i915_gem.c 134 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. struct change_domains {
  38. uint32_t invalidate_domains;
  39. uint32_t flush_domains;
  40. uint32_t flush_rings;
  41. };
  42. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  43. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  44. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  45. bool pipelined);
  46. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  47. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  49. int write);
  50. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  51. uint64_t offset,
  52. uint64_t size);
  53. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  54. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  55. bool interruptible);
  56. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  57. unsigned alignment,
  58. bool map_and_fenceable);
  59. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  60. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  61. struct drm_i915_gem_pwrite *args,
  62. struct drm_file *file_priv);
  63. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  64. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  65. int nr_to_scan,
  66. gfp_t gfp_mask);
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  81. struct drm_i915_gem_object *obj)
  82. {
  83. dev_priv->mm.gtt_count++;
  84. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  85. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  86. dev_priv->mm.mappable_gtt_used +=
  87. min_t(size_t, obj->gtt_space->size,
  88. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  89. }
  90. }
  91. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  92. struct drm_i915_gem_object *obj)
  93. {
  94. dev_priv->mm.gtt_count--;
  95. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  96. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  97. dev_priv->mm.mappable_gtt_used -=
  98. min_t(size_t, obj->gtt_space->size,
  99. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  100. }
  101. }
  102. /**
  103. * Update the mappable working set counters. Call _only_ when there is a change
  104. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  105. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  106. */
  107. static void
  108. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  109. struct drm_i915_gem_object *obj,
  110. bool mappable)
  111. {
  112. if (mappable) {
  113. if (obj->pin_mappable && obj->fault_mappable)
  114. /* Combined state was already mappable. */
  115. return;
  116. dev_priv->mm.gtt_mappable_count++;
  117. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  118. } else {
  119. if (obj->pin_mappable || obj->fault_mappable)
  120. /* Combined state still mappable. */
  121. return;
  122. dev_priv->mm.gtt_mappable_count--;
  123. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  124. }
  125. }
  126. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  127. struct drm_i915_gem_object *obj,
  128. bool mappable)
  129. {
  130. dev_priv->mm.pin_count++;
  131. dev_priv->mm.pin_memory += obj->gtt_space->size;
  132. if (mappable) {
  133. obj->pin_mappable = true;
  134. i915_gem_info_update_mappable(dev_priv, obj, true);
  135. }
  136. }
  137. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  138. struct drm_i915_gem_object *obj)
  139. {
  140. dev_priv->mm.pin_count--;
  141. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  142. if (obj->pin_mappable) {
  143. obj->pin_mappable = false;
  144. i915_gem_info_update_mappable(dev_priv, obj, false);
  145. }
  146. }
  147. int
  148. i915_gem_check_is_wedged(struct drm_device *dev)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. struct completion *x = &dev_priv->error_completion;
  152. unsigned long flags;
  153. int ret;
  154. if (!atomic_read(&dev_priv->mm.wedged))
  155. return 0;
  156. ret = wait_for_completion_interruptible(x);
  157. if (ret)
  158. return ret;
  159. /* Success, we reset the GPU! */
  160. if (!atomic_read(&dev_priv->mm.wedged))
  161. return 0;
  162. /* GPU is hung, bump the completion count to account for
  163. * the token we just consumed so that we never hit zero and
  164. * end up waiting upon a subsequent completion event that
  165. * will never happen.
  166. */
  167. spin_lock_irqsave(&x->wait.lock, flags);
  168. x->done++;
  169. spin_unlock_irqrestore(&x->wait.lock, flags);
  170. return -EIO;
  171. }
  172. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  173. {
  174. struct drm_i915_private *dev_priv = dev->dev_private;
  175. int ret;
  176. ret = i915_gem_check_is_wedged(dev);
  177. if (ret)
  178. return ret;
  179. ret = mutex_lock_interruptible(&dev->struct_mutex);
  180. if (ret)
  181. return ret;
  182. if (atomic_read(&dev_priv->mm.wedged)) {
  183. mutex_unlock(&dev->struct_mutex);
  184. return -EAGAIN;
  185. }
  186. WARN_ON(i915_verify_lists(dev));
  187. return 0;
  188. }
  189. static inline bool
  190. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  191. {
  192. return obj_priv->gtt_space &&
  193. !obj_priv->active &&
  194. obj_priv->pin_count == 0;
  195. }
  196. int i915_gem_do_init(struct drm_device *dev,
  197. unsigned long start,
  198. unsigned long mappable_end,
  199. unsigned long end)
  200. {
  201. drm_i915_private_t *dev_priv = dev->dev_private;
  202. if (start >= end ||
  203. (start & (PAGE_SIZE - 1)) != 0 ||
  204. (end & (PAGE_SIZE - 1)) != 0) {
  205. return -EINVAL;
  206. }
  207. drm_mm_init(&dev_priv->mm.gtt_space, start,
  208. end - start);
  209. dev_priv->mm.gtt_total = end - start;
  210. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  211. dev_priv->mm.gtt_mappable_end = mappable_end;
  212. return 0;
  213. }
  214. int
  215. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_init *args = data;
  219. int ret;
  220. mutex_lock(&dev->struct_mutex);
  221. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  222. mutex_unlock(&dev->struct_mutex);
  223. return ret;
  224. }
  225. int
  226. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  227. struct drm_file *file_priv)
  228. {
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. struct drm_i915_gem_get_aperture *args = data;
  231. if (!(dev->driver->driver_features & DRIVER_GEM))
  232. return -ENODEV;
  233. mutex_lock(&dev->struct_mutex);
  234. args->aper_size = dev_priv->mm.gtt_total;
  235. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  236. mutex_unlock(&dev->struct_mutex);
  237. return 0;
  238. }
  239. /**
  240. * Creates a new mm object and returns a handle to it.
  241. */
  242. int
  243. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  244. struct drm_file *file_priv)
  245. {
  246. struct drm_i915_gem_create *args = data;
  247. struct drm_gem_object *obj;
  248. int ret;
  249. u32 handle;
  250. args->size = roundup(args->size, PAGE_SIZE);
  251. /* Allocate the new object */
  252. obj = i915_gem_alloc_object(dev, args->size);
  253. if (obj == NULL)
  254. return -ENOMEM;
  255. ret = drm_gem_handle_create(file_priv, obj, &handle);
  256. if (ret) {
  257. drm_gem_object_release(obj);
  258. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  259. kfree(obj);
  260. return ret;
  261. }
  262. /* drop reference from allocate - handle holds it now */
  263. drm_gem_object_unreference(obj);
  264. trace_i915_gem_object_create(obj);
  265. args->handle = handle;
  266. return 0;
  267. }
  268. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  269. {
  270. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  271. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  272. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  273. obj_priv->tiling_mode != I915_TILING_NONE;
  274. }
  275. static inline void
  276. slow_shmem_copy(struct page *dst_page,
  277. int dst_offset,
  278. struct page *src_page,
  279. int src_offset,
  280. int length)
  281. {
  282. char *dst_vaddr, *src_vaddr;
  283. dst_vaddr = kmap(dst_page);
  284. src_vaddr = kmap(src_page);
  285. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  286. kunmap(src_page);
  287. kunmap(dst_page);
  288. }
  289. static inline void
  290. slow_shmem_bit17_copy(struct page *gpu_page,
  291. int gpu_offset,
  292. struct page *cpu_page,
  293. int cpu_offset,
  294. int length,
  295. int is_read)
  296. {
  297. char *gpu_vaddr, *cpu_vaddr;
  298. /* Use the unswizzled path if this page isn't affected. */
  299. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  300. if (is_read)
  301. return slow_shmem_copy(cpu_page, cpu_offset,
  302. gpu_page, gpu_offset, length);
  303. else
  304. return slow_shmem_copy(gpu_page, gpu_offset,
  305. cpu_page, cpu_offset, length);
  306. }
  307. gpu_vaddr = kmap(gpu_page);
  308. cpu_vaddr = kmap(cpu_page);
  309. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  310. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  311. */
  312. while (length > 0) {
  313. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  314. int this_length = min(cacheline_end - gpu_offset, length);
  315. int swizzled_gpu_offset = gpu_offset ^ 64;
  316. if (is_read) {
  317. memcpy(cpu_vaddr + cpu_offset,
  318. gpu_vaddr + swizzled_gpu_offset,
  319. this_length);
  320. } else {
  321. memcpy(gpu_vaddr + swizzled_gpu_offset,
  322. cpu_vaddr + cpu_offset,
  323. this_length);
  324. }
  325. cpu_offset += this_length;
  326. gpu_offset += this_length;
  327. length -= this_length;
  328. }
  329. kunmap(cpu_page);
  330. kunmap(gpu_page);
  331. }
  332. /**
  333. * This is the fast shmem pread path, which attempts to copy_from_user directly
  334. * from the backing pages of the object to the user's address space. On a
  335. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  336. */
  337. static int
  338. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  339. struct drm_i915_gem_pread *args,
  340. struct drm_file *file_priv)
  341. {
  342. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  343. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  344. ssize_t remain;
  345. loff_t offset;
  346. char __user *user_data;
  347. int page_offset, page_length;
  348. user_data = (char __user *) (uintptr_t) args->data_ptr;
  349. remain = args->size;
  350. obj_priv = to_intel_bo(obj);
  351. offset = args->offset;
  352. while (remain > 0) {
  353. struct page *page;
  354. char *vaddr;
  355. int ret;
  356. /* Operation in this page
  357. *
  358. * page_offset = offset within page
  359. * page_length = bytes to copy for this page
  360. */
  361. page_offset = offset & (PAGE_SIZE-1);
  362. page_length = remain;
  363. if ((page_offset + remain) > PAGE_SIZE)
  364. page_length = PAGE_SIZE - page_offset;
  365. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  366. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  367. if (IS_ERR(page))
  368. return PTR_ERR(page);
  369. vaddr = kmap_atomic(page);
  370. ret = __copy_to_user_inatomic(user_data,
  371. vaddr + page_offset,
  372. page_length);
  373. kunmap_atomic(vaddr);
  374. mark_page_accessed(page);
  375. page_cache_release(page);
  376. if (ret)
  377. return -EFAULT;
  378. remain -= page_length;
  379. user_data += page_length;
  380. offset += page_length;
  381. }
  382. return 0;
  383. }
  384. /**
  385. * This is the fallback shmem pread path, which allocates temporary storage
  386. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  387. * can copy out of the object's backing pages while holding the struct mutex
  388. * and not take page faults.
  389. */
  390. static int
  391. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  392. struct drm_i915_gem_pread *args,
  393. struct drm_file *file_priv)
  394. {
  395. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  396. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  397. struct mm_struct *mm = current->mm;
  398. struct page **user_pages;
  399. ssize_t remain;
  400. loff_t offset, pinned_pages, i;
  401. loff_t first_data_page, last_data_page, num_pages;
  402. int shmem_page_offset;
  403. int data_page_index, data_page_offset;
  404. int page_length;
  405. int ret;
  406. uint64_t data_ptr = args->data_ptr;
  407. int do_bit17_swizzling;
  408. remain = args->size;
  409. /* Pin the user pages containing the data. We can't fault while
  410. * holding the struct mutex, yet we want to hold it while
  411. * dereferencing the user data.
  412. */
  413. first_data_page = data_ptr / PAGE_SIZE;
  414. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  415. num_pages = last_data_page - first_data_page + 1;
  416. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  417. if (user_pages == NULL)
  418. return -ENOMEM;
  419. mutex_unlock(&dev->struct_mutex);
  420. down_read(&mm->mmap_sem);
  421. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  422. num_pages, 1, 0, user_pages, NULL);
  423. up_read(&mm->mmap_sem);
  424. mutex_lock(&dev->struct_mutex);
  425. if (pinned_pages < num_pages) {
  426. ret = -EFAULT;
  427. goto out;
  428. }
  429. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  430. args->offset,
  431. args->size);
  432. if (ret)
  433. goto out;
  434. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  435. obj_priv = to_intel_bo(obj);
  436. offset = args->offset;
  437. while (remain > 0) {
  438. struct page *page;
  439. /* Operation in this page
  440. *
  441. * shmem_page_offset = offset within page in shmem file
  442. * data_page_index = page number in get_user_pages return
  443. * data_page_offset = offset with data_page_index page.
  444. * page_length = bytes to copy for this page
  445. */
  446. shmem_page_offset = offset & ~PAGE_MASK;
  447. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  448. data_page_offset = data_ptr & ~PAGE_MASK;
  449. page_length = remain;
  450. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  451. page_length = PAGE_SIZE - shmem_page_offset;
  452. if ((data_page_offset + page_length) > PAGE_SIZE)
  453. page_length = PAGE_SIZE - data_page_offset;
  454. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  455. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  456. if (IS_ERR(page))
  457. return PTR_ERR(page);
  458. if (do_bit17_swizzling) {
  459. slow_shmem_bit17_copy(page,
  460. shmem_page_offset,
  461. user_pages[data_page_index],
  462. data_page_offset,
  463. page_length,
  464. 1);
  465. } else {
  466. slow_shmem_copy(user_pages[data_page_index],
  467. data_page_offset,
  468. page,
  469. shmem_page_offset,
  470. page_length);
  471. }
  472. mark_page_accessed(page);
  473. page_cache_release(page);
  474. remain -= page_length;
  475. data_ptr += page_length;
  476. offset += page_length;
  477. }
  478. out:
  479. for (i = 0; i < pinned_pages; i++) {
  480. SetPageDirty(user_pages[i]);
  481. mark_page_accessed(user_pages[i]);
  482. page_cache_release(user_pages[i]);
  483. }
  484. drm_free_large(user_pages);
  485. return ret;
  486. }
  487. /**
  488. * Reads data from the object referenced by handle.
  489. *
  490. * On error, the contents of *data are undefined.
  491. */
  492. int
  493. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  494. struct drm_file *file_priv)
  495. {
  496. struct drm_i915_gem_pread *args = data;
  497. struct drm_gem_object *obj;
  498. struct drm_i915_gem_object *obj_priv;
  499. int ret = 0;
  500. if (args->size == 0)
  501. return 0;
  502. if (!access_ok(VERIFY_WRITE,
  503. (char __user *)(uintptr_t)args->data_ptr,
  504. args->size))
  505. return -EFAULT;
  506. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  507. args->size);
  508. if (ret)
  509. return -EFAULT;
  510. ret = i915_mutex_lock_interruptible(dev);
  511. if (ret)
  512. return ret;
  513. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  514. if (obj == NULL) {
  515. ret = -ENOENT;
  516. goto unlock;
  517. }
  518. obj_priv = to_intel_bo(obj);
  519. /* Bounds check source. */
  520. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  521. ret = -EINVAL;
  522. goto out;
  523. }
  524. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  525. args->offset,
  526. args->size);
  527. if (ret)
  528. goto out;
  529. ret = -EFAULT;
  530. if (!i915_gem_object_needs_bit17_swizzle(obj))
  531. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  532. if (ret == -EFAULT)
  533. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  534. out:
  535. drm_gem_object_unreference(obj);
  536. unlock:
  537. mutex_unlock(&dev->struct_mutex);
  538. return ret;
  539. }
  540. /* This is the fast write path which cannot handle
  541. * page faults in the source data
  542. */
  543. static inline int
  544. fast_user_write(struct io_mapping *mapping,
  545. loff_t page_base, int page_offset,
  546. char __user *user_data,
  547. int length)
  548. {
  549. char *vaddr_atomic;
  550. unsigned long unwritten;
  551. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  552. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  553. user_data, length);
  554. io_mapping_unmap_atomic(vaddr_atomic);
  555. return unwritten;
  556. }
  557. /* Here's the write path which can sleep for
  558. * page faults
  559. */
  560. static inline void
  561. slow_kernel_write(struct io_mapping *mapping,
  562. loff_t gtt_base, int gtt_offset,
  563. struct page *user_page, int user_offset,
  564. int length)
  565. {
  566. char __iomem *dst_vaddr;
  567. char *src_vaddr;
  568. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  569. src_vaddr = kmap(user_page);
  570. memcpy_toio(dst_vaddr + gtt_offset,
  571. src_vaddr + user_offset,
  572. length);
  573. kunmap(user_page);
  574. io_mapping_unmap(dst_vaddr);
  575. }
  576. /**
  577. * This is the fast pwrite path, where we copy the data directly from the
  578. * user into the GTT, uncached.
  579. */
  580. static int
  581. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  582. struct drm_i915_gem_pwrite *args,
  583. struct drm_file *file_priv)
  584. {
  585. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  586. drm_i915_private_t *dev_priv = dev->dev_private;
  587. ssize_t remain;
  588. loff_t offset, page_base;
  589. char __user *user_data;
  590. int page_offset, page_length;
  591. user_data = (char __user *) (uintptr_t) args->data_ptr;
  592. remain = args->size;
  593. obj_priv = to_intel_bo(obj);
  594. offset = obj_priv->gtt_offset + args->offset;
  595. while (remain > 0) {
  596. /* Operation in this page
  597. *
  598. * page_base = page offset within aperture
  599. * page_offset = offset within page
  600. * page_length = bytes to copy for this page
  601. */
  602. page_base = (offset & ~(PAGE_SIZE-1));
  603. page_offset = offset & (PAGE_SIZE-1);
  604. page_length = remain;
  605. if ((page_offset + remain) > PAGE_SIZE)
  606. page_length = PAGE_SIZE - page_offset;
  607. /* If we get a fault while copying data, then (presumably) our
  608. * source page isn't available. Return the error and we'll
  609. * retry in the slow path.
  610. */
  611. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  612. page_offset, user_data, page_length))
  613. return -EFAULT;
  614. remain -= page_length;
  615. user_data += page_length;
  616. offset += page_length;
  617. }
  618. return 0;
  619. }
  620. /**
  621. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  622. * the memory and maps it using kmap_atomic for copying.
  623. *
  624. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  625. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  626. */
  627. static int
  628. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file_priv)
  631. {
  632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  633. drm_i915_private_t *dev_priv = dev->dev_private;
  634. ssize_t remain;
  635. loff_t gtt_page_base, offset;
  636. loff_t first_data_page, last_data_page, num_pages;
  637. loff_t pinned_pages, i;
  638. struct page **user_pages;
  639. struct mm_struct *mm = current->mm;
  640. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  641. int ret;
  642. uint64_t data_ptr = args->data_ptr;
  643. remain = args->size;
  644. /* Pin the user pages containing the data. We can't fault while
  645. * holding the struct mutex, and all of the pwrite implementations
  646. * want to hold it while dereferencing the user data.
