sun4m_smp.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. /* sun4m_smp.c: Sparc SUN4M SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. */
  5. #include <asm/head.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/threads.h>
  9. #include <linux/smp.h>
  10. #include <linux/smp_lock.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/init.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/mm.h>
  16. #include <linux/swap.h>
  17. #include <linux/profile.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/tlbflush.h>
  20. #include <asm/ptrace.h>
  21. #include <asm/atomic.h>
  22. #include <asm/delay.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cpudata.h>
  29. #define IRQ_RESCHEDULE 13
  30. #define IRQ_STOP_CPU 14
  31. #define IRQ_CROSS_CALL 15
  32. extern ctxd_t *srmmu_ctx_table_phys;
  33. extern void calibrate_delay(void);
  34. extern volatile int smp_processors_ready;
  35. extern volatile unsigned long cpu_callin_map[NR_CPUS];
  36. extern unsigned char boot_cpu_id;
  37. extern cpumask_t smp_commenced_mask;
  38. extern int __smp4m_processor_id(void);
  39. /*#define SMP_DEBUG*/
  40. #ifdef SMP_DEBUG
  41. #define SMP_PRINTK(x) printk x
  42. #else
  43. #define SMP_PRINTK(x)
  44. #endif
  45. static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
  46. {
  47. __asm__ __volatile__("swap [%1], %0\n\t" :
  48. "=&r" (val), "=&r" (ptr) :
  49. "0" (val), "1" (ptr));
  50. return val;
  51. }
  52. static void smp_setup_percpu_timer(void);
  53. extern void cpu_probe(void);
  54. void __cpuinit smp4m_callin(void)
  55. {
  56. int cpuid = hard_smp_processor_id();
  57. local_flush_cache_all();
  58. local_flush_tlb_all();
  59. /* Get our local ticker going. */
  60. smp_setup_percpu_timer();
  61. calibrate_delay();
  62. smp_store_cpu_info(cpuid);
  63. local_flush_cache_all();
  64. local_flush_tlb_all();
  65. /*
  66. * Unblock the master CPU _only_ when the scheduler state
  67. * of all secondary CPUs will be up-to-date, so after
  68. * the SMP initialization the master will be just allowed
  69. * to call the scheduler code.
  70. */
  71. /* Allow master to continue. */
  72. swap(&cpu_callin_map[cpuid], 1);
  73. /* XXX: What's up with all the flushes? */
  74. local_flush_cache_all();
  75. local_flush_tlb_all();
  76. cpu_probe();
  77. /* Fix idle thread fields. */
  78. __asm__ __volatile__("ld [%0], %%g6\n\t"
  79. : : "r" (&current_set[cpuid])
  80. : "memory" /* paranoid */);
  81. /* Attach to the address space of init_task. */
  82. atomic_inc(&init_mm.mm_count);
  83. current->active_mm = &init_mm;
  84. while (!cpu_isset(cpuid, smp_commenced_mask))
  85. mb();
  86. local_irq_enable();
  87. cpu_set(cpuid, cpu_online_map);
  88. }
  89. /*
  90. * Cycle through the processors asking the PROM to start each one.
