dmabounce.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * arch/arm/common/dmabounce.c
  3. *
  4. * Special dma_{map/unmap/dma_sync}_* routines for systems that have
  5. * limited DMA windows. These functions utilize bounce buffers to
  6. * copy data to/from buffers located outside the DMA region. This
  7. * only works for systems in which DMA memory is at the bottom of
  8. * RAM, the remainder of memory is at the top and the DMA memory
  9. * can be marked as ZONE_DMA. Anything beyond that such as discontigous
  10. * DMA windows will require custom implementations that reserve memory
  11. * areas at early bootup.
  12. *
  13. * Original version by Brad Parker (brad@heeltoe.com)
  14. * Re-written by Christopher Hoover <ch@murgatroid.com>
  15. * Made generic by Deepak Saxena <dsaxena@plexity.net>
  16. *
  17. * Copyright (C) 2002 Hewlett Packard Company.
  18. * Copyright (C) 2004 MontaVista Software, Inc.
  19. *
  20. * This program is free software; you can redistribute it and/or
  21. * modify it under the terms of the GNU General Public License
  22. * version 2 as published by the Free Software Foundation.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/slab.h>
  27. #include <linux/device.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/dmapool.h>
  30. #include <linux/list.h>
  31. #include <asm/cacheflush.h>
  32. #undef DEBUG
  33. #undef STATS
  34. #ifdef STATS
  35. #define DO_STATS(X) do { X ; } while (0)
  36. #else
  37. #define DO_STATS(X) do { } while (0)
  38. #endif
  39. /* ************************************************** */
  40. struct safe_buffer {
  41. struct list_head node;
  42. /* original request */
  43. void *ptr;
  44. size_t size;
  45. int direction;
  46. /* safe buffer info */
  47. struct dmabounce_pool *pool;
  48. void *safe;
  49. dma_addr_t safe_dma_addr;
  50. };
  51. struct dmabounce_pool {
  52. unsigned long size;
  53. struct dma_pool *pool;
  54. #ifdef STATS
  55. unsigned long allocs;
  56. #endif
  57. };
  58. struct dmabounce_device_info {
  59. struct list_head node;
  60. struct device *dev;
  61. struct list_head safe_buffers;
  62. #ifdef STATS
  63. unsigned long total_allocs;
  64. unsigned long map_op_count;
  65. unsigned long bounce_count;
  66. #endif
  67. struct dmabounce_pool small;
  68. struct dmabounce_pool large;
  69. rwlock_t lock;
  70. };
  71. static LIST_HEAD(dmabounce_devs);
  72. #ifdef STATS
  73. static void print_alloc_stats(struct dmabounce_device_info *device_info)
  74. {
  75. printk(KERN_INFO
  76. "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
  77. device_info->dev->bus_id,
  78. device_info->small.allocs, device_info->large.allocs,
  79. device_info->total_allocs - device_info->small.allocs -
  80. device_info->large.allocs,
  81. device_info->total_allocs);
  82. }
  83. #endif
  84. /* find the given device in the dmabounce device list */
  85. static inline struct dmabounce_device_info *
  86. find_dmabounce_dev(struct device *dev)
  87. {
  88. struct dmabounce_device_info *d;
  89. list_for_each_entry(d, &dmabounce_devs, node)
  90. if (d->dev == dev)
  91. return d;
  92. return NULL;
  93. }
  94. /* allocate a 'safe' buffer and keep track of it */
  95. static inline struct safe_buffer *
  96. alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
  97. size_t size, enum dma_data_direction dir)
  98. {
  99. struct safe_buffer *buf;
  100. struct dmabounce_pool *pool;
  101. struct device *dev = device_info->dev;
  102. unsigned long flags;
  103. dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
  104. __func__, ptr, size, dir);
  105. if (size <= device_info->small.size) {
  106. pool = &device_info->small;
  107. } else if (size <= device_info->large.size) {
  108. pool = &device_info->large;
  109. } else {
  110. pool = NULL;
  111. }
  112. buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
  113. if (buf == NULL) {
  114. dev_warn(dev, "%s: kmalloc failed\n", __func__);
  115. return NULL;
  116. }
  117. buf->ptr = ptr;
  118. buf->size = size;
  119. buf->direction = dir;
  120. buf->pool = pool;
  121. if (pool) {
  122. buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
  123. &buf->safe_dma_addr);
  124. } else {
  125. buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
  126. GFP_ATOMIC);
  127. }
  128. if (buf->safe == NULL) {
  129. dev_warn(dev,
  130. "%s: could not alloc dma memory (size=%d)\n",
  131. __func__, size);
  132. kfree(buf);
  133. return NULL;
  134. }
  135. #ifdef STATS
  136. if (pool)
  137. pool->allocs++;
  138. device_info->total_allocs++;
  139. if (device_info->total_allocs % 1000 == 0)