  647. */
  648. first_data_page = data_ptr / PAGE_SIZE;
  649. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  650. num_pages = last_data_page - first_data_page + 1;
  651. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  652. if (user_pages == NULL)
  653. return -ENOMEM;
  654. mutex_unlock(&dev->struct_mutex);
  655. down_read(&mm->mmap_sem);
  656. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  657. num_pages, 0, 0, user_pages, NULL);
  658. up_read(&mm->mmap_sem);
  659. mutex_lock(&dev->struct_mutex);
  660. if (pinned_pages < num_pages) {
  661. ret = -EFAULT;
  662. goto out_unpin_pages;
  663. }
  664. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  665. if (ret)
  666. goto out_unpin_pages;
  667. obj_priv = to_intel_bo(obj);
  668. offset = obj_priv->gtt_offset + args->offset;
  669. while (remain > 0) {
  670. /* Operation in this page
  671. *
  672. * gtt_page_base = page offset within aperture
  673. * gtt_page_offset = offset within page in aperture
  674. * data_page_index = page number in get_user_pages return
  675. * data_page_offset = offset with data_page_index page.
  676. * page_length = bytes to copy for this page
  677. */
  678. gtt_page_base = offset & PAGE_MASK;
  679. gtt_page_offset = offset & ~PAGE_MASK;
  680. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  681. data_page_offset = data_ptr & ~PAGE_MASK;
  682. page_length = remain;
  683. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  684. page_length = PAGE_SIZE - gtt_page_offset;
  685. if ((data_page_offset + page_length) > PAGE_SIZE)
  686. page_length = PAGE_SIZE - data_page_offset;
  687. slow_kernel_write(dev_priv->mm.gtt_mapping,
  688. gtt_page_base, gtt_page_offset,
  689. user_pages[data_page_index],
  690. data_page_offset,
  691. page_length);
  692. remain -= page_length;
  693. offset += page_length;
  694. data_ptr += page_length;
  695. }
  696. out_unpin_pages:
  697. for (i = 0; i < pinned_pages; i++)
  698. page_cache_release(user_pages[i]);
  699. drm_free_large(user_pages);
  700. return ret;
  701. }
  702. /**
  703. * This is the fast shmem pwrite path, which attempts to directly
  704. * copy_from_user into the kmapped pages backing the object.
  705. */
  706. static int
  707. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  708. struct drm_i915_gem_pwrite *args,
  709. struct drm_file *file_priv)
  710. {
  711. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  712. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  713. ssize_t remain;
  714. loff_t offset;
  715. char __user *user_data;
  716. int page_offset, page_length;
  717. user_data = (char __user *) (uintptr_t) args->data_ptr;
  718. remain = args->size;
  719. obj_priv = to_intel_bo(obj);
  720. offset = args->offset;
  721. obj_priv->dirty = 1;
  722. while (remain > 0) {
  723. struct page *page;
  724. char *vaddr;
  725. int ret;
  726. /* Operation in this page
  727. *
  728. * page_offset = offset within page
  729. * page_length = bytes to copy for this page
  730. */
  731. page_offset = offset & (PAGE_SIZE-1);
  732. page_length = remain;
  733. if ((page_offset + remain) > PAGE_SIZE)
  734. page_length = PAGE_SIZE - page_offset;
  735. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  736. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  737. if (IS_ERR(page))
  738. return PTR_ERR(page);
  739. vaddr = kmap_atomic(page, KM_USER0);
  740. ret = __copy_from_user_inatomic(vaddr + page_offset,
  741. user_data,
  742. page_length);
  743. kunmap_atomic(vaddr, KM_USER0);
  744. set_page_dirty(page);
  745. mark_page_accessed(page);
  746. page_cache_release(page);
  747. /* If we get a fault while copying data, then (presumably) our
  748. * source page isn't available. Return the error and we'll
  749. * retry in the slow path.
  750. */
  751. if (ret)
  752. return -EFAULT;
  753. remain -= page_length;
  754. user_data += page_length;
  755. offset += page_length;
  756. }
  757. return 0;
  758. }
  759. /**
  760. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  761. * the memory and maps it using kmap_atomic for copying.
  762. *
  763. * This avoids taking mmap_sem for faulting on the user's address while the
  764. * struct_mutex is held.
  765. */
  766. static int
  767. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  768. struct drm_i915_gem_pwrite *args,
  769. struct drm_file *file_priv)
  770. {
  771. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  772. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  773. struct mm_struct *mm = current->mm;
  774. struct page **user_pages;
  775. ssize_t remain;
  776. loff_t offset, pinned_pages, i;
  777. loff_t first_data_page, last_data_page, num_pages;
  778. int shmem_page_offset;
  779. int data_page_index, data_page_offset;
  780. int page_length;
  781. int ret;
  782. uint64_t data_ptr = args->data_ptr;
  783. int do_bit17_swizzling;
  784. remain = args->size;
  785. /* Pin the user pages containing the data. We can't fault while
  786. * holding the struct mutex, and all of the pwrite implementations
  787. * want to hold it while dereferencing the user data.
  788. */
  789. first_data_page = data_ptr / PAGE_SIZE;
  790. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  791. num_pages = last_data_page - first_data_page + 1;
  792. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  793. if (user_pages == NULL)
  794. return -ENOMEM;
  795. mutex_unlock(&dev->struct_mutex);
  796. down_read(&mm->mmap_sem);
  797. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  798. num_pages, 0, 0, user_pages, NULL);
  799. up_read(&mm->mmap_sem);
  800. mutex_lock(&dev->struct_mutex);
  801. if (pinned_pages < num_pages) {
  802. ret = -EFAULT;
  803. goto out;
  804. }
  805. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  806. if (ret)
  807. goto out;
  808. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  809. obj_priv = to_intel_bo(obj);
  810. offset = args->offset;
  811. obj_priv->dirty = 1;
  812. while (remain > 0) {
  813. struct page *page;
  814. /* Operation in this page
  815. *
  816. * shmem_page_offset = offset within page in shmem file
  817. * data_page_index = page number in get_user_pages return
  818. * data_page_offset = offset with data_page_index page.
  819. * page_length = bytes to copy for this page
  820. */
  821. shmem_page_offset = offset & ~PAGE_MASK;
  822. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  823. data_page_offset = data_ptr & ~PAGE_MASK;
  824. page_length = remain;
  825. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  826. page_length = PAGE_SIZE - shmem_page_offset;
  827. if ((data_page_offset + page_length) > PAGE_SIZE)
  828. page_length = PAGE_SIZE - data_page_offset;
  829. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  830. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  831. if (IS_ERR(page)) {
  832. ret = PTR_ERR(page);
  833. goto out;
  834. }
  835. if (do_bit17_swizzling) {
  836. slow_shmem_bit17_copy(page,
  837. shmem_page_offset,
  838. user_pages[data_page_index],
  839. data_page_offset,
  840. page_length,
  841. 0);
  842. } else {
  843. slow_shmem_copy(page,
  844. shmem_page_offset,
  845. user_pages[data_page_index],
  846. data_page_offset,
  847. page_length);
  848. }
  849. set_page_dirty(page);
  850. mark_page_accessed(page);
  851. page_cache_release(page);
  852. remain -= page_length;
  853. data_ptr += page_length;
  854. offset += page_length;
  855. }
  856. out:
  857. for (i = 0; i < pinned_pages; i++)
  858. page_cache_release(user_pages[i]);
  859. drm_free_large(user_pages);
  860. return ret;
  861. }
  862. /**
  863. * Writes data to the object referenced by handle.
  864. *
  865. * On error, the contents of the buffer that were to be modified are undefined.
  866. */
  867. int
  868. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  869. struct drm_file *file)
  870. {
  871. struct drm_i915_gem_pwrite *args = data;
  872. struct drm_gem_object *obj;
  873. struct drm_i915_gem_object *obj_priv;
  874. int ret;
  875. if (args->size == 0)
  876. return 0;
  877. if (!access_ok(VERIFY_READ,
  878. (char __user *)(uintptr_t)args->data_ptr,
  879. args->size))
  880. return -EFAULT;
  881. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  882. args->size);
  883. if (ret)
  884. return -EFAULT;
  885. ret = i915_mutex_lock_interruptible(dev);
  886. if (ret)
  887. return ret;
  888. obj = drm_gem_object_lookup(dev, file, args->handle);
  889. if (obj == NULL) {
  890. ret = -ENOENT;
  891. goto unlock;
  892. }
  893. obj_priv = to_intel_bo(obj);
  894. /* Bounds check destination. */
  895. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  896. ret = -EINVAL;
  897. goto out;
  898. }
  899. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  900. * it would end up going through the fenced access, and we'll get
  901. * different detiling behavior between reading and writing.
  902. * pread/pwrite currently are reading and writing from the CPU
  903. * perspective, requiring manual detiling by the client.
  904. */
  905. if (obj_priv->phys_obj)
  906. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  907. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  908. obj_priv->gtt_space &&
  909. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  910. ret = i915_gem_object_pin(obj, 0, true);
  911. if (ret)
  912. goto out;
  913. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  914. if (ret)
  915. goto out_unpin;
  916. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  917. if (ret == -EFAULT)
  918. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  919. out_unpin:
  920. i915_gem_object_unpin(obj);
  921. } else {
  922. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  923. if (ret)
  924. goto out;
  925. ret = -EFAULT;
  926. if (!i915_gem_object_needs_bit17_swizzle(obj))
  927. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  928. if (ret == -EFAULT)
  929. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  930. }
  931. out:
  932. drm_gem_object_unreference(obj);
  933. unlock:
  934. mutex_unlock(&dev->struct_mutex);
  935. return ret;
  936. }
  937. /**
  938. * Called when user space prepares to use an object with the CPU, either
  939. * through the mmap ioctl's mapping or a GTT mapping.
  940. */
  941. int
  942. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  943. struct drm_file *file_priv)
  944. {
  945. struct drm_i915_private *dev_priv = dev->dev_private;
  946. struct drm_i915_gem_set_domain *args = data;
  947. struct drm_gem_object *obj;
  948. struct drm_i915_gem_object *obj_priv;
  949. uint32_t read_domains = args->read_domains;
  950. uint32_t write_domain = args->write_domain;
  951. int ret;
  952. if (!(dev->driver->driver_features & DRIVER_GEM))
  953. return -ENODEV;
  954. /* Only handle setting domains to types used by the CPU. */
  955. if (write_domain & I915_GEM_GPU_DOMAINS)
  956. return -EINVAL;
  957. if (read_domains & I915_GEM_GPU_DOMAINS)
  958. return -EINVAL;
  959. /* Having something in the write domain implies it's in the read
  960. * domain, and only that read domain. Enforce that in the request.
  961. */
  962. if (write_domain != 0 && read_domains != write_domain)
  963. return -EINVAL;
  964. ret = i915_mutex_lock_interruptible(dev);
  965. if (ret)
  966. return ret;
  967. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  968. if (obj == NULL) {
  969. ret = -ENOENT;
  970. goto unlock;
  971. }
  972. obj_priv = to_intel_bo(obj);
  973. intel_mark_busy(dev, obj);
  974. if (read_domains & I915_GEM_DOMAIN_GTT) {
  975. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  976. /* Update the LRU on the fence for the CPU access that's
  977. * about to occur.
  978. */
  979. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  980. struct drm_i915_fence_reg *reg =
  981. &dev_priv->fence_regs[obj_priv->fence_reg];
  982. list_move_tail(&reg->lru_list,
  983. &dev_priv->mm.fence_list);
  984. }
  985. /* Silently promote "you're not bound, there was nothing to do"
  986. * to success, since the client was just asking us to
  987. * make sure everything was done.
  988. */
  989. if (ret == -EINVAL)
  990. ret = 0;
  991. } else {
  992. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  993. }
  994. /* Maintain LRU order of "inactive" objects */
  995. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  996. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  997. drm_gem_object_unreference(obj);
  998. unlock:
  999. mutex_unlock(&dev->struct_mutex);
  1000. return ret;
  1001. }
  1002. /**
  1003. * Called when user space has done writes to this buffer
  1004. */
  1005. int
  1006. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1007. struct drm_file *file_priv)
  1008. {
  1009. struct drm_i915_gem_sw_finish *args = data;
  1010. struct drm_gem_object *obj;
  1011. int ret = 0;
  1012. if (!(dev->driver->driver_features & DRIVER_GEM))
  1013. return -ENODEV;
  1014. ret = i915_mutex_lock_interruptible(dev);
  1015. if (ret)
  1016. return ret;
  1017. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1018. if (obj == NULL) {
  1019. ret = -ENOENT;
  1020. goto unlock;
  1021. }
  1022. /* Pinned buffers may be scanout, so flush the cache */
  1023. if (to_intel_bo(obj)->pin_count)
  1024. i915_gem_object_flush_cpu_write_domain(obj);
  1025. drm_gem_object_unreference(obj);
  1026. unlock:
  1027. mutex_unlock(&dev->struct_mutex);
  1028. return ret;
  1029. }
  1030. /**
  1031. * Maps the contents of an object, returning the address it is mapped
  1032. * into.
  1033. *
  1034. * While the mapping holds a reference on the contents of the object, it doesn't
  1035. * imply a ref on the object itself.
  1036. */
  1037. int
  1038. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1039. struct drm_file *file_priv)
  1040. {
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. struct drm_i915_gem_mmap *args = data;
  1043. struct drm_gem_object *obj;
  1044. loff_t offset;
  1045. unsigned long addr;
  1046. if (!(dev->driver->driver_features & DRIVER_GEM))
  1047. return -ENODEV;
  1048. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1049. if (obj == NULL)
  1050. return -ENOENT;
  1051. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1052. drm_gem_object_unreference_unlocked(obj);
  1053. return -E2BIG;
  1054. }
  1055. offset = args->offset;
  1056. down_write(&current->mm->mmap_sem);
  1057. addr = do_mmap(obj->filp, 0, args->size,
  1058. PROT_READ | PROT_WRITE, MAP_SHARED,
  1059. args->offset);
  1060. up_write(&current->mm->mmap_sem);
  1061. drm_gem_object_unreference_unlocked(obj);
  1062. if (IS_ERR((void *)addr))
  1063. return addr;
  1064. args->addr_ptr = (uint64_t) addr;
  1065. return 0;
  1066. }
  1067. /**
  1068. * i915_gem_fault - fault a page into the GTT
  1069. * vma: VMA in question
  1070. * vmf: fault info
  1071. *
  1072. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1073. * from userspace. The fault handler takes care of binding the object to
  1074. * the GTT (if needed), allocating and programming a fence register (again,
  1075. * only if needed based on whether the old reg is still valid or the object
  1076. * is tiled) and inserting a new PTE into the faulting process.
  1077. *
  1078. * Note that the faulting process may involve evicting existing objects
  1079. * from the GTT and/or fence registers to make room. So performance may
  1080. * suffer if the GTT working set is large or there are few fence registers
  1081. * left.
  1082. */
  1083. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1084. {
  1085. struct drm_gem_object *obj = vma->vm_private_data;
  1086. struct drm_device *dev = obj->dev;
  1087. drm_i915_private_t *dev_priv = dev->dev_private;
  1088. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1089. pgoff_t page_offset;
  1090. unsigned long pfn;
  1091. int ret = 0;
  1092. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1093. /* We don't use vmf->pgoff since that has the fake offset */
  1094. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1095. PAGE_SHIFT;
  1096. /* Now bind it into the GTT if needed */
  1097. mutex_lock(&dev->struct_mutex);
  1098. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1099. if (obj_priv->gtt_space) {
  1100. if (!obj_priv->map_and_fenceable) {
  1101. ret = i915_gem_object_unbind(obj);
  1102. if (ret)
  1103. goto unlock;
  1104. }
  1105. }
  1106. if (!obj_priv->gtt_space) {
  1107. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1108. if (ret)
  1109. goto unlock;
  1110. }
  1111. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1112. if (ret)
  1113. goto unlock;
  1114. if (!obj_priv->fault_mappable) {
  1115. obj_priv->fault_mappable = true;
  1116. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1117. }
  1118. /* Need a new fence register? */
  1119. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1120. ret = i915_gem_object_get_fence_reg(obj, true);
  1121. if (ret)
  1122. goto unlock;
  1123. }
  1124. if (i915_gem_object_is_inactive(obj_priv))
  1125. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1126. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1127. page_offset;
  1128. /* Finally, remap it using the new GTT offset */
  1129. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1130. unlock:
  1131. mutex_unlock(&dev->struct_mutex);
  1132. switch (ret) {
  1133. case -EAGAIN:
  1134. set_need_resched();
  1135. case 0:
  1136. case -ERESTARTSYS:
  1137. return VM_FAULT_NOPAGE;
  1138. case -ENOMEM:
  1139. return VM_FAULT_OOM;
  1140. default:
  1141. return VM_FAULT_SIGBUS;
  1142. }
  1143. }
  1144. /**
  1145. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1146. * @obj: obj in question
  1147. *
  1148. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1149. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1150. * up the object based on the offset and sets up the various memory mapping
  1151. * structures.
  1152. *
  1153. * This routine allocates and attaches a fake offset for @obj.
  1154. */
  1155. static int
  1156. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1157. {
  1158. struct drm_device *dev = obj->dev;
  1159. struct drm_gem_mm *mm = dev->mm_private;
  1160. struct drm_map_list *list;
  1161. struct drm_local_map *map;
  1162. int ret = 0;
  1163. /* Set the object up for mmap'ing */
  1164. list = &obj->map_list;
  1165. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1166. if (!list->map)
  1167. return -ENOMEM;
  1168. map = list->map;
  1169. map->type = _DRM_GEM;
  1170. map->size = obj->size;
  1171. map->handle = obj;
  1172. /* Get a DRM GEM mmap offset allocated... */
  1173. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1174. obj->size / PAGE_SIZE, 0, 0);
  1175. if (!list->file_offset_node) {
  1176. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1177. ret = -ENOSPC;
  1178. goto out_free_list;
  1179. }
  1180. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1181. obj->size / PAGE_SIZE, 0);
  1182. if (!list->file_offset_node) {
  1183. ret = -ENOMEM;
  1184. goto out_free_list;
  1185. }
  1186. list->hash.key = list->file_offset_node->start;
  1187. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1188. if (ret) {
  1189. DRM_ERROR("failed to add to map hash\n");
  1190. goto out_free_mm;
  1191. }
  1192. return 0;
  1193. out_free_mm:
  1194. drm_mm_put_block(list->file_offset_node);
  1195. out_free_list:
  1196. kfree(list->map);
  1197. list->map = NULL;
  1198. return ret;
  1199. }
  1200. /**
  1201. * i915_gem_release_mmap - remove physical page mappings
  1202. * @obj: obj in question
  1203. *
  1204. * Preserve the reservation of the mmapping with the DRM core code, but
  1205. * relinquish ownership of the pages back to the system.
