409. * head, otherwise try next time */
  2410. if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
  2411. netif_stop_queue(netdev);
  2412. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2413. return NETDEV_TX_BUSY;
  2414. }
  2415. if (unlikely(adapter->hw.mac_type == e1000_82547)) {
  2416. if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  2417. netif_stop_queue(netdev);
  2418. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  2419. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2420. return NETDEV_TX_BUSY;
  2421. }
  2422. }
  2423. if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  2424. tx_flags |= E1000_TX_FLAGS_VLAN;
  2425. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  2426. }
  2427. first = tx_ring->next_to_use;
  2428. tso = e1000_tso(adapter, tx_ring, skb);
  2429. if (tso < 0) {
  2430. dev_kfree_skb_any(skb);
  2431. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2432. return NETDEV_TX_OK;
  2433. }
  2434. if (likely(tso)) {
  2435. tx_ring->last_tx_tso = 1;
  2436. tx_flags |= E1000_TX_FLAGS_TSO;
  2437. } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
  2438. tx_flags |= E1000_TX_FLAGS_CSUM;
  2439. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  2440. * 82571 hardware supports TSO capabilities for IPv6 as well...
  2441. * no longer assume, we must. */
  2442. if (likely(skb->protocol == htons(ETH_P_IP)))
  2443. tx_flags |= E1000_TX_FLAGS_IPV4;
  2444. e1000_tx_queue(adapter, tx_ring, tx_flags,
  2445. e1000_tx_map(adapter, tx_ring, skb, first,
  2446. max_per_txd, nr_frags, mss));
  2447. netdev->trans_start = jiffies;
  2448. /* Make sure there is space in the ring for the next send. */
  2449. if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
  2450. netif_stop_queue(netdev);
  2451. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2452. return NETDEV_TX_OK;
  2453. }
  2454. /**
  2455. * e1000_tx_timeout - Respond to a Tx Hang
  2456. * @netdev: network interface device structure
  2457. **/
  2458. static void
  2459. e1000_tx_timeout(struct net_device *netdev)
  2460. {
  2461. struct e1000_adapter *adapter = netdev_priv(netdev);
  2462. /* Do the reset outside of interrupt context */
  2463. adapter->tx_timeout_count++;
  2464. schedule_work(&adapter->reset_task);
  2465. }
  2466. static void
  2467. e1000_reset_task(struct net_device *netdev)
  2468. {
  2469. struct e1000_adapter *adapter = netdev_priv(netdev);
  2470. e1000_down(adapter);
  2471. e1000_up(adapter);
  2472. }
  2473. /**
  2474. * e1000_get_stats - Get System Network Statistics
  2475. * @netdev: network interface device structure
  2476. *
  2477. * Returns the address of the device statistics structure.
  2478. * The statistics are actually updated from the timer callback.
  2479. **/
  2480. static struct net_device_stats *
  2481. e1000_get_stats(struct net_device *netdev)
  2482. {
  2483. struct e1000_adapter *adapter = netdev_priv(netdev);
  2484. /* only return the current stats */
  2485. return &adapter->net_stats;
  2486. }
  2487. /**
  2488. * e1000_change_mtu - Change the Maximum Transfer Unit
  2489. * @netdev: network interface device structure
  2490. * @new_mtu: new value for maximum frame size
  2491. *
  2492. * Returns 0 on success, negative on failure
  2493. **/
  2494. static int
  2495. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  2496. {
  2497. struct e1000_adapter *adapter = netdev_priv(netdev);
  2498. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  2499. uint16_t eeprom_data = 0;
  2500. if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  2501. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2502. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  2503. return -EINVAL;
  2504. }
  2505. /* Adapter-specific max frame size limits. */
  2506. switch (adapter->hw.mac_type) {
  2507. case e1000_undefined ... e1000_82542_rev2_1:
  2508. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2509. DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
  2510. return -EINVAL;
  2511. }
  2512. break;
  2513. case e1000_82573:
  2514. /* only enable jumbo frames if ASPM is disabled completely
  2515. * this means both bits must be zero in 0x1A bits 3:2 */
  2516. e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
  2517. &eeprom_data);
  2518. if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
  2519. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2520. DPRINTK(PROBE, ERR,
  2521. "Jumbo Frames not supported.\n");
  2522. return -EINVAL;
  2523. }
  2524. break;
  2525. }
  2526. /* fall through to get support */
  2527. case e1000_82571:
  2528. case e1000_82572:
  2529. case e1000_80003es2lan:
  2530. #define MAX_STD_JUMBO_FRAME_SIZE 9234
  2531. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  2532. DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
  2533. return -EINVAL;
  2534. }
  2535. break;
  2536. default:
  2537. /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
  2538. break;
  2539. }
  2540. /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
  2541. * means we reserve 2 more, this pushes us to allocate from the next
  2542. * larger slab size
  2543. * i.e. RXBUFFER_2048 --> size-4096 slab */
  2544. if (max_frame <= E1000_RXBUFFER_256)
  2545. adapter->rx_buffer_len = E1000_RXBUFFER_256;
  2546. else if (max_frame <= E1000_RXBUFFER_512)
  2547. adapter->rx_buffer_len = E1000_RXBUFFER_512;
  2548. else if (max_frame <= E1000_RXBUFFER_1024)
  2549. adapter->rx_buffer_len = E1000_RXBUFFER_1024;
  2550. else if (max_frame <= E1000_RXBUFFER_2048)
  2551. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2552. else if (max_frame <= E1000_RXBUFFER_4096)
  2553. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2554. else if (max_frame <= E1000_RXBUFFER_8192)
  2555. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2556. else if (max_frame <= E1000_RXBUFFER_16384)
  2557. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2558. /* adjust allocation if LPE protects us, and we aren't using SBP */
  2559. #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
  2560. if (!adapter->hw.tbi_compatibility_on &&
  2561. ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
  2562. (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
  2563. adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
  2564. netdev->mtu = new_mtu;
  2565. if (netif_running(netdev)) {
  2566. e1000_down(adapter);
  2567. e1000_up(adapter);
  2568. }
  2569. adapter->hw.max_frame_size = max_frame;
  2570. return 0;
  2571. }
  2572. /**
  2573. * e1000_update_stats - Update the board statistics counters
  2574. * @adapter: board private structure
  2575. **/
  2576. void
  2577. e1000_update_stats(struct e1000_adapter *adapter)
  2578. {
  2579. struct e1000_hw *hw = &adapter->hw;
  2580. struct pci_dev *pdev = adapter->pdev;
  2581. unsigned long flags;
  2582. uint16_t phy_tmp;
  2583. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2584. /*
  2585. * Prevent stats update while adapter is being reset, or if the pci
  2586. * connection is down.