  140. print_alloc_stats(device_info);
  141. #endif
  142. write_lock_irqsave(&device_info->lock, flags);
  143. list_add(&buf->node, &device_info->safe_buffers);
  144. write_unlock_irqrestore(&device_info->lock, flags);
  145. return buf;
  146. }
  147. /* determine if a buffer is from our "safe" pool */
  148. static inline struct safe_buffer *
  149. find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
  150. {
  151. struct safe_buffer *b = NULL;
  152. unsigned long flags;
  153. read_lock_irqsave(&device_info->lock, flags);
  154. list_for_each_entry(b, &device_info->safe_buffers, node)
  155. if (b->safe_dma_addr == safe_dma_addr)
  156. break;
  157. read_unlock_irqrestore(&device_info->lock, flags);
  158. return b;
  159. }
  160. static inline void
  161. free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
  162. {
  163. unsigned long flags;
  164. dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
  165. write_lock_irqsave(&device_info->lock, flags);
  166. list_del(&buf->node);
  167. write_unlock_irqrestore(&device_info->lock, flags);
  168. if (buf->pool)
  169. dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
  170. else
  171. dma_free_coherent(device_info->dev, buf->size, buf->safe,
  172. buf->safe_dma_addr);
  173. kfree(buf);
  174. }
  175. /* ************************************************** */
  176. #ifdef STATS
  177. static void print_map_stats(struct dmabounce_device_info *device_info)
  178. {
  179. dev_info(device_info->dev,
  180. "dmabounce: map_op_count=%lu, bounce_count=%lu\n",
  181. device_info->map_op_count, device_info->bounce_count);
  182. }
  183. #endif
  184. static inline dma_addr_t
  185. map_single(struct device *dev, void *ptr, size_t size,
  186. enum dma_data_direction dir)
  187. {
  188. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  189. dma_addr_t dma_addr;
  190. int needs_bounce = 0;
  191. if (device_info)
  192. DO_STATS ( device_info->map_op_count++ );
  193. dma_addr = virt_to_dma(dev, ptr);
  194. if (dev->dma_mask) {
  195. unsigned long mask = *dev->dma_mask;
  196. unsigned long limit;
  197. limit = (mask + 1) & ~mask;
  198. if (limit && size > limit) {
  199. dev_err(dev, "DMA mapping too big (requested %#x "
  200. "mask %#Lx)\n", size, *dev->dma_mask);
  201. return ~0;
  202. }
  203. /*
  204. * Figure out if we need to bounce from the DMA mask.
  205. */
  206. needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
  207. }
  208. if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
  209. struct safe_buffer *buf;
  210. buf = alloc_safe_buffer(device_info, ptr, size, dir);
  211. if (buf == 0) {
  212. dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
  213. __func__, ptr);
  214. return 0;
  215. }
  216. dev_dbg(dev,
  217. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  218. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  219. buf->safe, (void *) buf->safe_dma_addr);
  220. if ((dir == DMA_TO_DEVICE) ||
  221. (dir == DMA_BIDIRECTIONAL)) {
  222. dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
  223. __func__, ptr, buf->safe, size);
  224. memcpy(buf->safe, ptr, size);
  225. }
  226. ptr = buf->safe;
  227. dma_addr = buf->safe_dma_addr;
  228. }
  229. consistent_sync(ptr, size, dir);
  230. return dma_addr;
  231. }
  232. static inline void
  233. unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  234. enum dma_data_direction dir)
  235. {
  236. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  237. struct safe_buffer *buf = NULL;
  238. /*
  239. * Trying to unmap an invalid mapping
  240. */
  241. if (dma_mapping_error(dma_addr)) {
  242. dev_err(dev, "Trying to unmap invalid mapping\n");
  243. return;
  244. }
  245. if (device_info)
  246. buf = find_safe_buffer(device_info, dma_addr);
  247. if (buf) {
  248. BUG_ON(buf->size != size);
  249. dev_dbg(dev,
  250. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  251. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  252. buf->safe, (void *) buf->safe_dma_addr);
  253. DO_STATS ( device_info->bounce_count++ );
  254. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
  255. unsigned long ptr;
  256. dev_dbg(dev,
  257. "%s: copy back safe %p to unsafe %p size %d\n",
  258. __func__, buf->safe, buf->ptr, size);
  259. memcpy(buf->ptr, buf->safe, size);
  260. /*
  261. * DMA buffers must have the same cache properties
  262. * as if they were really used for DMA - which means
  263. * data must be written back to RAM. Note that
  264. * we don't use dmac_flush_range() here for the
  265. * bidirectional case because we know the cache
  266. * lines will be coherent with the data written.