  1206. *
  1207. * It is vital that we remove the page mapping if we have mapped a tiled
  1208. * object through the GTT and then lose the fence register due to
  1209. * resource pressure. Similarly if the object has been moved out of the
  1210. * aperture, than pages mapped into userspace must be revoked. Removing the
  1211. * mapping will then trigger a page fault on the next user access, allowing
  1212. * fixup by i915_gem_fault().
  1213. */
  1214. void
  1215. i915_gem_release_mmap(struct drm_gem_object *obj)
  1216. {
  1217. struct drm_device *dev = obj->dev;
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1220. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1221. unmap_mapping_range(dev->dev_mapping,
  1222. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1223. obj->size, 1);
  1224. if (obj_priv->fault_mappable) {
  1225. obj_priv->fault_mappable = false;
  1226. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1227. }
  1228. }
  1229. static void
  1230. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1231. {
  1232. struct drm_device *dev = obj->dev;
  1233. struct drm_gem_mm *mm = dev->mm_private;
  1234. struct drm_map_list *list = &obj->map_list;
  1235. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1236. drm_mm_put_block(list->file_offset_node);
  1237. kfree(list->map);
  1238. list->map = NULL;
  1239. }
  1240. /**
  1241. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1242. * @obj: object to check
  1243. *
  1244. * Return the required GTT alignment for an object, taking into account
  1245. * potential fence register mapping.
  1246. */
  1247. static uint32_t
  1248. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1249. {
  1250. struct drm_device *dev = obj_priv->base.dev;
  1251. /*
  1252. * Minimum alignment is 4k (GTT page size), but might be greater
  1253. * if a fence register is needed for the object.
  1254. */
  1255. if (INTEL_INFO(dev)->gen >= 4 ||
  1256. obj_priv->tiling_mode == I915_TILING_NONE)
  1257. return 4096;
  1258. /*
  1259. * Previous chips need to be aligned to the size of the smallest
  1260. * fence register that can contain the object.
  1261. */
  1262. return i915_gem_get_gtt_size(obj_priv);
  1263. }
  1264. /**
  1265. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1266. * unfenced object
  1267. * @obj: object to check
  1268. *
  1269. * Return the required GTT alignment for an object, only taking into account
  1270. * unfenced tiled surface requirements.
  1271. */
  1272. static uint32_t
  1273. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1274. {
  1275. struct drm_device *dev = obj_priv->base.dev;
  1276. int tile_height;
  1277. /*
  1278. * Minimum alignment is 4k (GTT page size) for sane hw.
  1279. */
  1280. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1281. obj_priv->tiling_mode == I915_TILING_NONE)
  1282. return 4096;
  1283. /*
  1284. * Older chips need unfenced tiled buffers to be aligned to the left
  1285. * edge of an even tile row (where tile rows are counted as if the bo is
  1286. * placed in a fenced gtt region).
  1287. */
  1288. if (IS_GEN2(dev) ||
  1289. (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1290. tile_height = 32;
  1291. else
  1292. tile_height = 8;
  1293. return tile_height * obj_priv->stride * 2;
  1294. }
  1295. static uint32_t
  1296. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1297. {
  1298. struct drm_device *dev = obj_priv->base.dev;
  1299. uint32_t size;
  1300. /*
  1301. * Minimum alignment is 4k (GTT page size), but might be greater
  1302. * if a fence register is needed for the object.
  1303. */
  1304. if (INTEL_INFO(dev)->gen >= 4)
  1305. return obj_priv->base.size;
  1306. /*
  1307. * Previous chips need to be aligned to the size of the smallest
  1308. * fence register that can contain the object.
  1309. */
  1310. if (INTEL_INFO(dev)->gen == 3)
  1311. size = 1024*1024;
  1312. else
  1313. size = 512*1024;
  1314. while (size < obj_priv->base.size)
  1315. size <<= 1;
  1316. return size;
  1317. }
  1318. /**
  1319. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1320. * @dev: DRM device
  1321. * @data: GTT mapping ioctl data
  1322. * @file_priv: GEM object info
  1323. *
  1324. * Simply returns the fake offset to userspace so it can mmap it.
  1325. * The mmap call will end up in drm_gem_mmap(), which will set things
  1326. * up so we can get faults in the handler above.
  1327. *
  1328. * The fault handler will take care of binding the object into the GTT
  1329. * (since it may have been evicted to make room for something), allocating
  1330. * a fence register, and mapping the appropriate aperture address into
  1331. * userspace.
  1332. */
  1333. int
  1334. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1335. struct drm_file *file_priv)
  1336. {
  1337. struct drm_i915_private *dev_priv = dev->dev_private;
  1338. struct drm_i915_gem_mmap_gtt *args = data;
  1339. struct drm_gem_object *obj;
  1340. struct drm_i915_gem_object *obj_priv;
  1341. int ret;
  1342. if (!(dev->driver->driver_features & DRIVER_GEM))
  1343. return -ENODEV;
  1344. ret = i915_mutex_lock_interruptible(dev);
  1345. if (ret)
  1346. return ret;
  1347. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1348. if (obj == NULL) {
  1349. ret = -ENOENT;
  1350. goto unlock;
  1351. }
  1352. obj_priv = to_intel_bo(obj);
  1353. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1354. ret = -E2BIG;
  1355. goto unlock;
  1356. }
  1357. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1358. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1359. ret = -EINVAL;
  1360. goto out;
  1361. }
  1362. if (!obj->map_list.map) {
  1363. ret = i915_gem_create_mmap_offset(obj);
  1364. if (ret)
  1365. goto out;
  1366. }
  1367. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1368. out:
  1369. drm_gem_object_unreference(obj);
  1370. unlock:
  1371. mutex_unlock(&dev->struct_mutex);
  1372. return ret;
  1373. }
  1374. static int
  1375. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1376. gfp_t gfpmask)
  1377. {
  1378. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1379. int page_count, i;
  1380. struct address_space *mapping;
  1381. struct inode *inode;
  1382. struct page *page;
  1383. /* Get the list of pages out of our struct file. They'll be pinned
  1384. * at this point until we release them.
  1385. */
  1386. page_count = obj->size / PAGE_SIZE;
  1387. BUG_ON(obj_priv->pages != NULL);
  1388. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1389. if (obj_priv->pages == NULL)
  1390. return -ENOMEM;
  1391. inode = obj->filp->f_path.dentry->d_inode;
  1392. mapping = inode->i_mapping;
  1393. for (i = 0; i < page_count; i++) {
  1394. page = read_cache_page_gfp(mapping, i,
  1395. GFP_HIGHUSER |
  1396. __GFP_COLD |
  1397. __GFP_RECLAIMABLE |
  1398. gfpmask);
  1399. if (IS_ERR(page))
  1400. goto err_pages;
  1401. obj_priv->pages[i] = page;
  1402. }
  1403. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1404. i915_gem_object_do_bit_17_swizzle(obj);
  1405. return 0;
  1406. err_pages:
  1407. while (i--)
  1408. page_cache_release(obj_priv->pages[i]);
  1409. drm_free_large(obj_priv->pages);
  1410. obj_priv->pages = NULL;
  1411. return PTR_ERR(page);
  1412. }
  1413. static void
  1414. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1415. {
  1416. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1417. int page_count = obj->size / PAGE_SIZE;
  1418. int i;
  1419. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1420. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1421. i915_gem_object_save_bit_17_swizzle(obj);
  1422. if (obj_priv->madv == I915_MADV_DONTNEED)
  1423. obj_priv->dirty = 0;
  1424. for (i = 0; i < page_count; i++) {
  1425. if (obj_priv->dirty)
  1426. set_page_dirty(obj_priv->pages[i]);
  1427. if (obj_priv->madv == I915_MADV_WILLNEED)
  1428. mark_page_accessed(obj_priv->pages[i]);
  1429. page_cache_release(obj_priv->pages[i]);
  1430. }
  1431. obj_priv->dirty = 0;
  1432. drm_free_large(obj_priv->pages);
  1433. obj_priv->pages = NULL;
  1434. }
  1435. static uint32_t
  1436. i915_gem_next_request_seqno(struct drm_device *dev,
  1437. struct intel_ring_buffer *ring)
  1438. {
  1439. drm_i915_private_t *dev_priv = dev->dev_private;
  1440. return ring->outstanding_lazy_request = dev_priv->next_seqno;
  1441. }
  1442. static void
  1443. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1444. struct intel_ring_buffer *ring)
  1445. {
  1446. struct drm_device *dev = obj->dev;
  1447. struct drm_i915_private *dev_priv = dev->dev_private;
  1448. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1449. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1450. BUG_ON(ring == NULL);
  1451. obj_priv->ring = ring;
  1452. /* Add a reference if we're newly entering the active list. */
  1453. if (!obj_priv->active) {
  1454. drm_gem_object_reference(obj);
  1455. obj_priv->active = 1;
  1456. }
  1457. /* Move from whatever list we were on to the tail of execution. */
  1458. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1459. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1460. obj_priv->last_rendering_seqno = seqno;
  1461. }
  1462. static void
  1463. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1464. {
  1465. struct drm_device *dev = obj->dev;
  1466. drm_i915_private_t *dev_priv = dev->dev_private;
  1467. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1468. BUG_ON(!obj_priv->active);
  1469. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1470. list_del_init(&obj_priv->ring_list);
  1471. obj_priv->last_rendering_seqno = 0;
  1472. }
  1473. /* Immediately discard the backing storage */
  1474. static void
  1475. i915_gem_object_truncate(struct drm_gem_object *obj)
  1476. {
  1477. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1478. struct inode *inode;
  1479. /* Our goal here is to return as much of the memory as
  1480. * is possible back to the system as we are called from OOM.
  1481. * To do this we must instruct the shmfs to drop all of its
  1482. * backing pages, *now*. Here we mirror the actions taken
  1483. * when by shmem_delete_inode() to release the backing store.
  1484. */
  1485. inode = obj->filp->f_path.dentry->d_inode;
  1486. truncate_inode_pages(inode->i_mapping, 0);
  1487. if (inode->i_op->truncate_range)
  1488. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1489. obj_priv->madv = __I915_MADV_PURGED;
  1490. }
  1491. static inline int
  1492. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1493. {
  1494. return obj_priv->madv == I915_MADV_DONTNEED;
  1495. }
  1496. static void
  1497. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1498. {
  1499. struct drm_device *dev = obj->dev;
  1500. drm_i915_private_t *dev_priv = dev->dev_private;
  1501. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1502. if (obj_priv->pin_count != 0)
  1503. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1504. else
  1505. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1506. list_del_init(&obj_priv->ring_list);
  1507. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1508. obj_priv->last_rendering_seqno = 0;
  1509. obj_priv->ring = NULL;
  1510. if (obj_priv->active) {
  1511. obj_priv->active = 0;
  1512. drm_gem_object_unreference(obj);
  1513. }
  1514. WARN_ON(i915_verify_lists(dev));
  1515. }
  1516. static void
  1517. i915_gem_process_flushing_list(struct drm_device *dev,
  1518. uint32_t flush_domains,
  1519. struct intel_ring_buffer *ring)
  1520. {
  1521. drm_i915_private_t *dev_priv = dev->dev_private;
  1522. struct drm_i915_gem_object *obj_priv, *next;
  1523. list_for_each_entry_safe(obj_priv, next,
  1524. &ring->gpu_write_list,
  1525. gpu_write_list) {
  1526. struct drm_gem_object *obj = &obj_priv->base;
  1527. if (obj->write_domain & flush_domains) {
  1528. uint32_t old_write_domain = obj->write_domain;
  1529. obj->write_domain = 0;
  1530. list_del_init(&obj_priv->gpu_write_list);
  1531. i915_gem_object_move_to_active(obj, ring);
  1532. /* update the fence lru list */
  1533. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1534. struct drm_i915_fence_reg *reg =
  1535. &dev_priv->fence_regs[obj_priv->fence_reg];
  1536. list_move_tail(&reg->lru_list,
  1537. &dev_priv->mm.fence_list);
  1538. }
  1539. trace_i915_gem_object_change_domain(obj,
  1540. obj->read_domains,
  1541. old_write_domain);
  1542. }
  1543. }
  1544. }
  1545. int
  1546. i915_add_request(struct drm_device *dev,
  1547. struct drm_file *file,
  1548. struct drm_i915_gem_request *request,
  1549. struct intel_ring_buffer *ring)
  1550. {
  1551. drm_i915_private_t *dev_priv = dev->dev_private;
  1552. struct drm_i915_file_private *file_priv = NULL;
  1553. uint32_t seqno;
  1554. int was_empty;
  1555. int ret;
  1556. BUG_ON(request == NULL);
  1557. if (file != NULL)
  1558. file_priv = file->driver_priv;
  1559. ret = ring->add_request(ring, &seqno);
  1560. if (ret)
  1561. return ret;
  1562. ring->outstanding_lazy_request = false;
  1563. request->seqno = seqno;
  1564. request->ring = ring;
  1565. request->emitted_jiffies = jiffies;
  1566. was_empty = list_empty(&ring->request_list);
  1567. list_add_tail(&request->list, &ring->request_list);
  1568. if (file_priv) {
  1569. spin_lock(&file_priv->mm.lock);
  1570. request->file_priv = file_priv;
  1571. list_add_tail(&request->client_list,
  1572. &file_priv->mm.request_list);
  1573. spin_unlock(&file_priv->mm.lock);
  1574. }
  1575. if (!dev_priv->mm.suspended) {
  1576. mod_timer(&dev_priv->hangcheck_timer,
  1577. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1578. if (was_empty)
  1579. queue_delayed_work(dev_priv->wq,
  1580. &dev_priv->mm.retire_work, HZ);
  1581. }
  1582. return 0;
  1583. }
  1584. /**
  1585. * Command execution barrier
  1586. *
  1587. * Ensures that all commands in the ring are finished
  1588. * before signalling the CPU
  1589. */
  1590. static void
  1591. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1592. {
  1593. uint32_t flush_domains = 0;
  1594. /* The sampler always gets flushed on i965 (sigh) */
  1595. if (INTEL_INFO(dev)->gen >= 4)
  1596. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1597. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1598. }
  1599. static inline void
  1600. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1601. {
  1602. struct drm_i915_file_private *file_priv = request->file_priv;
  1603. if (!file_priv)
  1604. return;
  1605. spin_lock(&file_priv->mm.lock);
  1606. list_del(&request->client_list);
  1607. request->file_priv = NULL;
  1608. spin_unlock(&file_priv->mm.lock);
  1609. }
  1610. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1611. struct intel_ring_buffer *ring)
  1612. {
  1613. while (!list_empty(&ring->request_list)) {
  1614. struct drm_i915_gem_request *request;
  1615. request = list_first_entry(&ring->request_list,
  1616. struct drm_i915_gem_request,
  1617. list);
  1618. list_del(&request->list);
  1619. i915_gem_request_remove_from_client(request);
  1620. kfree(request);
  1621. }
  1622. while (!list_empty(&ring->active_list)) {
  1623. struct drm_i915_gem_object *obj_priv;
  1624. obj_priv = list_first_entry(&ring->active_list,
  1625. struct drm_i915_gem_object,
  1626. ring_list);
  1627. obj_priv->base.write_domain = 0;
  1628. list_del_init(&obj_priv->gpu_write_list);
  1629. i915_gem_object_move_to_inactive(&obj_priv->base);
  1630. }
  1631. }
  1632. void i915_gem_reset(struct drm_device *dev)
  1633. {
  1634. struct drm_i915_private *dev_priv = dev->dev_private;
  1635. struct drm_i915_gem_object *obj_priv;
  1636. int i;
  1637. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1638. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1639. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1640. /* Remove anything from the flushing lists. The GPU cache is likely
  1641. * to be lost on reset along with the data, so simply move the
  1642. * lost bo to the inactive list.
  1643. */
  1644. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1645. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1646. struct drm_i915_gem_object,
  1647. mm_list);
  1648. obj_priv->base.write_domain = 0;
  1649. list_del_init(&obj_priv->gpu_write_list);
  1650. i915_gem_object_move_to_inactive(&obj_priv->base);
  1651. }
  1652. /* Move everything out of the GPU domains to ensure we do any
  1653. * necessary invalidation upon reuse.
  1654. */
  1655. list_for_each_entry(obj_priv,
  1656. &dev_priv->mm.inactive_list,
  1657. mm_list)
  1658. {
  1659. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1660. }
  1661. /* The fence registers are invalidated so clear them out */
  1662. for (i = 0; i < 16; i++) {
  1663. struct drm_i915_fence_reg *reg;
  1664. reg = &dev_priv->fence_regs[i];
  1665. if (!reg->obj)
  1666. continue;
  1667. i915_gem_clear_fence_reg(reg->obj);
  1668. }
  1669. }
  1670. /**
  1671. * This function clears the request list as sequence numbers are passed.
  1672. */
  1673. static void
  1674. i915_gem_retire_requests_ring(struct drm_device *dev,
  1675. struct intel_ring_buffer *ring)
  1676. {
  1677. drm_i915_private_t *dev_priv = dev->dev_private;
  1678. uint32_t seqno;
  1679. if (!ring->status_page.page_addr ||
  1680. list_empty(&ring->request_list))
  1681. return;
  1682. WARN_ON(i915_verify_lists(dev));
  1683. seqno = ring->get_seqno(ring);
  1684. while (!list_empty(&ring->request_list)) {
  1685. struct drm_i915_gem_request *request;
  1686. request = list_first_entry(&ring->request_list,
  1687. struct drm_i915_gem_request,
  1688. list);
  1689. if (!i915_seqno_passed(seqno, request->seqno))
  1690. break;
  1691. trace_i915_gem_request_retire(dev, request->seqno);
  1692. list_del(&request->list);
  1693. i915_gem_request_remove_from_client(request);
  1694. kfree(request);
  1695. }
  1696. /* Move any buffers on the active list that are no longer referenced
  1697. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1698. */
  1699. while (!list_empty(&ring->active_list)) {
  1700. struct drm_gem_object *obj;
  1701. struct drm_i915_gem_object *obj_priv;
  1702. obj_priv = list_first_entry(&ring->active_list,
  1703. struct drm_i915_gem_object,
  1704. ring_list);
  1705. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1706. break;
  1707. obj = &obj_priv->base;
  1708. if (obj->write_domain != 0)
  1709. i915_gem_object_move_to_flushing(obj);
  1710. else
  1711. i915_gem_object_move_to_inactive(obj);
  1712. }
  1713. if (unlikely (dev_priv->trace_irq_seqno &&
  1714. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1715. ring->user_irq_put(ring);
  1716. dev_priv->trace_irq_seqno = 0;
  1717. }
  1718. WARN_ON(i915_verify_lists(dev));
  1719. }
  1720. void
  1721. i915_gem_retire_requests(struct drm_device *dev)
  1722. {
  1723. drm_i915_private_t *dev_priv = dev->dev_private;
  1724. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1725. struct drm_i915_gem_object *obj_priv, *tmp;
  1726. /* We must be careful that during unbind() we do not
  1727. * accidentally infinitely recurse into retire requests.
