core.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <asm/system.h>
  30. #include <asm/hardware.h>
  31. #include <asm/io.h>
  32. #include <asm/irq.h>
  33. #include <asm/leds.h>
  34. #include <asm/hardware/arm_timer.h>
  35. #include <asm/hardware/icst307.h>
  36. #include <asm/hardware/vic.h>
  37. #include <asm/mach/arch.h>
  38. #include <asm/mach/flash.h>
  39. #include <asm/mach/irq.h>
  40. #include <asm/mach/time.h>
  41. #include <asm/mach/map.h>
  42. #include <asm/mach/mmc.h>
  43. #include "core.h"
  44. #include "clock.h"
  45. /*
  46. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  47. * is the (PA >> 12).
  48. *
  49. * Setup a VA for the Versatile Vectored Interrupt Controller.
  50. */
  51. #define __io_address(n) __io(IO_ADDRESS(n))
  52. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  53. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  54. static void sic_mask_irq(unsigned int irq)
  55. {
  56. irq -= IRQ_SIC_START;
  57. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  58. }
  59. static void sic_unmask_irq(unsigned int irq)
  60. {
  61. irq -= IRQ_SIC_START;
  62. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  63. }
  64. static struct irqchip sic_chip = {
  65. .ack = sic_mask_irq,
  66. .mask = sic_mask_irq,
  67. .unmask = sic_unmask_irq,
  68. };
  69. static void
  70. sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  71. {
  72. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  73. if (status == 0) {
  74. do_bad_IRQ(irq, desc, regs);
  75. return;
  76. }
  77. do {
  78. irq = ffs(status) - 1;
  79. status &= ~(1 << irq);
  80. irq += IRQ_SIC_START;
  81. desc = irq_desc + irq;
  82. desc_handle_irq(irq, desc, regs);
  83. } while (status);
  84. }
  85. #if 1
  86. #define IRQ_MMCI0A IRQ_VICSOURCE22
  87. #define IRQ_AACI IRQ_VICSOURCE24
  88. #define IRQ_ETH IRQ_VICSOURCE25
  89. #define PIC_MASK 0xFFD00000
  90. #else
  91. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  92. #define IRQ_AACI IRQ_SIC_AACI
  93. #define IRQ_ETH IRQ_SIC_ETH
  94. #define PIC_MASK 0
  95. #endif
  96. void __init versatile_init_irq(void)
  97. {
  98. unsigned int i;
  99. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
  100. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  101. /* Do second interrupt controller */
  102. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  103. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  104. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  105. set_irq_chip(i, &sic_chip);
  106. set_irq_handler(i, do_level_IRQ);
  107. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  108. }
  109. }
  110. /*
  111. * Interrupts on secondary controller from 0 to 8 are routed to
  112. * source 31 on PIC.
  113. * Interrupts from 21 to 31 are routed directly to the VIC on
  114. * the corresponding number on primary controller. This is controlled
  115. * by setting PIC_ENABLEx.
