smp.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/smp_lock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/cache.h>
  21. #include <linux/delay.h>
  22. #include <asm/ptrace.h>
  23. #include <asm/atomic.h>
  24. #include <asm/irq.h>
  25. #include <asm/page.h>
  26. #include <asm/pgalloc.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/oplib.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/cpudata.h>
  32. volatile int smp_processors_ready = 0;
  33. int smp_num_cpus = 1;
  34. volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
  35. unsigned char boot_cpu_id = 0;
  36. unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
  37. int smp_activated = 0;
  38. volatile int __cpu_number_map[NR_CPUS];
  39. volatile int __cpu_logical_map[NR_CPUS];
  40. cpumask_t cpu_online_map = CPU_MASK_NONE;
  41. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  42. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  43. /* The only guaranteed locking primitive available on all Sparc
  44. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  45. * places the current byte at the effective address into dest_reg and
  46. * places 0xff there afterwards. Pretty lame locking primitive
  47. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  48. * instruction which is much better...
  49. */
  50. /* Used to make bitops atomic */
  51. unsigned char bitops_spinlock = 0;
  52. void __cpuinit smp_store_cpu_info(int id)
  53. {
  54. int cpu_node;
  55. cpu_data(id).udelay_val = loops_per_jiffy;
  56. cpu_find_by_mid(id, &cpu_node);
  57. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  58. "clock-frequency", 0);
  59. cpu_data(id).prom_node = cpu_node;
  60. cpu_data(id).mid = cpu_get_hwmid(cpu_node);
  61. /* this is required to tune the scheduler correctly */
  62. /* is it possible to have CPUs with different cache sizes? */
  63. if (id == boot_cpu_id) {
  64. int cache_line,cache_nlines;
  65. cache_line = 0x20;
  66. cache_line = prom_getintdefault(cpu_node, "ecache-line-size", cache_line);
  67. cache_nlines = 0x8000;
  68. cache_nlines = prom_getintdefault(cpu_node, "ecache-nlines", cache_nlines);
  69. max_cache_size = cache_line * cache_nlines;
  70. }
  71. if (cpu_data(id).mid < 0)
  72. panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
  73. }
  74. void __init smp_cpus_done(unsigned int max_cpus)
  75. {
  76. extern void smp4m_smp_done(void);
  77. unsigned long bogosum = 0;
  78. int cpu, num;
  79. for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
  80. if (cpu_online(cpu)) {
  81. num++;
  82. bogosum += cpu_data(cpu).udelay_val;
  83. }
  84. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  85. num, bogosum/(500000/HZ),
  86. (bogosum/(5000/HZ))%100);
  87. BUG_ON(sparc_cpu_model != sun4m);
  88. smp4m_smp_done();
  89. }
  90. void cpu_panic(void)
  91. {
  92. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  93. panic("SMP bolixed\n");
  94. }
  95. struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
  96. void smp_send_reschedule(int cpu)
  97. {
  98. /* See sparc64 */
  99. }
  100. void smp_send_stop(void)
  101. {
  102. }
  103. void smp_flush_cache_all(void)
  104. {
  105. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
  106. local_flush_cache_all();
  107. }
  108. void smp_flush_tlb_all(void)
  109. {
  110. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
  111. local_flush_tlb_all();
  112. }
  113. void smp_flush_cache_mm(struct mm_struct *mm)
  114. {
  115. if(mm->context != NO_CONTEXT) {
  116. cpumask_t cpu_mask = mm->cpu_vm_mask;
  117. cpu_clear(smp_processor_id(), cpu_mask);
  118. if (!cpus_empty(cpu_mask))
  119. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
  120. local_flush_cache_mm(mm);
  121. }
  122. }
  123. void smp_flush_tlb_mm(struct mm_struct *mm)
  124. {
  125. if(mm->context != NO_CONTEXT) {
  126. cpumask_t cpu_mask = mm->cpu_vm_mask;
  127. cpu_clear(smp_processor_id(), cpu_mask);
  128. if (!cpus_empty(cpu_mask)) {
  129. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
  130. if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
  131. mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
  132. }
  133. local_flush_tlb_mm(mm);
  134. }
  135. }
  136. void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  137. unsigned long end)
  138. {
  139. struct mm_struct *mm = vma->vm_mm;
  140. if (mm->context != NO_CONTEXT) {
  141. cpumask_t cpu_mask = mm->cpu_vm_mask;
  142. cpu_clear(smp_processor_id(), cpu_mask);
  143. if (!cpus_empty(cpu_mask))
  144. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
  145. local_flush_cache_range(vma, start, end);
  146. }
  147. }
  148. void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  149. unsigned long end)
  150. {
  151. struct mm_struct *mm = vma->vm_mm;
  152. if (mm->context != NO_CONTEXT) {
  153. cpumask_t cpu_mask = mm->cpu_vm_mask;
  154. cpu_clear(smp_processor_id(), cpu_mask);
  155. if (!cpus_empty(cpu_mask))
  156. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
  157. local_flush_tlb_range(vma, start, end);
  158. }
  159. }
  160. void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  161. {
  162. struct mm_struct *mm = vma->vm_mm;
  163. if(mm->context != NO_CONTEXT) {
  164. cpumask_t cpu_mask = mm->cpu_vm_mask;
  165. cpu_clear(smp_processor_id(), cpu_mask);
  166. if (!cpus_empty(cpu_mask))
  167. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
  168. local_flush_cache_page(vma, page);
  169. }
  170. }
  171. void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  172. {
  173. struct mm_struct *mm = vma->vm_mm;
  174. if(mm->context != NO_CONTEXT) {
  175. cpumask_t cpu_mask = mm->cpu_vm_mask;
  176. cpu_clear(smp_processor_id(), cpu_mask);
  177. if (!cpus_empty(cpu_mask))
  178. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
  179. local_flush_tlb_page(vma, page);
  180. }
  181. }
  182. void smp_reschedule_irq(void)
  183. {
  184. set_need_resched();
  185. }
  186. void smp_flush_page_to_ram(unsigned long page)
  187. {
  188. /* Current theory is that those who call this are the one's
  189. * who have just dirtied their cache with the pages contents
  190. * in kernel space, therefore we only run this on local cpu.
