contig.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <asm/meminit.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/sections.h>
  25. #include <asm/mca.h>
  26. #ifdef CONFIG_VIRTUAL_MEM_MAP
  27. static unsigned long num_dma_physpages;
  28. #endif
  29. /**
  30. * show_mem - display a memory statistics summary
  31. *
  32. * Just walks the pages in the system and describes where they're allocated.
  33. */
  34. void
  35. show_mem (void)
  36. {
  37. int i, total = 0, reserved = 0;
  38. int shared = 0, cached = 0;
  39. printk("Mem-info:\n");
  40. show_free_areas();
  41. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  42. i = max_mapnr;
  43. while (i-- > 0) {
  44. if (!pfn_valid(i))
  45. continue;
  46. total++;
  47. if (PageReserved(mem_map+i))
  48. reserved++;
  49. else if (PageSwapCache(mem_map+i))
  50. cached++;
  51. else if (page_count(mem_map + i))
  52. shared += page_count(mem_map + i) - 1;
  53. }
  54. printk("%d pages of RAM\n", total);
  55. printk("%d reserved pages\n", reserved);
  56. printk("%d pages shared\n", shared);
  57. printk("%d pages swap cached\n", cached);
  58. printk("%ld pages in page table cache\n",
  59. pgtable_quicklist_total_size());
  60. }
  61. /* physical address where the bootmem map is located */
  62. unsigned long bootmap_start;
  63. /**
  64. * find_max_pfn - adjust the maximum page number callback
  65. * @start: start of range
  66. * @end: end of range
  67. * @arg: address of pointer to global max_pfn variable
  68. *
  69. * Passed as a callback function to efi_memmap_walk() to determine the highest
  70. * available page frame number in the system.
  71. */
  72. int
  73. find_max_pfn (unsigned long start, unsigned long end, void *arg)
  74. {
  75. unsigned long *max_pfnp = arg, pfn;
  76. pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
  77. if (pfn > *max_pfnp)
  78. *max_pfnp = pfn;
  79. return 0;
  80. }
  81. /**
  82. * find_bootmap_location - callback to find a memory area for the bootmap
  83. * @start: start of region
  84. * @end: end of region
  85. * @arg: unused callback data
  86. *
  87. * Find a place to put the bootmap and return its starting address in
  88. * bootmap_start. This address must be page-aligned.
  89. */
  90. static int __init
  91. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  92. {
  93. unsigned long needed = *(unsigned long *)arg;
  94. unsigned long range_start, range_end, free_start;
  95. int i;
  96. #if IGNORE_PFN0
  97. if (start == PAGE_OFFSET) {
  98. start += PAGE_SIZE;
  99. if (start >= end)
  100. return 0;
  101. }
  102. #endif
  103. free_start = PAGE_OFFSET;
  104. for (i = 0; i < num_rsvd_regions; i++) {
  105. range_start = max(start, free_start);
  106. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  107. free_start = PAGE_ALIGN(rsvd_region[i].end);
  108. if (range_end <= range_start)
  109. continue; /* skip over empty range */
  110. if (range_end - range_start >= needed) {
  111. bootmap_start = __pa(range_start);
  112. return -1; /* done */
  113. }
  114. /* nothing more available in this segment */
  115. if (range_end == end)
  116. return 0;
  117. }
  118. return 0;
  119. }
  120. /**
  121. * find_memory - setup memory map
  122. *
  123. * Walk the EFI memory map and find usable memory for the system, taking
  124. * into account reserved areas.
  125. */
  126. void __init
  127. find_memory (void)
  128. {
  129. unsigned long bootmap_size;
  130. reserve_memory();
  131. /* first find highest page frame number */
  132. max_pfn = 0;
  133. efi_memmap_walk(find_max_pfn, &max_pfn);
  134. /* how many bytes to cover all the pages */
  135. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  136. /* look for a location to hold the bootmap */
  137. bootmap_start = ~0UL;
  138. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  139. if (bootmap_start == ~0UL)
  140. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  141. bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
  142. /* Free all available memory, then mark bootmem-map as being in use. */
  143. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  144. reserve_bootmem(bootmap_start, bootmap_size);
  145. find_initrd();
  146. }
  147. #ifdef CONFIG_SMP
  148. /**
  149. * per_cpu_init - setup per-cpu variables
  150. *
  151. * Allocate and setup per-cpu data areas.