  91. */
  92. extern struct linux_prom_registers smp_penguin_ctable;
  93. extern unsigned long trapbase_cpu1[];
  94. extern unsigned long trapbase_cpu2[];
  95. extern unsigned long trapbase_cpu3[];
  96. void __init smp4m_boot_cpus(void)
  97. {
  98. smp_setup_percpu_timer();
  99. local_flush_cache_all();
  100. }
  101. int __cpuinit smp4m_boot_one_cpu(int i)
  102. {
  103. extern unsigned long sun4m_cpu_startup;
  104. unsigned long *entry = &sun4m_cpu_startup;
  105. struct task_struct *p;
  106. int timeout;
  107. int cpu_node;
  108. cpu_find_by_mid(i, &cpu_node);
  109. /* Cook up an idler for this guy. */
  110. p = fork_idle(i);
  111. current_set[i] = task_thread_info(p);
  112. /* See trampoline.S for details... */
  113. entry += ((i-1) * 3);
  114. /*
  115. * Initialize the contexts table
  116. * Since the call to prom_startcpu() trashes the structure,
  117. * we need to re-initialize it for each cpu
  118. */
  119. smp_penguin_ctable.which_io = 0;
  120. smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
  121. smp_penguin_ctable.reg_size = 0;
  122. /* whirrr, whirrr, whirrrrrrrrr... */
  123. printk("Starting CPU %d at %p\n", i, entry);
  124. local_flush_cache_all();
  125. prom_startcpu(cpu_node,
  126. &smp_penguin_ctable, 0, (char *)entry);
  127. /* wheee... it's going... */
  128. for(timeout = 0; timeout < 10000; timeout++) {
  129. if(cpu_callin_map[i])
  130. break;
  131. udelay(200);
  132. }
  133. if (!(cpu_callin_map[i])) {
  134. printk("Processor %d is stuck.\n", i);
  135. return -ENODEV;
  136. }
  137. local_flush_cache_all();
  138. return 0;
  139. }
  140. void __init smp4m_smp_done(void)
  141. {
  142. int i, first;
  143. int *prev;
  144. /* setup cpu list for irq rotation */
  145. first = 0;
  146. prev = &first;
  147. for (i = 0; i < NR_CPUS; i++) {
  148. if (cpu_online(i)) {
  149. *prev = i;
  150. prev = &cpu_data(i).next;
  151. }
  152. }
  153. *prev = first;
  154. local_flush_cache_all();
  155. /* Free unneeded trap tables */
  156. if (!cpu_isset(1, cpu_present_map)) {
  157. ClearPageReserved(virt_to_page(trapbase_cpu1));
  158. init_page_count(virt_to_page(trapbase_cpu1));
  159. free_page((unsigned long)trapbase_cpu1);
  160. totalram_pages++;
  161. num_physpages++;
  162. }
  163. if (!cpu_isset(2, cpu_present_map)) {
  164. ClearPageReserved(virt_to_page(trapbase_cpu2));
  165. init_page_count(virt_to_page(trapbase_cpu2));
  166. free_page((unsigned long)trapbase_cpu2);
  167. totalram_pages++;
  168. num_physpages++;
  169. }
  170. if (!cpu_isset(3, cpu_present_map)) {
  171. ClearPageReserved(virt_to_page(trapbase_cpu3));
  172. init_page_count(virt_to_page(trapbase_cpu3));
  173. free_page((unsigned long)trapbase_cpu3);
  174. totalram_pages++;
  175. num_physpages++;
  176. }
  177. /* Ok, they are spinning and ready to go. */
  178. smp_processors_ready = 1;
  179. }
  180. /* At each hardware IRQ, we get this called to forward IRQ reception
  181. * to the next processor. The caller must disable the IRQ level being
  182. * serviced globally so that there are no double interrupts received.
  183. *
  184. * XXX See sparc64 irq.c.
  185. */
  186. void smp4m_irq_rotate(int cpu)
  187. {
  188. int next = cpu_data(cpu).next;
  189. if (next != cpu)
  190. set_irq_udt(next);
  191. }
  192. /* Cross calls, in order to work efficiently and atomically do all
  193. * the message passing work themselves, only stopcpu and reschedule
  194. * messages come through here.