  2587. */
  2588. if (adapter->link_speed == 0)
  2589. return;
  2590. if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
  2591. return;
  2592. spin_lock_irqsave(&adapter->stats_lock, flags);
  2593. /* these counters are modified from e1000_adjust_tbi_stats,
  2594. * called from the interrupt context, so they must only
  2595. * be written while holding adapter->stats_lock
  2596. */
  2597. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2598. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2599. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2600. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2601. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2602. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2603. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2604. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2605. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2606. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2607. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2608. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2609. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2610. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2611. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2612. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2613. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2614. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2615. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2616. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2617. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2618. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2619. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2620. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2621. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2622. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2623. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2624. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2625. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2626. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2627. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2628. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2629. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2630. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2631. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2632. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2633. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2634. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2635. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2636. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2637. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2638. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2639. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2640. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2641. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2642. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2643. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2644. /* used for adaptive IFS */
  2645. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2646. adapter->stats.tpt += hw->tx_packet_delta;
  2647. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2648. adapter->stats.colc += hw->collision_delta;
  2649. if (hw->mac_type >= e1000_82543) {
  2650. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2651. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2652. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2653. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2654. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2655. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2656. }
  2657. if (hw->mac_type > e1000_82547_rev_2) {
  2658. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2659. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2660. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2661. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2662. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2663. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2664. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2665. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2666. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2667. }
  2668. /* Fill out the OS statistics structure */
  2669. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2670. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2671. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2672. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2673. adapter->net_stats.multicast = adapter->stats.mprc;
  2674. adapter->net_stats.collisions = adapter->stats.colc;
  2675. /* Rx Errors */
  2676. /* RLEC on some newer hardware can be incorrect so build
  2677. * our own version based on RUC and ROC */
  2678. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2679. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2680. adapter->stats.ruc + adapter->stats.roc +
  2681. adapter->stats.cexterr;
  2682. adapter->net_stats.rx_length_errors = adapter->stats.ruc +
  2683. adapter->stats.roc;
  2684. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2685. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2686. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2687. /* Tx Errors */
  2688. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2689. adapter->stats.latecol;
  2690. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2691. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2692. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2693. /* Tx Dropped needs to be maintained elsewhere */
  2694. /* Phy Stats */
  2695. if (hw->media_type == e1000_media_type_copper) {
  2696. if ((adapter->link_speed == SPEED_1000) &&
  2697. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2698. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2699. adapter->phy_stats.idle_errors += phy_tmp;
  2700. }
  2701. if ((hw->mac_type <= e1000_82546) &&
  2702. (hw->phy_type == e1000_phy_m88) &&
  2703. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2704. adapter->phy_stats.receive_errors += phy_tmp;
  2705. }
  2706. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2707. }
  2708. /**
  2709. * e1000_intr - Interrupt Handler
  2710. * @irq: interrupt number
  2711. * @data: pointer to a network interface device structure
  2712. * @pt_regs: CPU registers structure
  2713. **/
  2714. static irqreturn_t
  2715. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2716. {
  2717. struct net_device *netdev = data;
  2718. struct e1000_adapter *adapter = netdev_priv(netdev);
  2719. struct e1000_hw *hw = &adapter->hw;
  2720. uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
  2721. #ifndef CONFIG_E1000_NAPI
  2722. int i;
  2723. #else
  2724. /* Interrupt Auto-Mask...upon reading ICR,
  2725. * interrupts are masked. No need for the
  2726. * IMC write, but it does mean we should
  2727. * account for it ASAP. */
  2728. if (likely(hw->mac_type >= e1000_82571))
  2729. atomic_inc(&adapter->irq_sem);
  2730. #endif
  2731. if (unlikely(!icr)) {
  2732. #ifdef CONFIG_E1000_NAPI
  2733. if (hw->mac_type >= e1000_82571)
  2734. e1000_irq_enable(adapter);
  2735. #endif
  2736. return IRQ_NONE; /* Not our interrupt */
  2737. }
  2738. if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2739. hw->get_link_status = 1;
  2740. /* 80003ES2LAN workaround--
  2741. * For packet buffer work-around on link down event;
  2742. * disable receives here in the ISR and
  2743. * reset adapter in watchdog
  2744. */
  2745. if (netif_carrier_ok(netdev) &&
  2746. (adapter->hw.mac_type == e1000_80003es2lan)) {
  2747. /* disable receives */
  2748. rctl = E1000_READ_REG(hw, RCTL);
  2749. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  2750. }
  2751. mod_timer(&adapter->watchdog_timer, jiffies);
  2752. }
