book3s_hv_rm_mmu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /*
  22. * Since this file is built in even if KVM is a module, we need
  23. * a local copy of this function for the case where kvm_main.c is
  24. * modular.
  25. */
  26. static struct kvm_memory_slot *builtin_gfn_to_memslot(struct kvm *kvm,
  27. gfn_t gfn)
  28. {
  29. struct kvm_memslots *slots;
  30. struct kvm_memory_slot *memslot;
  31. slots = kvm_memslots(kvm);
  32. kvm_for_each_memslot(memslot, slots)
  33. if (gfn >= memslot->base_gfn &&
  34. gfn < memslot->base_gfn + memslot->npages)
  35. return memslot;
  36. return NULL;
  37. }
  38. /* Translate address of a vmalloc'd thing to a linear map address */
  39. static void *real_vmalloc_addr(void *x)
  40. {
  41. unsigned long addr = (unsigned long) x;
  42. pte_t *p;
  43. p = find_linux_pte(swapper_pg_dir, addr);
  44. if (!p || !pte_present(*p))
  45. return NULL;
  46. /* assume we don't have huge pages in vmalloc space... */
  47. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  48. return __va(addr);
  49. }
  50. /*
  51. * Add this HPTE into the chain for the real page.
  52. * Must be called with the chain locked; it unlocks the chain.
  53. */
  54. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  55. unsigned long *rmap, long pte_index, int realmode)
  56. {
  57. struct revmap_entry *head, *tail;
  58. unsigned long i;
  59. if (*rmap & KVMPPC_RMAP_PRESENT) {
  60. i = *rmap & KVMPPC_RMAP_INDEX;
  61. head = &kvm->arch.revmap[i];
  62. if (realmode)
  63. head = real_vmalloc_addr(head);
  64. tail = &kvm->arch.revmap[head->back];
  65. if (realmode)
  66. tail = real_vmalloc_addr(tail);
  67. rev->forw = i;
  68. rev->back = head->back;
  69. tail->forw = pte_index;
  70. head->back = pte_index;
  71. } else {
  72. rev->forw = rev->back = pte_index;
  73. i = pte_index;
  74. }
  75. smp_wmb();
  76. *rmap = i | KVMPPC_RMAP_REFERENCED | KVMPPC_RMAP_PRESENT; /* unlock */
  77. }
  78. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  79. /* Remove this HPTE from the chain for a real page */
  80. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  81. unsigned long hpte_v)
  82. {
  83. struct revmap_entry *rev, *next, *prev;
  84. unsigned long gfn, ptel, head;
  85. struct kvm_memory_slot *memslot;
  86. unsigned long *rmap;
  87. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  88. ptel = rev->guest_rpte;
  89. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  90. memslot = builtin_gfn_to_memslot(kvm, gfn);
  91. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  92. return;
  93. rmap = real_vmalloc_addr(&memslot->rmap[gfn - memslot->base_gfn]);
  94. lock_rmap(rmap);
  95. head = *rmap & KVMPPC_RMAP_INDEX;
  96. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  97. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  98. next->back = rev->back;
  99. prev->forw = rev->forw;
  100. if (head == pte_index) {
  101. head = rev->forw;
  102. if (head == pte_index)
  103. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  104. else
  105. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  106. }
  107. unlock_rmap(rmap);
  108. }
  109. static pte_t lookup_linux_pte(struct kvm_vcpu *vcpu, unsigned long hva,
  110. int writing, unsigned long *pte_sizep)
  111. {
  112. pte_t *ptep;
  113. unsigned long ps = *pte_sizep;
  114. unsigned int shift;
  115. ptep = find_linux_pte_or_hugepte(vcpu->arch.pgdir, hva, &shift);
  116. if (!ptep)
  117. return __pte(0);
  118. if (shift)
  119. *pte_sizep = 1ul << shift;
  120. else
  121. *pte_sizep = PAGE_SIZE;
  122. if (ps > *pte_sizep)
  123. return __pte(0);
  124. if (!pte_present(*ptep))
  125. return __pte(0);
  126. return kvmppc_read_update_linux_pte(ptep, writing);
  127. }
  128. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  129. {
  130. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  131. hpte[0] = hpte_v;
  132. }
