e1000_ethtool.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20. *******************************************************************************/
  21. /* ethtool support for e1000 */
  22. #include "e1000.h"
  23. #include <asm/uaccess.h>
  24. struct e1000_stats {
  25. char stat_string[ETH_GSTRING_LEN];
  26. int sizeof_stat;
  27. int stat_offset;
  28. };
  29. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  30. offsetof(struct e1000_adapter, m)
  31. static const struct e1000_stats e1000_gstrings_stats[] = {
  32. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  33. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  34. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  35. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  36. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  37. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  38. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  39. { "multicast", E1000_STAT(net_stats.multicast) },
  40. { "collisions", E1000_STAT(net_stats.collisions) },
  41. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  42. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  43. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  44. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  45. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  46. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  47. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  48. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  49. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  50. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  51. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  52. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  53. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  54. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  55. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  56. { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  57. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  58. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  59. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  60. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  61. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  62. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  63. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  64. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  65. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  66. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  67. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  68. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  69. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  70. { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  71. };
  72. #define E1000_QUEUE_STATS_LEN 0
  73. #define E1000_GLOBAL_STATS_LEN \
  74. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  75. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  76. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  77. "Register test (offline)", "Eeprom test (offline)",
  78. "Interrupt test (offline)", "Loopback test (offline)",
  79. "Link test (on/offline)"
  80. };
  81. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  82. static int
  83. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  84. {
  85. struct e1000_adapter *adapter = netdev_priv(netdev);
  86. struct e1000_hw *hw = &adapter->hw;
  87. if (hw->media_type == e1000_media_type_copper) {
  88. ecmd->supported = (SUPPORTED_10baseT_Half |
  89. SUPPORTED_10baseT_Full |
  90. SUPPORTED_100baseT_Half |
  91. SUPPORTED_100baseT_Full |
  92. SUPPORTED_1000baseT_Full|
  93. SUPPORTED_Autoneg |
  94. SUPPORTED_TP);
  95. ecmd->advertising = ADVERTISED_TP;
  96. if (hw->autoneg == 1) {
  97. ecmd->advertising |= ADVERTISED_Autoneg;
  98. /* the e1000 autoneg seems to match ethtool nicely */
  99. ecmd->advertising |= hw->autoneg_advertised;
  100. }
  101. ecmd->port = PORT_TP;
  102. ecmd->phy_address = hw->phy_addr;
  103. if (hw->mac_type == e1000_82543)
  104. ecmd->transceiver = XCVR_EXTERNAL;
  105. else
  106. ecmd->transceiver = XCVR_INTERNAL;
  107. } else {
  108. ecmd->supported = (SUPPORTED_1000baseT_Full |
  109. SUPPORTED_FIBRE |
  110. SUPPORTED_Autoneg);
  111. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  112. ADVERTISED_FIBRE |
  113. ADVERTISED_Autoneg);
  114. ecmd->port = PORT_FIBRE;
  115. if (hw->mac_type >= e1000_82545)
  116. ecmd->transceiver = XCVR_INTERNAL;
  117. else
  118. ecmd->transceiver = XCVR_EXTERNAL;
  119. }
  120. if (netif_carrier_ok(adapter->netdev)) {
  121. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  122. &adapter->link_duplex);
  123. ecmd->speed = adapter->link_speed;
  124. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  125. * and HALF_DUPLEX != DUPLEX_HALF */
  126. if (adapter->link_duplex == FULL_DUPLEX)
  127. ecmd->duplex = DUPLEX_FULL;
  128. else
  129. ecmd->duplex = DUPLEX_HALF;
  130. } else {
  131. ecmd->speed = -1;
  132. ecmd->duplex = -1;
  133. }
  134. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  135. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  136. return 0;
  137. }
  138. static int
  139. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  140. {
  141. struct e1000_adapter *adapter = netdev_priv(netdev);
  142. struct e1000_hw *hw = &adapter->hw;
  143. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  144. * cannot be changed */
  145. if (e1000_check_phy_reset_block(hw)) {
  146. DPRINTK(DRV, ERR, "Cannot change link characteristics "
  147. "when SoL/IDER is active.\n");
  148. return -EINVAL;
  149. }
  150. if (ecmd->autoneg == AUTONEG_ENABLE) {
  151. hw->autoneg = 1;
  152. if (hw->media_type == e1000_media_type_fiber)
  153. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  154. ADVERTISED_FIBRE |
  155. ADVERTISED_Autoneg;
  156. else
  157. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  158. ADVERTISED_10baseT_Full |
  159. ADVERTISED_100baseT_Half |
  160. ADVERTISED_100baseT_Full |
  161. ADVERTISED_1000baseT_Full|
  162. ADVERTISED_Autoneg |
  163. ADVERTISED_TP;
  164. ecmd->advertising = hw->autoneg_advertised;
  165. } else
  166. if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  167. return -EINVAL;
  168. /* reset the link */
  169. if (netif_running(adapter->netdev)) {
  170. e1000_down(adapter);
  171. e1000_reset(adapter);
  172. e1000_up(adapter);
  173. } else
  174. e1000_reset(adapter);
  175. return 0;
  176. }
  177. static void
  178. e1000_get_pauseparam(struct net_device *netdev,
  179. struct ethtool_pauseparam *pause)
  180. {
  181. struct e1000_adapter *adapter = netdev_priv(netdev);
  182. struct e1000_hw *hw = &adapter->hw;
  183. pause->autoneg =
  184. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  185. if (hw->fc == e1000_fc_rx_pause)
  186. pause->rx_pause = 1;
  187. else if (hw->fc == e1000_fc_tx_pause)
  188. pause->tx_pause = 1;
  189. else if (hw->fc == e1000_fc_full) {
  190. pause->rx_pause = 1;
  191. pause->tx_pause = 1;
  192. }
  193. }
  194. static int
  195. e1000_set_pauseparam(struct net_device *netdev,
  196. struct ethtool_pauseparam *pause)
  197. {
  198. struct e1000_adapter *adapter = netdev_priv(netdev);
  199. struct e1000_hw *hw = &adapter->hw;
  200. adapter->fc_autoneg = pause->autoneg;
  201. if (pause->rx_pause && pause->tx_pause)
  202. hw->fc = e1000_fc_full;
  203. else if (pause->rx_pause && !pause->tx_pause)
  204. hw->fc = e1000_fc_rx_pause;
  205. else if (!pause->rx_pause && pause->tx_pause)
  206. hw->fc = e1000_fc_tx_pause;
  207. else if (!pause->rx_pause && !pause->tx_pause)
  208. hw->fc = e1000_fc_none;
  209. hw->original_fc = hw->fc;
  210. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  211. if (netif_running(adapter->netdev)) {
  212. e1000_down(adapter);
  213. e1000_up(adapter);
  214. } else
  215. e1000_reset(adapter);
  216. } else
  217. return ((hw->media_type == e1000_media_type_fiber) ?