  2753. #ifdef CONFIG_E1000_NAPI
  2754. if (unlikely(hw->mac_type < e1000_82571)) {
  2755. atomic_inc(&adapter->irq_sem);
  2756. E1000_WRITE_REG(hw, IMC, ~0);
  2757. E1000_WRITE_FLUSH(hw);
  2758. }
  2759. if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
  2760. __netif_rx_schedule(&adapter->polling_netdev[0]);
  2761. else
  2762. e1000_irq_enable(adapter);
  2763. #else
  2764. /* Writing IMC and IMS is needed for 82547.
  2765. * Due to Hub Link bus being occupied, an interrupt
  2766. * de-assertion message is not able to be sent.
  2767. * When an interrupt assertion message is generated later,
  2768. * two messages are re-ordered and sent out.
  2769. * That causes APIC to think 82547 is in de-assertion
  2770. * state, while 82547 is in assertion state, resulting
  2771. * in dead lock. Writing IMC forces 82547 into
  2772. * de-assertion state.
  2773. */
  2774. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
  2775. atomic_inc(&adapter->irq_sem);
  2776. E1000_WRITE_REG(hw, IMC, ~0);
  2777. }
  2778. for (i = 0; i < E1000_MAX_INTR; i++)
  2779. if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
  2780. !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
  2781. break;
  2782. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2783. e1000_irq_enable(adapter);
  2784. #endif
  2785. return IRQ_HANDLED;
  2786. }
  2787. #ifdef CONFIG_E1000_NAPI
  2788. /**
  2789. * e1000_clean - NAPI Rx polling callback
  2790. * @adapter: board private structure
  2791. **/
  2792. static int
  2793. e1000_clean(struct net_device *poll_dev, int *budget)
  2794. {
  2795. struct e1000_adapter *adapter;
  2796. int work_to_do = min(*budget, poll_dev->quota);
  2797. int tx_cleaned = 0, i = 0, work_done = 0;
  2798. /* Must NOT use netdev_priv macro here. */
  2799. adapter = poll_dev->priv;
  2800. /* Keep link state information with original netdev */
  2801. if (!netif_carrier_ok(adapter->netdev))
  2802. goto quit_polling;
  2803. while (poll_dev != &adapter->polling_netdev[i]) {
  2804. i++;
  2805. BUG_ON(i == adapter->num_rx_queues);
  2806. }
  2807. if (likely(adapter->num_tx_queues == 1)) {
  2808. /* e1000_clean is called per-cpu. This lock protects
  2809. * tx_ring[0] from being cleaned by multiple cpus
  2810. * simultaneously. A failure obtaining the lock means
  2811. * tx_ring[0] is currently being cleaned anyway. */
  2812. if (spin_trylock(&adapter->tx_queue_lock)) {
  2813. tx_cleaned = e1000_clean_tx_irq(adapter,
  2814. &adapter->tx_ring[0]);
  2815. spin_unlock(&adapter->tx_queue_lock);
  2816. }
  2817. } else
  2818. tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
  2819. adapter->clean_rx(adapter, &adapter->rx_ring[i],
  2820. &work_done, work_to_do);
  2821. *budget -= work_done;
  2822. poll_dev->quota -= work_done;
  2823. /* If no Tx and not enough Rx work done, exit the polling mode */
  2824. if ((!tx_cleaned && (work_done == 0)) ||
  2825. !netif_running(adapter->netdev)) {
  2826. quit_polling:
  2827. netif_rx_complete(poll_dev);
  2828. e1000_irq_enable(adapter);
  2829. return 0;
  2830. }
  2831. return 1;
  2832. }
  2833. #endif
  2834. /**
  2835. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2836. * @adapter: board private structure
  2837. **/
  2838. static boolean_t
  2839. e1000_clean_tx_irq(struct e1000_adapter *adapter,
  2840. struct e1000_tx_ring *tx_ring)
  2841. {
  2842. struct net_device *netdev = adapter->netdev;
  2843. struct e1000_tx_desc *tx_desc, *eop_desc;
  2844. struct e1000_buffer *buffer_info;
  2845. unsigned int i, eop;
  2846. #ifdef CONFIG_E1000_NAPI
  2847. unsigned int count = 0;
  2848. #endif
  2849. boolean_t cleaned = FALSE;
  2850. i = tx_ring->next_to_clean;
  2851. eop = tx_ring->buffer_info[i].next_to_watch;
  2852. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2853. while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2854. for (cleaned = FALSE; !cleaned; ) {
  2855. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2856. buffer_info = &tx_ring->buffer_info[i];
  2857. cleaned = (i == eop);
  2858. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  2859. memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
  2860. if (unlikely(++i == tx_ring->count)) i = 0;
  2861. }
  2862. eop = tx_ring->buffer_info[i].next_to_watch;
  2863. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2864. #ifdef CONFIG_E1000_NAPI
  2865. #define E1000_TX_WEIGHT 64
  2866. /* weight of a sort for tx, to avoid endless transmit cleanup */
  2867. if (count++ == E1000_TX_WEIGHT) break;
  2868. #endif
  2869. }
  2870. tx_ring->next_to_clean = i;
  2871. #define TX_WAKE_THRESHOLD 32
  2872. if (unlikely(cleaned && netif_queue_stopped(netdev) &&
  2873. netif_carrier_ok(netdev))) {
  2874. spin_lock(&tx_ring->tx_lock);
  2875. if (netif_queue_stopped(netdev) &&
  2876. (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
  2877. netif_wake_queue(netdev);
  2878. spin_unlock(&tx_ring->tx_lock);
  2879. }
  2880. if (adapter->detect_tx_hung) {
  2881. /* Detect a transmit hang in hardware, this serializes the
  2882. * check with the clearing of time_stamp and movement of i */
  2883. adapter->detect_tx_hung = FALSE;
  2884. if (tx_ring->buffer_info[eop].dma &&
  2885. time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
  2886. (adapter->tx_timeout_factor * HZ))
  2887. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2888. E1000_STATUS_TXOFF)) {
  2889. /* detected Tx unit hang */
  2890. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2891. " Tx Queue <%lu>\n"
  2892. " TDH <%x>\n"
  2893. " TDT <%x>\n"
  2894. " next_to_use <%x>\n"
  2895. " next_to_clean <%x>\n"
  2896. "buffer_info[next_to_clean]\n"
  2897. " time_stamp <%lx>\n"
  2898. " next_to_watch <%x>\n"
  2899. " jiffies <%lx>\n"
  2900. " next_to_watch.status <%x>\n",
  2901. (unsigned long)((tx_ring - adapter->tx_ring) /
  2902. sizeof(struct e1000_tx_ring)),
  2903. readl(adapter->hw.hw_addr + tx_ring->tdh),
  2904. readl(adapter->hw.hw_addr + tx_ring->tdt),
  2905. tx_ring->next_to_use,
  2906. tx_ring->next_to_clean,
  2907. tx_ring->buffer_info[eop].time_stamp,
  2908. eop,
  2909. jiffies,
  2910. eop_desc->upper.fields.status);
  2911. netif_stop_queue(netdev);
  2912. }
  2913. }
  2914. return cleaned;
  2915. }
  2916. /**
  2917. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2918. * @adapter: board private structure
  2919. * @status_err: receive descriptor status and error fields
  2920. * @csum: receive descriptor csum field
  2921. * @sk_buff: socket buffer with received data
  2922. **/
  2923. static void
  2924. e1000_rx_checksum(struct e1000_adapter *adapter,
  2925. uint32_t status_err, uint32_t csum,
  2926. struct sk_buff *skb)
  2927. {
  2928. uint16_t status = (uint16_t)status_err;
  2929. uint8_t errors = (uint8_t)(status_err >> 24);
  2930. skb->ip_summed = CHECKSUM_NONE;
  2931. /* 82543 or newer only */
  2932. if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2933. /* Ignore Checksum bit is set */
  2934. if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2935. /* TCP/UDP checksum error bit is set */
  2936. if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2937. /* let the stack verify checksum errors */
  2938. adapter->hw_csum_err++;
  2939. return;
  2940. }
  2941. /* TCP/UDP Checksum has not been calculated */
  2942. if (adapter->hw.mac_type <= e1000_82547_rev_2) {
  2943. if (!(status & E1000_RXD_STAT_TCPCS))
  2944. return;
  2945. } else {
  2946. if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2947. return;
  2948. }
  2949. /* It must be a TCP or UDP packet with a valid checksum */
  2950. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2951. /* TCP checksum is good */
  2952. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2953. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2954. /* IP fragment with UDP payload */
  2955. /* Hardware complements the payload checksum, so we undo it