  191. *
  192. * XXX This experiment failed, research further... -DaveM
  193. */
  194. #if 1
  195. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
  196. #endif
  197. local_flush_page_to_ram(page);
  198. }
  199. void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  200. {
  201. cpumask_t cpu_mask = mm->cpu_vm_mask;
  202. cpu_clear(smp_processor_id(), cpu_mask);
  203. if (!cpus_empty(cpu_mask))
  204. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
  205. local_flush_sig_insns(mm, insn_addr);
  206. }
  207. extern unsigned int lvl14_resolution;
  208. /* /proc/profile writes can call this, don't __init it please. */
  209. static DEFINE_SPINLOCK(prof_setup_lock);
  210. int setup_profiling_timer(unsigned int multiplier)
  211. {
  212. int i;
  213. unsigned long flags;
  214. /* Prevent level14 ticker IRQ flooding. */
  215. if((!multiplier) || (lvl14_resolution / multiplier) < 500)
  216. return -EINVAL;
  217. spin_lock_irqsave(&prof_setup_lock, flags);
  218. for_each_possible_cpu(i) {
  219. load_profile_irq(i, lvl14_resolution / multiplier);
  220. prof_multiplier(i) = multiplier;
  221. }
  222. spin_unlock_irqrestore(&prof_setup_lock, flags);
  223. return 0;
  224. }
  225. void __init smp_prepare_cpus(unsigned int max_cpus)
  226. {
  227. extern void smp4m_boot_cpus(void);
  228. int i, cpuid, extra;
  229. BUG_ON(sparc_cpu_model != sun4m);
  230. printk("Entering SMP Mode...\n");
  231. extra = 0;
  232. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  233. if (cpuid >= NR_CPUS)
  234. extra++;
  235. }
  236. /* i = number of cpus */
  237. if (extra && max_cpus > i - extra)
  238. printk("Warning: NR_CPUS is too low to start all cpus\n");
  239. smp_store_cpu_info(boot_cpu_id);
  240. smp4m_boot_cpus();
  241. }
  242. /* Set this up early so that things like the scheduler can init
  243. * properly. We use the same cpu mask for both the present and
  244. * possible cpu map.
  245. */
  246. void __init smp_setup_cpu_possible_map(void)
  247. {
  248. int instance, mid;
  249. instance = 0;
  250. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  251. if (mid < NR_CPUS) {
  252. cpu_set(mid, phys_cpu_present_map);
  253. cpu_set(mid, cpu_present_map);
  254. }
  255. instance++;
  256. }
  257. }
  258. void __init smp_prepare_boot_cpu(void)
  259. {
  260. int cpuid = hard_smp_processor_id();
  261. if (cpuid >= NR_CPUS) {
  262. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  263. prom_halt();
  264. }
  265. if (cpuid != 0)
  266. printk("boot cpu id != 0, this could work but is untested\n");
  267. current_thread_info()->cpu = cpuid;
  268. cpu_set(cpuid, cpu_online_map);
  269. cpu_set(cpuid, phys_cpu_present_map);
  270. }
  271. int __cpuinit __cpu_up(unsigned int cpu)
  272. {
  273. extern int smp4m_boot_one_cpu(int);
  274. int ret;
  275. ret = smp4m_boot_one_cpu(cpu);
  276. if (!ret) {
  277. cpu_set(cpu, smp_commenced_mask);
  278. while (!cpu_online(cpu))
  279. mb();
  280. }
  281. return ret;
  282. }
  283. void smp_bogo(struct seq_file *m)
  284. {
  285. int i;
  286. for_each_online_cpu(i) {
  287. seq_printf(m,
  288. "Cpu%dBogo\t: %lu.%02lu\n",
  289. i,
  290. cpu_data(i).udelay_val/(500000/HZ),
  291. (cpu_data(i).udelay_val/(5000/HZ))%100);
  292. }
  293. }
  294. void smp_info(struct seq_file *m)
  295. {
  296. int i;
  297. seq_printf(m, "State:\n");
  298. for_each_online_cpu(i)
  299. seq_printf(m, "CPU%d\t\t: online\n", i);
  300. }