  218. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  219. return 0;
  220. }
  221. static uint32_t
  222. e1000_get_rx_csum(struct net_device *netdev)
  223. {
  224. struct e1000_adapter *adapter = netdev_priv(netdev);
  225. return adapter->rx_csum;
  226. }
  227. static int
  228. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  229. {
  230. struct e1000_adapter *adapter = netdev_priv(netdev);
  231. adapter->rx_csum = data;
  232. if (netif_running(netdev)) {
  233. e1000_down(adapter);
  234. e1000_up(adapter);
  235. } else
  236. e1000_reset(adapter);
  237. return 0;
  238. }
  239. static uint32_t
  240. e1000_get_tx_csum(struct net_device *netdev)
  241. {
  242. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  243. }
  244. static int
  245. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  246. {
  247. struct e1000_adapter *adapter = netdev_priv(netdev);
  248. if (adapter->hw.mac_type < e1000_82543) {
  249. if (!data)
  250. return -EINVAL;
  251. return 0;
  252. }
  253. if (data)
  254. netdev->features |= NETIF_F_HW_CSUM;
  255. else
  256. netdev->features &= ~NETIF_F_HW_CSUM;
  257. return 0;
  258. }
  259. #ifdef NETIF_F_TSO
  260. static int
  261. e1000_set_tso(struct net_device *netdev, uint32_t data)
  262. {
  263. struct e1000_adapter *adapter = netdev_priv(netdev);
  264. if ((adapter->hw.mac_type < e1000_82544) ||
  265. (adapter->hw.mac_type == e1000_82547))
  266. return data ? -EINVAL : 0;
  267. if (data)
  268. netdev->features |= NETIF_F_TSO;
  269. else
  270. netdev->features &= ~NETIF_F_TSO;
  271. DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
  272. adapter->tso_force = TRUE;
  273. return 0;
  274. }
  275. #endif /* NETIF_F_TSO */
  276. static uint32_t
  277. e1000_get_msglevel(struct net_device *netdev)
  278. {
  279. struct e1000_adapter *adapter = netdev_priv(netdev);
  280. return adapter->msg_enable;
  281. }
  282. static void
  283. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  284. {
  285. struct e1000_adapter *adapter = netdev_priv(netdev);
  286. adapter->msg_enable = data;
  287. }
  288. static int
  289. e1000_get_regs_len(struct net_device *netdev)
  290. {
  291. #define E1000_REGS_LEN 32
  292. return E1000_REGS_LEN * sizeof(uint32_t);
  293. }
  294. static void
  295. e1000_get_regs(struct net_device *netdev,
  296. struct ethtool_regs *regs, void *p)
  297. {
  298. struct e1000_adapter *adapter = netdev_priv(netdev);
  299. struct e1000_hw *hw = &adapter->hw;
  300. uint32_t *regs_buff = p;
  301. uint16_t phy_data;
  302. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  303. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  304. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  305. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  306. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  307. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  308. regs_buff[4] = E1000_READ_REG(hw, RDH);
  309. regs_buff[5] = E1000_READ_REG(hw, RDT);
  310. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  311. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  312. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  313. regs_buff[9] = E1000_READ_REG(hw, TDH);
  314. regs_buff[10] = E1000_READ_REG(hw, TDT);
  315. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  316. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  317. if (hw->phy_type == e1000_phy_igp) {
  318. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  319. IGP01E1000_PHY_AGC_A);
  320. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  321. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  322. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  323. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  324. IGP01E1000_PHY_AGC_B);
  325. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  326. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  327. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  328. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  329. IGP01E1000_PHY_AGC_C);
  330. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  331. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  332. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  333. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  334. IGP01E1000_PHY_AGC_D);
  335. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  336. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  337. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  338. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  339. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  340. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  341. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  342. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  343. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  344. IGP01E1000_PHY_PCS_INIT_REG);
  345. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  346. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  347. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  348. regs_buff[20] = 0; /* polarity correction enabled (always) */
  349. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  350. regs_buff[23] = regs_buff[18]; /* mdix mode */
  351. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  352. } else {
  353. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  354. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  355. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  356. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  357. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  358. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  359. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  360. regs_buff[18] = regs_buff[13]; /* cable polarity */
  361. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  362. regs_buff[20] = regs_buff[17]; /* polarity correction */
  363. /* phy receive errors */
  364. regs_buff[22] = adapter->phy_stats.receive_errors;
  365. regs_buff[23] = regs_buff[13]; /* mdix mode */
  366. }
  367. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  368. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  369. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  370. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  371. if (hw->mac_type >= e1000_82540 &&
  372. hw->media_type == e1000_media_type_copper) {
  373. regs_buff[26] = E1000_READ_REG(hw, MANC);
  374. }
  375. }
  376. static int
  377. e1000_get_eeprom_len(struct net_device *netdev)
  378. {
  379. struct e1000_adapter *adapter = netdev_priv(netdev);
  380. return adapter->hw.eeprom.word_size * 2;
  381. }
  382. static int
  383. e1000_get_eeprom(struct net_device *netdev,
  384. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  385. {
  386. struct e1000_adapter *adapter = netdev_priv(netdev);
  387. struct e1000_hw *hw = &adapter->hw;
  388. uint16_t *eeprom_buff;
  389. int first_word, last_word;
  390. int ret_val = 0;
  391. uint16_t i;
  392. if (eeprom->len == 0)
  393. return -EINVAL;
  394. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  395. first_word = eeprom->offset >> 1;
  396. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  397. eeprom_buff = kmalloc(sizeof(uint16_t) *
  398. (last_word - first_word + 1), GFP_KERNEL);
  399. if (!eeprom_buff)
  400. return -ENOMEM;
  401. if (hw->eeprom.type == e1000_eeprom_spi)
  402. ret_val = e1000_read_eeprom(hw, first_word,
  403. last_word - first_word + 1,
  404. eeprom_buff);
  405. else {
  406. for (i = 0; i < last_word - first_word + 1; i++)
  407. if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  408. &eeprom_buff[i])))
  409. break;
  410. }
  411. /* Device's eeprom is always little-endian, word addressable */
  412. for (i = 0; i < last_word - first_word + 1; i++)
  413. le16_to_cpus(&eeprom_buff[i]);
  414. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  415. eeprom->len);
  416. kfree(eeprom_buff);
  417. return ret_val;
  418. }
  419. static int
  420. e1000_set_eeprom(struct net_device *netdev,
  421. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  422. {