  133. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  134. long pte_index, unsigned long pteh, unsigned long ptel)
  135. {
  136. struct kvm *kvm = vcpu->kvm;
  137. unsigned long i, pa, gpa, gfn, psize;
  138. unsigned long slot_fn, hva;
  139. unsigned long *hpte;
  140. struct revmap_entry *rev;
  141. unsigned long g_ptel = ptel;
  142. struct kvm_memory_slot *memslot;
  143. unsigned long *physp, pte_size;
  144. unsigned long is_io;
  145. unsigned long *rmap;
  146. pte_t pte;
  147. unsigned int writing;
  148. unsigned long mmu_seq;
  149. bool realmode = vcpu->arch.vcore->vcore_state == VCORE_RUNNING;
  150. psize = hpte_page_size(pteh, ptel);
  151. if (!psize)
  152. return H_PARAMETER;
  153. writing = hpte_is_writable(ptel);
  154. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  155. /* used later to detect if we might have been invalidated */
  156. mmu_seq = kvm->mmu_notifier_seq;
  157. smp_rmb();
  158. /* Find the memslot (if any) for this address */
  159. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  160. gfn = gpa >> PAGE_SHIFT;
  161. memslot = builtin_gfn_to_memslot(kvm, gfn);
  162. pa = 0;
  163. is_io = ~0ul;
  164. rmap = NULL;
  165. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  166. /* PPC970 can't do emulated MMIO */
  167. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  168. return H_PARAMETER;
  169. /* Emulated MMIO - mark this with key=31 */
  170. pteh |= HPTE_V_ABSENT;
  171. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  172. goto do_insert;
  173. }
  174. /* Check if the requested page fits entirely in the memslot. */
  175. if (!slot_is_aligned(memslot, psize))
  176. return H_PARAMETER;
  177. slot_fn = gfn - memslot->base_gfn;
  178. rmap = &memslot->rmap[slot_fn];
  179. if (!kvm->arch.using_mmu_notifiers) {
  180. physp = kvm->arch.slot_phys[memslot->id];
  181. if (!physp)
  182. return H_PARAMETER;
  183. physp += slot_fn;
  184. if (realmode)
  185. physp = real_vmalloc_addr(physp);
  186. pa = *physp;
  187. if (!pa)
  188. return H_TOO_HARD;
  189. is_io = pa & (HPTE_R_I | HPTE_R_W);
  190. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  191. pa &= PAGE_MASK;
  192. } else {
  193. /* Translate to host virtual address */
  194. hva = gfn_to_hva_memslot(memslot, gfn);
  195. /* Look up the Linux PTE for the backing page */
  196. pte_size = psize;
  197. pte = lookup_linux_pte(vcpu, hva, writing, &pte_size);
  198. if (pte_present(pte)) {
  199. if (writing && !pte_write(pte))
  200. /* make the actual HPTE be read-only */
  201. ptel = hpte_make_readonly(ptel);
  202. is_io = hpte_cache_bits(pte_val(pte));
  203. pa = pte_pfn(pte) << PAGE_SHIFT;
  204. }
  205. }
  206. if (pte_size < psize)
  207. return H_PARAMETER;
  208. if (pa && pte_size > psize)
  209. pa |= gpa & (pte_size - 1);
  210. ptel &= ~(HPTE_R_PP0 - psize);
  211. ptel |= pa;
  212. if (pa)
  213. pteh |= HPTE_V_VALID;
  214. else
  215. pteh |= HPTE_V_ABSENT;
  216. /* Check WIMG */
  217. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  218. if (is_io)
  219. return H_PARAMETER;
  220. /*
  221. * Allow guest to map emulated device memory as
  222. * uncacheable, but actually make it cacheable.
  223. */
  224. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  225. ptel |= HPTE_R_M;
  226. }
  227. /* Find and lock the HPTEG slot to use */
  228. do_insert:
  229. if (pte_index >= HPT_NPTE)
  230. return H_PARAMETER;
  231. if (likely((flags & H_EXACT) == 0)) {
  232. pte_index &= ~7UL;
  233. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  234. for (i = 0; i < 8; ++i) {
  235. if ((*hpte & HPTE_V_VALID) == 0 &&
  236. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  237. HPTE_V_ABSENT))
  238. break;
  239. hpte += 2;
  240. }
  241. if (i == 8) {
  242. /*
  243. * Since try_lock_hpte doesn't retry (not even stdcx.
  244. * failures), it could be that there is a free slot
  245. * but we transiently failed to lock it. Try again,
  246. * actually locking each slot and checking it.