  2956. * and then put the value in host order for further stack use.
  2957. */
  2958. csum = ntohl(csum ^ 0xFFFF);
  2959. skb->csum = csum;
  2960. skb->ip_summed = CHECKSUM_HW;
  2961. }
  2962. adapter->hw_csum_good++;
  2963. }
  2964. /**
  2965. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2966. * @adapter: board private structure
  2967. **/
  2968. static boolean_t
  2969. #ifdef CONFIG_E1000_NAPI
  2970. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2971. struct e1000_rx_ring *rx_ring,
  2972. int *work_done, int work_to_do)
  2973. #else
  2974. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2975. struct e1000_rx_ring *rx_ring)
  2976. #endif
  2977. {
  2978. struct net_device *netdev = adapter->netdev;
  2979. struct pci_dev *pdev = adapter->pdev;
  2980. struct e1000_rx_desc *rx_desc, *next_rxd;
  2981. struct e1000_buffer *buffer_info, *next_buffer;
  2982. unsigned long flags;
  2983. uint32_t length;
  2984. uint8_t last_byte;
  2985. unsigned int i;
  2986. int cleaned_count = 0;
  2987. boolean_t cleaned = FALSE;
  2988. i = rx_ring->next_to_clean;
  2989. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2990. buffer_info = &rx_ring->buffer_info[i];
  2991. while (rx_desc->status & E1000_RXD_STAT_DD) {
  2992. struct sk_buff *skb;
  2993. u8 status;
  2994. #ifdef CONFIG_E1000_NAPI
  2995. if (*work_done >= work_to_do)
  2996. break;
  2997. (*work_done)++;
  2998. #endif
  2999. status = rx_desc->status;
  3000. skb = buffer_info->skb;
  3001. buffer_info->skb = NULL;
  3002. prefetch(skb->data - NET_IP_ALIGN);
  3003. if (++i == rx_ring->count) i = 0;
  3004. next_rxd = E1000_RX_DESC(*rx_ring, i);
  3005. prefetch(next_rxd);
  3006. next_buffer = &rx_ring->buffer_info[i];
  3007. cleaned = TRUE;
  3008. cleaned_count++;
  3009. pci_unmap_single(pdev,
  3010. buffer_info->dma,
  3011. buffer_info->length,
  3012. PCI_DMA_FROMDEVICE);
  3013. length = le16_to_cpu(rx_desc->length);
  3014. if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
  3015. /* All receives must fit into a single buffer */
  3016. E1000_DBG("%s: Receive packet consumed multiple"
  3017. " buffers\n", netdev->name);
  3018. dev_kfree_skb_irq(skb);
  3019. goto next_desc;
  3020. }
  3021. if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  3022. last_byte = *(skb->data + length - 1);
  3023. if (TBI_ACCEPT(&adapter->hw, status,
  3024. rx_desc->errors, length, last_byte)) {
  3025. spin_lock_irqsave(&adapter->stats_lock, flags);
  3026. e1000_tbi_adjust_stats(&adapter->hw,
  3027. &adapter->stats,
  3028. length, skb->data);
  3029. spin_unlock_irqrestore(&adapter->stats_lock,
  3030. flags);
  3031. length--;
  3032. } else {
  3033. /* recycle */
  3034. buffer_info->skb = skb;
  3035. goto next_desc;
  3036. }
  3037. }
  3038. /* code added for copybreak, this should improve
  3039. * performance for small packets with large amounts
  3040. * of reassembly being done in the stack */
  3041. #define E1000_CB_LENGTH 256
  3042. if (length < E1000_CB_LENGTH) {
  3043. struct sk_buff *new_skb =
  3044. dev_alloc_skb(length + NET_IP_ALIGN);
  3045. if (new_skb) {
  3046. skb_reserve(new_skb, NET_IP_ALIGN);
  3047. new_skb->dev = netdev;
  3048. memcpy(new_skb->data - NET_IP_ALIGN,
  3049. skb->data - NET_IP_ALIGN,
  3050. length + NET_IP_ALIGN);
  3051. /* save the skb in buffer_info as good */
  3052. buffer_info->skb = skb;
  3053. skb = new_skb;
  3054. skb_put(skb, length);
  3055. }
  3056. } else
  3057. skb_put(skb, length);
  3058. /* end copybreak code */
  3059. /* Receive Checksum Offload */
  3060. e1000_rx_checksum(adapter,
  3061. (uint32_t)(status) |
  3062. ((uint32_t)(rx_desc->errors) << 24),
  3063. le16_to_cpu(rx_desc->csum), skb);
  3064. skb->protocol = eth_type_trans(skb, netdev);
  3065. #ifdef CONFIG_E1000_NAPI
  3066. if (unlikely(adapter->vlgrp &&
  3067. (status & E1000_RXD_STAT_VP))) {
  3068. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3069. le16_to_cpu(rx_desc->special) &
  3070. E1000_RXD_SPC_VLAN_MASK);
  3071. } else {
  3072. netif_receive_skb(skb);
  3073. }
  3074. #else /* CONFIG_E1000_NAPI */
  3075. if (unlikely(adapter->vlgrp &&
  3076. (status & E1000_RXD_STAT_VP))) {
  3077. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3078. le16_to_cpu(rx_desc->special) &
  3079. E1000_RXD_SPC_VLAN_MASK);
  3080. } else {
  3081. netif_rx(skb);
  3082. }
  3083. #endif /* CONFIG_E1000_NAPI */
  3084. netdev->last_rx = jiffies;
  3085. next_desc:
  3086. rx_desc->status = 0;
  3087. /* return some buffers to hardware, one at a time is too slow */
  3088. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3089. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3090. cleaned_count = 0;
  3091. }
  3092. /* use prefetched values */
  3093. rx_desc = next_rxd;
  3094. buffer_info = next_buffer;
  3095. }
  3096. rx_ring->next_to_clean = i;
  3097. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3098. if (cleaned_count)
  3099. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3100. return cleaned;
  3101. }
  3102. /**
  3103. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  3104. * @adapter: board private structure
  3105. **/
  3106. static boolean_t
  3107. #ifdef CONFIG_E1000_NAPI
  3108. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3109. struct e1000_rx_ring *rx_ring,
  3110. int *work_done, int work_to_do)
  3111. #else
  3112. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3113. struct e1000_rx_ring *rx_ring)
  3114. #endif
  3115. {
  3116. union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
  3117. struct net_device *netdev = adapter->netdev;
  3118. struct pci_dev *pdev = adapter->pdev;
  3119. struct e1000_buffer *buffer_info, *next_buffer;
  3120. struct e1000_ps_page *ps_page;
  3121. struct e1000_ps_page_dma *ps_page_dma;
  3122. struct sk_buff *skb;
  3123. unsigned int i, j;
  3124. uint32_t length, staterr;
  3125. int cleaned_count = 0;
  3126. boolean_t cleaned = FALSE;
  3127. i = rx_ring->next_to_clean;
  3128. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3129. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3130. buffer_info = &rx_ring->buffer_info[i];
  3131. while (staterr & E1000_RXD_STAT_DD) {
  3132. buffer_info = &rx_ring->buffer_info[i];
  3133. ps_page = &rx_ring->ps_page[i];
  3134. ps_page_dma = &rx_ring->ps_page_dma[i];
  3135. #ifdef CONFIG_E1000_NAPI
  3136. if (unlikely(*work_done >= work_to_do))
  3137. break;
  3138. (*work_done)++;
  3139. #endif
  3140. skb = buffer_info->skb;
  3141. /* in the packet split case this is header only */
  3142. prefetch(skb->data - NET_IP_ALIGN);
  3143. if (++i == rx_ring->count) i = 0;
  3144. next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
  3145. prefetch(next_rxd);
  3146. next_buffer = &rx_ring->buffer_info[i];
  3147. cleaned = TRUE;
  3148. cleaned_count++;
  3149. pci_unmap_single(pdev, buffer_info->dma,
  3150. buffer_info->length,
  3151. PCI_DMA_FROMDEVICE);
  3152. if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  3153. E1000_DBG("%s: Packet Split buffers didn't pick up"
  3154. " the full packet\n", netdev->name);
  3155. dev_kfree_skb_irq(skb);
  3156. goto next_desc;
  3157. }
  3158. if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  3159. dev_kfree_skb_irq(skb);
  3160. goto next_desc;
  3161. }
  3162. length = le16_to_cpu(rx_desc->wb.middle.length0);
  3163. if (unlikely(!length)) {
  3164. E1000_DBG("%s: Last part of the packet spanning"
  3165. " multiple descriptors\n", netdev->name);
  3166. dev_kfree_skb_irq(skb);
  3167. goto next_desc;
  3168. }
  3169. /* Good Receive */
  3170. skb_put(skb, length);
  3171. {
  3172. /* this looks ugly, but it seems compiler issues make it
  3173. more efficient than reusing j */
  3174. int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
  3175. /* page alloc/put takes too long and effects small packet
  3176. * throughput, so unsplit small packets and save the alloc/put*/