  116. */
  117. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  118. }
  119. static struct map_desc versatile_io_desc[] __initdata = {
  120. {
  121. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  122. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  123. .length = SZ_4K,
  124. .type = MT_DEVICE
  125. }, {
  126. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  127. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  128. .length = SZ_4K,
  129. .type = MT_DEVICE
  130. }, {
  131. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  132. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  133. .length = SZ_4K,
  134. .type = MT_DEVICE
  135. }, {
  136. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  137. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  138. .length = SZ_4K * 9,
  139. .type = MT_DEVICE
  140. },
  141. #ifdef CONFIG_MACH_VERSATILE_AB
  142. {
  143. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  144. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  145. .length = SZ_4K,
  146. .type = MT_DEVICE
  147. }, {
  148. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  149. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  150. .length = SZ_64M,
  151. .type = MT_DEVICE
  152. },
  153. #endif
  154. #ifdef CONFIG_DEBUG_LL
  155. {
  156. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  157. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  158. .length = SZ_4K,
  159. .type = MT_DEVICE
  160. },
  161. #endif
  162. #ifdef CONFIG_PCI
  163. {
  164. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  165. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  166. .length = SZ_4K,
  167. .type = MT_DEVICE
  168. }, {
  169. .virtual = VERSATILE_PCI_VIRT_BASE,
  170. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  171. .length = VERSATILE_PCI_BASE_SIZE,
  172. .type = MT_DEVICE
  173. }, {
  174. .virtual = VERSATILE_PCI_CFG_VIRT_BASE,
  175. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  176. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  177. .type = MT_DEVICE
  178. },
  179. #if 0
  180. {
  181. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  182. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  183. .length = SZ_16M,
  184. .type = MT_DEVICE
  185. }, {
  186. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  187. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  188. .length = SZ_16M,
  189. .type = MT_DEVICE
  190. }, {
  191. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  192. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  193. .length = SZ_16M,
  194. .type = MT_DEVICE
  195. },
  196. #endif
  197. #endif
  198. };
  199. void __init versatile_map_io(void)
  200. {
  201. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  202. }
  203. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  204. /*
  205. * This is the Versatile sched_clock implementation. This has
  206. * a resolution of 41.7ns, and a maximum value of about 179s.
  207. */
  208. unsigned long long sched_clock(void)
  209. {
  210. unsigned long long v;
  211. v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
  212. do_div(v, 3);
  213. return v;
  214. }
  215. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  216. static int versatile_flash_init(void)
  217. {
  218. u32 val;
  219. val = __raw_readl(VERSATILE_FLASHCTRL);
  220. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  221. __raw_writel(val, VERSATILE_FLASHCTRL);
  222. return 0;
  223. }
  224. static void versatile_flash_exit(void)
  225. {
  226. u32 val;
  227. val = __raw_readl(VERSATILE_FLASHCTRL);
  228. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  229. __raw_writel(val, VERSATILE_FLASHCTRL);
  230. }
  231. static void versatile_flash_set_vpp(int on)
  232. {
  233. u32 val;
  234. val = __raw_readl(VERSATILE_FLASHCTRL);
  235. if (on)
  236. val |= VERSATILE_FLASHPROG_FLVPPEN;
  237. else
  238. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  239. __raw_writel(val, VERSATILE_FLASHCTRL);
  240. }
  241. static struct flash_platform_data versatile_flash_data = {
  242. .map_name = "cfi_probe",
  243. .width = 4,
  244. .init = versatile_flash_init,
  245. .exit = versatile_flash_exit,
  246. .set_vpp = versatile_flash_set_vpp,
  247. };
  248. static struct resource versatile_flash_resource = {
  249. .start = VERSATILE_FLASH_BASE,
  250. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
  251. .flags = IORESOURCE_MEM,
  252. };
  253. static struct platform_device versatile_flash_device = {
  254. .name = "armflash",
  255. .id = 0,
  256. .dev = {
  257. .platform_data = &versatile_flash_data,
  258. },
  259. .num_resources = 1,
  260. .resource = &versatile_flash_resource,
  261. };
  262. static struct resource smc91x_resources[] = {
  263. [0] = {
  264. .start = VERSATILE_ETH_BASE,
  265. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  266. .flags = IORESOURCE_MEM,
  267. },
  268. [1] = {
  269. .start = IRQ_ETH,
  270. .end = IRQ_ETH,
  271. .flags = IORESOURCE_IRQ,
