mmu.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  233. {
  234. #ifdef CONFIG_X86_64
  235. return xchg(sptep, new_spte);
  236. #else
  237. u64 old_spte;
  238. do {
  239. old_spte = *sptep;
  240. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  241. return old_spte;
  242. #endif
  243. }
  244. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  245. struct kmem_cache *base_cache, int min)
  246. {
  247. void *obj;
  248. if (cache->nobjs >= min)
  249. return 0;
  250. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  251. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  252. if (!obj)
  253. return -ENOMEM;
  254. cache->objects[cache->nobjs++] = obj;
  255. }
  256. return 0;
  257. }
  258. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  259. struct kmem_cache *cache)
  260. {
  261. while (mc->nobjs)
  262. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  263. }
  264. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  265. int min)
  266. {
  267. struct page *page;
  268. if (cache->nobjs >= min)
  269. return 0;
  270. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  271. page = alloc_page(GFP_KERNEL);
  272. if (!page)
  273. return -ENOMEM;
  274. cache->objects[cache->nobjs++] = page_address(page);
  275. }
  276. return 0;
  277. }
  278. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  279. {
  280. while (mc->nobjs)
  281. free_page((unsigned long)mc->objects[--mc->nobjs]);
  282. }
  283. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  284. {
  285. int r;
  286. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  287. pte_chain_cache, 4);
  288. if (r)
  289. goto out;
  290. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  291. rmap_desc_cache, 4);
  292. if (r)
  293. goto out;
  294. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  295. if (r)
  296. goto out;
  297. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  298. mmu_page_header_cache, 4);
  299. out:
  300. return r;
  301. }
  302. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  303. {
  304. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  305. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  306. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  307. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  308. mmu_page_header_cache);
  309. }
  310. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  311. size_t size)
  312. {
  313. void *p;
  314. BUG_ON(!mc->nobjs);
  315. p = mc->objects[--mc->nobjs];
  316. return p;
  317. }
  318. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  319. {
  320. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  321. sizeof(struct kvm_pte_chain));
  322. }
  323. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  324. {
  325. kmem_cache_free(pte_chain_cache, pc);
  326. }
  327. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  328. {
  329. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  330. sizeof(struct kvm_rmap_desc));
  331. }
  332. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  333. {
  334. kmem_cache_free(rmap_desc_cache, rd);
  335. }
  336. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  337. {
  338. if (!sp->role.direct)
  339. return sp->gfns[index];
  340. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  341. }
  342. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  343. {
  344. if (sp->role.direct)
  345. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  346. else
  347. sp->gfns[index] = gfn;
  348. }
  349. /*
  350. * Return the pointer to the largepage write count for a given
  351. * gfn, handling slots that are not large page aligned.
  352. */
  353. static int *slot_largepage_idx(gfn_t gfn,
  354. struct kvm_memory_slot *slot,
  355. int level)
  356. {
  357. unsigned long idx;
  358. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  359. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  360. return &slot->lpage_info[level - 2][idx].write_count;
  361. }
  362. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  363. {
  364. struct kvm_memory_slot *slot;
  365. int *write_count;
  366. int i;
  367. slot = gfn_to_memslot(kvm, gfn);
  368. for (i = PT_DIRECTORY_LEVEL;
  369. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  370. write_count = slot_largepage_idx(gfn, slot, i);
  371. *write_count += 1;
  372. }
  373. }
  374. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  375. {
  376. struct kvm_memory_slot *slot;
  377. int *write_count;
  378. int i;
  379. slot = gfn_to_memslot(kvm, gfn);
  380. for (i = PT_DIRECTORY_LEVEL;
  381. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  382. write_count = slot_largepage_idx(gfn, slot, i);
  383. *write_count -= 1;
  384. WARN_ON(*write_count < 0);
  385. }
  386. }
  387. static int has_wrprotected_page(struct kvm *kvm,
  388. gfn_t gfn,
  389. int level)
  390. {
  391. struct kvm_memory_slot *slot;
  392. int *largepage_idx;
  393. slot = gfn_to_memslot(kvm, gfn);
  394. if (slot) {
  395. largepage_idx = slot_largepage_idx(gfn, slot, level);
  396. return *largepage_idx;
  397. }
  398. return 1;
  399. }
  400. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  401. {
  402. unsigned long page_size;
  403. int i, ret = 0;
  404. page_size = kvm_host_page_size(kvm, gfn);
  405. for (i = PT_PAGE_TABLE_LEVEL;
  406. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  407. if (page_size >= KVM_HPAGE_SIZE(i))
  408. ret = i;
  409. else
  410. break;
  411. }
  412. return ret;
  413. }
  414. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  415. {
  416. struct kvm_memory_slot *slot;
  417. int host_level, level, max_level;
  418. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  419. if (slot && slot->dirty_bitmap)
  420. return PT_PAGE_TABLE_LEVEL;
  421. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  422. if (host_level == PT_PAGE_TABLE_LEVEL)
  423. return host_level;
  424. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  425. kvm_x86_ops->get_lpage_level() : host_level;
  426. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  427. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  428. break;
  429. return level - 1;
  430. }
  431. /*
  432. * Take gfn and return the reverse mapping to it.
