pci.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * Copyright (C) 2001 Allan Trautman, IBM Corporation
  3. *
  4. * iSeries specific routines for PCI.
  5. *
  6. * Based on code from pci.c and iSeries_pci.c 32bit
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/list.h>
  24. #include <linux/string.h>
  25. #include <linux/init.h>
  26. #include <linux/module.h>
  27. #include <linux/ide.h>
  28. #include <linux/pci.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/prom.h>
  32. #include <asm/machdep.h>
  33. #include <asm/pci-bridge.h>
  34. #include <asm/iommu.h>
  35. #include <asm/abs_addr.h>
  36. #include <asm/iseries/hv_call_xm.h>
  37. #include <asm/iseries/mf.h>
  38. #include <asm/iseries/iommu.h>
  39. #include <asm/ppc-pci.h>
  40. #include "irq.h"
  41. #include "pci.h"
  42. #include "call_pci.h"
  43. /*
  44. * Forward declares of prototypes.
  45. */
  46. static struct device_node *find_Device_Node(int bus, int devfn);
  47. static int Pci_Retry_Max = 3; /* Only retry 3 times */
  48. static int Pci_Error_Flag = 1; /* Set Retry Error on. */
  49. static struct pci_ops iSeries_pci_ops;
  50. /*
  51. * Table defines
  52. * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
  53. */
  54. #define IOMM_TABLE_MAX_ENTRIES 1024
  55. #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
  56. #define BASE_IO_MEMORY 0xE000000000000000UL
  57. static unsigned long max_io_memory = BASE_IO_MEMORY;
  58. static long current_iomm_table_entry;
  59. /*
  60. * Lookup Tables.
  61. */
  62. static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
  63. static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES];
  64. static const char pci_io_text[] = "iSeries PCI I/O";
  65. static DEFINE_SPINLOCK(iomm_table_lock);
  66. /*
  67. * iomm_table_allocate_entry
  68. *
  69. * Adds pci_dev entry in address translation table
  70. *
  71. * - Allocates the number of entries required in table base on BAR
  72. * size.
  73. * - Allocates starting at BASE_IO_MEMORY and increases.
  74. * - The size is round up to be a multiple of entry size.
  75. * - CurrentIndex is incremented to keep track of the last entry.
  76. * - Builds the resource entry for allocated BARs.
  77. */
  78. static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
  79. {
  80. struct resource *bar_res = &dev->resource[bar_num];
  81. long bar_size = pci_resource_len(dev, bar_num);
  82. /*
  83. * No space to allocate, quick exit, skip Allocation.
  84. */
  85. if (bar_size == 0)
  86. return;
  87. /*
  88. * Set Resource values.
  89. */
  90. spin_lock(&iomm_table_lock);
  91. bar_res->name = pci_io_text;
  92. bar_res->start = BASE_IO_MEMORY +
  93. IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
  94. bar_res->end = bar_res->start + bar_size - 1;
  95. /*
  96. * Allocate the number of table entries needed for BAR.
  97. */
  98. while (bar_size > 0 ) {
  99. iomm_table[current_iomm_table_entry] = dev->sysdata;
  100. iobar_table[current_iomm_table_entry] = bar_num;
  101. bar_size -= IOMM_TABLE_ENTRY_SIZE;
  102. ++current_iomm_table_entry;
  103. }
  104. max_io_memory = BASE_IO_MEMORY +
  105. IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
  106. spin_unlock(&iomm_table_lock);
  107. }
  108. /*
  109. * allocate_device_bars
  110. *
  111. * - Allocates ALL pci_dev BAR's and updates the resources with the
  112. * BAR value. BARS with zero length will have the resources
  113. * The HvCallPci_getBarParms is used to get the size of the BAR
  114. * space. It calls iomm_table_allocate_entry to allocate
  115. * each entry.
  116. * - Loops through The Bar resources(0 - 5) including the ROM
  117. * is resource(6).