  272. },
  273. };
  274. static struct platform_device smc91x_device = {
  275. .name = "smc91x",
  276. .id = 0,
  277. .num_resources = ARRAY_SIZE(smc91x_resources),
  278. .resource = smc91x_resources,
  279. };
  280. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  281. unsigned int mmc_status(struct device *dev)
  282. {
  283. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  284. u32 mask;
  285. if (adev->res.start == VERSATILE_MMCI0_BASE)
  286. mask = 1;
  287. else
  288. mask = 2;
  289. return readl(VERSATILE_SYSMCI) & mask;
  290. }
  291. static struct mmc_platform_data mmc0_plat_data = {
  292. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  293. .status = mmc_status,
  294. };
  295. /*
  296. * Clock handling
  297. */
  298. static const struct icst307_params versatile_oscvco_params = {
  299. .ref = 24000,
  300. .vco_max = 200000,
  301. .vd_min = 4 + 8,
  302. .vd_max = 511 + 8,
  303. .rd_min = 1 + 2,
  304. .rd_max = 127 + 2,
  305. };
  306. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  307. {
  308. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  309. #if defined(CONFIG_ARCH_VERSATILE_PB)
  310. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
  311. #elif defined(CONFIG_MACH_VERSATILE_AB)
  312. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
  313. #endif
  314. u32 val;
  315. val = readl(sys_osc) & ~0x7ffff;
  316. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  317. writel(0xa05f, sys_lock);
  318. writel(val, sys_osc);
  319. writel(0, sys_lock);
  320. }
  321. static struct clk versatile_clcd_clk = {
  322. .name = "CLCDCLK",
  323. .params = &versatile_oscvco_params,
  324. .setvco = versatile_oscvco_set,
  325. };
  326. /*
  327. * CLCD support.
  328. */
  329. #define SYS_CLCD_MODE_MASK (3 << 0)
  330. #define SYS_CLCD_MODE_888 (0 << 0)
  331. #define SYS_CLCD_MODE_5551 (1 << 0)
  332. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  333. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  334. #define SYS_CLCD_NLCDIOON (1 << 2)
  335. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  336. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  337. #define SYS_CLCD_ID_MASK (0x1f << 8)
  338. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  339. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  340. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  341. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  342. #define SYS_CLCD_ID_VGA (0x1f << 8)
  343. static struct clcd_panel vga = {
  344. .mode = {
  345. .name = "VGA",
  346. .refresh = 60,
  347. .xres = 640,
  348. .yres = 480,
  349. .pixclock = 39721,
  350. .left_margin = 40,
  351. .right_margin = 24,
  352. .upper_margin = 32,
  353. .lower_margin = 11,
  354. .hsync_len = 96,
  355. .vsync_len = 2,
  356. .sync = 0,
  357. .vmode = FB_VMODE_NONINTERLACED,
  358. },
  359. .width = -1,
  360. .height = -1,
  361. .tim2 = TIM2_BCD | TIM2_IPC,
  362. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  363. .bpp = 16,
  364. };
  365. static struct clcd_panel sanyo_3_8_in = {
  366. .mode = {
  367. .name = "Sanyo QVGA",
  368. .refresh = 116,
  369. .xres = 320,
  370. .yres = 240,
  371. .pixclock = 100000,
  372. .left_margin = 6,
  373. .right_margin = 6,
  374. .upper_margin = 5,
  375. .lower_margin = 5,
  376. .hsync_len = 6,
  377. .vsync_len = 6,
  378. .sync = 0,
  379. .vmode = FB_VMODE_NONINTERLACED,
  380. },
  381. .width = -1,
  382. .height = -1,
  383. .tim2 = TIM2_BCD,
  384. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  385. .bpp = 16,
  386. };
  387. static struct clcd_panel sanyo_2_5_in = {
  388. .mode = {
  389. .name = "Sanyo QVGA Portrait",
  390. .refresh = 116,
  391. .xres = 240,
  392. .yres = 320,
  393. .pixclock = 100000,
  394. .left_margin = 20,
  395. .right_margin = 10,
  396. .upper_margin = 2,
  397. .lower_margin = 2,
  398. .hsync_len = 10,
  399. .vsync_len = 2,
  400. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  401. .vmode = FB_VMODE_NONINTERLACED,
  402. },
  403. .width = -1,
  404. .height = -1,
  405. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  406. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  407. .bpp = 16,
  408. };
  409. static struct clcd_panel epson_2_2_in = {
  410. .mode = {
  411. .name = "Epson QCIF",
  412. .refresh = 390,
  413. .xres = 176,
  414. .yres = 220,
  415. .pixclock = 62500,
  416. .left_margin = 3,
  417. .right_margin = 2,
  418. .upper_margin = 1,
  419. .lower_margin = 0,
  420. .hsync_len = 3,
  421. .vsync_len = 2,
  422. .sync = 0,
  423. .vmode = FB_VMODE_NONINTERLACED,
  424. },
  425. .width = -1,
  426. .height = -1,
  427. .tim2 = TIM2_BCD | TIM2_IPC,
  428. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  429. .bpp = 16,
  430. };
  431. /*
  432. * Detect which LCD panel is connected, and return the appropriate
  433. * clcd_panel structure. Note: we do not have any information on
  434. * the required timings for the 8.4in panel, so we presently assume
  435. * VGA timings.