  433. */
  434. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  435. {
  436. struct kvm_memory_slot *slot;
  437. unsigned long idx;
  438. slot = gfn_to_memslot(kvm, gfn);
  439. if (likely(level == PT_PAGE_TABLE_LEVEL))
  440. return &slot->rmap[gfn - slot->base_gfn];
  441. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  442. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  443. return &slot->lpage_info[level - 2][idx].rmap_pde;
  444. }
  445. /*
  446. * Reverse mapping data structures:
  447. *
  448. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  449. * that points to page_address(page).
  450. *
  451. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  452. * containing more mappings.
  453. *
  454. * Returns the number of rmap entries before the spte was added or zero if
  455. * the spte was not added.
  456. *
  457. */
  458. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  459. {
  460. struct kvm_mmu_page *sp;
  461. struct kvm_rmap_desc *desc;
  462. unsigned long *rmapp;
  463. int i, count = 0;
  464. if (!is_rmap_spte(*spte))
  465. return count;
  466. sp = page_header(__pa(spte));
  467. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  468. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  469. if (!*rmapp) {
  470. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  471. *rmapp = (unsigned long)spte;
  472. } else if (!(*rmapp & 1)) {
  473. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  474. desc = mmu_alloc_rmap_desc(vcpu);
  475. desc->sptes[0] = (u64 *)*rmapp;
  476. desc->sptes[1] = spte;
  477. *rmapp = (unsigned long)desc | 1;
  478. } else {
  479. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  480. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  481. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  482. desc = desc->more;
  483. count += RMAP_EXT;
  484. }
  485. if (desc->sptes[RMAP_EXT-1]) {
  486. desc->more = mmu_alloc_rmap_desc(vcpu);
  487. desc = desc->more;
  488. }
  489. for (i = 0; desc->sptes[i]; ++i)
  490. ;
  491. desc->sptes[i] = spte;
  492. }
  493. return count;
  494. }
  495. static void rmap_desc_remove_entry(unsigned long *rmapp,
  496. struct kvm_rmap_desc *desc,
  497. int i,
  498. struct kvm_rmap_desc *prev_desc)
  499. {
  500. int j;
  501. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  502. ;
  503. desc->sptes[i] = desc->sptes[j];
  504. desc->sptes[j] = NULL;
  505. if (j != 0)
  506. return;
  507. if (!prev_desc && !desc->more)
  508. *rmapp = (unsigned long)desc->sptes[0];
  509. else
  510. if (prev_desc)
  511. prev_desc->more = desc->more;
  512. else
  513. *rmapp = (unsigned long)desc->more | 1;
  514. mmu_free_rmap_desc(desc);
  515. }
  516. static void rmap_remove(struct kvm *kvm, u64 *spte)
  517. {
  518. struct kvm_rmap_desc *desc;
  519. struct kvm_rmap_desc *prev_desc;
  520. struct kvm_mmu_page *sp;
  521. gfn_t gfn;
  522. unsigned long *rmapp;
  523. int i;
  524. sp = page_header(__pa(spte));
  525. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  526. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  527. if (!*rmapp) {
  528. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  529. BUG();
  530. } else if (!(*rmapp & 1)) {
  531. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  532. if ((u64 *)*rmapp != spte) {
  533. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  534. spte, *spte);
  535. BUG();
  536. }
  537. *rmapp = 0;
  538. } else {
  539. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  541. prev_desc = NULL;
  542. while (desc) {
  543. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  544. if (desc->sptes[i] == spte) {
  545. rmap_desc_remove_entry(rmapp,
  546. desc, i,
  547. prev_desc);
  548. return;
  549. }
  550. prev_desc = desc;
  551. desc = desc->more;
  552. }
  553. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  554. BUG();
  555. }
  556. }
  557. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  558. {
  559. pfn_t pfn;
  560. u64 old_spte;
  561. old_spte = __xchg_spte(sptep, new_spte);
  562. if (!is_rmap_spte(old_spte))
  563. return;
  564. pfn = spte_to_pfn(old_spte);
  565. if (old_spte & shadow_accessed_mask)
  566. kvm_set_pfn_accessed(pfn);
  567. if (is_writable_pte(old_spte))
  568. kvm_set_pfn_dirty(pfn);
  569. rmap_remove(kvm, sptep);
  570. }
  571. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  572. {
  573. struct kvm_rmap_desc *desc;
  574. u64 *prev_spte;
  575. int i;
  576. if (!*rmapp)
  577. return NULL;
  578. else if (!(*rmapp & 1)) {
  579. if (!spte)
  580. return (u64 *)*rmapp;
  581. return NULL;
  582. }
  583. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  584. prev_spte = NULL;
  585. while (desc) {
  586. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  587. if (prev_spte == spte)