  423. struct e1000_adapter *adapter = netdev_priv(netdev);
  424. struct e1000_hw *hw = &adapter->hw;
  425. uint16_t *eeprom_buff;
  426. void *ptr;
  427. int max_len, first_word, last_word, ret_val = 0;
  428. uint16_t i;
  429. if (eeprom->len == 0)
  430. return -EOPNOTSUPP;
  431. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  432. return -EFAULT;
  433. max_len = hw->eeprom.word_size * 2;
  434. first_word = eeprom->offset >> 1;
  435. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  436. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  437. if (!eeprom_buff)
  438. return -ENOMEM;
  439. ptr = (void *)eeprom_buff;
  440. if (eeprom->offset & 1) {
  441. /* need read/modify/write of first changed EEPROM word */
  442. /* only the second byte of the word is being modified */
  443. ret_val = e1000_read_eeprom(hw, first_word, 1,
  444. &eeprom_buff[0]);
  445. ptr++;
  446. }
  447. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  448. /* need read/modify/write of last changed EEPROM word */
  449. /* only the first byte of the word is being modified */
  450. ret_val = e1000_read_eeprom(hw, last_word, 1,
  451. &eeprom_buff[last_word - first_word]);
  452. }
  453. /* Device's eeprom is always little-endian, word addressable */
  454. for (i = 0; i < last_word - first_word + 1; i++)
  455. le16_to_cpus(&eeprom_buff[i]);
  456. memcpy(ptr, bytes, eeprom->len);
  457. for (i = 0; i < last_word - first_word + 1; i++)
  458. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  459. ret_val = e1000_write_eeprom(hw, first_word,
  460. last_word - first_word + 1, eeprom_buff);
  461. /* Update the checksum over the first part of the EEPROM if needed
  462. * and flush shadow RAM for 82573 conrollers */
  463. if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  464. (hw->mac_type == e1000_82573)))
  465. e1000_update_eeprom_checksum(hw);
  466. kfree(eeprom_buff);
  467. return ret_val;
  468. }
  469. static void
  470. e1000_get_drvinfo(struct net_device *netdev,
  471. struct ethtool_drvinfo *drvinfo)
  472. {
  473. struct e1000_adapter *adapter = netdev_priv(netdev);
  474. char firmware_version[32];
  475. uint16_t eeprom_data;
  476. strncpy(drvinfo->driver, e1000_driver_name, 32);
  477. strncpy(drvinfo->version, e1000_driver_version, 32);
  478. /* EEPROM image version # is reported as firmware version # for
  479. * 8257{1|2|3} controllers */
  480. e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
  481. switch (adapter->hw.mac_type) {
  482. case e1000_82571:
  483. case e1000_82572:
  484. case e1000_82573:
  485. case e1000_80003es2lan:
  486. sprintf(firmware_version, "%d.%d-%d",
  487. (eeprom_data & 0xF000) >> 12,
  488. (eeprom_data & 0x0FF0) >> 4,
  489. eeprom_data & 0x000F);
  490. break;
  491. default:
  492. sprintf(firmware_version, "N/A");
  493. }
  494. strncpy(drvinfo->fw_version, firmware_version, 32);
  495. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  496. drvinfo->n_stats = E1000_STATS_LEN;
  497. drvinfo->testinfo_len = E1000_TEST_LEN;
  498. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  499. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  500. }
  501. static void
  502. e1000_get_ringparam(struct net_device *netdev,
  503. struct ethtool_ringparam *ring)
  504. {
  505. struct e1000_adapter *adapter = netdev_priv(netdev);
  506. e1000_mac_type mac_type = adapter->hw.mac_type;
  507. struct e1000_tx_ring *txdr = adapter->tx_ring;
  508. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  509. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  510. E1000_MAX_82544_RXD;
  511. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  512. E1000_MAX_82544_TXD;
  513. ring->rx_mini_max_pending = 0;
  514. ring->rx_jumbo_max_pending = 0;
  515. ring->rx_pending = rxdr->count;
  516. ring->tx_pending = txdr->count;
  517. ring->rx_mini_pending = 0;
  518. ring->rx_jumbo_pending = 0;
  519. }
  520. static int
  521. e1000_set_ringparam(struct net_device *netdev,
  522. struct ethtool_ringparam *ring)
  523. {
  524. struct e1000_adapter *adapter = netdev_priv(netdev);
  525. e1000_mac_type mac_type = adapter->hw.mac_type;
  526. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  527. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  528. int i, err, tx_ring_size, rx_ring_size;
  529. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  530. return -EINVAL;
  531. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  532. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  533. if (netif_running(adapter->netdev))
  534. e1000_down(adapter);
  535. tx_old = adapter->tx_ring;
  536. rx_old = adapter->rx_ring;
  537. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  538. if (!adapter->tx_ring) {
  539. err = -ENOMEM;
  540. goto err_setup_rx;
  541. }
  542. memset(adapter->tx_ring, 0, tx_ring_size);
  543. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  544. if (!adapter->rx_ring) {
  545. kfree(adapter->tx_ring);
  546. err = -ENOMEM;
  547. goto err_setup_rx;
  548. }
  549. memset(adapter->rx_ring, 0, rx_ring_size);
  550. txdr = adapter->tx_ring;
  551. rxdr = adapter->rx_ring;
  552. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  553. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  554. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  555. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  556. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  557. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  558. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  559. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  560. for (i = 0; i < adapter->num_tx_queues; i++)
  561. txdr[i].count = txdr->count;
  562. for (i = 0; i < adapter->num_rx_queues; i++)
  563. rxdr[i].count = rxdr->count;
  564. if (netif_running(adapter->netdev)) {
  565. /* Try to get new resources before deleting old */
  566. if ((err = e1000_setup_all_rx_resources(adapter)))
  567. goto err_setup_rx;
  568. if ((err = e1000_setup_all_tx_resources(adapter)))
  569. goto err_setup_tx;
  570. /* save the new, restore the old in order to free it,
  571. * then restore the new back again */
  572. rx_new = adapter->rx_ring;
  573. tx_new = adapter->tx_ring;
  574. adapter->rx_ring = rx_old;
  575. adapter->tx_ring = tx_old;
  576. e1000_free_all_rx_resources(adapter);
  577. e1000_free_all_tx_resources(adapter);
  578. kfree(tx_old);
  579. kfree(rx_old);
  580. adapter->rx_ring = rx_new;
  581. adapter->tx_ring = tx_new;
  582. if ((err = e1000_up(adapter)))
  583. return err;
  584. }
  585. return 0;
  586. err_setup_tx:
  587. e1000_free_all_rx_resources(adapter);
  588. err_setup_rx:
  589. adapter->rx_ring = rx_old;
  590. adapter->tx_ring = tx_old;
  591. e1000_up(adapter);
  592. return err;
  593. }
  594. #define REG_PATTERN_TEST(R, M, W) \
  595. { \
  596. uint32_t pat, value; \
  597. uint32_t test[] = \
  598. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  599. for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  600. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  601. value = E1000_READ_REG(&adapter->hw, R); \
  602. if (value != (test[pat] & W & M)) { \
  603. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  604. "0x%08X expected 0x%08X\n", \
  605. E1000_##R, value, (test[pat] & W & M)); \
  606. *data = (adapter->hw.mac_type < e1000_82543) ? \
  607. E1000_82542_##R : E1000_##R; \
  608. return 1; \
  609. } \
  610. } \
  611. }
  612. #define REG_SET_AND_CHECK(R, M, W) \
  613. { \
  614. uint32_t value; \
  615. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  616. value = E1000_READ_REG(&adapter->hw, R); \
  617. if ((W & M) != (value & M)) { \
  618. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  619. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  620. *data = (adapter->hw.mac_type < e1000_82543) ? \
  621. E1000_82542_##R : E1000_##R; \
  622. return 1; \
  623. } \
  624. }
  625. static int
  626. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  627. {
  628. uint32_t value, before, after;
  629. uint32_t i, toggle;
  630. /* The status register is Read Only, so a write should fail.