  436. */
  437. static struct clcd_panel *versatile_clcd_panel(void)
  438. {
  439. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  440. struct clcd_panel *panel = &vga;
  441. u32 val;
  442. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  443. if (val == SYS_CLCD_ID_SANYO_3_8)
  444. panel = &sanyo_3_8_in;
  445. else if (val == SYS_CLCD_ID_SANYO_2_5)
  446. panel = &sanyo_2_5_in;
  447. else if (val == SYS_CLCD_ID_EPSON_2_2)
  448. panel = &epson_2_2_in;
  449. else if (val == SYS_CLCD_ID_VGA)
  450. panel = &vga;
  451. else {
  452. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  453. val);
  454. panel = &vga;
  455. }
  456. return panel;
  457. }
  458. /*
  459. * Disable all display connectors on the interface module.
  460. */
  461. static void versatile_clcd_disable(struct clcd_fb *fb)
  462. {
  463. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  464. u32 val;
  465. val = readl(sys_clcd);
  466. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  467. writel(val, sys_clcd);
  468. #ifdef CONFIG_MACH_VERSATILE_AB
  469. /*
  470. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  471. */
  472. if (fb->panel == &sanyo_2_5_in) {
  473. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  474. unsigned long ctrl;
  475. ctrl = readl(versatile_ib2_ctrl);
  476. ctrl &= ~0x01;
  477. writel(ctrl, versatile_ib2_ctrl);
  478. }
  479. #endif
  480. }
  481. /*
  482. * Enable the relevant connector on the interface module.
  483. */
  484. static void versatile_clcd_enable(struct clcd_fb *fb)
  485. {
  486. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  487. u32 val;
  488. val = readl(sys_clcd);
  489. val &= ~SYS_CLCD_MODE_MASK;
  490. switch (fb->fb.var.green.length) {
  491. case 5:
  492. val |= SYS_CLCD_MODE_5551;
  493. break;
  494. case 6:
  495. val |= SYS_CLCD_MODE_565_RLSB;
  496. break;
  497. case 8:
  498. val |= SYS_CLCD_MODE_888;
  499. break;
  500. }
  501. /*
  502. * Set the MUX
  503. */
  504. writel(val, sys_clcd);
  505. /*
  506. * And now enable the PSUs
  507. */
  508. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  509. writel(val, sys_clcd);
  510. #ifdef CONFIG_MACH_VERSATILE_AB
  511. /*
  512. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  513. */
  514. if (fb->panel == &sanyo_2_5_in) {
  515. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  516. unsigned long ctrl;
  517. ctrl = readl(versatile_ib2_ctrl);
  518. ctrl |= 0x01;
  519. writel(ctrl, versatile_ib2_ctrl);
  520. }
  521. #endif
  522. }
  523. static unsigned long framesize = SZ_1M;
  524. static int versatile_clcd_setup(struct clcd_fb *fb)
  525. {
  526. dma_addr_t dma;
  527. fb->panel = versatile_clcd_panel();
  528. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  529. &dma, GFP_KERNEL);
  530. if (!fb->fb.screen_base) {
  531. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  532. return -ENOMEM;
  533. }
  534. fb->fb.fix.smem_start = dma;
  535. fb->fb.fix.smem_len = framesize;
  536. return 0;
  537. }
  538. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  539. {
  540. return dma_mmap_writecombine(&fb->dev->dev, vma,
  541. fb->fb.screen_base,
  542. fb->fb.fix.smem_start,
  543. fb->fb.fix.smem_len);
  544. }
  545. static void versatile_clcd_remove(struct clcd_fb *fb)
  546. {
  547. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  548. fb->fb.screen_base, fb->fb.fix.smem_start);
  549. }
  550. static struct clcd_board clcd_plat_data = {
  551. .name = "Versatile",
  552. .check = clcdfb_check,
  553. .decode = clcdfb_decode,
  554. .disable = versatile_clcd_disable,
  555. .enable = versatile_clcd_enable,
  556. .setup = versatile_clcd_setup,
  557. .mmap = versatile_clcd_mmap,
  558. .remove = versatile_clcd_remove,
  559. };
  560. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  561. #define AACI_DMA { 0x80, 0x81 }
  562. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  563. #define MMCI0_DMA { 0x84, 0 }
  564. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  565. #define KMI0_DMA { 0, 0 }
  566. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  567. #define KMI1_DMA { 0, 0 }
  568. /*
  569. * These devices are connected directly to the multi-layer AHB switch
  570. */