  588. return desc->sptes[i];
  589. prev_spte = desc->sptes[i];
  590. }
  591. desc = desc->more;
  592. }
  593. return NULL;
  594. }
  595. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  596. {
  597. unsigned long *rmapp;
  598. u64 *spte;
  599. int i, write_protected = 0;
  600. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  601. spte = rmap_next(kvm, rmapp, NULL);
  602. while (spte) {
  603. BUG_ON(!spte);
  604. BUG_ON(!(*spte & PT_PRESENT_MASK));
  605. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  606. if (is_writable_pte(*spte)) {
  607. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  608. write_protected = 1;
  609. }
  610. spte = rmap_next(kvm, rmapp, spte);
  611. }
  612. if (write_protected) {
  613. pfn_t pfn;
  614. spte = rmap_next(kvm, rmapp, NULL);
  615. pfn = spte_to_pfn(*spte);
  616. kvm_set_pfn_dirty(pfn);
  617. }
  618. /* check for huge page mappings */
  619. for (i = PT_DIRECTORY_LEVEL;
  620. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  621. rmapp = gfn_to_rmap(kvm, gfn, i);
  622. spte = rmap_next(kvm, rmapp, NULL);
  623. while (spte) {
  624. BUG_ON(!spte);
  625. BUG_ON(!(*spte & PT_PRESENT_MASK));
  626. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  627. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  628. if (is_writable_pte(*spte)) {
  629. drop_spte(kvm, spte,
  630. shadow_trap_nonpresent_pte);
  631. --kvm->stat.lpages;
  632. spte = NULL;
  633. write_protected = 1;
  634. }
  635. spte = rmap_next(kvm, rmapp, spte);
  636. }
  637. }
  638. return write_protected;
  639. }
  640. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  641. unsigned long data)
  642. {
  643. u64 *spte;
  644. int need_tlb_flush = 0;
  645. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  646. BUG_ON(!(*spte & PT_PRESENT_MASK));
  647. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  648. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  649. need_tlb_flush = 1;
  650. }
  651. return need_tlb_flush;
  652. }
  653. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  654. unsigned long data)
  655. {
  656. int need_flush = 0;
  657. u64 *spte, new_spte;
  658. pte_t *ptep = (pte_t *)data;
  659. pfn_t new_pfn;
  660. WARN_ON(pte_huge(*ptep));
  661. new_pfn = pte_pfn(*ptep);
  662. spte = rmap_next(kvm, rmapp, NULL);
  663. while (spte) {
  664. BUG_ON(!is_shadow_present_pte(*spte));
  665. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  666. need_flush = 1;
  667. if (pte_write(*ptep)) {
  668. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  669. spte = rmap_next(kvm, rmapp, NULL);
  670. } else {
  671. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  672. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  673. new_spte &= ~PT_WRITABLE_MASK;
  674. new_spte &= ~SPTE_HOST_WRITEABLE;
  675. if (is_writable_pte(*spte))
  676. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  677. __set_spte(spte, new_spte);
  678. spte = rmap_next(kvm, rmapp, spte);
  679. }
  680. }
  681. if (need_flush)
  682. kvm_flush_remote_tlbs(kvm);
  683. return 0;
  684. }
  685. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  686. unsigned long data,
  687. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  688. unsigned long data))
  689. {
  690. int i, j;
  691. int ret;
  692. int retval = 0;
  693. struct kvm_memslots *slots;
  694. slots = kvm_memslots(kvm);
  695. for (i = 0; i < slots->nmemslots; i++) {
  696. struct kvm_memory_slot *memslot = &slots->memslots[i];
  697. unsigned long start = memslot->userspace_addr;
  698. unsigned long end;
  699. end = start + (memslot->npages << PAGE_SHIFT);
  700. if (hva >= start && hva < end) {
  701. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  702. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  703. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  704. int idx = gfn_offset;
  705. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  706. ret |= handler(kvm,
  707. &memslot->lpage_info[j][idx].rmap_pde,
  708. data);
  709. }
  710. trace_kvm_age_page(hva, memslot, ret);
  711. retval |= ret;
  712. }
  713. }
  714. return retval;
  715. }
  716. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  717. {
  718. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  719. }
  720. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  721. {
  722. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  723. }
  724. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  725. unsigned long data)
  726. {
  727. u64 *spte;
  728. int young = 0;
  729. /*
  730. * Emulate the accessed bit for EPT, by checking if this page has
  731. * an EPT mapping, and clearing it if it does. On the next access,
  732. * a new EPT mapping will be established.