  631. * Some bits that get toggled are ignored.
  632. */
  633. switch (adapter->hw.mac_type) {
  634. /* there are several bits on newer hardware that are r/w */
  635. case e1000_82571:
  636. case e1000_82572:
  637. case e1000_80003es2lan:
  638. toggle = 0x7FFFF3FF;
  639. break;
  640. case e1000_82573:
  641. toggle = 0x7FFFF033;
  642. break;
  643. default:
  644. toggle = 0xFFFFF833;
  645. break;
  646. }
  647. before = E1000_READ_REG(&adapter->hw, STATUS);
  648. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  649. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  650. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  651. if (value != after) {
  652. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  653. "0x%08X expected: 0x%08X\n", after, value);
  654. *data = 1;
  655. return 1;
  656. }
  657. /* restore previous status */
  658. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  659. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  660. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  661. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  662. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  663. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  664. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  665. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  666. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  667. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  668. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  669. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  670. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  671. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  672. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  673. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  674. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  675. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  676. if (adapter->hw.mac_type >= e1000_82543) {
  677. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  678. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  679. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  680. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  681. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  682. for (i = 0; i < E1000_RAR_ENTRIES; i++) {
  683. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  684. 0xFFFFFFFF);
  685. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  686. 0xFFFFFFFF);
  687. }
  688. } else {
  689. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  690. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  691. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  692. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  693. }
  694. for (i = 0; i < E1000_MC_TBL_SIZE; i++)
  695. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  696. *data = 0;
  697. return 0;
  698. }
  699. static int
  700. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  701. {
  702. uint16_t temp;
  703. uint16_t checksum = 0;
  704. uint16_t i;
  705. *data = 0;
  706. /* Read and add up the contents of the EEPROM */
  707. for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  708. if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  709. *data = 1;
  710. break;
  711. }
  712. checksum += temp;
  713. }
  714. /* If Checksum is not Correct return error else test passed */
  715. if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  716. *data = 2;
  717. return *data;
  718. }
  719. static irqreturn_t
  720. e1000_test_intr(int irq,
  721. void *data,
  722. struct pt_regs *regs)
  723. {
  724. struct net_device *netdev = (struct net_device *) data;
  725. struct e1000_adapter *adapter = netdev_priv(netdev);
  726. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  727. return IRQ_HANDLED;
  728. }
  729. static int
  730. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  731. {
  732. struct net_device *netdev = adapter->netdev;
  733. uint32_t mask, i=0, shared_int = TRUE;
  734. uint32_t irq = adapter->pdev->irq;
  735. *data = 0;
  736. /* Hook up test interrupt handler just for this test */
  737. if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED,
  738. netdev->name, netdev)) {
  739. shared_int = FALSE;
  740. } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
  741. netdev->name, netdev)){
  742. *data = 1;
  743. return -1;
  744. }
  745. DPRINTK(PROBE,INFO, "testing %s interrupt\n",
  746. (shared_int ? "shared" : "unshared"));
  747. /* Disable all the interrupts */
  748. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  749. msec_delay(10);
  750. /* Test each interrupt */
  751. for (; i < 10; i++) {
  752. /* Interrupt to test */
  753. mask = 1 << i;
  754. if (!shared_int) {
  755. /* Disable the interrupt to be reported in
  756. * the cause register and then force the same
  757. * interrupt and see if one gets posted. If
  758. * an interrupt was posted to the bus, the
  759. * test failed.
  760. */
  761. adapter->test_icr = 0;
  762. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  763. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  764. msec_delay(10);
  765. if (adapter->test_icr & mask) {
  766. *data = 3;
  767. break;
  768. }
  769. }
  770. /* Enable the interrupt to be reported in
  771. * the cause register and then force the same
  772. * interrupt and see if one gets posted. If
  773. * an interrupt was not posted to the bus, the
  774. * test failed.
  775. */
  776. adapter->test_icr = 0;
  777. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  778. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  779. msec_delay(10);
  780. if (!(adapter->test_icr & mask)) {
  781. *data = 4;
  782. break;
  783. }
  784. if (!shared_int) {
  785. /* Disable the other interrupts to be reported in
  786. * the cause register and then force the other
  787. * interrupts and see if any get posted. If
  788. * an interrupt was posted to the bus, the
  789. * test failed.
  790. */
  791. adapter->test_icr = 0;
  792. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  793. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  794. msec_delay(10);
  795. if (adapter->test_icr) {
  796. *data = 5;
  797. break;
  798. }
  799. }
  800. }
  801. /* Disable all the interrupts */
  802. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  803. msec_delay(10);
  804. /* Unhook test interrupt handler */
  805. free_irq(irq, netdev);
  806. return *data;
  807. }
  808. static void
  809. e1000_free_desc_rings(struct e1000_adapter *adapter)
  810. {
  811. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  812. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  813. struct pci_dev *pdev = adapter->pdev;
  814. int i;
  815. if (txdr->desc && txdr->buffer_info) {
  816. for (i = 0; i < txdr->count; i++) {
  817. if (txdr->buffer_info[i].dma)
  818. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  819. txdr->buffer_info[i].length,
  820. PCI_DMA_TODEVICE);
  821. if (txdr->buffer_info[i].skb)
  822. dev_kfree_skb(txdr->buffer_info[i].skb);
  823. }
  824. }
  825. if (rxdr->desc && rxdr->buffer_info) {
  826. for (i = 0; i < rxdr->count; i++) {
  827. if (rxdr->buffer_info[i].dma)
  828. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  829. rxdr->buffer_info[i].length,
  830. PCI_DMA_FROMDEVICE);
  831. if (rxdr->buffer_info[i].skb)
  832. dev_kfree_skb(rxdr->buffer_info[i].skb);
  833. }
  834. }
  835. if (txdr->desc) {
  836. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  837. txdr->desc = NULL;
  838. }
  839. if (rxdr->desc) {
  840. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  841. rxdr->desc = NULL;
  842. }
  843. kfree(txdr->buffer_info);
  844. txdr->buffer_info = NULL;
  845. kfree(rxdr->buffer_info);
  846. rxdr->buffer_info = NULL;
  847. return;
  848. }
  849. static int
  850. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  851. {
  852. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  853. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  854. struct pci_dev *pdev = adapter->pdev;
  855. uint32_t rctl;
  856. int size, i, ret_val;
  857. /* Setup Tx descriptor ring and Tx buffers */
  858. if (!txdr->count)
  859. txdr->count = E1000_DEFAULT_TXD;
  860. size = txdr->count * sizeof(struct e1000_buffer);
  861. if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  862. ret_val = 1;
  863. goto err_nomem;
  864. }
  865. memset(txdr->buffer_info, 0, size);
  866. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  867. E1000_ROUNDUP(txdr->size, 4096);
  868. if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  869. ret_val = 2;
  870. goto err_nomem;
  871. }
  872. memset(txdr->desc, 0, txdr->size);
  873. txdr->next_to_use = txdr->next_to_clean = 0;
  874. E1000_WRITE_REG(&adapter->hw, TDBAL,
  875. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  876. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  877. E1000_WRITE_REG(&adapter->hw, TDLEN,
  878. txdr->count * sizeof(struct e1000_tx_desc));