  247. */
  248. hpte -= 16;
  249. for (i = 0; i < 8; ++i) {
  250. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  251. cpu_relax();
  252. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  253. break;
  254. *hpte &= ~HPTE_V_HVLOCK;
  255. hpte += 2;
  256. }
  257. if (i == 8)
  258. return H_PTEG_FULL;
  259. }
  260. pte_index += i;
  261. } else {
  262. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  263. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  264. HPTE_V_ABSENT)) {
  265. /* Lock the slot and check again */
  266. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  267. cpu_relax();
  268. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  269. *hpte &= ~HPTE_V_HVLOCK;
  270. return H_PTEG_FULL;
  271. }
  272. }
  273. }
  274. /* Save away the guest's idea of the second HPTE dword */
  275. rev = &kvm->arch.revmap[pte_index];
  276. if (realmode)
  277. rev = real_vmalloc_addr(rev);
  278. if (rev)
  279. rev->guest_rpte = g_ptel;
  280. /* Link HPTE into reverse-map chain */
  281. if (pteh & HPTE_V_VALID) {
  282. if (realmode)
  283. rmap = real_vmalloc_addr(rmap);
  284. lock_rmap(rmap);
  285. /* Check for pending invalidations under the rmap chain lock */
  286. if (kvm->arch.using_mmu_notifiers &&
  287. mmu_notifier_retry(vcpu, mmu_seq)) {
  288. /* inval in progress, write a non-present HPTE */
  289. pteh |= HPTE_V_ABSENT;
  290. pteh &= ~HPTE_V_VALID;
  291. unlock_rmap(rmap);
  292. } else {
  293. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  294. realmode);
  295. }
  296. }
  297. hpte[1] = ptel;
  298. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  299. eieio();
  300. hpte[0] = pteh;
  301. asm volatile("ptesync" : : : "memory");
  302. vcpu->arch.gpr[4] = pte_index;
  303. return H_SUCCESS;
  304. }
  305. EXPORT_SYMBOL_GPL(kvmppc_h_enter);
  306. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  307. static inline int try_lock_tlbie(unsigned int *lock)
  308. {
  309. unsigned int tmp, old;
  310. unsigned int token = LOCK_TOKEN;
  311. asm volatile("1:lwarx %1,0,%2\n"
  312. " cmpwi cr0,%1,0\n"
  313. " bne 2f\n"
  314. " stwcx. %3,0,%2\n"
  315. " bne- 1b\n"
  316. " isync\n"
  317. "2:"
  318. : "=&r" (tmp), "=&r" (old)
  319. : "r" (lock), "r" (token)
  320. : "cc", "memory");
  321. return old == 0;
  322. }
  323. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  324. unsigned long pte_index, unsigned long avpn,
  325. unsigned long va)
  326. {
  327. struct kvm *kvm = vcpu->kvm;
  328. unsigned long *hpte;
  329. unsigned long v, r, rb;
  330. struct revmap_entry *rev;
  331. if (pte_index >= HPT_NPTE)
  332. return H_PARAMETER;
  333. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  334. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  335. cpu_relax();
  336. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  337. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  338. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  339. hpte[0] &= ~HPTE_V_HVLOCK;
  340. return H_NOT_FOUND;
  341. }
  342. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  343. v = hpte[0] & ~HPTE_V_HVLOCK;
  344. if (v & HPTE_V_VALID) {
  345. hpte[0] &= ~HPTE_V_VALID;
  346. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  347. if (!(flags & H_LOCAL) && atomic_read(&kvm->online_vcpus) > 1) {
  348. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  349. cpu_relax();
  350. asm volatile("ptesync" : : : "memory");
  351. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  352. : : "r" (rb), "r" (kvm->arch.lpid));
  353. asm volatile("ptesync" : : : "memory");
  354. kvm->arch.tlbie_lock = 0;
  355. } else {
  356. asm volatile("ptesync" : : : "memory");
  357. asm volatile("tlbiel %0" : : "r" (rb));
  358. asm volatile("ptesync" : : : "memory");
  359. }
  360. remove_revmap_chain(kvm, pte_index, v);
  361. }
  362. r = rev->guest_rpte;
  363. unlock_hpte(hpte, 0);
  364. vcpu->arch.gpr[4] = v;
  365. vcpu->arch.gpr[5] = r;
  366. return H_SUCCESS;
  367. }
  368. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  369. {
  370. struct kvm *kvm = vcpu->kvm;
  371. unsigned long *args = &vcpu->arch.gpr[4];
  372. unsigned long *hp, *hptes[4], tlbrb[4];
  373. long int i, j, k, n, found, indexes[4];
  374. unsigned long flags, req, pte_index, rcbits;
  375. long int local = 0;