  118. */
  119. static void allocate_device_bars(struct pci_dev *dev)
  120. {
  121. int bar_num;
  122. for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
  123. iomm_table_allocate_entry(dev, bar_num);
  124. }
  125. /*
  126. * Log error information to system console.
  127. * Filter out the device not there errors.
  128. * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
  129. * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
  130. * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
  131. */
  132. static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
  133. int AgentId, int HvRc)
  134. {
  135. if (HvRc == 0x0302)
  136. return;
  137. printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
  138. Error_Text, Bus, SubBus, AgentId, HvRc);
  139. }
  140. /*
  141. * iSeries_pcibios_init
  142. *
  143. * Description:
  144. * This function checks for all possible system PCI host bridges that connect
  145. * PCI buses. The system hypervisor is queried as to the guest partition
  146. * ownership status. A pci_controller is built for any bus which is partially
  147. * owned or fully owned by this guest partition.
  148. */
  149. void iSeries_pcibios_init(void)
  150. {
  151. struct pci_controller *phb;
  152. struct device_node *root = of_find_node_by_path("/");
  153. struct device_node *node = NULL;
  154. if (root == NULL) {
  155. printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
  156. "of device tree\n");
  157. return;
  158. }
  159. while ((node = of_get_next_child(root, node)) != NULL) {
  160. HvBusNumber bus;
  161. u32 *busp;
  162. if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
  163. continue;
  164. busp = (u32 *)get_property(node, "bus-range", NULL);
  165. if (busp == NULL)
  166. continue;
  167. bus = *busp;
  168. printk("bus %d appears to exist\n", bus);
  169. phb = pcibios_alloc_controller(node);
  170. if (phb == NULL)
  171. continue;
  172. phb->pci_mem_offset = phb->local_number = bus;
  173. phb->first_busno = bus;
  174. phb->last_busno = bus;
  175. phb->ops = &iSeries_pci_ops;
  176. }
  177. of_node_put(root);
  178. pci_devs_phb_init();
  179. }
  180. /*
  181. * iSeries_pci_final_fixup(void)
  182. */
  183. void __init iSeries_pci_final_fixup(void)
  184. {
  185. struct pci_dev *pdev = NULL;
  186. struct device_node *node;
  187. int DeviceCount = 0;
  188. /* Fix up at the device node and pci_dev relationship */
  189. mf_display_src(0xC9000100);
  190. printk("pcibios_final_fixup\n");
  191. for_each_pci_dev(pdev) {
  192. node = find_Device_Node(pdev->bus->number, pdev->devfn);
  193. printk("pci dev %p (%x.%x), node %p\n", pdev,
  194. pdev->bus->number, pdev->devfn, node);
  195. if (node != NULL) {
  196. struct pci_dn *pdn = PCI_DN(node);
  197. u32 *agent;
  198. agent = (u32 *)get_property(node, "linux,agent-id",
  199. NULL);
  200. if ((pdn != NULL) && (agent != NULL)) {
  201. u8 irq = iSeries_allocate_IRQ(pdn->busno, 0,
  202. pdn->bussubno);
  203. int err;
  204. err = HvCallXm_connectBusUnit(pdn->busno, pdn->bussubno,
  205. *agent, irq);
  206. if (err)
  207. pci_Log_Error("Connect Bus Unit",
  208. pdn->busno, pdn->bussubno, *agent, err);
  209. else {
  210. err = HvCallPci_configStore8(pdn->busno, pdn->bussubno,
  211. *agent,
  212. PCI_INTERRUPT_LINE,
  213. irq);
  214. if (err)
  215. pci_Log_Error("PciCfgStore Irq Failed!",
  216. pdn->busno, pdn->bussubno, *agent, err);
  217. }
  218. if (!err)
  219. pdev->irq = irq;
  220. }
  221. ++DeviceCount;
  222. pdev->sysdata = (void *)node;
  223. PCI_DN(node)->pcidev = pdev;
  224. allocate_device_bars(pdev);
  225. iSeries_Device_Information(pdev, DeviceCount);
  226. iommu_devnode_init_iSeries(node);
  227. } else
  228. printk("PCI: Device Tree not found for 0x%016lX\n",
  229. (unsigned long)pdev);
  230. }
  231. iSeries_activate_IRQs();
  232. mf_display_src(0xC9000200);
  233. }
  234. void pcibios_fixup_bus(struct pci_bus *PciBus)
  235. {
  236. }
  237. void pcibios_fixup_resources(struct pci_dev *pdev)
  238. {
  239. }
  240. /*