  3177. if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
  3178. u8 *vaddr;
  3179. /* there is no documentation about how to call
  3180. * kmap_atomic, so we can't hold the mapping
  3181. * very long */
  3182. pci_dma_sync_single_for_cpu(pdev,
  3183. ps_page_dma->ps_page_dma[0],
  3184. PAGE_SIZE,
  3185. PCI_DMA_FROMDEVICE);
  3186. vaddr = kmap_atomic(ps_page->ps_page[0],
  3187. KM_SKB_DATA_SOFTIRQ);
  3188. memcpy(skb->tail, vaddr, l1);
  3189. kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
  3190. pci_dma_sync_single_for_device(pdev,
  3191. ps_page_dma->ps_page_dma[0],
  3192. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3193. skb_put(skb, l1);
  3194. length += l1;
  3195. goto copydone;
  3196. } /* if */
  3197. }
  3198. for (j = 0; j < adapter->rx_ps_pages; j++) {
  3199. if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
  3200. break;
  3201. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  3202. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3203. ps_page_dma->ps_page_dma[j] = 0;
  3204. skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
  3205. length);
  3206. ps_page->ps_page[j] = NULL;
  3207. skb->len += length;
  3208. skb->data_len += length;
  3209. skb->truesize += length;
  3210. }
  3211. copydone:
  3212. e1000_rx_checksum(adapter, staterr,
  3213. le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
  3214. skb->protocol = eth_type_trans(skb, netdev);
  3215. if (likely(rx_desc->wb.upper.header_status &
  3216. cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
  3217. adapter->rx_hdr_split++;
  3218. #ifdef CONFIG_E1000_NAPI
  3219. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3220. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3221. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3222. E1000_RXD_SPC_VLAN_MASK);
  3223. } else {
  3224. netif_receive_skb(skb);
  3225. }
  3226. #else /* CONFIG_E1000_NAPI */
  3227. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3228. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3229. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3230. E1000_RXD_SPC_VLAN_MASK);
  3231. } else {
  3232. netif_rx(skb);
  3233. }
  3234. #endif /* CONFIG_E1000_NAPI */
  3235. netdev->last_rx = jiffies;
  3236. next_desc:
  3237. rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
  3238. buffer_info->skb = NULL;
  3239. /* return some buffers to hardware, one at a time is too slow */
  3240. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3241. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3242. cleaned_count = 0;
  3243. }
  3244. /* use prefetched values */
  3245. rx_desc = next_rxd;
  3246. buffer_info = next_buffer;
  3247. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3248. }
  3249. rx_ring->next_to_clean = i;
  3250. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3251. if (cleaned_count)
  3252. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3253. return cleaned;
  3254. }
  3255. /**
  3256. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  3257. * @adapter: address of board private structure
  3258. **/
  3259. static void
  3260. e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  3261. struct e1000_rx_ring *rx_ring,
  3262. int cleaned_count)
  3263. {
  3264. struct net_device *netdev = adapter->netdev;
  3265. struct pci_dev *pdev = adapter->pdev;
  3266. struct e1000_rx_desc *rx_desc;
  3267. struct e1000_buffer *buffer_info;
  3268. struct sk_buff *skb;
  3269. unsigned int i;
  3270. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  3271. i = rx_ring->next_to_use;
  3272. buffer_info = &rx_ring->buffer_info[i];
  3273. while (cleaned_count--) {
  3274. if (!(skb = buffer_info->skb))
  3275. skb = dev_alloc_skb(bufsz);
  3276. else {
  3277. skb_trim(skb, 0);
  3278. goto map_skb;
  3279. }
  3280. if (unlikely(!skb)) {
  3281. /* Better luck next round */
  3282. adapter->alloc_rx_buff_failed++;
  3283. break;
  3284. }
  3285. /* Fix for errata 23, can't cross 64kB boundary */
  3286. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3287. struct sk_buff *oldskb = skb;
  3288. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  3289. "at %p\n", bufsz, skb->data);
  3290. /* Try again, without freeing the previous */
  3291. skb = dev_alloc_skb(bufsz);
  3292. /* Failed allocation, critical failure */
  3293. if (!skb) {
  3294. dev_kfree_skb(oldskb);
  3295. break;
  3296. }
  3297. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3298. /* give up */
  3299. dev_kfree_skb(skb);
  3300. dev_kfree_skb(oldskb);
  3301. break; /* while !buffer_info->skb */
  3302. } else {
  3303. /* Use new allocation */
  3304. dev_kfree_skb(oldskb);
  3305. }
  3306. }
  3307. /* Make buffer alignment 2 beyond a 16 byte boundary
  3308. * this will result in a 16 byte aligned IP header after
  3309. * the 14 byte MAC header is removed
  3310. */
  3311. skb_reserve(skb, NET_IP_ALIGN);
  3312. skb->dev = netdev;
  3313. buffer_info->skb = skb;
  3314. buffer_info->length = adapter->rx_buffer_len;
  3315. map_skb:
  3316. buffer_info->dma = pci_map_single(pdev,
  3317. skb->data,
  3318. adapter->rx_buffer_len,
  3319. PCI_DMA_FROMDEVICE);
  3320. /* Fix for errata 23, can't cross 64kB boundary */
  3321. if (!e1000_check_64k_bound(adapter,
  3322. (void *)(unsigned long)buffer_info->dma,
  3323. adapter->rx_buffer_len)) {
  3324. DPRINTK(RX_ERR, ERR,
  3325. "dma align check failed: %u bytes at %p\n",
  3326. adapter->rx_buffer_len,
  3327. (void *)(unsigned long)buffer_info->dma);
  3328. dev_kfree_skb(skb);
  3329. buffer_info->skb = NULL;
  3330. pci_unmap_single(pdev, buffer_info->dma,
  3331. adapter->rx_buffer_len,
  3332. PCI_DMA_FROMDEVICE);
  3333. break; /* while !buffer_info->skb */
  3334. }
  3335. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3336. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  3337. if (unlikely(++i == rx_ring->count))
  3338. i = 0;
  3339. buffer_info = &rx_ring->buffer_info[i];
  3340. }
  3341. if (likely(rx_ring->next_to_use != i)) {
  3342. rx_ring->next_to_use = i;
  3343. if (unlikely(i-- == 0))
  3344. i = (rx_ring->count - 1);
  3345. /* Force memory writes to complete before letting h/w
  3346. * know there are new descriptors to fetch. (Only
  3347. * applicable for weak-ordered memory model archs,
  3348. * such as IA-64). */
  3349. wmb();
  3350. writel(i, adapter->hw.hw_addr + rx_ring->rdt);
  3351. }
  3352. }
  3353. /**
  3354. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  3355. * @adapter: address of board private structure
  3356. **/
  3357. static void
  3358. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  3359. struct e1000_rx_ring *rx_ring,
  3360. int cleaned_count)
  3361. {
  3362. struct net_device *netdev = adapter->netdev;
  3363. struct pci_dev *pdev = adapter->pdev;
  3364. union e1000_rx_desc_packet_split *rx_desc;
  3365. struct e1000_buffer *buffer_info;
  3366. struct e1000_ps_page *ps_page;
  3367. struct e1000_ps_page_dma *ps_page_dma;
  3368. struct sk_buff *skb;
  3369. unsigned int i, j;
  3370. i = rx_ring->next_to_use;
  3371. buffer_info = &rx_ring->buffer_info[i];
  3372. ps_page = &rx_ring->ps_page[i];
  3373. ps_page_dma = &rx_ring->ps_page_dma[i];
  3374. while (cleaned_count--) {
  3375. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3376. for (j = 0; j < PS_PAGE_BUFFERS; j++) {
  3377. if (j < adapter->rx_ps_pages) {
  3378. if (likely(!ps_page->ps_page[j])) {
  3379. ps_page->ps_page[j] =
  3380. alloc_page(GFP_ATOMIC);
  3381. if (unlikely(!ps_page->ps_page[j])) {
  3382. adapter->alloc_rx_buff_failed++;
  3383. goto no_buffers;
  3384. }
  3385. ps_page_dma->ps_page_dma[j] =
  3386. pci_map_page(pdev,
  3387. ps_page->ps_page[j],
  3388. 0, PAGE_SIZE,
  3389. PCI_DMA_FROMDEVICE);
  3390. }
  3391. /* Refresh the desc even if buffer_addrs didn't
  3392. * change because each write-back erases
  3393. * this info.