  376. long int ret = H_SUCCESS;
  377. struct revmap_entry *rev, *revs[4];
  378. if (atomic_read(&kvm->online_vcpus) == 1)
  379. local = 1;
  380. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  381. n = 0;
  382. for (; i < 4; ++i) {
  383. j = i * 2;
  384. pte_index = args[j];
  385. flags = pte_index >> 56;
  386. pte_index &= ((1ul << 56) - 1);
  387. req = flags >> 6;
  388. flags &= 3;
  389. if (req == 3) { /* no more requests */
  390. i = 4;
  391. break;
  392. }
  393. if (req != 1 || flags == 3 || pte_index >= HPT_NPTE) {
  394. /* parameter error */
  395. args[j] = ((0xa0 | flags) << 56) + pte_index;
  396. ret = H_PARAMETER;
  397. break;
  398. }
  399. hp = (unsigned long *)
  400. (kvm->arch.hpt_virt + (pte_index << 4));
  401. /* to avoid deadlock, don't spin except for first */
  402. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  403. if (n)
  404. break;
  405. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  406. cpu_relax();
  407. }
  408. found = 0;
  409. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  410. switch (flags & 3) {
  411. case 0: /* absolute */
  412. found = 1;
  413. break;
  414. case 1: /* andcond */
  415. if (!(hp[0] & args[j + 1]))
  416. found = 1;
  417. break;
  418. case 2: /* AVPN */
  419. if ((hp[0] & ~0x7fUL) == args[j + 1])
  420. found = 1;
  421. break;
  422. }
  423. }
  424. if (!found) {
  425. hp[0] &= ~HPTE_V_HVLOCK;
  426. args[j] = ((0x90 | flags) << 56) + pte_index;
  427. continue;
  428. }
  429. args[j] = ((0x80 | flags) << 56) + pte_index;
  430. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  431. /* insert R and C bits from guest PTE */
  432. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  433. args[j] |= rcbits << (56 - 5);
  434. if (!(hp[0] & HPTE_V_VALID))
  435. continue;
  436. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  437. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  438. indexes[n] = j;
  439. hptes[n] = hp;
  440. revs[n] = rev;
  441. ++n;
  442. }
  443. if (!n)
  444. break;
  445. /* Now that we've collected a batch, do the tlbies */
  446. if (!local) {
  447. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  448. cpu_relax();
  449. asm volatile("ptesync" : : : "memory");
  450. for (k = 0; k < n; ++k)
  451. asm volatile(PPC_TLBIE(%1,%0) : :
  452. "r" (tlbrb[k]),
  453. "r" (kvm->arch.lpid));
  454. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  455. kvm->arch.tlbie_lock = 0;
  456. } else {
  457. asm volatile("ptesync" : : : "memory");
  458. for (k = 0; k < n; ++k)
  459. asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
  460. asm volatile("ptesync" : : : "memory");
  461. }
  462. for (k = 0; k < n; ++k) {
  463. j = indexes[k];
  464. pte_index = args[j] & ((1ul << 56) - 1);
  465. hp = hptes[k];
  466. rev = revs[k];
  467. remove_revmap_chain(kvm, pte_index, hp[0]);
  468. unlock_hpte(hp, 0);
  469. }
  470. }
  471. return ret;
  472. }
  473. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  474. unsigned long pte_index, unsigned long avpn,
  475. unsigned long va)
  476. {
  477. struct kvm *kvm = vcpu->kvm;
  478. unsigned long *hpte;
  479. struct revmap_entry *rev;
  480. unsigned long v, r, rb, mask, bits;
  481. if (pte_index >= HPT_NPTE)
  482. return H_PARAMETER;
  483. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  484. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  485. cpu_relax();
  486. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  487. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  488. hpte[0] &= ~HPTE_V_HVLOCK;
  489. return H_NOT_FOUND;
  490. }
  491. if (atomic_read(&kvm->online_vcpus) == 1)
  492. flags |= H_LOCAL;
  493. v = hpte[0];
  494. bits = (flags << 55) & HPTE_R_PP0;
  495. bits |= (flags << 48) & HPTE_R_KEY_HI;
  496. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  497. /* Update guest view of 2nd HPTE dword */
  498. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  499. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  500. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  501. if (rev) {
  502. r = (rev->guest_rpte & ~mask) | bits;
  503. rev->guest_rpte = r;
  504. }
  505. r = (hpte[1] & ~mask) | bits;
  506. /* Update HPTE */
  507. if (v & HPTE_V_VALID) {
  508. rb = compute_tlbie_rb(v, r, pte_index);