  152. */
  153. void * __cpuinit
  154. per_cpu_init (void)
  155. {
  156. void *cpu_data;
  157. int cpu;
  158. static int first_time=1;
  159. /*
  160. * get_free_pages() cannot be used before cpu_init() done. BSP
  161. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  162. * get_zeroed_page().
  163. */
  164. if (first_time) {
  165. first_time=0;
  166. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  167. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  168. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  169. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  170. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  171. cpu_data += PERCPU_PAGE_SIZE;
  172. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  173. }
  174. }
  175. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  176. }
  177. #endif /* CONFIG_SMP */
  178. static int
  179. count_pages (u64 start, u64 end, void *arg)
  180. {
  181. unsigned long *count = arg;
  182. *count += (end - start) >> PAGE_SHIFT;
  183. return 0;
  184. }
  185. #ifdef CONFIG_VIRTUAL_MEM_MAP
  186. static int
  187. count_dma_pages (u64 start, u64 end, void *arg)
  188. {
  189. unsigned long *count = arg;
  190. if (start < MAX_DMA_ADDRESS)
  191. *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
  192. return 0;
  193. }
  194. #endif
  195. /*
  196. * Set up the page tables.
  197. */
  198. void __init
  199. paging_init (void)
  200. {
  201. unsigned long max_dma;
  202. unsigned long zones_size[MAX_NR_ZONES];
  203. #ifdef CONFIG_VIRTUAL_MEM_MAP
  204. unsigned long zholes_size[MAX_NR_ZONES];
  205. unsigned long max_gap;
  206. #endif
  207. /* initialize mem_map[] */
  208. memset(zones_size, 0, sizeof(zones_size));
  209. num_physpages = 0;
  210. efi_memmap_walk(count_pages, &num_physpages);
  211. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  212. #ifdef CONFIG_VIRTUAL_MEM_MAP
  213. memset(zholes_size, 0, sizeof(zholes_size));
  214. num_dma_physpages = 0;
  215. efi_memmap_walk(count_dma_pages, &num_dma_physpages);
  216. if (max_low_pfn < max_dma) {
  217. zones_size[ZONE_DMA] = max_low_pfn;
  218. zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
  219. } else {
  220. zones_size[ZONE_DMA] = max_dma;
  221. zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
  222. if (num_physpages > num_dma_physpages) {
  223. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  224. zholes_size[ZONE_NORMAL] =
  225. ((max_low_pfn - max_dma) -
  226. (num_physpages - num_dma_physpages));
  227. }
  228. }
  229. max_gap = 0;
  230. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  231. if (max_gap < LARGE_GAP) {
  232. vmem_map = (struct page *) 0;
  233. free_area_init_node(0, NODE_DATA(0), zones_size, 0,
  234. zholes_size);
  235. } else {
  236. unsigned long map_size;
  237. /* allocate virtual_mem_map */
  238. map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page));
  239. vmalloc_end -= map_size;
  240. vmem_map = (struct page *) vmalloc_end;
  241. efi_memmap_walk(create_mem_map_page_table, NULL);
  242. NODE_DATA(0)->node_mem_map = vmem_map;
  243. free_area_init_node(0, NODE_DATA(0), zones_size,
  244. 0, zholes_size);
  245. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  246. }
  247. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  248. if (max_low_pfn < max_dma)
  249. zones_size[ZONE_DMA] = max_low_pfn;
  250. else {
  251. zones_size[ZONE_DMA] = max_dma;
  252. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  253. }
  254. free_area_init(zones_size);
  255. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  256. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  257. }