  1728. * Currently:
  1729. * retire -> free -> unbind -> wait -> retire_ring
  1730. */
  1731. list_for_each_entry_safe(obj_priv, tmp,
  1732. &dev_priv->mm.deferred_free_list,
  1733. mm_list)
  1734. i915_gem_free_object_tail(&obj_priv->base);
  1735. }
  1736. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1737. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1738. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1739. }
  1740. static void
  1741. i915_gem_retire_work_handler(struct work_struct *work)
  1742. {
  1743. drm_i915_private_t *dev_priv;
  1744. struct drm_device *dev;
  1745. dev_priv = container_of(work, drm_i915_private_t,
  1746. mm.retire_work.work);
  1747. dev = dev_priv->dev;
  1748. /* Come back later if the device is busy... */
  1749. if (!mutex_trylock(&dev->struct_mutex)) {
  1750. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1751. return;
  1752. }
  1753. i915_gem_retire_requests(dev);
  1754. if (!dev_priv->mm.suspended &&
  1755. (!list_empty(&dev_priv->render_ring.request_list) ||
  1756. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1757. !list_empty(&dev_priv->blt_ring.request_list)))
  1758. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1759. mutex_unlock(&dev->struct_mutex);
  1760. }
  1761. int
  1762. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1763. bool interruptible, struct intel_ring_buffer *ring)
  1764. {
  1765. drm_i915_private_t *dev_priv = dev->dev_private;
  1766. u32 ier;
  1767. int ret = 0;
  1768. BUG_ON(seqno == 0);
  1769. if (atomic_read(&dev_priv->mm.wedged))
  1770. return -EAGAIN;
  1771. if (seqno == ring->outstanding_lazy_request) {
  1772. struct drm_i915_gem_request *request;
  1773. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1774. if (request == NULL)
  1775. return -ENOMEM;
  1776. ret = i915_add_request(dev, NULL, request, ring);
  1777. if (ret) {
  1778. kfree(request);
  1779. return ret;
  1780. }
  1781. seqno = request->seqno;
  1782. }
  1783. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1784. if (HAS_PCH_SPLIT(dev))
  1785. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1786. else
  1787. ier = I915_READ(IER);
  1788. if (!ier) {
  1789. DRM_ERROR("something (likely vbetool) disabled "
  1790. "interrupts, re-enabling\n");
  1791. i915_driver_irq_preinstall(dev);
  1792. i915_driver_irq_postinstall(dev);
  1793. }
  1794. trace_i915_gem_request_wait_begin(dev, seqno);
  1795. ring->waiting_seqno = seqno;
  1796. ring->user_irq_get(ring);
  1797. if (interruptible)
  1798. ret = wait_event_interruptible(ring->irq_queue,
  1799. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1800. || atomic_read(&dev_priv->mm.wedged));
  1801. else
  1802. wait_event(ring->irq_queue,
  1803. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1804. || atomic_read(&dev_priv->mm.wedged));
  1805. ring->user_irq_put(ring);
  1806. ring->waiting_seqno = 0;
  1807. trace_i915_gem_request_wait_end(dev, seqno);
  1808. }
  1809. if (atomic_read(&dev_priv->mm.wedged))
  1810. ret = -EAGAIN;
  1811. if (ret && ret != -ERESTARTSYS)
  1812. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1813. __func__, ret, seqno, ring->get_seqno(ring),
  1814. dev_priv->next_seqno);
  1815. /* Directly dispatch request retiring. While we have the work queue
  1816. * to handle this, the waiter on a request often wants an associated
  1817. * buffer to have made it to the inactive list, and we would need
  1818. * a separate wait queue to handle that.
  1819. */
  1820. if (ret == 0)
  1821. i915_gem_retire_requests_ring(dev, ring);
  1822. return ret;
  1823. }
  1824. /**
  1825. * Waits for a sequence number to be signaled, and cleans up the
  1826. * request and object lists appropriately for that event.
  1827. */
  1828. static int
  1829. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1830. struct intel_ring_buffer *ring)
  1831. {
  1832. return i915_do_wait_request(dev, seqno, 1, ring);
  1833. }
  1834. static void
  1835. i915_gem_flush_ring(struct drm_device *dev,
  1836. struct drm_file *file_priv,
  1837. struct intel_ring_buffer *ring,
  1838. uint32_t invalidate_domains,
  1839. uint32_t flush_domains)
  1840. {
  1841. ring->flush(ring, invalidate_domains, flush_domains);
  1842. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1843. }
  1844. static void
  1845. i915_gem_flush(struct drm_device *dev,
  1846. struct drm_file *file_priv,
  1847. uint32_t invalidate_domains,
  1848. uint32_t flush_domains,
  1849. uint32_t flush_rings)
  1850. {
  1851. drm_i915_private_t *dev_priv = dev->dev_private;
  1852. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1853. drm_agp_chipset_flush(dev);
  1854. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1855. if (flush_rings & RING_RENDER)
  1856. i915_gem_flush_ring(dev, file_priv,
  1857. &dev_priv->render_ring,
  1858. invalidate_domains, flush_domains);
  1859. if (flush_rings & RING_BSD)
  1860. i915_gem_flush_ring(dev, file_priv,
  1861. &dev_priv->bsd_ring,
  1862. invalidate_domains, flush_domains);
  1863. if (flush_rings & RING_BLT)
  1864. i915_gem_flush_ring(dev, file_priv,
  1865. &dev_priv->blt_ring,
  1866. invalidate_domains, flush_domains);
  1867. }
  1868. }
  1869. /**
  1870. * Ensures that all rendering to the object has completed and the object is
  1871. * safe to unbind from the GTT or access from the CPU.
  1872. */
  1873. static int
  1874. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1875. bool interruptible)
  1876. {
  1877. struct drm_device *dev = obj->dev;
  1878. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1879. int ret;
  1880. /* This function only exists to support waiting for existing rendering,
  1881. * not for emitting required flushes.
  1882. */
  1883. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1884. /* If there is rendering queued on the buffer being evicted, wait for
  1885. * it.
  1886. */
  1887. if (obj_priv->active) {
  1888. ret = i915_do_wait_request(dev,
  1889. obj_priv->last_rendering_seqno,
  1890. interruptible,
  1891. obj_priv->ring);
  1892. if (ret)
  1893. return ret;
  1894. }
  1895. return 0;
  1896. }
  1897. /**
  1898. * Unbinds an object from the GTT aperture.
  1899. */
  1900. int
  1901. i915_gem_object_unbind(struct drm_gem_object *obj)
  1902. {
  1903. struct drm_device *dev = obj->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1906. int ret = 0;
  1907. if (obj_priv->gtt_space == NULL)
  1908. return 0;
  1909. if (obj_priv->pin_count != 0) {
  1910. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1911. return -EINVAL;
  1912. }
  1913. /* blow away mappings if mapped through GTT */
  1914. i915_gem_release_mmap(obj);
  1915. /* Move the object to the CPU domain to ensure that
  1916. * any possible CPU writes while it's not in the GTT
  1917. * are flushed when we go to remap it. This will
  1918. * also ensure that all pending GPU writes are finished
  1919. * before we unbind.
  1920. */
  1921. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1922. if (ret == -ERESTARTSYS)
  1923. return ret;
  1924. /* Continue on if we fail due to EIO, the GPU is hung so we
  1925. * should be safe and we need to cleanup or else we might
  1926. * cause memory corruption through use-after-free.
  1927. */
  1928. if (ret) {
  1929. i915_gem_clflush_object(obj);
  1930. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1931. }
  1932. /* release the fence reg _after_ flushing */
  1933. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1934. i915_gem_clear_fence_reg(obj);
  1935. drm_unbind_agp(obj_priv->agp_mem);
  1936. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1937. i915_gem_object_put_pages_gtt(obj);
  1938. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1939. list_del_init(&obj_priv->mm_list);
  1940. /* Avoid an unnecessary call to unbind on rebind. */
  1941. obj_priv->map_and_fenceable = true;
  1942. drm_mm_put_block(obj_priv->gtt_space);
  1943. obj_priv->gtt_space = NULL;
  1944. obj_priv->gtt_offset = 0;
  1945. if (i915_gem_object_is_purgeable(obj_priv))
  1946. i915_gem_object_truncate(obj);
  1947. trace_i915_gem_object_unbind(obj);
  1948. return ret;
  1949. }
  1950. static int i915_ring_idle(struct drm_device *dev,
  1951. struct intel_ring_buffer *ring)
  1952. {
  1953. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1954. return 0;
  1955. i915_gem_flush_ring(dev, NULL, ring,
  1956. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1957. return i915_wait_request(dev,
  1958. i915_gem_next_request_seqno(dev, ring),
  1959. ring);
  1960. }
  1961. int
  1962. i915_gpu_idle(struct drm_device *dev)
  1963. {
  1964. drm_i915_private_t *dev_priv = dev->dev_private;
  1965. bool lists_empty;
  1966. int ret;
  1967. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1968. list_empty(&dev_priv->mm.active_list));
  1969. if (lists_empty)
  1970. return 0;
  1971. /* Flush everything onto the inactive list. */
  1972. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1973. if (ret)
  1974. return ret;
  1975. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1976. if (ret)
  1977. return ret;
  1978. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1979. if (ret)
  1980. return ret;
  1981. return 0;
  1982. }
  1983. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1984. {
  1985. struct drm_device *dev = obj->dev;
  1986. drm_i915_private_t *dev_priv = dev->dev_private;
  1987. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1988. u32 size = i915_gem_get_gtt_size(obj_priv);
  1989. int regnum = obj_priv->fence_reg;
  1990. uint64_t val;
  1991. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1992. 0xfffff000) << 32;
  1993. val |= obj_priv->gtt_offset & 0xfffff000;
  1994. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1995. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1996. if (obj_priv->tiling_mode == I915_TILING_Y)
  1997. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1998. val |= I965_FENCE_REG_VALID;
  1999. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  2000. }
  2001. static void i965_write_fence_reg(struct drm_gem_object *obj)
  2002. {
  2003. struct drm_device *dev = obj->dev;
  2004. drm_i915_private_t *dev_priv = dev->dev_private;
  2005. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2006. u32 size = i915_gem_get_gtt_size(obj_priv);
  2007. int regnum = obj_priv->fence_reg;
  2008. uint64_t val;
  2009. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  2010. 0xfffff000) << 32;
  2011. val |= obj_priv->gtt_offset & 0xfffff000;
  2012. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2013. if (obj_priv->tiling_mode == I915_TILING_Y)
  2014. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2015. val |= I965_FENCE_REG_VALID;
  2016. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  2017. }
  2018. static void i915_write_fence_reg(struct drm_gem_object *obj)
  2019. {
  2020. struct drm_device *dev = obj->dev;
  2021. drm_i915_private_t *dev_priv = dev->dev_private;
  2022. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2023. u32 size = i915_gem_get_gtt_size(obj_priv);
  2024. uint32_t fence_reg, val, pitch_val;
  2025. int tile_width;
  2026. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2027. (obj_priv->gtt_offset & (size - 1))) {
  2028. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2029. __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
  2030. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2031. return;
  2032. }
  2033. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2034. HAS_128_BYTE_Y_TILING(dev))
  2035. tile_width = 128;
  2036. else
  2037. tile_width = 512;
  2038. /* Note: pitch better be a power of two tile widths */
  2039. pitch_val = obj_priv->stride / tile_width;
  2040. pitch_val = ffs(pitch_val) - 1;
  2041. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2042. HAS_128_BYTE_Y_TILING(dev))
  2043. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2044. else
  2045. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2046. val = obj_priv->gtt_offset;
  2047. if (obj_priv->tiling_mode == I915_TILING_Y)
  2048. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2049. val |= I915_FENCE_SIZE_BITS(size);
  2050. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2051. val |= I830_FENCE_REG_VALID;
  2052. fence_reg = obj_priv->fence_reg;
  2053. if (fence_reg < 8)
  2054. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2055. else
  2056. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2057. I915_WRITE(fence_reg, val);
  2058. }
  2059. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2060. {
  2061. struct drm_device *dev = obj->dev;
  2062. drm_i915_private_t *dev_priv = dev->dev_private;
  2063. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2064. u32 size = i915_gem_get_gtt_size(obj_priv);
  2065. int regnum = obj_priv->fence_reg;
  2066. uint32_t val;
  2067. uint32_t pitch_val;
  2068. uint32_t fence_size_bits;
  2069. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2070. (obj_priv->gtt_offset & (obj->size - 1))) {
  2071. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2072. __func__, obj_priv->gtt_offset);
  2073. return;
  2074. }
  2075. pitch_val = obj_priv->stride / 128;
  2076. pitch_val = ffs(pitch_val) - 1;
  2077. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2078. val = obj_priv->gtt_offset;
  2079. if (obj_priv->tiling_mode == I915_TILING_Y)
  2080. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2081. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2082. WARN_ON(fence_size_bits & ~0x00000f00);
  2083. val |= fence_size_bits;
  2084. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2085. val |= I830_FENCE_REG_VALID;
  2086. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2087. }
  2088. static int i915_find_fence_reg(struct drm_device *dev,
  2089. bool interruptible)
  2090. {
  2091. struct drm_i915_private *dev_priv = dev->dev_private;
  2092. struct drm_i915_fence_reg *reg;
  2093. struct drm_i915_gem_object *obj_priv = NULL;
  2094. int i, avail, ret;
  2095. /* First try to find a free reg */
  2096. avail = 0;
  2097. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2098. reg = &dev_priv->fence_regs[i];
  2099. if (!reg->obj)
  2100. return i;
  2101. obj_priv = to_intel_bo(reg->obj);
  2102. if (!obj_priv->pin_count)
  2103. avail++;
  2104. }
  2105. if (avail == 0)
  2106. return -ENOSPC;
  2107. /* None available, try to steal one or wait for a user to finish */
  2108. avail = I915_FENCE_REG_NONE;
  2109. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2110. lru_list) {
  2111. obj_priv = to_intel_bo(reg->obj);
  2112. if (obj_priv->pin_count)
  2113. continue;
  2114. /* found one! */
  2115. avail = obj_priv->fence_reg;
  2116. break;
  2117. }
  2118. BUG_ON(avail == I915_FENCE_REG_NONE);
  2119. /* We only have a reference on obj from the active list. put_fence_reg
  2120. * might drop that one, causing a use-after-free in it. So hold a
  2121. * private reference to obj like the other callers of put_fence_reg
  2122. * (set_tiling ioctl) do. */
  2123. drm_gem_object_reference(&obj_priv->base);
  2124. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2125. drm_gem_object_unreference(&obj_priv->base);
  2126. if (ret != 0)
  2127. return ret;
  2128. return avail;
  2129. }
  2130. /**
  2131. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2132. * @obj: object to map through a fence reg
  2133. *
  2134. * When mapping objects through the GTT, userspace wants to be able to write
  2135. * to them without having to worry about swizzling if the object is tiled.
  2136. *
  2137. * This function walks the fence regs looking for a free one for @obj,
  2138. * stealing one if it can't find any.
  2139. *
  2140. * It then sets up the reg based on the object's properties: address, pitch
  2141. * and tiling format.
  2142. */
  2143. int
  2144. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2145. bool interruptible)
  2146. {
  2147. struct drm_device *dev = obj->dev;
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2150. struct drm_i915_fence_reg *reg = NULL;
  2151. int ret;
  2152. /* Just update our place in the LRU if our fence is getting used. */
  2153. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2154. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2155. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2156. return 0;
  2157. }
  2158. switch (obj_priv->tiling_mode) {
  2159. case I915_TILING_NONE:
  2160. WARN(1, "allocating a fence for non-tiled object?\n");
  2161. break;
  2162. case I915_TILING_X:
  2163. if (!obj_priv->stride)
  2164. return -EINVAL;
  2165. WARN((obj_priv->stride & (512 - 1)),
  2166. "object 0x%08x is X tiled but has non-512B pitch\n",
  2167. obj_priv->gtt_offset);
  2168. break;
  2169. case I915_TILING_Y:
  2170. if (!obj_priv->stride)
  2171. return -EINVAL;
  2172. WARN((obj_priv->stride & (128 - 1)),
  2173. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2174. obj_priv->gtt_offset);
  2175. break;
  2176. }
  2177. ret = i915_find_fence_reg(dev, interruptible);
  2178. if (ret < 0)
  2179. return ret;
  2180. obj_priv->fence_reg = ret;
  2181. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2182. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2183. reg->obj = obj;
  2184. switch (INTEL_INFO(dev)->gen) {
  2185. case 6:
  2186. sandybridge_write_fence_reg(obj);
  2187. break;
  2188. case 5:
  2189. case 4:
  2190. i965_write_fence_reg(obj);
  2191. break;
  2192. case 3:
  2193. i915_write_fence_reg(obj);
  2194. break;
  2195. case 2:
  2196. i830_write_fence_reg(obj);
  2197. break;
  2198. }
  2199. trace_i915_gem_object_get_fence(obj,
  2200. obj_priv->fence_reg,
  2201. obj_priv->tiling_mode);
  2202. return 0;
  2203. }
  2204. /**
  2205. * i915_gem_clear_fence_reg - clear out fence register info
  2206. * @obj: object to clear
  2207. *
  2208. * Zeroes out the fence register itself and clears out the associated
  2209. * data structures in dev_priv and obj_priv.
  2210. */
  2211. static void
  2212. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2213. {
  2214. struct drm_device *dev = obj->dev;
  2215. drm_i915_private_t *dev_priv = dev->dev_private;
  2216. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2217. struct drm_i915_fence_reg *reg =
  2218. &dev_priv->fence_regs[obj_priv->fence_reg];
  2219. uint32_t fence_reg;
  2220. switch (INTEL_INFO(dev)->gen) {
  2221. case 6:
  2222. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2223. (obj_priv->fence_reg * 8), 0);
  2224. break;
  2225. case 5:
  2226. case 4:
  2227. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2228. break;
  2229. case 3:
  2230. if (obj_priv->fence_reg >= 8)
  2231. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2232. else
  2233. case 2:
  2234. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2235. I915_WRITE(fence_reg, 0);
  2236. break;
  2237. }
  2238. reg->obj = NULL;
  2239. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2240. list_del_init(&reg->lru_list);
  2241. }
  2242. /**
  2243. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2244. * to the buffer to finish, and then resets the fence register.