  267. */
  268. ptr = (unsigned long)buf->ptr;
  269. dmac_clean_range(ptr, ptr + size);
  270. }
  271. free_safe_buffer(device_info, buf);
  272. }
  273. }
  274. static inline void
  275. sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  276. enum dma_data_direction dir)
  277. {
  278. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  279. struct safe_buffer *buf = NULL;
  280. if (device_info)
  281. buf = find_safe_buffer(device_info, dma_addr);
  282. if (buf) {
  283. /*
  284. * Both of these checks from original code need to be
  285. * commented out b/c some drivers rely on the following:
  286. *
  287. * 1) Drivers may map a large chunk of memory into DMA space
  288. * but only sync a small portion of it. Good example is
  289. * allocating a large buffer, mapping it, and then
  290. * breaking it up into small descriptors. No point
  291. * in syncing the whole buffer if you only have to
  292. * touch one descriptor.
  293. *
  294. * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
  295. * usually only synced in one dir at a time.
  296. *
  297. * See drivers/net/eepro100.c for examples of both cases.
  298. *
  299. * -ds
  300. *
  301. * BUG_ON(buf->size != size);
  302. * BUG_ON(buf->direction != dir);
  303. */
  304. dev_dbg(dev,
  305. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  306. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  307. buf->safe, (void *) buf->safe_dma_addr);
  308. DO_STATS ( device_info->bounce_count++ );
  309. switch (dir) {
  310. case DMA_FROM_DEVICE:
  311. dev_dbg(dev,
  312. "%s: copy back safe %p to unsafe %p size %d\n",
  313. __func__, buf->safe, buf->ptr, size);
  314. memcpy(buf->ptr, buf->safe, size);
  315. break;
  316. case DMA_TO_DEVICE:
  317. dev_dbg(dev,
  318. "%s: copy out unsafe %p to safe %p, size %d\n",
  319. __func__,buf->ptr, buf->safe, size);
  320. memcpy(buf->safe, buf->ptr, size);
  321. break;
  322. case DMA_BIDIRECTIONAL:
  323. BUG(); /* is this allowed? what does it mean? */
  324. default:
  325. BUG();
  326. }
  327. consistent_sync(buf->safe, size, dir);
  328. } else {
  329. consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
  330. }
  331. }
  332. /* ************************************************** */
  333. /*
  334. * see if a buffer address is in an 'unsafe' range. if it is
  335. * allocate a 'safe' buffer and copy the unsafe buffer into it.
  336. * substitute the safe buffer for the unsafe one.
  337. * (basically move the buffer from an unsafe area to a safe one)
  338. */
  339. dma_addr_t
  340. dma_map_single(struct device *dev, void *ptr, size_t size,
  341. enum dma_data_direction dir)
  342. {
  343. dma_addr_t dma_addr;
  344. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  345. __func__, ptr, size, dir);
  346. BUG_ON(dir == DMA_NONE);
  347. dma_addr = map_single(dev, ptr, size, dir);
  348. return dma_addr;
  349. }
  350. /*
  351. * see if a mapped address was really a "safe" buffer and if so, copy
  352. * the data from the safe buffer back to the unsafe buffer and free up
  353. * the safe buffer. (basically return things back to the way they
  354. * should be)
  355. */
  356. void
  357. dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  358. enum dma_data_direction dir)
  359. {
  360. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  361. __func__, (void *) dma_addr, size, dir);
  362. BUG_ON(dir == DMA_NONE);
  363. unmap_single(dev, dma_addr, size, dir);
  364. }
  365. int
  366. dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  367. enum dma_data_direction dir)
  368. {
  369. int i;
  370. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  371. __func__, sg, nents, dir);
  372. BUG_ON(dir == DMA_NONE);
  373. for (i = 0; i < nents; i++, sg++) {
  374. struct page *page = sg->page;
  375. unsigned int offset = sg->offset;
  376. unsigned int length = sg->length;
  377. void *ptr = page_address(page) + offset;
  378. sg->dma_address =
  379. map_single(dev, ptr, length, dir);
  380. }
  381. return nents;
  382. }
  383. void
  384. dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  385. enum dma_data_direction dir)
  386. {
  387. int i;
  388. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  389. __func__, sg, nents, dir);
  390. BUG_ON(dir == DMA_NONE);
  391. for (i = 0; i < nents; i++, sg++) {
  392. dma_addr_t dma_addr = sg->dma_address;
  393. unsigned int length = sg->length;
  394. unmap_single(dev, dma_addr, length, dir);
  395. }
  396. }
  397. void
  398. dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
  399. enum dma_data_direction dir)
  400. {