  733. * This has some overhead, but not as much as the cost of swapping
  734. * out actively used pages or breaking up actively used hugepages.
  735. */
  736. if (!shadow_accessed_mask)
  737. return kvm_unmap_rmapp(kvm, rmapp, data);
  738. spte = rmap_next(kvm, rmapp, NULL);
  739. while (spte) {
  740. int _young;
  741. u64 _spte = *spte;
  742. BUG_ON(!(_spte & PT_PRESENT_MASK));
  743. _young = _spte & PT_ACCESSED_MASK;
  744. if (_young) {
  745. young = 1;
  746. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  747. }
  748. spte = rmap_next(kvm, rmapp, spte);
  749. }
  750. return young;
  751. }
  752. #define RMAP_RECYCLE_THRESHOLD 1000
  753. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  754. {
  755. unsigned long *rmapp;
  756. struct kvm_mmu_page *sp;
  757. sp = page_header(__pa(spte));
  758. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  759. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  760. kvm_flush_remote_tlbs(vcpu->kvm);
  761. }
  762. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  763. {
  764. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  765. }
  766. #ifdef MMU_DEBUG
  767. static int is_empty_shadow_page(u64 *spt)
  768. {
  769. u64 *pos;
  770. u64 *end;
  771. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  772. if (is_shadow_present_pte(*pos)) {
  773. printk(KERN_ERR "%s: %p %llx\n", __func__,
  774. pos, *pos);
  775. return 0;
  776. }
  777. return 1;
  778. }
  779. #endif
  780. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  781. {
  782. ASSERT(is_empty_shadow_page(sp->spt));
  783. hlist_del(&sp->hash_link);
  784. list_del(&sp->link);
  785. __free_page(virt_to_page(sp->spt));
  786. if (!sp->role.direct)
  787. __free_page(virt_to_page(sp->gfns));
  788. kmem_cache_free(mmu_page_header_cache, sp);
  789. ++kvm->arch.n_free_mmu_pages;
  790. }
  791. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  792. {
  793. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  794. }
  795. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  796. u64 *parent_pte, int direct)
  797. {
  798. struct kvm_mmu_page *sp;
  799. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  800. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  801. if (!direct)
  802. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  803. PAGE_SIZE);
  804. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  805. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  806. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  807. sp->multimapped = 0;
  808. sp->parent_pte = parent_pte;
  809. --vcpu->kvm->arch.n_free_mmu_pages;
  810. return sp;
  811. }
  812. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  813. struct kvm_mmu_page *sp, u64 *parent_pte)
  814. {
  815. struct kvm_pte_chain *pte_chain;
  816. struct hlist_node *node;
  817. int i;
  818. if (!parent_pte)
  819. return;
  820. if (!sp->multimapped) {
  821. u64 *old = sp->parent_pte;
  822. if (!old) {
  823. sp->parent_pte = parent_pte;
  824. return;
  825. }
  826. sp->multimapped = 1;
  827. pte_chain = mmu_alloc_pte_chain(vcpu);
  828. INIT_HLIST_HEAD(&sp->parent_ptes);
  829. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  830. pte_chain->parent_ptes[0] = old;
  831. }
  832. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  833. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  834. continue;
  835. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  836. if (!pte_chain->parent_ptes[i]) {
  837. pte_chain->parent_ptes[i] = parent_pte;
  838. return;
  839. }
  840. }
  841. pte_chain = mmu_alloc_pte_chain(vcpu);
  842. BUG_ON(!pte_chain);
  843. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  844. pte_chain->parent_ptes[0] = parent_pte;
  845. }
  846. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  847. u64 *parent_pte)