  2245. * @obj: tiled object holding a fence register.
  2246. * @bool: whether the wait upon the fence is interruptible
  2247. *
  2248. * Zeroes out the fence register itself and clears out the associated
  2249. * data structures in dev_priv and obj_priv.
  2250. */
  2251. int
  2252. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2253. bool interruptible)
  2254. {
  2255. struct drm_device *dev = obj->dev;
  2256. struct drm_i915_private *dev_priv = dev->dev_private;
  2257. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2258. struct drm_i915_fence_reg *reg;
  2259. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2260. return 0;
  2261. /* If we've changed tiling, GTT-mappings of the object
  2262. * need to re-fault to ensure that the correct fence register
  2263. * setup is in place.
  2264. */
  2265. i915_gem_release_mmap(obj);
  2266. /* On the i915, GPU access to tiled buffers is via a fence,
  2267. * therefore we must wait for any outstanding access to complete
  2268. * before clearing the fence.
  2269. */
  2270. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2271. if (reg->gpu) {
  2272. int ret;
  2273. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2274. if (ret)
  2275. return ret;
  2276. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2277. if (ret)
  2278. return ret;
  2279. reg->gpu = false;
  2280. }
  2281. i915_gem_object_flush_gtt_write_domain(obj);
  2282. i915_gem_clear_fence_reg(obj);
  2283. return 0;
  2284. }
  2285. /**
  2286. * Finds free space in the GTT aperture and binds the object there.
  2287. */
  2288. static int
  2289. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2290. unsigned alignment,
  2291. bool map_and_fenceable)
  2292. {
  2293. struct drm_device *dev = obj->dev;
  2294. drm_i915_private_t *dev_priv = dev->dev_private;
  2295. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2296. struct drm_mm_node *free_space;
  2297. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2298. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2299. bool mappable, fenceable;
  2300. int ret;
  2301. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2302. DRM_ERROR("Attempting to bind a purgeable object\n");
  2303. return -EINVAL;
  2304. }
  2305. fence_size = i915_gem_get_gtt_size(obj_priv);
  2306. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2307. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
  2308. if (alignment == 0)
  2309. alignment = map_and_fenceable ? fence_alignment :
  2310. unfenced_alignment;
  2311. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2312. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2313. return -EINVAL;
  2314. }
  2315. size = map_and_fenceable ? fence_size : obj->size;
  2316. /* If the object is bigger than the entire aperture, reject it early
  2317. * before evicting everything in a vain attempt to find space.
  2318. */
  2319. if (obj->size >
  2320. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2321. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2322. return -E2BIG;
  2323. }
  2324. search_free:
  2325. if (map_and_fenceable)
  2326. free_space =
  2327. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2328. size, alignment, 0,
  2329. dev_priv->mm.gtt_mappable_end,
  2330. 0);
  2331. else
  2332. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2333. size, alignment, 0);
  2334. if (free_space != NULL) {
  2335. if (map_and_fenceable)
  2336. obj_priv->gtt_space =
  2337. drm_mm_get_block_range_generic(free_space,
  2338. size, alignment, 0,
  2339. dev_priv->mm.gtt_mappable_end,
  2340. 0);
  2341. else
  2342. obj_priv->gtt_space =
  2343. drm_mm_get_block(free_space, size, alignment);
  2344. }
  2345. if (obj_priv->gtt_space == NULL) {
  2346. /* If the gtt is empty and we're still having trouble
  2347. * fitting our object in, we're out of memory.
  2348. */
  2349. ret = i915_gem_evict_something(dev, size, alignment,
  2350. map_and_fenceable);
  2351. if (ret)
  2352. return ret;
  2353. goto search_free;
  2354. }
  2355. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2356. if (ret) {
  2357. drm_mm_put_block(obj_priv->gtt_space);
  2358. obj_priv->gtt_space = NULL;
  2359. if (ret == -ENOMEM) {
  2360. /* first try to clear up some space from the GTT */
  2361. ret = i915_gem_evict_something(dev, size,
  2362. alignment,
  2363. map_and_fenceable);
  2364. if (ret) {
  2365. /* now try to shrink everyone else */
  2366. if (gfpmask) {
  2367. gfpmask = 0;
  2368. goto search_free;
  2369. }
  2370. return ret;
  2371. }
  2372. goto search_free;
  2373. }
  2374. return ret;
  2375. }
  2376. /* Create an AGP memory structure pointing at our pages, and bind it
  2377. * into the GTT.
  2378. */
  2379. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2380. obj_priv->pages,
  2381. obj->size >> PAGE_SHIFT,
  2382. obj_priv->gtt_space->start,
  2383. obj_priv->agp_type);
  2384. if (obj_priv->agp_mem == NULL) {
  2385. i915_gem_object_put_pages_gtt(obj);
  2386. drm_mm_put_block(obj_priv->gtt_space);
  2387. obj_priv->gtt_space = NULL;
  2388. ret = i915_gem_evict_something(dev, size,
  2389. alignment, map_and_fenceable);
  2390. if (ret)
  2391. return ret;
  2392. goto search_free;
  2393. }
  2394. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2395. /* keep track of bounds object by adding it to the inactive list */
  2396. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2397. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2398. /* Assert that the object is not currently in any GPU domain. As it
  2399. * wasn't in the GTT, there shouldn't be any way it could have been in
  2400. * a GPU cache
  2401. */
  2402. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2403. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2404. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
  2405. fenceable =
  2406. obj_priv->gtt_space->size == fence_size &&
  2407. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2408. mappable =
  2409. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2410. obj_priv->map_and_fenceable = mappable && fenceable;
  2411. return 0;
  2412. }
  2413. void
  2414. i915_gem_clflush_object(struct drm_gem_object *obj)
  2415. {
  2416. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2417. /* If we don't have a page list set up, then we're not pinned
  2418. * to GPU, and we can ignore the cache flush because it'll happen
  2419. * again at bind time.
  2420. */
  2421. if (obj_priv->pages == NULL)
  2422. return;
  2423. trace_i915_gem_object_clflush(obj);
  2424. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2425. }
  2426. /** Flushes any GPU write domain for the object if it's dirty. */
  2427. static int
  2428. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2429. bool pipelined)
  2430. {
  2431. struct drm_device *dev = obj->dev;
  2432. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2433. return 0;
  2434. /* Queue the GPU write cache flushing we need. */
  2435. i915_gem_flush_ring(dev, NULL,
  2436. to_intel_bo(obj)->ring,
  2437. 0, obj->write_domain);
  2438. BUG_ON(obj->write_domain);
  2439. if (pipelined)
  2440. return 0;
  2441. return i915_gem_object_wait_rendering(obj, true);
  2442. }
  2443. /** Flushes the GTT write domain for the object if it's dirty. */
  2444. static void
  2445. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2446. {
  2447. uint32_t old_write_domain;
  2448. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2449. return;
  2450. /* No actual flushing is required for the GTT write domain. Writes
  2451. * to it immediately go to main memory as far as we know, so there's
  2452. * no chipset flush. It also doesn't land in render cache.
  2453. */
  2454. i915_gem_release_mmap(obj);
  2455. old_write_domain = obj->write_domain;
  2456. obj->write_domain = 0;
  2457. trace_i915_gem_object_change_domain(obj,
  2458. obj->read_domains,
  2459. old_write_domain);
  2460. }
  2461. /** Flushes the CPU write domain for the object if it's dirty. */
  2462. static void
  2463. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2464. {
  2465. struct drm_device *dev = obj->dev;
  2466. uint32_t old_write_domain;
  2467. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2468. return;
  2469. i915_gem_clflush_object(obj);
  2470. drm_agp_chipset_flush(dev);
  2471. old_write_domain = obj->write_domain;
  2472. obj->write_domain = 0;
  2473. trace_i915_gem_object_change_domain(obj,
  2474. obj->read_domains,
  2475. old_write_domain);
  2476. }
  2477. /**
  2478. * Moves a single object to the GTT read, and possibly write domain.
  2479. *
  2480. * This function returns when the move is complete, including waiting on
  2481. * flushes to occur.
  2482. */
  2483. int
  2484. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2485. {
  2486. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2487. uint32_t old_write_domain, old_read_domains;
  2488. int ret;
  2489. /* Not valid to be called on unbound objects. */
  2490. if (obj_priv->gtt_space == NULL)
  2491. return -EINVAL;
  2492. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2493. if (ret != 0)
  2494. return ret;
  2495. i915_gem_object_flush_cpu_write_domain(obj);
  2496. if (write) {
  2497. ret = i915_gem_object_wait_rendering(obj, true);
  2498. if (ret)
  2499. return ret;
  2500. }
  2501. old_write_domain = obj->write_domain;
  2502. old_read_domains = obj->read_domains;
  2503. /* It should now be out of any other write domains, and we can update
  2504. * the domain values for our changes.
  2505. */
  2506. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2507. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2508. if (write) {
  2509. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2510. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2511. obj_priv->dirty = 1;
  2512. }
  2513. trace_i915_gem_object_change_domain(obj,
  2514. old_read_domains,
  2515. old_write_domain);
  2516. return 0;
  2517. }
  2518. /*
  2519. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2520. * wait, as in modesetting process we're not supposed to be interrupted.
  2521. */
  2522. int
  2523. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2524. bool pipelined)
  2525. {
  2526. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2527. uint32_t old_read_domains;
  2528. int ret;
  2529. /* Not valid to be called on unbound objects. */
  2530. if (obj_priv->gtt_space == NULL)
  2531. return -EINVAL;
  2532. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2533. if (ret)
  2534. return ret;
  2535. /* Currently, we are always called from an non-interruptible context. */
  2536. if (!pipelined) {
  2537. ret = i915_gem_object_wait_rendering(obj, false);
  2538. if (ret)
  2539. return ret;
  2540. }
  2541. i915_gem_object_flush_cpu_write_domain(obj);
  2542. old_read_domains = obj->read_domains;
  2543. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2544. trace_i915_gem_object_change_domain(obj,
  2545. old_read_domains,
  2546. obj->write_domain);
  2547. return 0;
  2548. }
  2549. int
  2550. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2551. bool interruptible)
  2552. {
  2553. if (!obj->active)
  2554. return 0;
  2555. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2556. i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
  2557. 0, obj->base.write_domain);
  2558. return i915_gem_object_wait_rendering(&obj->base, interruptible);
  2559. }
  2560. /**
  2561. * Moves a single object to the CPU read, and possibly write domain.
  2562. *
  2563. * This function returns when the move is complete, including waiting on
  2564. * flushes to occur.
  2565. */
  2566. static int
  2567. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2568. {
  2569. uint32_t old_write_domain, old_read_domains;
  2570. int ret;
  2571. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2572. if (ret != 0)
  2573. return ret;
  2574. i915_gem_object_flush_gtt_write_domain(obj);
  2575. /* If we have a partially-valid cache of the object in the CPU,
  2576. * finish invalidating it and free the per-page flags.
  2577. */
  2578. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2579. if (write) {
  2580. ret = i915_gem_object_wait_rendering(obj, true);
  2581. if (ret)
  2582. return ret;
  2583. }
  2584. old_write_domain = obj->write_domain;
  2585. old_read_domains = obj->read_domains;
  2586. /* Flush the CPU cache if it's still invalid. */
  2587. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2588. i915_gem_clflush_object(obj);
  2589. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2590. }
  2591. /* It should now be out of any other write domains, and we can update
  2592. * the domain values for our changes.
  2593. */
  2594. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2595. /* If we're writing through the CPU, then the GPU read domains will
  2596. * need to be invalidated at next use.
  2597. */
  2598. if (write) {
  2599. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2600. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2601. }
  2602. trace_i915_gem_object_change_domain(obj,
  2603. old_read_domains,
  2604. old_write_domain);
  2605. return 0;
  2606. }
  2607. /*
  2608. * Set the next domain for the specified object. This
  2609. * may not actually perform the necessary flushing/invaliding though,
  2610. * as that may want to be batched with other set_domain operations
  2611. *
  2612. * This is (we hope) the only really tricky part of gem. The goal
  2613. * is fairly simple -- track which caches hold bits of the object
  2614. * and make sure they remain coherent. A few concrete examples may
  2615. * help to explain how it works. For shorthand, we use the notation
  2616. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2617. * a pair of read and write domain masks.
  2618. *
  2619. * Case 1: the batch buffer
  2620. *
  2621. * 1. Allocated
  2622. * 2. Written by CPU
  2623. * 3. Mapped to GTT
  2624. * 4. Read by GPU
  2625. * 5. Unmapped from GTT
  2626. * 6. Freed
  2627. *
  2628. * Let's take these a step at a time
  2629. *
  2630. * 1. Allocated
  2631. * Pages allocated from the kernel may still have
  2632. * cache contents, so we set them to (CPU, CPU) always.
  2633. * 2. Written by CPU (using pwrite)
  2634. * The pwrite function calls set_domain (CPU, CPU) and
  2635. * this function does nothing (as nothing changes)
  2636. * 3. Mapped by GTT
  2637. * This function asserts that the object is not
  2638. * currently in any GPU-based read or write domains
  2639. * 4. Read by GPU
  2640. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2641. * As write_domain is zero, this function adds in the
  2642. * current read domains (CPU+COMMAND, 0).
  2643. * flush_domains is set to CPU.
  2644. * invalidate_domains is set to COMMAND
  2645. * clflush is run to get data out of the CPU caches
  2646. * then i915_dev_set_domain calls i915_gem_flush to
  2647. * emit an MI_FLUSH and drm_agp_chipset_flush
  2648. * 5. Unmapped from GTT
  2649. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2650. * flush_domains and invalidate_domains end up both zero
  2651. * so no flushing/invalidating happens
  2652. * 6. Freed
  2653. * yay, done
  2654. *
  2655. * Case 2: The shared render buffer
  2656. *
  2657. * 1. Allocated
  2658. * 2. Mapped to GTT
  2659. * 3. Read/written by GPU
  2660. * 4. set_domain to (CPU,CPU)
  2661. * 5. Read/written by CPU
  2662. * 6. Read/written by GPU
  2663. *
  2664. * 1. Allocated
  2665. * Same as last example, (CPU, CPU)
  2666. * 2. Mapped to GTT
  2667. * Nothing changes (assertions find that it is not in the GPU)
  2668. * 3. Read/written by GPU
  2669. * execbuffer calls set_domain (RENDER, RENDER)
  2670. * flush_domains gets CPU
  2671. * invalidate_domains gets GPU
  2672. * clflush (obj)
  2673. * MI_FLUSH and drm_agp_chipset_flush
  2674. * 4. set_domain (CPU, CPU)
  2675. * flush_domains gets GPU
  2676. * invalidate_domains gets CPU
  2677. * wait_rendering (obj) to make sure all drawing is complete.
  2678. * This will include an MI_FLUSH to get the data from GPU
  2679. * to memory
  2680. * clflush (obj) to invalidate the CPU cache
  2681. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2682. * 5. Read/written by CPU
  2683. * cache lines are loaded and dirtied
  2684. * 6. Read written by GPU
  2685. * Same as last GPU access
  2686. *
  2687. * Case 3: The constant buffer
  2688. *
  2689. * 1. Allocated
  2690. * 2. Written by CPU
  2691. * 3. Read by GPU
  2692. * 4. Updated (written) by CPU again
  2693. * 5. Read by GPU
  2694. *
  2695. * 1. Allocated
  2696. * (CPU, CPU)
  2697. * 2. Written by CPU
  2698. * (CPU, CPU)
  2699. * 3. Read by GPU
  2700. * (CPU+RENDER, 0)
  2701. * flush_domains = CPU
  2702. * invalidate_domains = RENDER
  2703. * clflush (obj)
  2704. * MI_FLUSH
  2705. * drm_agp_chipset_flush
  2706. * 4. Updated (written) by CPU again
  2707. * (CPU, CPU)
  2708. * flush_domains = 0 (no previous write domain)
  2709. * invalidate_domains = 0 (no new read domains)
  2710. * 5. Read by GPU
  2711. * (CPU+RENDER, 0)
  2712. * flush_domains = CPU
  2713. * invalidate_domains = RENDER
  2714. * clflush (obj)
  2715. * MI_FLUSH
  2716. * drm_agp_chipset_flush
  2717. */
  2718. static void
  2719. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2720. struct intel_ring_buffer *ring,
  2721. struct change_domains *cd)
  2722. {
  2723. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2724. uint32_t invalidate_domains = 0;
  2725. uint32_t flush_domains = 0;
  2726. /*
  2727. * If the object isn't moving to a new write domain,
  2728. * let the object stay in multiple read domains
  2729. */
  2730. if (obj->pending_write_domain == 0)
  2731. obj->pending_read_domains |= obj->read_domains;
  2732. /*
  2733. * Flush the current write domain if
  2734. * the new read domains don't match. Invalidate
  2735. * any read domains which differ from the old
  2736. * write domain
  2737. */
  2738. if (obj->write_domain &&
  2739. (obj->write_domain != obj->pending_read_domains ||
  2740. obj_priv->ring != ring)) {
  2741. flush_domains |= obj->write_domain;
  2742. invalidate_domains |=
  2743. obj->pending_read_domains & ~obj->write_domain;
  2744. }
  2745. /*
  2746. * Invalidate any read caches which may have
  2747. * stale data. That is, any new read domains.
  2748. */
  2749. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2750. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2751. i915_gem_clflush_object(obj);
  2752. /* blow away mappings if mapped through GTT */
  2753. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2754. i915_gem_release_mmap(obj);
  2755. /* The actual obj->write_domain will be updated with
  2756. * pending_write_domain after we emit the accumulated flush for all
  2757. * of our domain changes in execbuffers (which clears objects'
  2758. * write_domains). So if we have a current write domain that we
  2759. * aren't changing, set pending_write_domain to that.
  2760. */
  2761. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2762. obj->pending_write_domain = obj->write_domain;
  2763. cd->invalidate_domains |= invalidate_domains;
  2764. cd->flush_domains |= flush_domains;
  2765. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2766. cd->flush_rings |= obj_priv->ring->id;
  2767. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2768. cd->flush_rings |= ring->id;
  2769. }
  2770. /**
  2771. * Moves the object from a partially CPU read to a full one.