  571. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  572. #define SMC_DMA { 0, 0 }
  573. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  574. #define MPMC_DMA { 0, 0 }
  575. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  576. #define CLCD_DMA { 0, 0 }
  577. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  578. #define DMAC_DMA { 0, 0 }
  579. /*
  580. * These devices are connected via the core APB bridge
  581. */
  582. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  583. #define SCTL_DMA { 0, 0 }
  584. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  585. #define WATCHDOG_DMA { 0, 0 }
  586. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  587. #define GPIO0_DMA { 0, 0 }
  588. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  589. #define GPIO1_DMA { 0, 0 }
  590. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  591. #define RTC_DMA { 0, 0 }
  592. /*
  593. * These devices are connected via the DMA APB bridge
  594. */
  595. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  596. #define SCI_DMA { 7, 6 }
  597. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  598. #define UART0_DMA { 15, 14 }
  599. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  600. #define UART1_DMA { 13, 12 }
  601. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  602. #define UART2_DMA { 11, 10 }
  603. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  604. #define SSP_DMA { 9, 8 }
  605. /* FPGA Primecells */
  606. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  607. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  608. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  609. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  610. /* DevChip Primecells */
  611. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  612. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  613. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  614. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  615. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  616. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  617. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  618. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  619. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  620. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  621. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  622. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  623. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  624. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  625. static struct amba_device *amba_devs[] __initdata = {
  626. &dmac_device,
  627. &uart0_device,
  628. &uart1_device,
  629. &uart2_device,
  630. &smc_device,
  631. &mpmc_device,
  632. &clcd_device,
  633. &sctl_device,
  634. &wdog_device,
  635. &gpio0_device,
  636. &gpio1_device,
  637. &rtc_device,
  638. &sci0_device,
  639. &ssp0_device,
  640. &aaci_device,
  641. &mmc0_device,
  642. &kmi0_device,
  643. &kmi1_device,
  644. };
  645. #ifdef CONFIG_LEDS
  646. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  647. static void versatile_leds_event(led_event_t ledevt)
  648. {
  649. unsigned long flags;
  650. u32 val;
  651. local_irq_save(flags);
  652. val = readl(VA_LEDS_BASE);
  653. switch (ledevt) {
  654. case led_idle_start:
  655. val = val & ~VERSATILE_SYS_LED0;
  656. break;
  657. case led_idle_end:
  658. val = val | VERSATILE_SYS_LED0;
  659. break;
  660. case led_timer:
  661. val = val ^ VERSATILE_SYS_LED1;
  662. break;
  663. case led_halted:
  664. val = 0;
  665. break;
  666. default:
  667. break;
  668. }
  669. writel(val, VA_LEDS_BASE);
  670. local_irq_restore(flags);
  671. }
  672. #endif /* CONFIG_LEDS */
  673. void __init versatile_init(void)
  674. {
  675. int i;
  676. clk_register(&versatile_clcd_clk);
  677. platform_device_register(&versatile_flash_device);
  678. platform_device_register(&smc91x_device);
  679. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  680. struct amba_device *d = amba_devs[i];
  681. amba_device_register(d, &iomem_resource);
  682. }
  683. #ifdef CONFIG_LEDS
  684. leds_event = versatile_leds_event;
  685. #endif
  686. }
  687. /*
  688. * Where is the timer (VA)?