  241. * I/0 Memory copy MUST use mmio commands on iSeries
  242. * To do; For performance, include the hv call directly
  243. */
  244. void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count)
  245. {
  246. u8 ByteValue = c;
  247. long NumberOfBytes = Count;
  248. while (NumberOfBytes > 0) {
  249. iSeries_Write_Byte(ByteValue, dest++);
  250. -- NumberOfBytes;
  251. }
  252. }
  253. EXPORT_SYMBOL(iSeries_memset_io);
  254. void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count)
  255. {
  256. char *src = source;
  257. long NumberOfBytes = count;
  258. while (NumberOfBytes > 0) {
  259. iSeries_Write_Byte(*src++, dest++);
  260. -- NumberOfBytes;
  261. }
  262. }
  263. EXPORT_SYMBOL(iSeries_memcpy_toio);
  264. void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count)
  265. {
  266. char *dst = dest;
  267. long NumberOfBytes = count;
  268. while (NumberOfBytes > 0) {
  269. *dst++ = iSeries_Read_Byte(src++);
  270. -- NumberOfBytes;
  271. }
  272. }
  273. EXPORT_SYMBOL(iSeries_memcpy_fromio);
  274. /*
  275. * Look down the chain to find the matching Device Device
  276. */
  277. static struct device_node *find_Device_Node(int bus, int devfn)
  278. {
  279. struct device_node *node;
  280. for (node = NULL; (node = of_find_all_nodes(node)); ) {
  281. struct pci_dn *pdn = PCI_DN(node);
  282. if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn))
  283. return node;
  284. }
  285. return NULL;
  286. }
  287. #if 0
  288. /*
  289. * Returns the device node for the passed pci_dev
  290. * Sanity Check Node PciDev to passed pci_dev
  291. * If none is found, returns a NULL which the client must handle.
  292. */
  293. static struct device_node *get_Device_Node(struct pci_dev *pdev)
  294. {
  295. struct device_node *node;
  296. node = pdev->sysdata;
  297. if (node == NULL || PCI_DN(node)->pcidev != pdev)
  298. node = find_Device_Node(pdev->bus->number, pdev->devfn);
  299. return node;
  300. }
  301. #endif
  302. /*
  303. * Config space read and write functions.
  304. * For now at least, we look for the device node for the bus and devfn
  305. * that we are asked to access. It may be possible to translate the devfn
  306. * to a subbus and deviceid more directly.
  307. */
  308. static u64 hv_cfg_read_func[4] = {
  309. HvCallPciConfigLoad8, HvCallPciConfigLoad16,
  310. HvCallPciConfigLoad32, HvCallPciConfigLoad32
  311. };
  312. static u64 hv_cfg_write_func[4] = {
  313. HvCallPciConfigStore8, HvCallPciConfigStore16,
  314. HvCallPciConfigStore32, HvCallPciConfigStore32
  315. };
  316. /*
  317. * Read PCI config space
  318. */
  319. static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
  320. int offset, int size, u32 *val)
  321. {
  322. struct device_node *node = find_Device_Node(bus->number, devfn);
  323. u64 fn;
  324. struct HvCallPci_LoadReturn ret;
  325. if (node == NULL)
  326. return PCIBIOS_DEVICE_NOT_FOUND;
  327. if (offset > 255) {
  328. *val = ~0;
  329. return PCIBIOS_BAD_REGISTER_NUMBER;
  330. }
  331. fn = hv_cfg_read_func[(size - 1) & 3];
  332. HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
  333. if (ret.rc != 0) {
  334. *val = ~0;
  335. return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
  336. }
  337. *val = ret.value;
  338. return 0;
  339. }
  340. /*
  341. * Write PCI config space
  342. */
  343. static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
  344. int offset, int size, u32 val)
  345. {
  346. struct device_node *node = find_Device_Node(bus->number, devfn);
  347. u64 fn;
  348. u64 ret;
  349. if (node == NULL)
  350. return PCIBIOS_DEVICE_NOT_FOUND;
  351. if (offset > 255)
  352. return PCIBIOS_BAD_REGISTER_NUMBER;
  353. fn = hv_cfg_write_func[(size - 1) & 3];
  354. ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
  355. if (ret != 0)
  356. return PCIBIOS_DEVICE_NOT_FOUND;
  357. return 0;
  358. }
  359. static struct pci_ops iSeries_pci_ops = {
  360. .read = iSeries_pci_read_config,
  361. .write = iSeries_pci_write_config
  362. };
  363. /*
  364. * Check Return Code
  365. * -> On Failure, print and log information.