  879. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  880. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  881. E1000_WRITE_REG(&adapter->hw, TCTL,
  882. E1000_TCTL_PSP | E1000_TCTL_EN |
  883. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  884. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  885. for (i = 0; i < txdr->count; i++) {
  886. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  887. struct sk_buff *skb;
  888. unsigned int size = 1024;
  889. if (!(skb = alloc_skb(size, GFP_KERNEL))) {
  890. ret_val = 3;
  891. goto err_nomem;
  892. }
  893. skb_put(skb, size);
  894. txdr->buffer_info[i].skb = skb;
  895. txdr->buffer_info[i].length = skb->len;
  896. txdr->buffer_info[i].dma =
  897. pci_map_single(pdev, skb->data, skb->len,
  898. PCI_DMA_TODEVICE);
  899. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  900. tx_desc->lower.data = cpu_to_le32(skb->len);
  901. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  902. E1000_TXD_CMD_IFCS |
  903. E1000_TXD_CMD_RPS);
  904. tx_desc->upper.data = 0;
  905. }
  906. /* Setup Rx descriptor ring and Rx buffers */
  907. if (!rxdr->count)
  908. rxdr->count = E1000_DEFAULT_RXD;
  909. size = rxdr->count * sizeof(struct e1000_buffer);
  910. if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  911. ret_val = 4;
  912. goto err_nomem;
  913. }
  914. memset(rxdr->buffer_info, 0, size);
  915. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  916. if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  917. ret_val = 5;
  918. goto err_nomem;
  919. }
  920. memset(rxdr->desc, 0, rxdr->size);
  921. rxdr->next_to_use = rxdr->next_to_clean = 0;
  922. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  923. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  924. E1000_WRITE_REG(&adapter->hw, RDBAL,
  925. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  926. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  927. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  928. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  929. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  930. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  931. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  932. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  933. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  934. for (i = 0; i < rxdr->count; i++) {
  935. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  936. struct sk_buff *skb;
  937. if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  938. GFP_KERNEL))) {
  939. ret_val = 6;
  940. goto err_nomem;
  941. }
  942. skb_reserve(skb, NET_IP_ALIGN);
  943. rxdr->buffer_info[i].skb = skb;
  944. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  945. rxdr->buffer_info[i].dma =
  946. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  947. PCI_DMA_FROMDEVICE);
  948. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  949. memset(skb->data, 0x00, skb->len);
  950. }
  951. return 0;
  952. err_nomem:
  953. e1000_free_desc_rings(adapter);
  954. return ret_val;
  955. }
  956. static void
  957. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  958. {
  959. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  960. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  961. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  962. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  963. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  964. }
  965. static void
  966. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  967. {
  968. uint16_t phy_reg;
  969. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  970. * Extended PHY Specific Control Register to 25MHz clock. This
  971. * value defaults back to a 2.5MHz clock when the PHY is reset.
  972. */
  973. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  974. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  975. e1000_write_phy_reg(&adapter->hw,
  976. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  977. /* In addition, because of the s/w reset above, we need to enable
  978. * CRS on TX. This must be set for both full and half duplex
  979. * operation.
  980. */
  981. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  982. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  983. e1000_write_phy_reg(&adapter->hw,
  984. M88E1000_PHY_SPEC_CTRL, phy_reg);
  985. }
  986. static int
  987. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  988. {
  989. uint32_t ctrl_reg;
  990. uint16_t phy_reg;
  991. /* Setup the Device Control Register for PHY loopback test. */
  992. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  993. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  994. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  995. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  996. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  997. E1000_CTRL_FD); /* Force Duplex to FULL */
  998. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  999. /* Read the PHY Specific Control Register (0x10) */
  1000. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  1001. /* Clear Auto-Crossover bits in PHY Specific Control Register
  1002. * (bits 6:5).
  1003. */
  1004. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  1005. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  1006. /* Perform software reset on the PHY */
  1007. e1000_phy_reset(&adapter->hw);
  1008. /* Have to setup TX_CLK and TX_CRS after software reset */
  1009. e1000_phy_reset_clk_and_crs(adapter);
  1010. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  1011. /* Wait for reset to complete. */
  1012. udelay(500);
  1013. /* Have to setup TX_CLK and TX_CRS after software reset */
  1014. e1000_phy_reset_clk_and_crs(adapter);
  1015. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1016. e1000_phy_disable_receiver(adapter);
  1017. /* Set the loopback bit in the PHY control register. */
  1018. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1019. phy_reg |= MII_CR_LOOPBACK;
  1020. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1021. /* Setup TX_CLK and TX_CRS one more time. */
  1022. e1000_phy_reset_clk_and_crs(adapter);
  1023. /* Check Phy Configuration */
  1024. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1025. if (phy_reg != 0x4100)
  1026. return 9;
  1027. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1028. if (phy_reg != 0x0070)
  1029. return 10;
  1030. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1031. if (phy_reg != 0x001A)
  1032. return 11;
  1033. return 0;
  1034. }
  1035. static int
  1036. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1037. {
  1038. uint32_t ctrl_reg = 0;
  1039. uint32_t stat_reg = 0;
  1040. adapter->hw.autoneg = FALSE;
  1041. if (adapter->hw.phy_type == e1000_phy_m88) {
  1042. /* Auto-MDI/MDIX Off */
  1043. e1000_write_phy_reg(&adapter->hw,
  1044. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1045. /* reset to update Auto-MDI/MDIX */
  1046. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1047. /* autoneg off */
  1048. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1049. } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
  1050. e1000_write_phy_reg(&adapter->hw,
  1051. GG82563_PHY_KMRN_MODE_CTRL,
  1052. 0x1CE);
  1053. }
  1054. /* force 1000, set loopback */
  1055. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1056. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1057. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1058. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1059. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1060. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1061. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1062. E1000_CTRL_FD); /* Force Duplex to FULL */
  1063. if (adapter->hw.media_type == e1000_media_type_copper &&
  1064. adapter->hw.phy_type == e1000_phy_m88) {
  1065. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1066. } else {
  1067. /* Set the ILOS bit on the fiber Nic is half
  1068. * duplex link is detected. */
  1069. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1070. if ((stat_reg & E1000_STATUS_FD) == 0)
  1071. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1072. }
  1073. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1074. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1075. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1076. */
  1077. if (adapter->hw.phy_type == e1000_phy_m88)
  1078. e1000_phy_disable_receiver(adapter);
  1079. udelay(500);
  1080. return 0;
  1081. }
  1082. static int
  1083. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1084. {
  1085. uint16_t phy_reg = 0;
  1086. uint16_t count = 0;
  1087. switch (adapter->hw.mac_type) {
  1088. case e1000_82543:
  1089. if (adapter->hw.media_type == e1000_media_type_copper) {
  1090. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1091. * Some PHY registers get corrupted at random, so
  1092. * attempt this 10 times.