  3394. */
  3395. rx_desc->read.buffer_addr[j+1] =
  3396. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  3397. } else
  3398. rx_desc->read.buffer_addr[j+1] = ~0;
  3399. }
  3400. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  3401. if (unlikely(!skb)) {
  3402. adapter->alloc_rx_buff_failed++;
  3403. break;
  3404. }
  3405. /* Make buffer alignment 2 beyond a 16 byte boundary
  3406. * this will result in a 16 byte aligned IP header after
  3407. * the 14 byte MAC header is removed
  3408. */
  3409. skb_reserve(skb, NET_IP_ALIGN);
  3410. skb->dev = netdev;
  3411. buffer_info->skb = skb;
  3412. buffer_info->length = adapter->rx_ps_bsize0;
  3413. buffer_info->dma = pci_map_single(pdev, skb->data,
  3414. adapter->rx_ps_bsize0,
  3415. PCI_DMA_FROMDEVICE);
  3416. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  3417. if (unlikely(++i == rx_ring->count)) i = 0;
  3418. buffer_info = &rx_ring->buffer_info[i];
  3419. ps_page = &rx_ring->ps_page[i];
  3420. ps_page_dma = &rx_ring->ps_page_dma[i];
  3421. }
  3422. no_buffers:
  3423. if (likely(rx_ring->next_to_use != i)) {
  3424. rx_ring->next_to_use = i;
  3425. if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
  3426. /* Force memory writes to complete before letting h/w
  3427. * know there are new descriptors to fetch. (Only
  3428. * applicable for weak-ordered memory model archs,
  3429. * such as IA-64). */
  3430. wmb();
  3431. /* Hardware increments by 16 bytes, but packet split
  3432. * descriptors are 32 bytes...so we increment tail
  3433. * twice as much.
  3434. */
  3435. writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
  3436. }
  3437. }
  3438. /**
  3439. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  3440. * @adapter:
  3441. **/
  3442. static void
  3443. e1000_smartspeed(struct e1000_adapter *adapter)
  3444. {
  3445. uint16_t phy_status;
  3446. uint16_t phy_ctrl;
  3447. if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  3448. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  3449. return;
  3450. if (adapter->smartspeed == 0) {
  3451. /* If Master/Slave config fault is asserted twice,
  3452. * we assume back-to-back */
  3453. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3454. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3455. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3456. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3457. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3458. if (phy_ctrl & CR_1000T_MS_ENABLE) {
  3459. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  3460. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  3461. phy_ctrl);
  3462. adapter->smartspeed++;
  3463. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3464. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  3465. &phy_ctrl)) {
  3466. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3467. MII_CR_RESTART_AUTO_NEG);
  3468. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  3469. phy_ctrl);
  3470. }
  3471. }
  3472. return;
  3473. } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  3474. /* If still no link, perhaps using 2/3 pair cable */
  3475. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3476. phy_ctrl |= CR_1000T_MS_ENABLE;
  3477. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  3478. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3479. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  3480. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3481. MII_CR_RESTART_AUTO_NEG);
  3482. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  3483. }
  3484. }
  3485. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  3486. if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  3487. adapter->smartspeed = 0;
  3488. }
  3489. /**
  3490. * e1000_ioctl -
  3491. * @netdev:
  3492. * @ifreq:
  3493. * @cmd:
  3494. **/
  3495. static int
  3496. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3497. {
  3498. switch (cmd) {
  3499. case SIOCGMIIPHY:
  3500. case SIOCGMIIREG:
  3501. case SIOCSMIIREG:
  3502. return e1000_mii_ioctl(netdev, ifr, cmd);
  3503. default:
  3504. return -EOPNOTSUPP;
  3505. }
  3506. }
  3507. /**
  3508. * e1000_mii_ioctl -
  3509. * @netdev:
  3510. * @ifreq:
  3511. * @cmd:
  3512. **/
  3513. static int
  3514. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3515. {
  3516. struct e1000_adapter *adapter = netdev_priv(netdev);
  3517. struct mii_ioctl_data *data = if_mii(ifr);
  3518. int retval;
  3519. uint16_t mii_reg;
  3520. uint16_t spddplx;
  3521. unsigned long flags;
  3522. if (adapter->hw.media_type != e1000_media_type_copper)
  3523. return -EOPNOTSUPP;
  3524. switch (cmd) {
  3525. case SIOCGMIIPHY:
  3526. data->phy_id = adapter->hw.phy_addr;
  3527. break;
  3528. case SIOCGMIIREG:
  3529. if (!capable(CAP_NET_ADMIN))
  3530. return -EPERM;
  3531. spin_lock_irqsave(&adapter->stats_lock, flags);
  3532. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  3533. &data->val_out)) {
  3534. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3535. return -EIO;
  3536. }
  3537. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3538. break;
  3539. case SIOCSMIIREG:
  3540. if (!capable(CAP_NET_ADMIN))
  3541. return -EPERM;
  3542. if (data->reg_num & ~(0x1F))
  3543. return -EFAULT;
  3544. mii_reg = data->val_in;
  3545. spin_lock_irqsave(&adapter->stats_lock, flags);
  3546. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  3547. mii_reg)) {
  3548. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3549. return -EIO;
  3550. }
  3551. if (adapter->hw.media_type == e1000_media_type_copper) {
  3552. switch (data->reg_num) {
  3553. case PHY_CTRL:
  3554. if (mii_reg & MII_CR_POWER_DOWN)
  3555. break;
  3556. if (mii_reg & MII_CR_AUTO_NEG_EN) {
  3557. adapter->hw.autoneg = 1;
  3558. adapter->hw.autoneg_advertised = 0x2F;
  3559. } else {
  3560. if (mii_reg & 0x40)
  3561. spddplx = SPEED_1000;
  3562. else if (mii_reg & 0x2000)
  3563. spddplx = SPEED_100;
  3564. else
  3565. spddplx = SPEED_10;
  3566. spddplx += (mii_reg & 0x100)
  3567. ? DUPLEX_FULL :
  3568. DUPLEX_HALF;
  3569. retval = e1000_set_spd_dplx(adapter,
  3570. spddplx);
  3571. if (retval) {
  3572. spin_unlock_irqrestore(
  3573. &adapter->stats_lock,
  3574. flags);
  3575. return retval;
  3576. }
  3577. }
  3578. if (netif_running(adapter->netdev)) {
  3579. e1000_down(adapter);
  3580. e1000_up(adapter);
  3581. } else
  3582. e1000_reset(adapter);
  3583. break;
  3584. case M88E1000_PHY_SPEC_CTRL:
  3585. case M88E1000_EXT_PHY_SPEC_CTRL:
  3586. if (e1000_phy_reset(&adapter->hw)) {
  3587. spin_unlock_irqrestore(
  3588. &adapter->stats_lock, flags);
  3589. return -EIO;
  3590. }
  3591. break;
  3592. }
  3593. } else {
  3594. switch (data->reg_num) {
  3595. case PHY_CTRL:
  3596. if (mii_reg & MII_CR_POWER_DOWN)
  3597. break;
  3598. if (netif_running(adapter->netdev)) {
  3599. e1000_down(adapter);
  3600. e1000_up(adapter);
  3601. } else
  3602. e1000_reset(adapter);
  3603. break;
  3604. }
  3605. }
  3606. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3607. break;
  3608. default:
  3609. return -EOPNOTSUPP;
  3610. }
  3611. return E1000_SUCCESS;
  3612. }
  3613. void
  3614. e1000_pci_set_mwi(struct e1000_hw *hw)
  3615. {
  3616. struct e1000_adapter *adapter = hw->back;
  3617. int ret_val = pci_set_mwi(adapter->pdev);
  3618. if (ret_val)
  3619. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  3620. }
  3621. void
  3622. e1000_pci_clear_mwi(struct e1000_hw *hw)
  3623. {