  366. * Increment Retry Count, if exceeds max, panic partition.
  367. *
  368. * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
  369. * PCI: Device 23.90 ReadL Retry( 1)
  370. * PCI: Device 23.90 ReadL Retry Successful(1)
  371. */
  372. static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,
  373. int *retry, u64 ret)
  374. {
  375. if (ret != 0) {
  376. struct pci_dn *pdn = PCI_DN(DevNode);
  377. (*retry)++;
  378. printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
  379. TextHdr, pdn->busno, pdn->devfn,
  380. *retry, (int)ret);
  381. /*
  382. * Bump the retry and check for retry count exceeded.
  383. * If, Exceeded, panic the system.
  384. */
  385. if (((*retry) > Pci_Retry_Max) &&
  386. (Pci_Error_Flag > 0)) {
  387. mf_display_src(0xB6000103);
  388. panic_timeout = 0;
  389. panic("PCI: Hardware I/O Error, SRC B6000103, "
  390. "Automatic Reboot Disabled.\n");
  391. }
  392. return -1; /* Retry Try */
  393. }
  394. return 0;
  395. }
  396. /*
  397. * Translate the I/O Address into a device node, bar, and bar offset.
  398. * Note: Make sure the passed variable end up on the stack to avoid
  399. * the exposure of being device global.
  400. */
  401. static inline struct device_node *xlate_iomm_address(
  402. const volatile void __iomem *IoAddress,
  403. u64 *dsaptr, u64 *BarOffsetPtr)
  404. {
  405. unsigned long OrigIoAddr;
  406. unsigned long BaseIoAddr;
  407. unsigned long TableIndex;
  408. struct device_node *DevNode;
  409. OrigIoAddr = (unsigned long __force)IoAddress;
  410. if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
  411. return NULL;
  412. BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
  413. TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
  414. DevNode = iomm_table[TableIndex];
  415. if (DevNode != NULL) {
  416. int barnum = iobar_table[TableIndex];
  417. *dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);
  418. *BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
  419. } else
  420. panic("PCI: Invalid PCI IoAddress detected!\n");
  421. return DevNode;
  422. }
  423. /*
  424. * Read MM I/O Instructions for the iSeries
  425. * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
  426. * else, data is returned in big Endian format.