  689. */
  690. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  691. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  692. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  693. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  694. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  695. /*
  696. * How long is the timer interval?
  697. */
  698. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  699. #if TIMER_INTERVAL >= 0x100000
  700. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  701. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  702. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  703. #elif TIMER_INTERVAL >= 0x10000
  704. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  705. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  706. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  707. #else
  708. #define TIMER_RELOAD (TIMER_INTERVAL)
  709. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  710. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  711. #endif
  712. /*
  713. * Returns number of ms since last clock interrupt. Note that interrupts
  714. * will have been disabled by do_gettimeoffset()
  715. */
  716. static unsigned long versatile_gettimeoffset(void)
  717. {
  718. unsigned long ticks1, ticks2, status;
  719. /*
  720. * Get the current number of ticks. Note that there is a race
  721. * condition between us reading the timer and checking for
  722. * an interrupt. We get around this by ensuring that the
  723. * counter has not reloaded between our two reads.
  724. */
  725. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  726. do {
  727. ticks1 = ticks2;
  728. status = __raw_readl(VA_IC_BASE + VIC_RAW_STATUS);
  729. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  730. } while (ticks2 > ticks1);
  731. /*
  732. * Number of ticks since last interrupt.
  733. */
  734. ticks1 = TIMER_RELOAD - ticks2;
  735. /*
  736. * Interrupt pending? If so, we've reloaded once already.
  737. *
  738. * FIXME: Need to check this is effectively timer 0 that expires
  739. */
  740. if (status & IRQMASK_TIMERINT0_1)
  741. ticks1 += TIMER_RELOAD;
  742. /*
  743. * Convert the ticks to usecs
  744. */
  745. return TICKS2USECS(ticks1);
  746. }
  747. /*
  748. * IRQ handler for the timer
  749. */
  750. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  751. {
  752. write_seqlock(&xtime_lock);
  753. // ...clear the interrupt
  754. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  755. timer_tick(regs);
  756. write_sequnlock(&xtime_lock);
  757. return IRQ_HANDLED;
  758. }
  759. static struct irqaction versatile_timer_irq = {
  760. .name = "Versatile Timer Tick",
  761. .flags = IRQF_DISABLED | IRQF_TIMER,
  762. .handler = versatile_timer_interrupt,
  763. };
  764. /*
  765. * Set up timer interrupt, and return the current time in seconds.
  766. */
  767. static void __init versatile_timer_init(void)
  768. {
  769. u32 val;
  770. /*
  771. * set clock frequency:
  772. * VERSATILE_REFCLK is 32KHz
  773. * VERSATILE_TIMCLK is 1MHz
  774. */
  775. val = readl(__io_address(VERSATILE_SCTL_BASE));
  776. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  777. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  778. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  779. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  780. __io_address(VERSATILE_SCTL_BASE));
  781. /*
  782. * Initialise to a known state (all timers off)
  783. */
  784. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  785. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  786. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  787. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  788. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  789. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
  790. writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
  791. TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
  792. /*
  793. * Make irqs happen for the system timer
  794. */
  795. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  796. }
  797. struct sys_timer versatile_timer = {
  798. .init = versatile_timer_init,
  799. .offset = versatile_gettimeoffset,
  800. };