  401. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  402. __func__, (void *) dma_addr, size, dir);
  403. sync_single(dev, dma_addr, size, dir);
  404. }
  405. void
  406. dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
  407. enum dma_data_direction dir)
  408. {
  409. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  410. __func__, (void *) dma_addr, size, dir);
  411. sync_single(dev, dma_addr, size, dir);
  412. }
  413. void
  414. dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
  415. enum dma_data_direction dir)
  416. {
  417. int i;
  418. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  419. __func__, sg, nents, dir);
  420. BUG_ON(dir == DMA_NONE);
  421. for (i = 0; i < nents; i++, sg++) {
  422. dma_addr_t dma_addr = sg->dma_address;
  423. unsigned int length = sg->length;
  424. sync_single(dev, dma_addr, length, dir);
  425. }
  426. }
  427. void
  428. dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
  429. enum dma_data_direction dir)
  430. {
  431. int i;
  432. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  433. __func__, sg, nents, dir);
  434. BUG_ON(dir == DMA_NONE);
  435. for (i = 0; i < nents; i++, sg++) {
  436. dma_addr_t dma_addr = sg->dma_address;
  437. unsigned int length = sg->length;
  438. sync_single(dev, dma_addr, length, dir);
  439. }
  440. }
  441. static int
  442. dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
  443. unsigned long size)
  444. {
  445. pool->size = size;
  446. DO_STATS(pool->allocs = 0);
  447. pool->pool = dma_pool_create(name, dev, size,
  448. 0 /* byte alignment */,
  449. 0 /* no page-crossing issues */);
  450. return pool->pool ? 0 : -ENOMEM;
  451. }
  452. int
  453. dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
  454. unsigned long large_buffer_size)
  455. {
  456. struct dmabounce_device_info *device_info;
  457. int ret;
  458. device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
  459. if (!device_info) {
  460. printk(KERN_ERR
  461. "Could not allocated dmabounce_device_info for %s",
  462. dev->bus_id);
  463. return -ENOMEM;
  464. }
  465. ret = dmabounce_init_pool(&device_info->small, dev,
  466. "small_dmabounce_pool", small_buffer_size);
  467. if (ret) {
  468. dev_err(dev,
  469. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  470. small_buffer_size);
  471. goto err_free;
  472. }
  473. if (large_buffer_size) {
  474. ret = dmabounce_init_pool(&device_info->large, dev,
  475. "large_dmabounce_pool",
  476. large_buffer_size);
  477. if (ret) {
  478. dev_err(dev,
  479. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  480. large_buffer_size);
  481. goto err_destroy;
  482. }
  483. }
  484. device_info->dev = dev;
  485. INIT_LIST_HEAD(&device_info->safe_buffers);
  486. rwlock_init(&device_info->lock);
  487. #ifdef STATS
  488. device_info->total_allocs = 0;
  489. device_info->map_op_count = 0;
  490. device_info->bounce_count = 0;
  491. #endif
  492. list_add(&device_info->node, &dmabounce_devs);
  493. printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
  494. dev->bus_id, dev->bus->name);
  495. return 0;
  496. err_destroy:
  497. dma_pool_destroy(device_info->small.pool);
  498. err_free:
  499. kfree(device_info);
  500. return ret;
  501. }
  502. void
  503. dmabounce_unregister_dev(struct device *dev)
  504. {
  505. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  506. if (!device_info) {
  507. printk(KERN_WARNING
  508. "%s: Never registered with dmabounce but attempting" \
  509. "to unregister!\n", dev->bus_id);
  510. return;
  511. }
  512. if (!list_empty(&device_info->safe_buffers)) {
  513. printk(KERN_ERR
  514. "%s: Removing from dmabounce with pending buffers!\n",
  515. dev->bus_id);
  516. BUG();
  517. }
  518. if (device_info->small.pool)
  519. dma_pool_destroy(device_info->small.pool);
  520. if (device_info->large.pool)
  521. dma_pool_destroy(device_info->large.pool);
  522. #ifdef STATS
  523. print_alloc_stats(device_info);
  524. print_map_stats(device_info);
  525. #endif
  526. list_del(&device_info->node);
  527. kfree(device_info);
  528. printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
  529. dev->bus_id, dev->bus->name);
  530. }
  531. EXPORT_SYMBOL(dma_map_single);
  532. EXPORT_SYMBOL(dma_unmap_single);
  533. EXPORT_SYMBOL(dma_map_sg);
  534. EXPORT_SYMBOL(dma_unmap_sg);
  535. EXPORT_SYMBOL(dma_sync_single);
  536. EXPORT_SYMBOL(dma_sync_sg);
  537. EXPORT_SYMBOL(dmabounce_register_dev);
  538. EXPORT_SYMBOL(dmabounce_unregister_dev);
  539. MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
  540. MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
  541. MODULE_LICENSE("GPL");