  1093. */
  1094. while (e1000_nonintegrated_phy_loopback(adapter) &&
  1095. count++ < 10);
  1096. if (count < 11)
  1097. return 0;
  1098. }
  1099. break;
  1100. case e1000_82544:
  1101. case e1000_82540:
  1102. case e1000_82545:
  1103. case e1000_82545_rev_3:
  1104. case e1000_82546:
  1105. case e1000_82546_rev_3:
  1106. case e1000_82541:
  1107. case e1000_82541_rev_2:
  1108. case e1000_82547:
  1109. case e1000_82547_rev_2:
  1110. case e1000_82571:
  1111. case e1000_82572:
  1112. case e1000_82573:
  1113. case e1000_80003es2lan:
  1114. return e1000_integrated_phy_loopback(adapter);
  1115. break;
  1116. default:
  1117. /* Default PHY loopback work is to read the MII
  1118. * control register and assert bit 14 (loopback mode).
  1119. */
  1120. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1121. phy_reg |= MII_CR_LOOPBACK;
  1122. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1123. return 0;
  1124. break;
  1125. }
  1126. return 8;
  1127. }
  1128. static int
  1129. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1130. {
  1131. struct e1000_hw *hw = &adapter->hw;
  1132. uint32_t rctl;
  1133. if (hw->media_type == e1000_media_type_fiber ||
  1134. hw->media_type == e1000_media_type_internal_serdes) {
  1135. switch (hw->mac_type) {
  1136. case e1000_82545:
  1137. case e1000_82546:
  1138. case e1000_82545_rev_3:
  1139. case e1000_82546_rev_3:
  1140. return e1000_set_phy_loopback(adapter);
  1141. break;
  1142. case e1000_82571:
  1143. case e1000_82572:
  1144. #define E1000_SERDES_LB_ON 0x410
  1145. e1000_set_phy_loopback(adapter);
  1146. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
  1147. msec_delay(10);
  1148. return 0;
  1149. break;
  1150. default:
  1151. rctl = E1000_READ_REG(hw, RCTL);
  1152. rctl |= E1000_RCTL_LBM_TCVR;
  1153. E1000_WRITE_REG(hw, RCTL, rctl);
  1154. return 0;
  1155. }
  1156. } else if (hw->media_type == e1000_media_type_copper)
  1157. return e1000_set_phy_loopback(adapter);
  1158. return 7;
  1159. }
  1160. static void
  1161. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1162. {
  1163. struct e1000_hw *hw = &adapter->hw;
  1164. uint32_t rctl;
  1165. uint16_t phy_reg;
  1166. rctl = E1000_READ_REG(hw, RCTL);
  1167. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1168. E1000_WRITE_REG(hw, RCTL, rctl);
  1169. switch (hw->mac_type) {
  1170. case e1000_82571:
  1171. case e1000_82572:
  1172. if (hw->media_type == e1000_media_type_fiber ||
  1173. hw->media_type == e1000_media_type_internal_serdes) {
  1174. #define E1000_SERDES_LB_OFF 0x400
  1175. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
  1176. msec_delay(10);
  1177. break;
  1178. }
  1179. /* Fall Through */
  1180. case e1000_82545:
  1181. case e1000_82546:
  1182. case e1000_82545_rev_3:
  1183. case e1000_82546_rev_3:
  1184. default:
  1185. hw->autoneg = TRUE;
  1186. if (hw->phy_type == e1000_phy_gg82563) {
  1187. e1000_write_phy_reg(hw,
  1188. GG82563_PHY_KMRN_MODE_CTRL,
  1189. 0x180);
  1190. }
  1191. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1192. if (phy_reg & MII_CR_LOOPBACK) {
  1193. phy_reg &= ~MII_CR_LOOPBACK;
  1194. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1195. e1000_phy_reset(hw);
  1196. }
  1197. break;
  1198. }
  1199. }
  1200. static void
  1201. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1202. {
  1203. memset(skb->data, 0xFF, frame_size);
  1204. frame_size &= ~1;
  1205. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1206. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1207. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1208. }
  1209. static int
  1210. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1211. {
  1212. frame_size &= ~1;
  1213. if (*(skb->data + 3) == 0xFF) {
  1214. if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1215. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1216. return 0;
  1217. }
  1218. }
  1219. return 13;
  1220. }
  1221. static int
  1222. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1223. {
  1224. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1225. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1226. struct pci_dev *pdev = adapter->pdev;
  1227. int i, j, k, l, lc, good_cnt, ret_val=0;
  1228. unsigned long time;
  1229. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1230. /* Calculate the loop count based on the largest descriptor ring
  1231. * The idea is to wrap the largest ring a number of times using 64
  1232. * send/receive pairs during each loop
  1233. */
  1234. if (rxdr->count <= txdr->count)
  1235. lc = ((txdr->count / 64) * 2) + 1;
  1236. else
  1237. lc = ((rxdr->count / 64) * 2) + 1;
  1238. k = l = 0;
  1239. for (j = 0; j <= lc; j++) { /* loop count loop */
  1240. for (i = 0; i < 64; i++) { /* send the packets */
  1241. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1242. 1024);
  1243. pci_dma_sync_single_for_device(pdev,
  1244. txdr->buffer_info[k].dma,
  1245. txdr->buffer_info[k].length,
  1246. PCI_DMA_TODEVICE);
  1247. if (unlikely(++k == txdr->count)) k = 0;
  1248. }
  1249. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1250. msec_delay(200);
  1251. time = jiffies; /* set the start time for the receive */
  1252. good_cnt = 0;
  1253. do { /* receive the sent packets */
  1254. pci_dma_sync_single_for_cpu(pdev,
  1255. rxdr->buffer_info[l].dma,
  1256. rxdr->buffer_info[l].length,
  1257. PCI_DMA_FROMDEVICE);
  1258. ret_val = e1000_check_lbtest_frame(
  1259. rxdr->buffer_info[l].skb,
  1260. 1024);
  1261. if (!ret_val)
  1262. good_cnt++;
  1263. if (unlikely(++l == rxdr->count)) l = 0;
  1264. /* time + 20 msecs (200 msecs on 2.4) is more than
  1265. * enough time to complete the receives, if it's
  1266. * exceeded, break and error off
  1267. */
  1268. } while (good_cnt < 64 && jiffies < (time + 20));
  1269. if (good_cnt != 64) {
  1270. ret_val = 13; /* ret_val is the same as mis-compare */
  1271. break;
  1272. }
  1273. if (jiffies >= (time + 2)) {
  1274. ret_val = 14; /* error code for time out error */
  1275. break;
  1276. }
  1277. } /* end loop count loop */
  1278. return ret_val;
  1279. }
  1280. static int
  1281. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1282. {
  1283. /* PHY loopback cannot be performed if SoL/IDER
  1284. * sessions are active */