  509. hpte[0] = v & ~HPTE_V_VALID;
  510. if (!(flags & H_LOCAL)) {
  511. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  512. cpu_relax();
  513. asm volatile("ptesync" : : : "memory");
  514. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  515. : : "r" (rb), "r" (kvm->arch.lpid));
  516. asm volatile("ptesync" : : : "memory");
  517. kvm->arch.tlbie_lock = 0;
  518. } else {
  519. asm volatile("ptesync" : : : "memory");
  520. asm volatile("tlbiel %0" : : "r" (rb));
  521. asm volatile("ptesync" : : : "memory");
  522. }
  523. }
  524. hpte[1] = r;
  525. eieio();
  526. hpte[0] = v & ~HPTE_V_HVLOCK;
  527. asm volatile("ptesync" : : : "memory");
  528. return H_SUCCESS;
  529. }
  530. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  531. unsigned long pte_index)
  532. {
  533. struct kvm *kvm = vcpu->kvm;
  534. unsigned long *hpte, v, r;
  535. int i, n = 1;
  536. struct revmap_entry *rev = NULL;
  537. if (pte_index >= HPT_NPTE)
  538. return H_PARAMETER;
  539. if (flags & H_READ_4) {
  540. pte_index &= ~3;
  541. n = 4;
  542. }
  543. if (flags & H_R_XLATE)
  544. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  545. for (i = 0; i < n; ++i, ++pte_index) {
  546. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  547. v = hpte[0] & ~HPTE_V_HVLOCK;
  548. r = hpte[1];
  549. if (v & HPTE_V_ABSENT) {
  550. v &= ~HPTE_V_ABSENT;
  551. v |= HPTE_V_VALID;
  552. }
  553. if (v & HPTE_V_VALID) {
  554. if (rev)
  555. r = rev[i].guest_rpte;
  556. else
  557. r = hpte[1] | HPTE_R_RPN;
  558. }
  559. vcpu->arch.gpr[4 + i * 2] = v;
  560. vcpu->arch.gpr[5 + i * 2] = r;
  561. }
  562. return H_SUCCESS;
  563. }
  564. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  565. unsigned long pte_index)
  566. {
  567. unsigned long rb;
  568. hptep[0] &= ~HPTE_V_VALID;
  569. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  570. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  571. cpu_relax();
  572. asm volatile("ptesync" : : : "memory");
  573. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  574. : : "r" (rb), "r" (kvm->arch.lpid));
  575. asm volatile("ptesync" : : : "memory");
  576. kvm->arch.tlbie_lock = 0;
  577. }
  578. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  579. static int slb_base_page_shift[4] = {
  580. 24, /* 16M */
  581. 16, /* 64k */
  582. 34, /* 16G */
  583. 20, /* 1M, unsupported */
  584. };
  585. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  586. unsigned long valid)
  587. {
  588. unsigned int i;
  589. unsigned int pshift;
  590. unsigned long somask;
  591. unsigned long vsid, hash;
  592. unsigned long avpn;
  593. unsigned long *hpte;
  594. unsigned long mask, val;
  595. unsigned long v, r;
  596. /* Get page shift, work out hash and AVPN etc. */
  597. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  598. val = 0;
  599. pshift = 12;
  600. if (slb_v & SLB_VSID_L) {
  601. mask |= HPTE_V_LARGE;
  602. val |= HPTE_V_LARGE;
  603. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  604. }
  605. if (slb_v & SLB_VSID_B_1T) {
  606. somask = (1UL << 40) - 1;
  607. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  608. vsid ^= vsid << 25;
  609. } else {
  610. somask = (1UL << 28) - 1;
  611. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  612. }
  613. hash = (vsid ^ ((eaddr & somask) >> pshift)) & HPT_HASH_MASK;
  614. avpn = slb_v & ~(somask >> 16); /* also includes B */
  615. avpn |= (eaddr & somask) >> 16;
  616. if (pshift >= 24)
  617. avpn &= ~((1UL << (pshift - 16)) - 1);
  618. else
  619. avpn &= ~0x7fUL;
  620. val |= avpn;
  621. for (;;) {
  622. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  623. for (i = 0; i < 16; i += 2) {
  624. /* Read the PTE racily */
  625. v = hpte[i] & ~HPTE_V_HVLOCK;
  626. /* Check valid/absent, hash, segment size and AVPN */
  627. if (!(v & valid) || (v & mask) != val)
  628. continue;
  629. /* Lock the PTE and read it under the lock */
  630. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  631. cpu_relax();
  632. v = hpte[i] & ~HPTE_V_HVLOCK;
  633. r = hpte[i+1];
  634. /*
  635. * Check the HPTE again, including large page size
  636. * Since we don't currently allow any MPSS (mixed
  637. * page-size segment) page sizes, it is sufficient
  638. * to check against the actual page size.