  3624. struct e1000_adapter *adapter = hw->back;
  3625. pci_clear_mwi(adapter->pdev);
  3626. }
  3627. void
  3628. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3629. {
  3630. struct e1000_adapter *adapter = hw->back;
  3631. pci_read_config_word(adapter->pdev, reg, value);
  3632. }
  3633. void
  3634. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3635. {
  3636. struct e1000_adapter *adapter = hw->back;
  3637. pci_write_config_word(adapter->pdev, reg, *value);
  3638. }
  3639. uint32_t
  3640. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  3641. {
  3642. return inl(port);
  3643. }
  3644. void
  3645. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  3646. {
  3647. outl(value, port);
  3648. }
  3649. static void
  3650. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  3651. {
  3652. struct e1000_adapter *adapter = netdev_priv(netdev);
  3653. uint32_t ctrl, rctl;
  3654. e1000_irq_disable(adapter);
  3655. adapter->vlgrp = grp;
  3656. if (grp) {
  3657. /* enable VLAN tag insert/strip */
  3658. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3659. ctrl |= E1000_CTRL_VME;
  3660. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3661. /* enable VLAN receive filtering */
  3662. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3663. rctl |= E1000_RCTL_VFE;
  3664. rctl &= ~E1000_RCTL_CFIEN;
  3665. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3666. e1000_update_mng_vlan(adapter);
  3667. } else {
  3668. /* disable VLAN tag insert/strip */
  3669. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3670. ctrl &= ~E1000_CTRL_VME;
  3671. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3672. /* disable VLAN filtering */
  3673. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3674. rctl &= ~E1000_RCTL_VFE;
  3675. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3676. if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  3677. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  3678. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  3679. }
  3680. }
  3681. e1000_irq_enable(adapter);
  3682. }
  3683. static void
  3684. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3685. {
  3686. struct e1000_adapter *adapter = netdev_priv(netdev);
  3687. uint32_t vfta, index;
  3688. if ((adapter->hw.mng_cookie.status &
  3689. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3690. (vid == adapter->mng_vlan_id))
  3691. return;
  3692. /* add VID to filter table */
  3693. index = (vid >> 5) & 0x7F;
  3694. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3695. vfta |= (1 << (vid & 0x1F));
  3696. e1000_write_vfta(&adapter->hw, index, vfta);
  3697. }
  3698. static void
  3699. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3700. {
  3701. struct e1000_adapter *adapter = netdev_priv(netdev);
  3702. uint32_t vfta, index;
  3703. e1000_irq_disable(adapter);
  3704. if (adapter->vlgrp)
  3705. adapter->vlgrp->vlan_devices[vid] = NULL;
  3706. e1000_irq_enable(adapter);
  3707. if ((adapter->hw.mng_cookie.status &
  3708. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3709. (vid == adapter->mng_vlan_id)) {
  3710. /* release control to f/w */
  3711. e1000_release_hw_control(adapter);
  3712. return;
  3713. }
  3714. /* remove VID from filter table */
  3715. index = (vid >> 5) & 0x7F;
  3716. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3717. vfta &= ~(1 << (vid & 0x1F));
  3718. e1000_write_vfta(&adapter->hw, index, vfta);
  3719. }
  3720. static void
  3721. e1000_restore_vlan(struct e1000_adapter *adapter)
  3722. {
  3723. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3724. if (adapter->vlgrp) {
  3725. uint16_t vid;
  3726. for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3727. if (!adapter->vlgrp->vlan_devices[vid])
  3728. continue;
  3729. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3730. }
  3731. }
  3732. }
  3733. int
  3734. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3735. {
  3736. adapter->hw.autoneg = 0;
  3737. /* Fiber NICs only allow 1000 gbps Full duplex */
  3738. if ((adapter->hw.media_type == e1000_media_type_fiber) &&
  3739. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3740. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3741. return -EINVAL;
  3742. }
  3743. switch (spddplx) {
  3744. case SPEED_10 + DUPLEX_HALF:
  3745. adapter->hw.forced_speed_duplex = e1000_10_half;
  3746. break;
  3747. case SPEED_10 + DUPLEX_FULL:
  3748. adapter->hw.forced_speed_duplex = e1000_10_full;
  3749. break;
  3750. case SPEED_100 + DUPLEX_HALF:
  3751. adapter->hw.forced_speed_duplex = e1000_100_half;
  3752. break;
  3753. case SPEED_100 + DUPLEX_FULL:
  3754. adapter->hw.forced_speed_duplex = e1000_100_full;
  3755. break;
  3756. case SPEED_1000 + DUPLEX_FULL:
  3757. adapter->hw.autoneg = 1;
  3758. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3759. break;
  3760. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3761. default:
  3762. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3763. return -EINVAL;
  3764. }
  3765. return 0;
  3766. }
  3767. #ifdef CONFIG_PM
  3768. /* Save/restore 16 or 64 dwords of PCI config space depending on which
  3769. * bus we're on (PCI(X) vs. PCI-E)
  3770. */
  3771. #define PCIE_CONFIG_SPACE_LEN 256
  3772. #define PCI_CONFIG_SPACE_LEN 64
  3773. static int
  3774. e1000_pci_save_state(struct e1000_adapter *adapter)
  3775. {
  3776. struct pci_dev *dev = adapter->pdev;
  3777. int size;
  3778. int i;
  3779. if (adapter->hw.mac_type >= e1000_82571)
  3780. size = PCIE_CONFIG_SPACE_LEN;
  3781. else
  3782. size = PCI_CONFIG_SPACE_LEN;
  3783. WARN_ON(adapter->config_space != NULL);
  3784. adapter->config_space = kmalloc(size, GFP_KERNEL);
  3785. if (!adapter->config_space) {
  3786. DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
  3787. return -ENOMEM;
  3788. }
  3789. for (i = 0; i < (size / 4); i++)
  3790. pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
  3791. return 0;
  3792. }
  3793. static void
  3794. e1000_pci_restore_state(struct e1000_adapter *adapter)
  3795. {
  3796. struct pci_dev *dev = adapter->pdev;
  3797. int size;
  3798. int i;
  3799. if (adapter->config_space == NULL)
  3800. return;
  3801. if (adapter->hw.mac_type >= e1000_82571)
  3802. size = PCIE_CONFIG_SPACE_LEN;
  3803. else
  3804. size = PCI_CONFIG_SPACE_LEN;
  3805. for (i = 0; i < (size / 4); i++)
  3806. pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
  3807. kfree(adapter->config_space);
  3808. adapter->config_space = NULL;
  3809. return;
  3810. }
  3811. #endif /* CONFIG_PM */
  3812. static int
  3813. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3814. {
  3815. struct net_device *netdev = pci_get_drvdata(pdev);
  3816. struct e1000_adapter *adapter = netdev_priv(netdev);
  3817. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  3818. uint32_t wufc = adapter->wol;
  3819. int retval = 0;
  3820. netif_device_detach(netdev);
  3821. if (netif_running(netdev))
  3822. e1000_down(adapter);
  3823. #ifdef CONFIG_PM
  3824. /* Implement our own version of pci_save_state(pdev) because pci-
  3825. * express adapters have 256-byte config spaces. */
  3826. retval = e1000_pci_save_state(adapter);
  3827. if (retval)
  3828. return retval;
  3829. #endif
  3830. status = E1000_READ_REG(&adapter->hw, STATUS);
  3831. if (status & E1000_STATUS_LU)
  3832. wufc &= ~E1000_WUFC_LNKC;
  3833. if (wufc) {
  3834. e1000_setup_rctl(adapter);
  3835. e1000_set_multi(netdev);
  3836. /* turn on all-multi mode if wake on multicast is enabled */