  2772. *
  2773. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2774. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2775. */
  2776. static void
  2777. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2778. {
  2779. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2780. if (!obj_priv->page_cpu_valid)
  2781. return;
  2782. /* If we're partially in the CPU read domain, finish moving it in.
  2783. */
  2784. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2785. int i;
  2786. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2787. if (obj_priv->page_cpu_valid[i])
  2788. continue;
  2789. drm_clflush_pages(obj_priv->pages + i, 1);
  2790. }
  2791. }
  2792. /* Free the page_cpu_valid mappings which are now stale, whether
  2793. * or not we've got I915_GEM_DOMAIN_CPU.
  2794. */
  2795. kfree(obj_priv->page_cpu_valid);
  2796. obj_priv->page_cpu_valid = NULL;
  2797. }
  2798. /**
  2799. * Set the CPU read domain on a range of the object.
  2800. *
  2801. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2802. * not entirely valid. The page_cpu_valid member of the object flags which
  2803. * pages have been flushed, and will be respected by
  2804. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2805. * of the whole object.
  2806. *
  2807. * This function returns when the move is complete, including waiting on
  2808. * flushes to occur.
  2809. */
  2810. static int
  2811. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2812. uint64_t offset, uint64_t size)
  2813. {
  2814. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2815. uint32_t old_read_domains;
  2816. int i, ret;
  2817. if (offset == 0 && size == obj->size)
  2818. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2819. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2820. if (ret != 0)
  2821. return ret;
  2822. i915_gem_object_flush_gtt_write_domain(obj);
  2823. /* If we're already fully in the CPU read domain, we're done. */
  2824. if (obj_priv->page_cpu_valid == NULL &&
  2825. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2826. return 0;
  2827. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2828. * newly adding I915_GEM_DOMAIN_CPU
  2829. */
  2830. if (obj_priv->page_cpu_valid == NULL) {
  2831. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2832. GFP_KERNEL);
  2833. if (obj_priv->page_cpu_valid == NULL)
  2834. return -ENOMEM;
  2835. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2836. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2837. /* Flush the cache on any pages that are still invalid from the CPU's
  2838. * perspective.
  2839. */
  2840. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2841. i++) {
  2842. if (obj_priv->page_cpu_valid[i])
  2843. continue;
  2844. drm_clflush_pages(obj_priv->pages + i, 1);
  2845. obj_priv->page_cpu_valid[i] = 1;
  2846. }
  2847. /* It should now be out of any other write domains, and we can update
  2848. * the domain values for our changes.
  2849. */
  2850. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2851. old_read_domains = obj->read_domains;
  2852. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2853. trace_i915_gem_object_change_domain(obj,
  2854. old_read_domains,
  2855. obj->write_domain);
  2856. return 0;
  2857. }
  2858. /**
  2859. * Pin an object to the GTT and evaluate the relocations landing in it.
  2860. */
  2861. static int
  2862. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2863. struct drm_file *file_priv,
  2864. struct drm_i915_gem_exec_object2 *entry)
  2865. {
  2866. struct drm_device *dev = obj->base.dev;
  2867. drm_i915_private_t *dev_priv = dev->dev_private;
  2868. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2869. struct drm_gem_object *target_obj = NULL;
  2870. uint32_t target_handle = 0;
  2871. int i, ret = 0;
  2872. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2873. for (i = 0; i < entry->relocation_count; i++) {
  2874. struct drm_i915_gem_relocation_entry reloc;
  2875. uint32_t target_offset;
  2876. if (__copy_from_user_inatomic(&reloc,
  2877. user_relocs+i,
  2878. sizeof(reloc))) {
  2879. ret = -EFAULT;
  2880. break;
  2881. }
  2882. if (reloc.target_handle != target_handle) {
  2883. drm_gem_object_unreference(target_obj);
  2884. target_obj = drm_gem_object_lookup(dev, file_priv,
  2885. reloc.target_handle);
  2886. if (target_obj == NULL) {
  2887. ret = -ENOENT;
  2888. break;
  2889. }
  2890. target_handle = reloc.target_handle;
  2891. }
  2892. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2893. #if WATCH_RELOC
  2894. DRM_INFO("%s: obj %p offset %08x target %d "
  2895. "read %08x write %08x gtt %08x "
  2896. "presumed %08x delta %08x\n",
  2897. __func__,
  2898. obj,
  2899. (int) reloc.offset,
  2900. (int) reloc.target_handle,
  2901. (int) reloc.read_domains,
  2902. (int) reloc.write_domain,
  2903. (int) target_offset,
  2904. (int) reloc.presumed_offset,
  2905. reloc.delta);
  2906. #endif
  2907. /* The target buffer should have appeared before us in the
  2908. * exec_object list, so it should have a GTT space bound by now.
  2909. */
  2910. if (target_offset == 0) {
  2911. DRM_ERROR("No GTT space found for object %d\n",
  2912. reloc.target_handle);
  2913. ret = -EINVAL;
  2914. break;
  2915. }
  2916. /* Validate that the target is in a valid r/w GPU domain */
  2917. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2918. DRM_ERROR("reloc with multiple write domains: "
  2919. "obj %p target %d offset %d "
  2920. "read %08x write %08x",
  2921. obj, reloc.target_handle,
  2922. (int) reloc.offset,
  2923. reloc.read_domains,
  2924. reloc.write_domain);
  2925. ret = -EINVAL;
  2926. break;
  2927. }
  2928. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2929. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2930. DRM_ERROR("reloc with read/write CPU domains: "
  2931. "obj %p target %d offset %d "
  2932. "read %08x write %08x",
  2933. obj, reloc.target_handle,
  2934. (int) reloc.offset,
  2935. reloc.read_domains,
  2936. reloc.write_domain);
  2937. ret = -EINVAL;
  2938. break;
  2939. }
  2940. if (reloc.write_domain && target_obj->pending_write_domain &&
  2941. reloc.write_domain != target_obj->pending_write_domain) {
  2942. DRM_ERROR("Write domain conflict: "
  2943. "obj %p target %d offset %d "
  2944. "new %08x old %08x\n",
  2945. obj, reloc.target_handle,
  2946. (int) reloc.offset,
  2947. reloc.write_domain,
  2948. target_obj->pending_write_domain);
  2949. ret = -EINVAL;
  2950. break;
  2951. }
  2952. target_obj->pending_read_domains |= reloc.read_domains;
  2953. target_obj->pending_write_domain |= reloc.write_domain;
  2954. /* If the relocation already has the right value in it, no
  2955. * more work needs to be done.
  2956. */
  2957. if (target_offset == reloc.presumed_offset)
  2958. continue;
  2959. /* Check that the relocation address is valid... */
  2960. if (reloc.offset > obj->base.size - 4) {
  2961. DRM_ERROR("Relocation beyond object bounds: "
  2962. "obj %p target %d offset %d size %d.\n",
  2963. obj, reloc.target_handle,
  2964. (int) reloc.offset, (int) obj->base.size);
  2965. ret = -EINVAL;
  2966. break;
  2967. }
  2968. if (reloc.offset & 3) {
  2969. DRM_ERROR("Relocation not 4-byte aligned: "
  2970. "obj %p target %d offset %d.\n",
  2971. obj, reloc.target_handle,
  2972. (int) reloc.offset);
  2973. ret = -EINVAL;
  2974. break;
  2975. }
  2976. /* and points to somewhere within the target object. */
  2977. if (reloc.delta >= target_obj->size) {
  2978. DRM_ERROR("Relocation beyond target object bounds: "
  2979. "obj %p target %d delta %d size %d.\n",
  2980. obj, reloc.target_handle,
  2981. (int) reloc.delta, (int) target_obj->size);
  2982. ret = -EINVAL;
  2983. break;
  2984. }
  2985. reloc.delta += target_offset;
  2986. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2987. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2988. char *vaddr;
  2989. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2990. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2991. kunmap_atomic(vaddr);
  2992. } else {
  2993. uint32_t __iomem *reloc_entry;
  2994. void __iomem *reloc_page;
  2995. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2996. if (ret)
  2997. break;
  2998. /* Map the page containing the relocation we're going to perform. */
  2999. reloc.offset += obj->gtt_offset;
  3000. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  3001. reloc.offset & PAGE_MASK);
  3002. reloc_entry = (uint32_t __iomem *)
  3003. (reloc_page + (reloc.offset & ~PAGE_MASK));
  3004. iowrite32(reloc.delta, reloc_entry);
  3005. io_mapping_unmap_atomic(reloc_page);
  3006. }
  3007. /* and update the user's relocation entry */
  3008. reloc.presumed_offset = target_offset;
  3009. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  3010. &reloc.presumed_offset,
  3011. sizeof(reloc.presumed_offset))) {
  3012. ret = -EFAULT;
  3013. break;
  3014. }
  3015. }
  3016. drm_gem_object_unreference(target_obj);
  3017. return ret;
  3018. }
  3019. static int
  3020. i915_gem_execbuffer_pin(struct drm_device *dev,
  3021. struct drm_file *file,
  3022. struct drm_gem_object **object_list,
  3023. struct drm_i915_gem_exec_object2 *exec_list,
  3024. int count)
  3025. {
  3026. struct drm_i915_private *dev_priv = dev->dev_private;
  3027. int ret, i, retry;
  3028. /* attempt to pin all of the buffers into the GTT */
  3029. retry = 0;
  3030. do {
  3031. ret = 0;
  3032. for (i = 0; i < count; i++) {
  3033. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3034. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3035. bool need_fence =
  3036. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3037. obj->tiling_mode != I915_TILING_NONE;
  3038. /* g33/pnv can't fence buffers in the unmappable part */
  3039. bool need_mappable =
  3040. entry->relocation_count ? true : need_fence;
  3041. /* Check fence reg constraints and rebind if necessary */
  3042. if (need_mappable && !obj->map_and_fenceable) {
  3043. ret = i915_gem_object_unbind(&obj->base);
  3044. if (ret)
  3045. break;
  3046. }
  3047. ret = i915_gem_object_pin(&obj->base,
  3048. entry->alignment,
  3049. need_mappable);
  3050. if (ret)
  3051. break;
  3052. /*
  3053. * Pre-965 chips need a fence register set up in order
  3054. * to properly handle blits to/from tiled surfaces.
  3055. */
  3056. if (need_fence) {
  3057. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3058. if (ret) {
  3059. i915_gem_object_unpin(&obj->base);
  3060. break;
  3061. }
  3062. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3063. }
  3064. entry->offset = obj->gtt_offset;
  3065. }
  3066. while (i--)
  3067. i915_gem_object_unpin(object_list[i]);
  3068. if (ret != -ENOSPC || retry > 1)
  3069. return ret;
  3070. /* First attempt, just clear anything that is purgeable.
  3071. * Second attempt, clear the entire GTT.
  3072. */
  3073. ret = i915_gem_evict_everything(dev, retry == 0);
  3074. if (ret)
  3075. return ret;
  3076. retry++;
  3077. } while (1);
  3078. }
  3079. static int
  3080. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3081. struct drm_file *file,
  3082. struct intel_ring_buffer *ring,
  3083. struct drm_gem_object **objects,
  3084. int count)
  3085. {
  3086. struct change_domains cd;
  3087. int ret, i;
  3088. cd.invalidate_domains = 0;
  3089. cd.flush_domains = 0;
  3090. cd.flush_rings = 0;
  3091. for (i = 0; i < count; i++)
  3092. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3093. if (cd.invalidate_domains | cd.flush_domains) {
  3094. #if WATCH_EXEC
  3095. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3096. __func__,
  3097. cd.invalidate_domains,
  3098. cd.flush_domains);
  3099. #endif
  3100. i915_gem_flush(dev, file,
  3101. cd.invalidate_domains,
  3102. cd.flush_domains,
  3103. cd.flush_rings);
  3104. }
  3105. for (i = 0; i < count; i++) {
  3106. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  3107. /* XXX replace with semaphores */
  3108. if (obj->ring && ring != obj->ring) {
  3109. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3110. if (ret)
  3111. return ret;
  3112. }
  3113. }
  3114. return 0;
  3115. }
  3116. /* Throttle our rendering by waiting until the ring has completed our requests
  3117. * emitted over 20 msec ago.
  3118. *
  3119. * Note that if we were to use the current jiffies each time around the loop,
  3120. * we wouldn't escape the function with any frames outstanding if the time to
  3121. * render a frame was over 20ms.
  3122. *
  3123. * This should get us reasonable parallelism between CPU and GPU but also
  3124. * relatively low latency when blocking on a particular request to finish.
  3125. */
  3126. static int
  3127. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3128. {
  3129. struct drm_i915_private *dev_priv = dev->dev_private;
  3130. struct drm_i915_file_private *file_priv = file->driver_priv;
  3131. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3132. struct drm_i915_gem_request *request;
  3133. struct intel_ring_buffer *ring = NULL;
  3134. u32 seqno = 0;
  3135. int ret;
  3136. spin_lock(&file_priv->mm.lock);
  3137. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3138. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3139. break;
  3140. ring = request->ring;
  3141. seqno = request->seqno;
  3142. }
  3143. spin_unlock(&file_priv->mm.lock);
  3144. if (seqno == 0)
  3145. return 0;
  3146. ret = 0;
  3147. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3148. /* And wait for the seqno passing without holding any locks and
  3149. * causing extra latency for others. This is safe as the irq
  3150. * generation is designed to be run atomically and so is
  3151. * lockless.
  3152. */
  3153. ring->user_irq_get(ring);
  3154. ret = wait_event_interruptible(ring->irq_queue,
  3155. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3156. || atomic_read(&dev_priv->mm.wedged));
  3157. ring->user_irq_put(ring);
  3158. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3159. ret = -EIO;
  3160. }
  3161. if (ret == 0)
  3162. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3163. return ret;
  3164. }
  3165. static int
  3166. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3167. uint64_t exec_offset)
  3168. {
  3169. uint32_t exec_start, exec_len;
  3170. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3171. exec_len = (uint32_t) exec->batch_len;
  3172. if ((exec_start | exec_len) & 0x7)
  3173. return -EINVAL;
  3174. if (!exec_start)
  3175. return -EINVAL;
  3176. return 0;
  3177. }
  3178. static int
  3179. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3180. int count)
  3181. {
  3182. int i;
  3183. for (i = 0; i < count; i++) {
  3184. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3185. int length; /* limited by fault_in_pages_readable() */
  3186. /* First check for malicious input causing overflow */
  3187. if (exec[i].relocation_count >
  3188. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3189. return -EINVAL;
  3190. length = exec[i].relocation_count *
  3191. sizeof(struct drm_i915_gem_relocation_entry);
  3192. if (!access_ok(VERIFY_READ, ptr, length))
  3193. return -EFAULT;
  3194. /* we may also need to update the presumed offsets */
  3195. if (!access_ok(VERIFY_WRITE, ptr, length))
  3196. return -EFAULT;
  3197. if (fault_in_pages_readable(ptr, length))
  3198. return -EFAULT;
  3199. }
  3200. return 0;
  3201. }
  3202. static int
  3203. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3204. struct drm_file *file,
  3205. struct drm_i915_gem_execbuffer2 *args,
  3206. struct drm_i915_gem_exec_object2 *exec_list)
  3207. {
  3208. drm_i915_private_t *dev_priv = dev->dev_private;
  3209. struct drm_gem_object **object_list = NULL;
  3210. struct drm_gem_object *batch_obj;
  3211. struct drm_clip_rect *cliprects = NULL;
  3212. struct drm_i915_gem_request *request = NULL;
  3213. int ret, i, flips;
  3214. uint64_t exec_offset;
  3215. struct intel_ring_buffer *ring = NULL;
  3216. ret = i915_gem_check_is_wedged(dev);
  3217. if (ret)
  3218. return ret;
  3219. ret = validate_exec_list(exec_list, args->buffer_count);
  3220. if (ret)
  3221. return ret;
  3222. #if WATCH_EXEC
  3223. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3224. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3225. #endif
  3226. switch (args->flags & I915_EXEC_RING_MASK) {
  3227. case I915_EXEC_DEFAULT:
  3228. case I915_EXEC_RENDER:
  3229. ring = &dev_priv->render_ring;
  3230. break;
  3231. case I915_EXEC_BSD:
  3232. if (!HAS_BSD(dev)) {
  3233. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3234. return -EINVAL;
  3235. }
  3236. ring = &dev_priv->bsd_ring;
  3237. break;
  3238. case I915_EXEC_BLT:
  3239. if (!HAS_BLT(dev)) {
  3240. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3241. return -EINVAL;
  3242. }
  3243. ring = &dev_priv->blt_ring;
  3244. break;
  3245. default:
  3246. DRM_ERROR("execbuf with unknown ring: %d\n",
  3247. (int)(args->flags & I915_EXEC_RING_MASK));
  3248. return -EINVAL;
  3249. }
  3250. if (args->buffer_count < 1) {
  3251. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3252. return -EINVAL;
  3253. }
  3254. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3255. if (object_list == NULL) {
  3256. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3257. args->buffer_count);
  3258. ret = -ENOMEM;
  3259. goto pre_mutex_err;
  3260. }
  3261. if (args->num_cliprects != 0) {
  3262. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3263. GFP_KERNEL);
  3264. if (cliprects == NULL) {
  3265. ret = -ENOMEM;
  3266. goto pre_mutex_err;
  3267. }
  3268. ret = copy_from_user(cliprects,
  3269. (struct drm_clip_rect __user *)
  3270. (uintptr_t) args->cliprects_ptr,
  3271. sizeof(*cliprects) * args->num_cliprects);
  3272. if (ret != 0) {
  3273. DRM_ERROR("copy %d cliprects failed: %d\n",
  3274. args->num_cliprects, ret);
  3275. ret = -EFAULT;
  3276. goto pre_mutex_err;
  3277. }
  3278. }
  3279. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3280. if (request == NULL) {
  3281. ret = -ENOMEM;
  3282. goto pre_mutex_err;
  3283. }
  3284. ret = i915_mutex_lock_interruptible(dev);
  3285. if (ret)
  3286. goto pre_mutex_err;
  3287. if (dev_priv->mm.suspended) {
  3288. mutex_unlock(&dev->struct_mutex);
  3289. ret = -EBUSY;
  3290. goto pre_mutex_err;
  3291. }
  3292. /* Look up object handles */
  3293. for (i = 0; i < args->buffer_count; i++) {
  3294. struct drm_i915_gem_object *obj_priv;
  3295. object_list[i] = drm_gem_object_lookup(dev, file,
  3296. exec_list[i].handle);
  3297. if (object_list[i] == NULL) {
  3298. DRM_ERROR("Invalid object handle %d at index %d\n",
  3299. exec_list[i].handle, i);
  3300. /* prevent error path from reading uninitialized data */
  3301. args->buffer_count = i + 1;
  3302. ret = -ENOENT;
  3303. goto err;
  3304. }
  3305. obj_priv = to_intel_bo(object_list[i]);
  3306. if (obj_priv->in_execbuffer) {
  3307. DRM_ERROR("Object %p appears more than once in object list\n",
  3308. object_list[i]);
  3309. /* prevent error path from reading uninitialized data */
  3310. args->buffer_count = i + 1;
  3311. ret = -EINVAL;
  3312. goto err;
  3313. }
  3314. obj_priv->in_execbuffer = true;
  3315. }
  3316. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3317. ret = i915_gem_execbuffer_pin(dev, file,
  3318. object_list, exec_list,
  3319. args->buffer_count);
  3320. if (ret)
  3321. goto err;
  3322. /* The objects are in their final locations, apply the relocations. */
  3323. for (i = 0; i < args->buffer_count; i++) {
  3324. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3325. obj->base.pending_read_domains = 0;
  3326. obj->base.pending_write_domain = 0;
  3327. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3328. if (ret)
  3329. goto err;
  3330. }
  3331. /* Set the pending read domains for the batch buffer to COMMAND */
  3332. batch_obj = object_list[args->buffer_count-1];
  3333. if (batch_obj->pending_write_domain) {
  3334. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3335. ret = -EINVAL;
  3336. goto err;
  3337. }
  3338. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3339. /* Sanity check the batch buffer */
  3340. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3341. ret = i915_gem_check_execbuffer(args, exec_offset);
  3342. if (ret != 0) {
  3343. DRM_ERROR("execbuf with invalid offset/length\n");
  3344. goto err;
  3345. }
  3346. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3347. object_list, args->buffer_count);
  3348. if (ret)
  3349. goto err;
  3350. #if WATCH_COHERENCY
  3351. for (i = 0; i < args->buffer_count; i++) {
  3352. i915_gem_object_check_coherency(object_list[i],
  3353. exec_list[i].handle);
  3354. }
  3355. #endif
  3356. #if WATCH_EXEC
  3357. i915_gem_dump_object(batch_obj,
  3358. args->batch_len,
  3359. __func__,
  3360. ~0);
  3361. #endif
  3362. /* Check for any pending flips. As we only maintain a flip queue depth
  3363. * of 1, we can simply insert a WAIT for the next display flip prior
  3364. * to executing the batch and avoid stalling the CPU.