  639. */
  640. if ((v & valid) && (v & mask) == val &&
  641. hpte_page_size(v, r) == (1ul << pshift))
  642. /* Return with the HPTE still locked */
  643. return (hash << 3) + (i >> 1);
  644. /* Unlock and move on */
  645. hpte[i] = v;
  646. }
  647. if (val & HPTE_V_SECONDARY)
  648. break;
  649. val |= HPTE_V_SECONDARY;
  650. hash = hash ^ HPT_HASH_MASK;
  651. }
  652. return -1;
  653. }
  654. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  655. /*
  656. * Called in real mode to check whether an HPTE not found fault
  657. * is due to accessing a paged-out page or an emulated MMIO page,
  658. * or if a protection fault is due to accessing a page that the
  659. * guest wanted read/write access to but which we made read-only.
  660. * Returns a possibly modified status (DSISR) value if not
  661. * (i.e. pass the interrupt to the guest),
  662. * -1 to pass the fault up to host kernel mode code, -2 to do that
  663. * and also load the instruction word (for MMIO emulation),
  664. * or 0 if we should make the guest retry the access.
  665. */
  666. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  667. unsigned long slb_v, unsigned int status, bool data)
  668. {
  669. struct kvm *kvm = vcpu->kvm;
  670. long int index;
  671. unsigned long v, r, gr;
  672. unsigned long *hpte;
  673. unsigned long valid;
  674. struct revmap_entry *rev;
  675. unsigned long pp, key;
  676. /* For protection fault, expect to find a valid HPTE */
  677. valid = HPTE_V_VALID;
  678. if (status & DSISR_NOHPTE)
  679. valid |= HPTE_V_ABSENT;
  680. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  681. if (index < 0) {
  682. if (status & DSISR_NOHPTE)
  683. return status; /* there really was no HPTE */
  684. return 0; /* for prot fault, HPTE disappeared */
  685. }
  686. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  687. v = hpte[0] & ~HPTE_V_HVLOCK;
  688. r = hpte[1];
  689. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  690. gr = rev->guest_rpte;
  691. unlock_hpte(hpte, v);
  692. /* For not found, if the HPTE is valid by now, retry the instruction */
  693. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  694. return 0;
  695. /* Check access permissions to the page */
  696. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  697. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  698. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  699. if (!data) {
  700. if (gr & (HPTE_R_N | HPTE_R_G))
  701. return status | SRR1_ISI_N_OR_G;
  702. if (!hpte_read_permission(pp, slb_v & key))
  703. return status | SRR1_ISI_PROT;
  704. } else if (status & DSISR_ISSTORE) {
  705. /* check write permission */
  706. if (!hpte_write_permission(pp, slb_v & key))
  707. return status | DSISR_PROTFAULT;
  708. } else {
  709. if (!hpte_read_permission(pp, slb_v & key))
  710. return status | DSISR_PROTFAULT;
  711. }
  712. /* Check storage key, if applicable */
  713. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  714. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  715. if (status & DSISR_ISSTORE)
  716. perm >>= 1;
  717. if (perm & 1)
  718. return status | DSISR_KEYFAULT;
  719. }
  720. /* Save HPTE info for virtual-mode handler */
  721. vcpu->arch.pgfault_addr = addr;
  722. vcpu->arch.pgfault_index = index;
  723. vcpu->arch.pgfault_hpte[0] = v;
  724. vcpu->arch.pgfault_hpte[1] = r;
  725. /* Check the storage key to see if it is possibly emulated MMIO */
  726. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  727. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  728. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  729. return -2; /* MMIO emulation - load instr word */
  730. return -1; /* send fault up to host kernel mode */
  731. }