  3837. if (adapter->wol & E1000_WUFC_MC) {
  3838. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3839. rctl |= E1000_RCTL_MPE;
  3840. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3841. }
  3842. if (adapter->hw.mac_type >= e1000_82540) {
  3843. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3844. /* advertise wake from D3Cold */
  3845. #define E1000_CTRL_ADVD3WUC 0x00100000
  3846. /* phy power management enable */
  3847. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3848. ctrl |= E1000_CTRL_ADVD3WUC |
  3849. E1000_CTRL_EN_PHY_PWR_MGMT;
  3850. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3851. }
  3852. if (adapter->hw.media_type == e1000_media_type_fiber ||
  3853. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3854. /* keep the laser running in D3 */
  3855. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3856. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3857. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3858. }
  3859. /* Allow time for pending master requests to run */
  3860. e1000_disable_pciex_master(&adapter->hw);
  3861. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3862. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3863. pci_enable_wake(pdev, PCI_D3hot, 1);
  3864. pci_enable_wake(pdev, PCI_D3cold, 1);
  3865. } else {
  3866. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3867. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3868. pci_enable_wake(pdev, PCI_D3hot, 0);
  3869. pci_enable_wake(pdev, PCI_D3cold, 0);
  3870. }
  3871. if (adapter->hw.mac_type >= e1000_82540 &&
  3872. adapter->hw.media_type == e1000_media_type_copper) {
  3873. manc = E1000_READ_REG(&adapter->hw, MANC);
  3874. if (manc & E1000_MANC_SMBUS_EN) {
  3875. manc |= E1000_MANC_ARP_EN;
  3876. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3877. pci_enable_wake(pdev, PCI_D3hot, 1);
  3878. pci_enable_wake(pdev, PCI_D3cold, 1);
  3879. }
  3880. }
  3881. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  3882. * would have already happened in close and is redundant. */
  3883. e1000_release_hw_control(adapter);
  3884. pci_disable_device(pdev);
  3885. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3886. return 0;
  3887. }
  3888. #ifdef CONFIG_PM
  3889. static int
  3890. e1000_resume(struct pci_dev *pdev)
  3891. {
  3892. struct net_device *netdev = pci_get_drvdata(pdev);
  3893. struct e1000_adapter *adapter = netdev_priv(netdev);
  3894. uint32_t manc, ret_val;
  3895. pci_set_power_state(pdev, PCI_D0);
  3896. e1000_pci_restore_state(adapter);
  3897. ret_val = pci_enable_device(pdev);
  3898. pci_set_master(pdev);
  3899. pci_enable_wake(pdev, PCI_D3hot, 0);
  3900. pci_enable_wake(pdev, PCI_D3cold, 0);
  3901. e1000_reset(adapter);
  3902. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3903. if (netif_running(netdev))
  3904. e1000_up(adapter);
  3905. netif_device_attach(netdev);
  3906. if (adapter->hw.mac_type >= e1000_82540 &&
  3907. adapter->hw.media_type == e1000_media_type_copper) {
  3908. manc = E1000_READ_REG(&adapter->hw, MANC);
  3909. manc &= ~(E1000_MANC_ARP_EN);
  3910. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3911. }
  3912. /* If the controller is 82573 and f/w is AMT, do not set
  3913. * DRV_LOAD until the interface is up. For all other cases,
  3914. * let the f/w know that the h/w is now under the control
  3915. * of the driver. */
  3916. if (adapter->hw.mac_type != e1000_82573 ||
  3917. !e1000_check_mng_mode(&adapter->hw))
  3918. e1000_get_hw_control(adapter);
  3919. return 0;
  3920. }
  3921. #endif
  3922. static void e1000_shutdown(struct pci_dev *pdev)
  3923. {
  3924. e1000_suspend(pdev, PMSG_SUSPEND);
  3925. }
  3926. #ifdef CONFIG_NET_POLL_CONTROLLER
  3927. /*
  3928. * Polling 'interrupt' - used by things like netconsole to send skbs
  3929. * without having to re-enable interrupts. It's not called while
  3930. * the interrupt routine is executing.
  3931. */
  3932. static void
  3933. e1000_netpoll(struct net_device *netdev)
  3934. {
  3935. struct e1000_adapter *adapter = netdev_priv(netdev);
  3936. disable_irq(adapter->pdev->irq);
  3937. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3938. e1000_clean_tx_irq(adapter, adapter->tx_ring);
  3939. #ifndef CONFIG_E1000_NAPI
  3940. adapter->clean_rx(adapter, adapter->rx_ring);
  3941. #endif
  3942. enable_irq(adapter->pdev->irq);
  3943. }
  3944. #endif
  3945. /**
  3946. * e1000_io_error_detected - called when PCI error is detected
  3947. * @pdev: Pointer to PCI device
  3948. * @state: The current pci conneection state
  3949. *
  3950. * This function is called after a PCI bus error affecting
  3951. * this device has been detected.
  3952. */
  3953. static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
  3954. {
  3955. struct net_device *netdev = pci_get_drvdata(pdev);
  3956. struct e1000_adapter *adapter = netdev->priv;
  3957. netif_device_detach(netdev);
  3958. if (netif_running(netdev))
  3959. e1000_down(adapter);
  3960. /* Request a slot slot reset. */
  3961. return PCI_ERS_RESULT_NEED_RESET;
  3962. }
  3963. /**
  3964. * e1000_io_slot_reset - called after the pci bus has been reset.
  3965. * @pdev: Pointer to PCI device
  3966. *
  3967. * Restart the card from scratch, as if from a cold-boot. Implementation
  3968. * resembles the first-half of the e1000_resume routine.
  3969. */
  3970. static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
  3971. {
  3972. struct net_device *netdev = pci_get_drvdata(pdev);
  3973. struct e1000_adapter *adapter = netdev->priv;
  3974. if (pci_enable_device(pdev)) {
  3975. printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
  3976. return PCI_ERS_RESULT_DISCONNECT;
  3977. }
  3978. pci_set_master(pdev);
  3979. pci_enable_wake(pdev, 3, 0);
  3980. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3981. /* Perform card reset only on one instance of the card */
  3982. if (PCI_FUNC (pdev->devfn) != 0)
  3983. return PCI_ERS_RESULT_RECOVERED;
  3984. e1000_reset(adapter);
  3985. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3986. return PCI_ERS_RESULT_RECOVERED;
  3987. }
  3988. /**
  3989. * e1000_io_resume - called when traffic can start flowing again.
  3990. * @pdev: Pointer to PCI device
  3991. *
  3992. * This callback is called when the error recovery driver tells us that
  3993. * its OK to resume normal operation. Implementation resembles the
  3994. * second-half of the e1000_resume routine.
  3995. */
  3996. static void e1000_io_resume(struct pci_dev *pdev)
  3997. {
  3998. struct net_device *netdev = pci_get_drvdata(pdev);
  3999. struct e1000_adapter *adapter = netdev->priv;
  4000. uint32_t manc, swsm;
  4001. if (netif_running(netdev)) {
  4002. if (e1000_up(adapter)) {
  4003. printk("e1000: can't bring device back up after reset\n");
  4004. return;
  4005. }
  4006. }
  4007. netif_device_attach(netdev);
  4008. if (adapter->hw.mac_type >= e1000_82540 &&
  4009. adapter->hw.media_type == e1000_media_type_copper) {
  4010. manc = E1000_READ_REG(&adapter->hw, MANC);
  4011. manc &= ~(E1000_MANC_ARP_EN);
  4012. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  4013. }
  4014. switch (adapter->hw.mac_type) {
  4015. case e1000_82573:
  4016. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  4017. E1000_WRITE_REG(&adapter->hw, SWSM,
  4018. swsm | E1000_SWSM_DRV_LOAD);
  4019. break;
  4020. default:
  4021. break;
  4022. }
  4023. if (netif_running(netdev))
  4024. mod_timer(&adapter->watchdog_timer, jiffies);
  4025. }
  4026. /* e1000_main.c */