  1285. if (e1000_check_phy_reset_block(&adapter->hw)) {
  1286. DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
  1287. "when SoL/IDER is active.\n");
  1288. *data = 0;
  1289. goto out;
  1290. }
  1291. if ((*data = e1000_setup_desc_rings(adapter)))
  1292. goto out;
  1293. if ((*data = e1000_setup_loopback_test(adapter)))
  1294. goto err_loopback;
  1295. *data = e1000_run_loopback_test(adapter);
  1296. e1000_loopback_cleanup(adapter);
  1297. err_loopback:
  1298. e1000_free_desc_rings(adapter);
  1299. out:
  1300. return *data;
  1301. }
  1302. static int
  1303. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1304. {
  1305. *data = 0;
  1306. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1307. int i = 0;
  1308. adapter->hw.serdes_link_down = TRUE;
  1309. /* On some blade server designs, link establishment
  1310. * could take as long as 2-3 minutes */
  1311. do {
  1312. e1000_check_for_link(&adapter->hw);
  1313. if (adapter->hw.serdes_link_down == FALSE)
  1314. return *data;
  1315. msec_delay(20);
  1316. } while (i++ < 3750);
  1317. *data = 1;
  1318. } else {
  1319. e1000_check_for_link(&adapter->hw);
  1320. if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1321. msec_delay(4000);
  1322. if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1323. *data = 1;
  1324. }
  1325. }
  1326. return *data;
  1327. }
  1328. static int
  1329. e1000_diag_test_count(struct net_device *netdev)
  1330. {
  1331. return E1000_TEST_LEN;
  1332. }
  1333. static void
  1334. e1000_diag_test(struct net_device *netdev,
  1335. struct ethtool_test *eth_test, uint64_t *data)
  1336. {
  1337. struct e1000_adapter *adapter = netdev_priv(netdev);
  1338. boolean_t if_running = netif_running(netdev);
  1339. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1340. /* Offline tests */
  1341. /* save speed, duplex, autoneg settings */
  1342. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1343. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1344. uint8_t autoneg = adapter->hw.autoneg;
  1345. /* Link test performed before hardware reset so autoneg doesn't
  1346. * interfere with test result */
  1347. if (e1000_link_test(adapter, &data[4]))
  1348. eth_test->flags |= ETH_TEST_FL_FAILED;
  1349. if (if_running)
  1350. e1000_down(adapter);
  1351. else
  1352. e1000_reset(adapter);
  1353. if (e1000_reg_test(adapter, &data[0]))
  1354. eth_test->flags |= ETH_TEST_FL_FAILED;
  1355. e1000_reset(adapter);
  1356. if (e1000_eeprom_test(adapter, &data[1]))
  1357. eth_test->flags |= ETH_TEST_FL_FAILED;
  1358. e1000_reset(adapter);
  1359. if (e1000_intr_test(adapter, &data[2]))
  1360. eth_test->flags |= ETH_TEST_FL_FAILED;
  1361. e1000_reset(adapter);
  1362. if (e1000_loopback_test(adapter, &data[3]))
  1363. eth_test->flags |= ETH_TEST_FL_FAILED;
  1364. /* restore speed, duplex, autoneg settings */
  1365. adapter->hw.autoneg_advertised = autoneg_advertised;
  1366. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1367. adapter->hw.autoneg = autoneg;
  1368. e1000_reset(adapter);
  1369. if (if_running)
  1370. e1000_up(adapter);
  1371. } else {
  1372. /* Online tests */
  1373. if (e1000_link_test(adapter, &data[4]))
  1374. eth_test->flags |= ETH_TEST_FL_FAILED;
  1375. /* Offline tests aren't run; pass by default */
  1376. data[0] = 0;
  1377. data[1] = 0;
  1378. data[2] = 0;
  1379. data[3] = 0;
  1380. }
  1381. msleep_interruptible(4 * 1000);
  1382. }
  1383. static void
  1384. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1385. {
  1386. struct e1000_adapter *adapter = netdev_priv(netdev);
  1387. struct e1000_hw *hw = &adapter->hw;
  1388. switch (adapter->hw.device_id) {
  1389. case E1000_DEV_ID_82542:
  1390. case E1000_DEV_ID_82543GC_FIBER:
  1391. case E1000_DEV_ID_82543GC_COPPER:
  1392. case E1000_DEV_ID_82544EI_FIBER:
  1393. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1394. case E1000_DEV_ID_82545EM_FIBER:
  1395. case E1000_DEV_ID_82545EM_COPPER:
  1396. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1397. wol->supported = 0;
  1398. wol->wolopts = 0;
  1399. return;
  1400. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1401. /* device id 10B5 port-A supports wol */
  1402. if (!adapter->ksp3_port_a) {
  1403. wol->supported = 0;
  1404. return;
  1405. }
  1406. /* KSP3 does not suppport UCAST wake-ups for any interface */
  1407. wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
  1408. if (adapter->wol & E1000_WUFC_EX)
  1409. DPRINTK(DRV, ERR, "Interface does not support "
  1410. "directed (unicast) frame wake-up packets\n");
  1411. wol->wolopts = 0;
  1412. goto do_defaults;
  1413. case E1000_DEV_ID_82546EB_FIBER:
  1414. case E1000_DEV_ID_82546GB_FIBER:
  1415. case E1000_DEV_ID_82571EB_FIBER:
  1416. /* Wake events only supported on port A for dual fiber */
  1417. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1418. wol->supported = 0;
  1419. wol->wolopts = 0;
  1420. return;
  1421. }
  1422. /* Fall Through */
  1423. default:
  1424. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1425. WAKE_BCAST | WAKE_MAGIC;
  1426. wol->wolopts = 0;
  1427. do_defaults:
  1428. if (adapter->wol & E1000_WUFC_EX)
  1429. wol->wolopts |= WAKE_UCAST;
  1430. if (adapter->wol & E1000_WUFC_MC)
  1431. wol->wolopts |= WAKE_MCAST;
  1432. if (adapter->wol & E1000_WUFC_BC)
  1433. wol->wolopts |= WAKE_BCAST;
  1434. if (adapter->wol & E1000_WUFC_MAG)
  1435. wol->wolopts |= WAKE_MAGIC;
  1436. return;
  1437. }
  1438. }
  1439. static int
  1440. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1441. {
  1442. struct e1000_adapter *adapter = netdev_priv(netdev);
  1443. struct e1000_hw *hw = &adapter->hw;
  1444. switch (adapter->hw.device_id) {
  1445. case E1000_DEV_ID_82542:
  1446. case E1000_DEV_ID_82543GC_FIBER:
  1447. case E1000_DEV_ID_82543GC_COPPER:
  1448. case E1000_DEV_ID_82544EI_FIBER:
  1449. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1450. case E1000_DEV_ID_82546GB_QUAD_COPPER:
  1451. case E1000_DEV_ID_82545EM_FIBER:
  1452. case E1000_DEV_ID_82545EM_COPPER:
  1453. return wol->wolopts ? -EOPNOTSUPP : 0;
  1454. case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  1455. /* device id 10B5 port-A supports wol */
  1456. if (!adapter->ksp3_port_a)
  1457. return wol->wolopts ? -EOPNOTSUPP : 0;
  1458. if (wol->wolopts & WAKE_UCAST) {
  1459. DPRINTK(DRV, ERR, "Interface does not support "