  3365. */
  3366. flips = 0;
  3367. for (i = 0; i < args->buffer_count; i++) {
  3368. if (object_list[i]->write_domain)
  3369. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3370. }
  3371. if (flips) {
  3372. int plane, flip_mask;
  3373. for (plane = 0; flips >> plane; plane++) {
  3374. if (((flips >> plane) & 1) == 0)
  3375. continue;
  3376. if (plane)
  3377. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3378. else
  3379. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3380. ret = intel_ring_begin(ring, 2);
  3381. if (ret)
  3382. goto err;
  3383. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3384. intel_ring_emit(ring, MI_NOOP);
  3385. intel_ring_advance(ring);
  3386. }
  3387. }
  3388. /* Exec the batchbuffer */
  3389. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3390. if (ret) {
  3391. DRM_ERROR("dispatch failed %d\n", ret);
  3392. goto err;
  3393. }
  3394. for (i = 0; i < args->buffer_count; i++) {
  3395. struct drm_gem_object *obj = object_list[i];
  3396. obj->read_domains = obj->pending_read_domains;
  3397. obj->write_domain = obj->pending_write_domain;
  3398. i915_gem_object_move_to_active(obj, ring);
  3399. if (obj->write_domain) {
  3400. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3401. obj_priv->dirty = 1;
  3402. list_move_tail(&obj_priv->gpu_write_list,
  3403. &ring->gpu_write_list);
  3404. intel_mark_busy(dev, obj);
  3405. }
  3406. trace_i915_gem_object_change_domain(obj,
  3407. obj->read_domains,
  3408. obj->write_domain);
  3409. }
  3410. /*
  3411. * Ensure that the commands in the batch buffer are
  3412. * finished before the interrupt fires
  3413. */
  3414. i915_retire_commands(dev, ring);
  3415. if (i915_add_request(dev, file, request, ring))
  3416. i915_gem_next_request_seqno(dev, ring);
  3417. else
  3418. request = NULL;
  3419. err:
  3420. for (i = 0; i < args->buffer_count; i++) {
  3421. if (object_list[i] == NULL)
  3422. break;
  3423. to_intel_bo(object_list[i])->in_execbuffer = false;
  3424. drm_gem_object_unreference(object_list[i]);
  3425. }
  3426. mutex_unlock(&dev->struct_mutex);
  3427. pre_mutex_err:
  3428. drm_free_large(object_list);
  3429. kfree(cliprects);
  3430. kfree(request);
  3431. return ret;
  3432. }
  3433. /*
  3434. * Legacy execbuffer just creates an exec2 list from the original exec object
  3435. * list array and passes it to the real function.
  3436. */
  3437. int
  3438. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3439. struct drm_file *file_priv)
  3440. {
  3441. struct drm_i915_gem_execbuffer *args = data;
  3442. struct drm_i915_gem_execbuffer2 exec2;
  3443. struct drm_i915_gem_exec_object *exec_list = NULL;
  3444. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3445. int ret, i;
  3446. #if WATCH_EXEC
  3447. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3448. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3449. #endif
  3450. if (args->buffer_count < 1) {
  3451. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3452. return -EINVAL;
  3453. }
  3454. /* Copy in the exec list from userland */
  3455. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3456. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3457. if (exec_list == NULL || exec2_list == NULL) {
  3458. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3459. args->buffer_count);
  3460. drm_free_large(exec_list);
  3461. drm_free_large(exec2_list);
  3462. return -ENOMEM;
  3463. }
  3464. ret = copy_from_user(exec_list,
  3465. (struct drm_i915_relocation_entry __user *)
  3466. (uintptr_t) args->buffers_ptr,
  3467. sizeof(*exec_list) * args->buffer_count);
  3468. if (ret != 0) {
  3469. DRM_ERROR("copy %d exec entries failed %d\n",
  3470. args->buffer_count, ret);
  3471. drm_free_large(exec_list);
  3472. drm_free_large(exec2_list);
  3473. return -EFAULT;
  3474. }
  3475. for (i = 0; i < args->buffer_count; i++) {
  3476. exec2_list[i].handle = exec_list[i].handle;
  3477. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3478. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3479. exec2_list[i].alignment = exec_list[i].alignment;
  3480. exec2_list[i].offset = exec_list[i].offset;
  3481. if (INTEL_INFO(dev)->gen < 4)
  3482. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3483. else
  3484. exec2_list[i].flags = 0;
  3485. }
  3486. exec2.buffers_ptr = args->buffers_ptr;
  3487. exec2.buffer_count = args->buffer_count;
  3488. exec2.batch_start_offset = args->batch_start_offset;
  3489. exec2.batch_len = args->batch_len;
  3490. exec2.DR1 = args->DR1;
  3491. exec2.DR4 = args->DR4;
  3492. exec2.num_cliprects = args->num_cliprects;
  3493. exec2.cliprects_ptr = args->cliprects_ptr;
  3494. exec2.flags = I915_EXEC_RENDER;
  3495. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3496. if (!ret) {
  3497. /* Copy the new buffer offsets back to the user's exec list. */
  3498. for (i = 0; i < args->buffer_count; i++)
  3499. exec_list[i].offset = exec2_list[i].offset;
  3500. /* ... and back out to userspace */
  3501. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3502. (uintptr_t) args->buffers_ptr,
  3503. exec_list,
  3504. sizeof(*exec_list) * args->buffer_count);
  3505. if (ret) {
  3506. ret = -EFAULT;
  3507. DRM_ERROR("failed to copy %d exec entries "
  3508. "back to user (%d)\n",
  3509. args->buffer_count, ret);
  3510. }
  3511. }
  3512. drm_free_large(exec_list);
  3513. drm_free_large(exec2_list);
  3514. return ret;
  3515. }
  3516. int
  3517. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3518. struct drm_file *file_priv)
  3519. {
  3520. struct drm_i915_gem_execbuffer2 *args = data;
  3521. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3522. int ret;
  3523. #if WATCH_EXEC
  3524. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3525. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3526. #endif
  3527. if (args->buffer_count < 1) {
  3528. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3529. return -EINVAL;
  3530. }
  3531. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3532. if (exec2_list == NULL) {
  3533. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3534. args->buffer_count);
  3535. return -ENOMEM;
  3536. }
  3537. ret = copy_from_user(exec2_list,
  3538. (struct drm_i915_relocation_entry __user *)
  3539. (uintptr_t) args->buffers_ptr,
  3540. sizeof(*exec2_list) * args->buffer_count);
  3541. if (ret != 0) {
  3542. DRM_ERROR("copy %d exec entries failed %d\n",
  3543. args->buffer_count, ret);
  3544. drm_free_large(exec2_list);
  3545. return -EFAULT;
  3546. }
  3547. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3548. if (!ret) {
  3549. /* Copy the new buffer offsets back to the user's exec list. */
  3550. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3551. (uintptr_t) args->buffers_ptr,
  3552. exec2_list,
  3553. sizeof(*exec2_list) * args->buffer_count);
  3554. if (ret) {
  3555. ret = -EFAULT;
  3556. DRM_ERROR("failed to copy %d exec entries "
  3557. "back to user (%d)\n",
  3558. args->buffer_count, ret);
  3559. }
  3560. }
  3561. drm_free_large(exec2_list);
  3562. return ret;
  3563. }
  3564. int
  3565. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3566. bool map_and_fenceable)
  3567. {
  3568. struct drm_device *dev = obj->dev;
  3569. struct drm_i915_private *dev_priv = dev->dev_private;
  3570. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3571. int ret;
  3572. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3573. BUG_ON(map_and_fenceable && !map_and_fenceable);
  3574. WARN_ON(i915_verify_lists(dev));
  3575. if (obj_priv->gtt_space != NULL) {
  3576. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3577. (map_and_fenceable && !obj_priv->map_and_fenceable)) {
  3578. WARN(obj_priv->pin_count,
  3579. "bo is already pinned with incorrect alignment:"
  3580. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  3581. " obj->map_and_fenceable=%d\n",
  3582. obj_priv->gtt_offset, alignment,
  3583. map_and_fenceable,
  3584. obj_priv->map_and_fenceable);
  3585. ret = i915_gem_object_unbind(obj);
  3586. if (ret)
  3587. return ret;
  3588. }
  3589. }
  3590. if (obj_priv->gtt_space == NULL) {
  3591. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3592. map_and_fenceable);
  3593. if (ret)
  3594. return ret;
  3595. }
  3596. if (obj_priv->pin_count++ == 0) {
  3597. i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
  3598. if (!obj_priv->active)
  3599. list_move_tail(&obj_priv->mm_list,
  3600. &dev_priv->mm.pinned_list);
  3601. }
  3602. BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
  3603. WARN_ON(i915_verify_lists(dev));
  3604. return 0;
  3605. }
  3606. void
  3607. i915_gem_object_unpin(struct drm_gem_object *obj)
  3608. {
  3609. struct drm_device *dev = obj->dev;
  3610. drm_i915_private_t *dev_priv = dev->dev_private;
  3611. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3612. WARN_ON(i915_verify_lists(dev));
  3613. BUG_ON(obj_priv->pin_count == 0);
  3614. BUG_ON(obj_priv->gtt_space == NULL);
  3615. if (--obj_priv->pin_count == 0) {
  3616. if (!obj_priv->active)
  3617. list_move_tail(&obj_priv->mm_list,
  3618. &dev_priv->mm.inactive_list);
  3619. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3620. }
  3621. WARN_ON(i915_verify_lists(dev));
  3622. }
  3623. int
  3624. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3625. struct drm_file *file_priv)
  3626. {
  3627. struct drm_i915_gem_pin *args = data;
  3628. struct drm_gem_object *obj;
  3629. struct drm_i915_gem_object *obj_priv;
  3630. int ret;
  3631. ret = i915_mutex_lock_interruptible(dev);
  3632. if (ret)
  3633. return ret;
  3634. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3635. if (obj == NULL) {
  3636. ret = -ENOENT;
  3637. goto unlock;
  3638. }
  3639. obj_priv = to_intel_bo(obj);
  3640. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3641. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3642. ret = -EINVAL;
  3643. goto out;
  3644. }
  3645. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3646. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3647. args->handle);
  3648. ret = -EINVAL;
  3649. goto out;
  3650. }
  3651. obj_priv->user_pin_count++;
  3652. obj_priv->pin_filp = file_priv;
  3653. if (obj_priv->user_pin_count == 1) {
  3654. ret = i915_gem_object_pin(obj, args->alignment, true);
  3655. if (ret)
  3656. goto out;
  3657. }
  3658. /* XXX - flush the CPU caches for pinned objects
  3659. * as the X server doesn't manage domains yet
  3660. */
  3661. i915_gem_object_flush_cpu_write_domain(obj);
  3662. args->offset = obj_priv->gtt_offset;
  3663. out:
  3664. drm_gem_object_unreference(obj);
  3665. unlock:
  3666. mutex_unlock(&dev->struct_mutex);
  3667. return ret;
  3668. }
  3669. int
  3670. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3671. struct drm_file *file_priv)
  3672. {
  3673. struct drm_i915_gem_pin *args = data;
  3674. struct drm_gem_object *obj;
  3675. struct drm_i915_gem_object *obj_priv;
  3676. int ret;
  3677. ret = i915_mutex_lock_interruptible(dev);
  3678. if (ret)
  3679. return ret;
  3680. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3681. if (obj == NULL) {
  3682. ret = -ENOENT;
  3683. goto unlock;
  3684. }
  3685. obj_priv = to_intel_bo(obj);
  3686. if (obj_priv->pin_filp != file_priv) {
  3687. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3688. args->handle);
  3689. ret = -EINVAL;
  3690. goto out;
  3691. }
  3692. obj_priv->user_pin_count--;
  3693. if (obj_priv->user_pin_count == 0) {
  3694. obj_priv->pin_filp = NULL;
  3695. i915_gem_object_unpin(obj);
  3696. }
  3697. out:
  3698. drm_gem_object_unreference(obj);
  3699. unlock:
  3700. mutex_unlock(&dev->struct_mutex);
  3701. return ret;
  3702. }
  3703. int
  3704. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3705. struct drm_file *file_priv)
  3706. {
  3707. struct drm_i915_gem_busy *args = data;
  3708. struct drm_gem_object *obj;
  3709. struct drm_i915_gem_object *obj_priv;
  3710. int ret;
  3711. ret = i915_mutex_lock_interruptible(dev);
  3712. if (ret)
  3713. return ret;
  3714. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3715. if (obj == NULL) {
  3716. ret = -ENOENT;
  3717. goto unlock;
  3718. }
  3719. obj_priv = to_intel_bo(obj);
  3720. /* Count all active objects as busy, even if they are currently not used
  3721. * by the gpu. Users of this interface expect objects to eventually
  3722. * become non-busy without any further actions, therefore emit any
  3723. * necessary flushes here.
  3724. */
  3725. args->busy = obj_priv->active;
  3726. if (args->busy) {
  3727. /* Unconditionally flush objects, even when the gpu still uses this
  3728. * object. Userspace calling this function indicates that it wants to
  3729. * use this buffer rather sooner than later, so issuing the required
  3730. * flush earlier is beneficial.
  3731. */
  3732. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3733. i915_gem_flush_ring(dev, file_priv,
  3734. obj_priv->ring,
  3735. 0, obj->write_domain);
  3736. /* Update the active list for the hardware's current position.
  3737. * Otherwise this only updates on a delayed timer or when irqs
  3738. * are actually unmasked, and our working set ends up being
  3739. * larger than required.
  3740. */
  3741. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3742. args->busy = obj_priv->active;
  3743. }
  3744. drm_gem_object_unreference(obj);
  3745. unlock:
  3746. mutex_unlock(&dev->struct_mutex);
  3747. return ret;
  3748. }
  3749. int
  3750. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3751. struct drm_file *file_priv)
  3752. {
  3753. return i915_gem_ring_throttle(dev, file_priv);
  3754. }
  3755. int
  3756. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3757. struct drm_file *file_priv)
  3758. {
  3759. struct drm_i915_gem_madvise *args = data;
  3760. struct drm_gem_object *obj;
  3761. struct drm_i915_gem_object *obj_priv;
  3762. int ret;
  3763. switch (args->madv) {
  3764. case I915_MADV_DONTNEED:
  3765. case I915_MADV_WILLNEED:
  3766. break;
  3767. default:
  3768. return -EINVAL;
  3769. }
  3770. ret = i915_mutex_lock_interruptible(dev);
  3771. if (ret)
  3772. return ret;
  3773. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3774. if (obj == NULL) {
  3775. ret = -ENOENT;
  3776. goto unlock;
  3777. }
  3778. obj_priv = to_intel_bo(obj);
  3779. if (obj_priv->pin_count) {
  3780. ret = -EINVAL;
  3781. goto out;
  3782. }
  3783. if (obj_priv->madv != __I915_MADV_PURGED)
  3784. obj_priv->madv = args->madv;
  3785. /* if the object is no longer bound, discard its backing storage */
  3786. if (i915_gem_object_is_purgeable(obj_priv) &&
  3787. obj_priv->gtt_space == NULL)
  3788. i915_gem_object_truncate(obj);
  3789. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3790. out:
  3791. drm_gem_object_unreference(obj);
  3792. unlock:
  3793. mutex_unlock(&dev->struct_mutex);
  3794. return ret;
  3795. }
  3796. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3797. size_t size)
  3798. {
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. struct drm_i915_gem_object *obj;
  3801. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3802. if (obj == NULL)
  3803. return NULL;
  3804. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3805. kfree(obj);
  3806. return NULL;
  3807. }
  3808. i915_gem_info_add_obj(dev_priv, size);
  3809. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3810. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3811. obj->agp_type = AGP_USER_MEMORY;
  3812. obj->base.driver_private = NULL;
  3813. obj->fence_reg = I915_FENCE_REG_NONE;
  3814. INIT_LIST_HEAD(&obj->mm_list);
  3815. INIT_LIST_HEAD(&obj->ring_list);
  3816. INIT_LIST_HEAD(&obj->gpu_write_list);
  3817. obj->madv = I915_MADV_WILLNEED;
  3818. /* Avoid an unnecessary call to unbind on the first bind. */
  3819. obj->map_and_fenceable = true;
  3820. return &obj->base;
  3821. }
  3822. int i915_gem_init_object(struct drm_gem_object *obj)
  3823. {
  3824. BUG();
  3825. return 0;
  3826. }
  3827. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3828. {
  3829. struct drm_device *dev = obj->dev;
  3830. drm_i915_private_t *dev_priv = dev->dev_private;
  3831. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3832. int ret;
  3833. ret = i915_gem_object_unbind(obj);
  3834. if (ret == -ERESTARTSYS) {
  3835. list_move(&obj_priv->mm_list,
  3836. &dev_priv->mm.deferred_free_list);
  3837. return;
  3838. }
  3839. if (obj->map_list.map)
  3840. i915_gem_free_mmap_offset(obj);
  3841. drm_gem_object_release(obj);
  3842. i915_gem_info_remove_obj(dev_priv, obj->size);
  3843. kfree(obj_priv->page_cpu_valid);
  3844. kfree(obj_priv->bit_17);
  3845. kfree(obj_priv);
  3846. }
  3847. void i915_gem_free_object(struct drm_gem_object *obj)
  3848. {
  3849. struct drm_device *dev = obj->dev;
  3850. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3851. trace_i915_gem_object_destroy(obj);
  3852. while (obj_priv->pin_count > 0)
  3853. i915_gem_object_unpin(obj);
  3854. if (obj_priv->phys_obj)
  3855. i915_gem_detach_phys_object(dev, obj);
  3856. i915_gem_free_object_tail(obj);
  3857. }
  3858. int
  3859. i915_gem_idle(struct drm_device *dev)
  3860. {
  3861. drm_i915_private_t *dev_priv = dev->dev_private;
  3862. int ret;
  3863. mutex_lock(&dev->struct_mutex);
  3864. if (dev_priv->mm.suspended) {
  3865. mutex_unlock(&dev->struct_mutex);
  3866. return 0;
  3867. }
  3868. ret = i915_gpu_idle(dev);
  3869. if (ret) {
  3870. mutex_unlock(&dev->struct_mutex);
  3871. return ret;
  3872. }
  3873. /* Under UMS, be paranoid and evict. */
  3874. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3875. ret = i915_gem_evict_inactive(dev, false);
  3876. if (ret) {
  3877. mutex_unlock(&dev->struct_mutex);
  3878. return ret;
  3879. }
  3880. }
  3881. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3882. * We need to replace this with a semaphore, or something.