  427. *
  428. * iSeries_Read_Byte = Read Byte ( 8 bit)
  429. * iSeries_Read_Word = Read Word (16 bit)
  430. * iSeries_Read_Long = Read Long (32 bit)
  431. */
  432. u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
  433. {
  434. u64 BarOffset;
  435. u64 dsa;
  436. int retry = 0;
  437. struct HvCallPci_LoadReturn ret;
  438. struct device_node *DevNode =
  439. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  440. if (DevNode == NULL) {
  441. static unsigned long last_jiffies;
  442. static int num_printed;
  443. if ((jiffies - last_jiffies) > 60 * HZ) {
  444. last_jiffies = jiffies;
  445. num_printed = 0;
  446. }
  447. if (num_printed++ < 10)
  448. printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
  449. return 0xff;
  450. }
  451. do {
  452. HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
  453. } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
  454. return (u8)ret.value;
  455. }
  456. EXPORT_SYMBOL(iSeries_Read_Byte);
  457. u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
  458. {
  459. u64 BarOffset;
  460. u64 dsa;
  461. int retry = 0;
  462. struct HvCallPci_LoadReturn ret;
  463. struct device_node *DevNode =
  464. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  465. if (DevNode == NULL) {
  466. static unsigned long last_jiffies;
  467. static int num_printed;
  468. if ((jiffies - last_jiffies) > 60 * HZ) {
  469. last_jiffies = jiffies;
  470. num_printed = 0;
  471. }
  472. if (num_printed++ < 10)
  473. printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
  474. return 0xffff;
  475. }
  476. do {
  477. HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
  478. BarOffset, 0);
  479. } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
  480. return swab16((u16)ret.value);
  481. }
  482. EXPORT_SYMBOL(iSeries_Read_Word);
  483. u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
  484. {
  485. u64 BarOffset;
  486. u64 dsa;
  487. int retry = 0;
  488. struct HvCallPci_LoadReturn ret;
  489. struct device_node *DevNode =
  490. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  491. if (DevNode == NULL) {
  492. static unsigned long last_jiffies;
  493. static int num_printed;
  494. if ((jiffies - last_jiffies) > 60 * HZ) {
  495. last_jiffies = jiffies;
  496. num_printed = 0;
  497. }
  498. if (num_printed++ < 10)
  499. printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
  500. return 0xffffffff;
  501. }
  502. do {
  503. HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
  504. BarOffset, 0);
  505. } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
  506. return swab32((u32)ret.value);
  507. }
  508. EXPORT_SYMBOL(iSeries_Read_Long);
  509. /*
  510. * Write MM I/O Instructions for the iSeries
  511. *
  512. * iSeries_Write_Byte = Write Byte (8 bit)
  513. * iSeries_Write_Word = Write Word(16 bit)
  514. * iSeries_Write_Long = Write Long(32 bit)
  515. */
  516. void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
  517. {
  518. u64 BarOffset;
  519. u64 dsa;
  520. int retry = 0;
  521. u64 rc;
  522. struct device_node *DevNode =
  523. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  524. if (DevNode == NULL) {
  525. static unsigned long last_jiffies;
  526. static int num_printed;
  527. if ((jiffies - last_jiffies) > 60 * HZ) {
  528. last_jiffies = jiffies;
  529. num_printed = 0;
  530. }
  531. if (num_printed++ < 10)
  532. printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
  533. return;
  534. }
  535. do {
  536. rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
  537. } while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
  538. }
  539. EXPORT_SYMBOL(iSeries_Write_Byte);
  540. void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
  541. {
  542. u64 BarOffset;
  543. u64 dsa;
  544. int retry = 0;
  545. u64 rc;
  546. struct device_node *DevNode =
  547. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  548. if (DevNode == NULL) {
  549. static unsigned long last_jiffies;
  550. static int num_printed;
  551. if ((jiffies - last_jiffies) > 60 * HZ) {
  552. last_jiffies = jiffies;
  553. num_printed = 0;
  554. }
  555. if (num_printed++ < 10)
  556. printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
  557. return;
  558. }
  559. do {
  560. rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
  561. } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
  562. }
  563. EXPORT_SYMBOL(iSeries_Write_Word);
  564. void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
  565. {
  566. u64 BarOffset;
  567. u64 dsa;
  568. int retry = 0;
  569. u64 rc;
  570. struct device_node *DevNode =
  571. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  572. if (DevNode == NULL) {
  573. static unsigned long last_jiffies;
  574. static int num_printed;
  575. if ((jiffies - last_jiffies) > 60 * HZ) {
  576. last_jiffies = jiffies;
  577. num_printed = 0;
  578. }
  579. if (num_printed++ < 10)
  580. printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
  581. return;
  582. }
  583. do {
  584. rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
  585. } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
  586. }
  587. EXPORT_SYMBOL(iSeries_Write_Long);