  1460. "directed (unicast) frame wake-up packets\n");
  1461. return -EOPNOTSUPP;
  1462. }
  1463. case E1000_DEV_ID_82546EB_FIBER:
  1464. case E1000_DEV_ID_82546GB_FIBER:
  1465. case E1000_DEV_ID_82571EB_FIBER:
  1466. /* Wake events only supported on port A for dual fiber */
  1467. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1468. return wol->wolopts ? -EOPNOTSUPP : 0;
  1469. /* Fall Through */
  1470. default:
  1471. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1472. return -EOPNOTSUPP;
  1473. adapter->wol = 0;
  1474. if (wol->wolopts & WAKE_UCAST)
  1475. adapter->wol |= E1000_WUFC_EX;
  1476. if (wol->wolopts & WAKE_MCAST)
  1477. adapter->wol |= E1000_WUFC_MC;
  1478. if (wol->wolopts & WAKE_BCAST)
  1479. adapter->wol |= E1000_WUFC_BC;
  1480. if (wol->wolopts & WAKE_MAGIC)
  1481. adapter->wol |= E1000_WUFC_MAG;
  1482. }
  1483. return 0;
  1484. }
  1485. /* toggle LED 4 times per second = 2 "blinks" per second */
  1486. #define E1000_ID_INTERVAL (HZ/4)
  1487. /* bit defines for adapter->led_status */
  1488. #define E1000_LED_ON 0
  1489. static void
  1490. e1000_led_blink_callback(unsigned long data)
  1491. {
  1492. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1493. if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1494. e1000_led_off(&adapter->hw);
  1495. else
  1496. e1000_led_on(&adapter->hw);
  1497. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1498. }
  1499. static int
  1500. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1501. {
  1502. struct e1000_adapter *adapter = netdev_priv(netdev);
  1503. if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1504. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1505. if (adapter->hw.mac_type < e1000_82571) {
  1506. if (!adapter->blink_timer.function) {
  1507. init_timer(&adapter->blink_timer);
  1508. adapter->blink_timer.function = e1000_led_blink_callback;
  1509. adapter->blink_timer.data = (unsigned long) adapter;
  1510. }
  1511. e1000_setup_led(&adapter->hw);
  1512. mod_timer(&adapter->blink_timer, jiffies);
  1513. msleep_interruptible(data * 1000);
  1514. del_timer_sync(&adapter->blink_timer);
  1515. } else if (adapter->hw.mac_type < e1000_82573) {
  1516. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1517. (E1000_LEDCTL_LED2_BLINK_RATE |
  1518. E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
  1519. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1520. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
  1521. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
  1522. msleep_interruptible(data * 1000);
  1523. } else {
  1524. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1525. (E1000_LEDCTL_LED2_BLINK_RATE |
  1526. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1527. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1528. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1529. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1530. msleep_interruptible(data * 1000);
  1531. }
  1532. e1000_led_off(&adapter->hw);
  1533. clear_bit(E1000_LED_ON, &adapter->led_status);
  1534. e1000_cleanup_led(&adapter->hw);
  1535. return 0;
  1536. }
  1537. static int
  1538. e1000_nway_reset(struct net_device *netdev)
  1539. {
  1540. struct e1000_adapter *adapter = netdev_priv(netdev);
  1541. if (netif_running(netdev)) {
  1542. e1000_down(adapter);
  1543. e1000_up(adapter);
  1544. }
  1545. return 0;
  1546. }
  1547. static int
  1548. e1000_get_stats_count(struct net_device *netdev)
  1549. {
  1550. return E1000_STATS_LEN;
  1551. }
  1552. static void
  1553. e1000_get_ethtool_stats(struct net_device *netdev,
  1554. struct ethtool_stats *stats, uint64_t *data)
  1555. {
  1556. struct e1000_adapter *adapter = netdev_priv(netdev);
  1557. int i;
  1558. e1000_update_stats(adapter);
  1559. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1560. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1561. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1562. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1563. }
  1564. /* BUG_ON(i != E1000_STATS_LEN); */
  1565. }
  1566. static void
  1567. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1568. {
  1569. uint8_t *p = data;
  1570. int i;
  1571. switch (stringset) {
  1572. case ETH_SS_TEST:
  1573. memcpy(data, *e1000_gstrings_test,
  1574. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1575. break;
  1576. case ETH_SS_STATS:
  1577. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1578. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1579. ETH_GSTRING_LEN);
  1580. p += ETH_GSTRING_LEN;
  1581. }
  1582. /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
  1583. break;
  1584. }
  1585. }
  1586. static struct ethtool_ops e1000_ethtool_ops = {
  1587. .get_settings = e1000_get_settings,
  1588. .set_settings = e1000_set_settings,
  1589. .get_drvinfo = e1000_get_drvinfo,
  1590. .get_regs_len = e1000_get_regs_len,
  1591. .get_regs = e1000_get_regs,
  1592. .get_wol = e1000_get_wol,
  1593. .set_wol = e1000_set_wol,
  1594. .get_msglevel = e1000_get_msglevel,
  1595. .set_msglevel = e1000_set_msglevel,
  1596. .nway_reset = e1000_nway_reset,
  1597. .get_link = ethtool_op_get_link,
  1598. .get_eeprom_len = e1000_get_eeprom_len,
  1599. .get_eeprom = e1000_get_eeprom,
  1600. .set_eeprom = e1000_set_eeprom,
  1601. .get_ringparam = e1000_get_ringparam,
  1602. .set_ringparam = e1000_set_ringparam,
  1603. .get_pauseparam = e1000_get_pauseparam,
  1604. .set_pauseparam = e1000_set_pauseparam,
  1605. .get_rx_csum = e1000_get_rx_csum,
  1606. .set_rx_csum = e1000_set_rx_csum,
  1607. .get_tx_csum = e1000_get_tx_csum,
  1608. .set_tx_csum = e1000_set_tx_csum,
  1609. .get_sg = ethtool_op_get_sg,
  1610. .set_sg = ethtool_op_set_sg,
  1611. #ifdef NETIF_F_TSO
  1612. .get_tso = ethtool_op_get_tso,
  1613. .set_tso = e1000_set_tso,
  1614. #endif
  1615. .self_test_count = e1000_diag_test_count,
  1616. .self_test = e1000_diag_test,
  1617. .get_strings = e1000_get_strings,
  1618. .phys_id = e1000_phys_id,
  1619. .get_stats_count = e1000_get_stats_count,
  1620. .get_ethtool_stats = e1000_get_ethtool_stats,
  1621. .get_perm_addr = ethtool_op_get_perm_addr,
  1622. };
  1623. void e1000_set_ethtool_ops(struct net_device *netdev)
  1624. {
  1625. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1626. }