  3883. * And not confound mm.suspended!
  3884. */
  3885. dev_priv->mm.suspended = 1;
  3886. del_timer_sync(&dev_priv->hangcheck_timer);
  3887. i915_kernel_lost_context(dev);
  3888. i915_gem_cleanup_ringbuffer(dev);
  3889. mutex_unlock(&dev->struct_mutex);
  3890. /* Cancel the retire work handler, which should be idle now. */
  3891. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3892. return 0;
  3893. }
  3894. /*
  3895. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3896. * over cache flushing.
  3897. */
  3898. static int
  3899. i915_gem_init_pipe_control(struct drm_device *dev)
  3900. {
  3901. drm_i915_private_t *dev_priv = dev->dev_private;
  3902. struct drm_gem_object *obj;
  3903. struct drm_i915_gem_object *obj_priv;
  3904. int ret;
  3905. obj = i915_gem_alloc_object(dev, 4096);
  3906. if (obj == NULL) {
  3907. DRM_ERROR("Failed to allocate seqno page\n");
  3908. ret = -ENOMEM;
  3909. goto err;
  3910. }
  3911. obj_priv = to_intel_bo(obj);
  3912. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3913. ret = i915_gem_object_pin(obj, 4096, true);
  3914. if (ret)
  3915. goto err_unref;
  3916. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3917. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3918. if (dev_priv->seqno_page == NULL)
  3919. goto err_unpin;
  3920. dev_priv->seqno_obj = obj;
  3921. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3922. return 0;
  3923. err_unpin:
  3924. i915_gem_object_unpin(obj);
  3925. err_unref:
  3926. drm_gem_object_unreference(obj);
  3927. err:
  3928. return ret;
  3929. }
  3930. static void
  3931. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3932. {
  3933. drm_i915_private_t *dev_priv = dev->dev_private;
  3934. struct drm_gem_object *obj;
  3935. struct drm_i915_gem_object *obj_priv;
  3936. obj = dev_priv->seqno_obj;
  3937. obj_priv = to_intel_bo(obj);
  3938. kunmap(obj_priv->pages[0]);
  3939. i915_gem_object_unpin(obj);
  3940. drm_gem_object_unreference(obj);
  3941. dev_priv->seqno_obj = NULL;
  3942. dev_priv->seqno_page = NULL;
  3943. }
  3944. int
  3945. i915_gem_init_ringbuffer(struct drm_device *dev)
  3946. {
  3947. drm_i915_private_t *dev_priv = dev->dev_private;
  3948. int ret;
  3949. if (HAS_PIPE_CONTROL(dev)) {
  3950. ret = i915_gem_init_pipe_control(dev);
  3951. if (ret)
  3952. return ret;
  3953. }
  3954. ret = intel_init_render_ring_buffer(dev);
  3955. if (ret)
  3956. goto cleanup_pipe_control;
  3957. if (HAS_BSD(dev)) {
  3958. ret = intel_init_bsd_ring_buffer(dev);
  3959. if (ret)
  3960. goto cleanup_render_ring;
  3961. }
  3962. if (HAS_BLT(dev)) {
  3963. ret = intel_init_blt_ring_buffer(dev);
  3964. if (ret)
  3965. goto cleanup_bsd_ring;
  3966. }
  3967. dev_priv->next_seqno = 1;
  3968. return 0;
  3969. cleanup_bsd_ring:
  3970. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3971. cleanup_render_ring:
  3972. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3973. cleanup_pipe_control:
  3974. if (HAS_PIPE_CONTROL(dev))
  3975. i915_gem_cleanup_pipe_control(dev);
  3976. return ret;
  3977. }
  3978. void
  3979. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3980. {
  3981. drm_i915_private_t *dev_priv = dev->dev_private;
  3982. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3983. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3984. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3985. if (HAS_PIPE_CONTROL(dev))
  3986. i915_gem_cleanup_pipe_control(dev);
  3987. }
  3988. int
  3989. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3990. struct drm_file *file_priv)
  3991. {
  3992. drm_i915_private_t *dev_priv = dev->dev_private;
  3993. int ret;
  3994. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3995. return 0;
  3996. if (atomic_read(&dev_priv->mm.wedged)) {
  3997. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3998. atomic_set(&dev_priv->mm.wedged, 0);
  3999. }
  4000. mutex_lock(&dev->struct_mutex);
  4001. dev_priv->mm.suspended = 0;
  4002. ret = i915_gem_init_ringbuffer(dev);
  4003. if (ret != 0) {
  4004. mutex_unlock(&dev->struct_mutex);
  4005. return ret;
  4006. }
  4007. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4008. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  4009. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  4010. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  4011. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4012. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4013. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  4014. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  4015. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  4016. mutex_unlock(&dev->struct_mutex);
  4017. ret = drm_irq_install(dev);
  4018. if (ret)
  4019. goto cleanup_ringbuffer;
  4020. return 0;
  4021. cleanup_ringbuffer:
  4022. mutex_lock(&dev->struct_mutex);
  4023. i915_gem_cleanup_ringbuffer(dev);
  4024. dev_priv->mm.suspended = 1;
  4025. mutex_unlock(&dev->struct_mutex);
  4026. return ret;
  4027. }
  4028. int
  4029. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4030. struct drm_file *file_priv)
  4031. {
  4032. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4033. return 0;
  4034. drm_irq_uninstall(dev);
  4035. return i915_gem_idle(dev);
  4036. }
  4037. void
  4038. i915_gem_lastclose(struct drm_device *dev)
  4039. {
  4040. int ret;
  4041. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4042. return;
  4043. ret = i915_gem_idle(dev);
  4044. if (ret)
  4045. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4046. }
  4047. static void
  4048. init_ring_lists(struct intel_ring_buffer *ring)
  4049. {
  4050. INIT_LIST_HEAD(&ring->active_list);
  4051. INIT_LIST_HEAD(&ring->request_list);
  4052. INIT_LIST_HEAD(&ring->gpu_write_list);
  4053. }
  4054. void
  4055. i915_gem_load(struct drm_device *dev)
  4056. {
  4057. int i;
  4058. drm_i915_private_t *dev_priv = dev->dev_private;
  4059. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4060. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4061. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4062. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4063. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4064. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4065. init_ring_lists(&dev_priv->render_ring);
  4066. init_ring_lists(&dev_priv->bsd_ring);
  4067. init_ring_lists(&dev_priv->blt_ring);
  4068. for (i = 0; i < 16; i++)
  4069. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4070. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4071. i915_gem_retire_work_handler);
  4072. init_completion(&dev_priv->error_completion);
  4073. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4074. if (IS_GEN3(dev)) {
  4075. u32 tmp = I915_READ(MI_ARB_STATE);
  4076. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4077. /* arb state is a masked write, so set bit + bit in mask */
  4078. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4079. I915_WRITE(MI_ARB_STATE, tmp);
  4080. }
  4081. }
  4082. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4083. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4084. dev_priv->fence_reg_start = 3;
  4085. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4086. dev_priv->num_fence_regs = 16;
  4087. else
  4088. dev_priv->num_fence_regs = 8;
  4089. /* Initialize fence registers to zero */
  4090. switch (INTEL_INFO(dev)->gen) {
  4091. case 6:
  4092. for (i = 0; i < 16; i++)
  4093. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4094. break;
  4095. case 5:
  4096. case 4:
  4097. for (i = 0; i < 16; i++)
  4098. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4099. break;
  4100. case 3:
  4101. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4102. for (i = 0; i < 8; i++)
  4103. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4104. case 2:
  4105. for (i = 0; i < 8; i++)
  4106. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4107. break;
  4108. }
  4109. i915_gem_detect_bit_6_swizzle(dev);
  4110. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4111. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4112. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4113. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4114. }
  4115. /*
  4116. * Create a physically contiguous memory object for this object
  4117. * e.g. for cursor + overlay regs
  4118. */
  4119. static int i915_gem_init_phys_object(struct drm_device *dev,
  4120. int id, int size, int align)
  4121. {
  4122. drm_i915_private_t *dev_priv = dev->dev_private;
  4123. struct drm_i915_gem_phys_object *phys_obj;
  4124. int ret;
  4125. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4126. return 0;
  4127. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4128. if (!phys_obj)
  4129. return -ENOMEM;
  4130. phys_obj->id = id;
  4131. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4132. if (!phys_obj->handle) {
  4133. ret = -ENOMEM;
  4134. goto kfree_obj;
  4135. }
  4136. #ifdef CONFIG_X86
  4137. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4138. #endif
  4139. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4140. return 0;
  4141. kfree_obj:
  4142. kfree(phys_obj);
  4143. return ret;
  4144. }
  4145. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4146. {
  4147. drm_i915_private_t *dev_priv = dev->dev_private;
  4148. struct drm_i915_gem_phys_object *phys_obj;
  4149. if (!dev_priv->mm.phys_objs[id - 1])
  4150. return;
  4151. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4152. if (phys_obj->cur_obj) {
  4153. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4154. }
  4155. #ifdef CONFIG_X86
  4156. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4157. #endif
  4158. drm_pci_free(dev, phys_obj->handle);
  4159. kfree(phys_obj);
  4160. dev_priv->mm.phys_objs[id - 1] = NULL;
  4161. }
  4162. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4163. {
  4164. int i;
  4165. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4166. i915_gem_free_phys_object(dev, i);
  4167. }
  4168. void i915_gem_detach_phys_object(struct drm_device *dev,
  4169. struct drm_gem_object *obj)
  4170. {
  4171. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4172. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4173. char *vaddr;
  4174. int i;
  4175. int page_count;
  4176. if (!obj_priv->phys_obj)
  4177. return;
  4178. vaddr = obj_priv->phys_obj->handle->vaddr;
  4179. page_count = obj->size / PAGE_SIZE;
  4180. for (i = 0; i < page_count; i++) {
  4181. struct page *page = read_cache_page_gfp(mapping, i,
  4182. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4183. if (!IS_ERR(page)) {
  4184. char *dst = kmap_atomic(page);
  4185. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4186. kunmap_atomic(dst);
  4187. drm_clflush_pages(&page, 1);
  4188. set_page_dirty(page);
  4189. mark_page_accessed(page);
  4190. page_cache_release(page);
  4191. }
  4192. }
  4193. drm_agp_chipset_flush(dev);
  4194. obj_priv->phys_obj->cur_obj = NULL;
  4195. obj_priv->phys_obj = NULL;
  4196. }
  4197. int
  4198. i915_gem_attach_phys_object(struct drm_device *dev,
  4199. struct drm_gem_object *obj,
  4200. int id,
  4201. int align)
  4202. {
  4203. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4204. drm_i915_private_t *dev_priv = dev->dev_private;
  4205. struct drm_i915_gem_object *obj_priv;
  4206. int ret = 0;
  4207. int page_count;
  4208. int i;
  4209. if (id > I915_MAX_PHYS_OBJECT)
  4210. return -EINVAL;
  4211. obj_priv = to_intel_bo(obj);
  4212. if (obj_priv->phys_obj) {
  4213. if (obj_priv->phys_obj->id == id)
  4214. return 0;
  4215. i915_gem_detach_phys_object(dev, obj);
  4216. }
  4217. /* create a new object */
  4218. if (!dev_priv->mm.phys_objs[id - 1]) {
  4219. ret = i915_gem_init_phys_object(dev, id,
  4220. obj->size, align);
  4221. if (ret) {
  4222. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4223. return ret;
  4224. }
  4225. }
  4226. /* bind to the object */
  4227. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4228. obj_priv->phys_obj->cur_obj = obj;
  4229. page_count = obj->size / PAGE_SIZE;
  4230. for (i = 0; i < page_count; i++) {
  4231. struct page *page;
  4232. char *dst, *src;
  4233. page = read_cache_page_gfp(mapping, i,
  4234. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4235. if (IS_ERR(page))
  4236. return PTR_ERR(page);
  4237. src = kmap_atomic(page);
  4238. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4239. memcpy(dst, src, PAGE_SIZE);
  4240. kunmap_atomic(src);
  4241. mark_page_accessed(page);
  4242. page_cache_release(page);
  4243. }
  4244. return 0;
  4245. }
  4246. static int
  4247. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4248. struct drm_i915_gem_pwrite *args,
  4249. struct drm_file *file_priv)
  4250. {
  4251. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4252. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4253. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4254. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4255. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4256. unsigned long unwritten;
  4257. /* The physical object once assigned is fixed for the lifetime
  4258. * of the obj, so we can safely drop the lock and continue
  4259. * to access vaddr.
  4260. */
  4261. mutex_unlock(&dev->struct_mutex);
  4262. unwritten = copy_from_user(vaddr, user_data, args->size);
  4263. mutex_lock(&dev->struct_mutex);
  4264. if (unwritten)
  4265. return -EFAULT;
  4266. }
  4267. drm_agp_chipset_flush(dev);
  4268. return 0;
  4269. }
  4270. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4271. {
  4272. struct drm_i915_file_private *file_priv = file->driver_priv;
  4273. /* Clean up our request list when the client is going away, so that
  4274. * later retire_requests won't dereference our soon-to-be-gone
  4275. * file_priv.
  4276. */
  4277. spin_lock(&file_priv->mm.lock);
  4278. while (!list_empty(&file_priv->mm.request_list)) {
  4279. struct drm_i915_gem_request *request;
  4280. request = list_first_entry(&file_priv->mm.request_list,
  4281. struct drm_i915_gem_request,
  4282. client_list);
  4283. list_del(&request->client_list);
  4284. request->file_priv = NULL;
  4285. }
  4286. spin_unlock(&file_priv->mm.lock);
  4287. }
  4288. static int
  4289. i915_gpu_is_active(struct drm_device *dev)
  4290. {
  4291. drm_i915_private_t *dev_priv = dev->dev_private;
  4292. int lists_empty;
  4293. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4294. list_empty(&dev_priv->mm.active_list);
  4295. return !lists_empty;
  4296. }
  4297. static int
  4298. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4299. int nr_to_scan,
  4300. gfp_t gfp_mask)
  4301. {
  4302. struct drm_i915_private *dev_priv =
  4303. container_of(shrinker,
  4304. struct drm_i915_private,
  4305. mm.inactive_shrinker);
  4306. struct drm_device *dev = dev_priv->dev;
  4307. struct drm_i915_gem_object *obj, *next;
  4308. int cnt;
  4309. if (!mutex_trylock(&dev->struct_mutex))
  4310. return 0;
  4311. /* "fast-path" to count number of available objects */
  4312. if (nr_to_scan == 0) {
  4313. cnt = 0;
  4314. list_for_each_entry(obj,
  4315. &dev_priv->mm.inactive_list,
  4316. mm_list)
  4317. cnt++;
  4318. mutex_unlock(&dev->struct_mutex);
  4319. return cnt / 100 * sysctl_vfs_cache_pressure;
  4320. }
  4321. rescan:
  4322. /* first scan for clean buffers */
  4323. i915_gem_retire_requests(dev);
  4324. list_for_each_entry_safe(obj, next,
  4325. &dev_priv->mm.inactive_list,
  4326. mm_list) {
  4327. if (i915_gem_object_is_purgeable(obj)) {
  4328. i915_gem_object_unbind(&obj->base);
  4329. if (--nr_to_scan == 0)
  4330. break;
  4331. }
  4332. }
  4333. /* second pass, evict/count anything still on the inactive list */
  4334. cnt = 0;
  4335. list_for_each_entry_safe(obj, next,
  4336. &dev_priv->mm.inactive_list,
  4337. mm_list) {
  4338. if (nr_to_scan) {
  4339. i915_gem_object_unbind(&obj->base);
  4340. nr_to_scan--;
  4341. } else
  4342. cnt++;
  4343. }
  4344. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4345. /*
  4346. * We are desperate for pages, so as a last resort, wait
  4347. * for the GPU to finish and discard whatever we can.
  4348. * This has a dramatic impact to reduce the number of
  4349. * OOM-killer events whilst running the GPU aggressively.
  4350. */
  4351. if (i915_gpu_idle(dev) == 0)
  4352. goto rescan;
  4353. }
  4354. mutex_unlock(&dev->struct_mutex);
  4355. return cnt / 100 * sysctl_vfs_cache_pressure;
  4356. }