  195. */
  196. void smp4m_message_pass(int target, int msg, unsigned long data, int wait)
  197. {
  198. static unsigned long smp_cpu_in_msg[NR_CPUS];
  199. cpumask_t mask;
  200. int me = smp_processor_id();
  201. int irq, i;
  202. if(msg == MSG_RESCHEDULE) {
  203. irq = IRQ_RESCHEDULE;
  204. if(smp_cpu_in_msg[me])
  205. return;
  206. } else if(msg == MSG_STOP_CPU) {
  207. irq = IRQ_STOP_CPU;
  208. } else {
  209. goto barf;
  210. }
  211. smp_cpu_in_msg[me]++;
  212. if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
  213. mask = cpu_online_map;
  214. if(target == MSG_ALL_BUT_SELF)
  215. cpu_clear(me, mask);
  216. for(i = 0; i < 4; i++) {
  217. if (cpu_isset(i, mask))
  218. set_cpu_int(i, irq);
  219. }
  220. } else {
  221. set_cpu_int(target, irq);
  222. }
  223. smp_cpu_in_msg[me]--;
  224. return;
  225. barf:
  226. printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
  227. panic("Bogon SMP message pass.");
  228. }
  229. static struct smp_funcall {
  230. smpfunc_t func;
  231. unsigned long arg1;
  232. unsigned long arg2;
  233. unsigned long arg3;
  234. unsigned long arg4;
  235. unsigned long arg5;
  236. unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
  237. unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
  238. } ccall_info;
  239. static DEFINE_SPINLOCK(cross_call_lock);
  240. /* Cross calls must be serialized, at least currently. */
  241. void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
  242. unsigned long arg3, unsigned long arg4, unsigned long arg5)
  243. {
  244. register int ncpus = SUN4M_NCPUS;
  245. unsigned long flags;
  246. spin_lock_irqsave(&cross_call_lock, flags);
  247. /* Init function glue. */
  248. ccall_info.func = func;
  249. ccall_info.arg1 = arg1;
  250. ccall_info.arg2 = arg2;
  251. ccall_info.arg3 = arg3;
  252. ccall_info.arg4 = arg4;
  253. ccall_info.arg5 = arg5;
  254. /* Init receive/complete mapping, plus fire the IPI's off. */
  255. {
  256. cpumask_t mask = cpu_online_map;
  257. register int i;
  258. cpu_clear(smp_processor_id(), mask);
  259. for(i = 0; i < ncpus; i++) {
  260. if (cpu_isset(i, mask)) {
  261. ccall_info.processors_in[i] = 0;
  262. ccall_info.processors_out[i] = 0;
  263. set_cpu_int(i, IRQ_CROSS_CALL);
  264. } else {
  265. ccall_info.processors_in[i] = 1;
  266. ccall_info.processors_out[i] = 1;
  267. }
  268. }
  269. }
  270. {
  271. register int i;
  272. i = 0;
  273. do {
  274. while(!ccall_info.processors_in[i])
  275. barrier();
  276. } while(++i < ncpus);
  277. i = 0;
  278. do {
  279. while(!ccall_info.processors_out[i])
  280. barrier();
  281. } while(++i < ncpus);
  282. }
  283. spin_unlock_irqrestore(&cross_call_lock, flags);
  284. }
  285. /* Running cross calls. */
  286. void smp4m_cross_call_irq(void)
  287. {
  288. int i = smp_processor_id();
  289. ccall_info.processors_in[i] = 1;
  290. ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
  291. ccall_info.arg4, ccall_info.arg5);
  292. ccall_info.processors_out[i] = 1;
  293. }
  294. void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
  295. {
  296. int cpu = smp_processor_id();
  297. clear_profile_irq(cpu);
  298. profile_tick(CPU_PROFILING, regs);
  299. if(!--prof_counter(cpu)) {
  300. int user = user_mode(regs);
  301. irq_enter();
  302. update_process_times(user);
  303. irq_exit();
  304. prof_counter(cpu) = prof_multiplier(cpu);
  305. }
  306. }
  307. extern unsigned int lvl14_resolution;
  308. static void __init smp_setup_percpu_timer(void)
  309. {
  310. int cpu = smp_processor_id();
  311. prof_counter(cpu) = prof_multiplier(cpu) = 1;
  312. load_profile_irq(cpu, lvl14_resolution);
  313. if(cpu == boot_cpu_id)
  314. enable_pil_irq(14);
  315. }
  316. void __init smp4m_blackbox_id(unsigned *addr)
  317. {
  318. int rd = *addr & 0x3e000000;
  319. int rs1 = rd >> 11;
  320. addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
  321. addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
  322. addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
  323. }
  324. void __init smp4m_blackbox_current(unsigned *addr)
  325. {
  326. int rd = *addr & 0x3e000000;
  327. int rs1 = rd >> 11;
  328. addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
  329. addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
  330. addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */
  331. }
  332. void __init sun4m_init_smp(void)
  333. {
  334. BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
  335. BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
  336. BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
  337. BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM);
  338. BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
  339. }