  848. {
  849. struct kvm_pte_chain *pte_chain;
  850. struct hlist_node *node;
  851. int i;
  852. if (!sp->multimapped) {
  853. BUG_ON(sp->parent_pte != parent_pte);
  854. sp->parent_pte = NULL;
  855. return;
  856. }
  857. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  858. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  859. if (!pte_chain->parent_ptes[i])
  860. break;
  861. if (pte_chain->parent_ptes[i] != parent_pte)
  862. continue;
  863. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  864. && pte_chain->parent_ptes[i + 1]) {
  865. pte_chain->parent_ptes[i]
  866. = pte_chain->parent_ptes[i + 1];
  867. ++i;
  868. }
  869. pte_chain->parent_ptes[i] = NULL;
  870. if (i == 0) {
  871. hlist_del(&pte_chain->link);
  872. mmu_free_pte_chain(pte_chain);
  873. if (hlist_empty(&sp->parent_ptes)) {
  874. sp->multimapped = 0;
  875. sp->parent_pte = NULL;
  876. }
  877. }
  878. return;
  879. }
  880. BUG();
  881. }
  882. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  883. {
  884. struct kvm_pte_chain *pte_chain;
  885. struct hlist_node *node;
  886. struct kvm_mmu_page *parent_sp;
  887. int i;
  888. if (!sp->multimapped && sp->parent_pte) {
  889. parent_sp = page_header(__pa(sp->parent_pte));
  890. fn(parent_sp, sp->parent_pte);
  891. return;
  892. }
  893. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  894. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  895. u64 *spte = pte_chain->parent_ptes[i];
  896. if (!spte)
  897. break;
  898. parent_sp = page_header(__pa(spte));
  899. fn(parent_sp, spte);
  900. }
  901. }
  902. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  903. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  904. {
  905. mmu_parent_walk(sp, mark_unsync);
  906. }
  907. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  908. {
  909. unsigned int index;
  910. index = spte - sp->spt;
  911. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  912. return;
  913. if (sp->unsync_children++)
  914. return;
  915. kvm_mmu_mark_parents_unsync(sp);
  916. }
  917. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  918. struct kvm_mmu_page *sp)
  919. {
  920. int i;
  921. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  922. sp->spt[i] = shadow_trap_nonpresent_pte;
  923. }
  924. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  925. struct kvm_mmu_page *sp, bool clear_unsync)
  926. {
  927. return 1;
  928. }
  929. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  930. {
  931. }
  932. #define KVM_PAGE_ARRAY_NR 16
  933. struct kvm_mmu_pages {
  934. struct mmu_page_and_offset {
  935. struct kvm_mmu_page *sp;
  936. unsigned int idx;
  937. } page[KVM_PAGE_ARRAY_NR];
  938. unsigned int nr;
  939. };
  940. #define for_each_unsync_children(bitmap, idx) \
  941. for (idx = find_first_bit(bitmap, 512); \
  942. idx < 512; \
  943. idx = find_next_bit(bitmap, 512, idx+1))
  944. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  945. int idx)
  946. {
  947. int i;
  948. if (sp->unsync)
  949. for (i=0; i < pvec->nr; i++)
  950. if (pvec->page[i].sp == sp)
  951. return 0;
  952. pvec->page[pvec->nr].sp = sp;
  953. pvec->page[pvec->nr].idx = idx;
  954. pvec->nr++;
  955. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  956. }
  957. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  958. struct kvm_mmu_pages *pvec)
  959. {
  960. int i, ret, nr_unsync_leaf = 0;
  961. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  962. struct kvm_mmu_page *child;
  963. u64 ent = sp->spt[i];
  964. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  965. goto clear_child_bitmap;
  966. child = page_header(ent & PT64_BASE_ADDR_MASK);
  967. if (child->unsync_children) {
  968. if (mmu_pages_add(pvec, child, i))
  969. return -ENOSPC;
  970. ret = __mmu_unsync_walk(child, pvec);
  971. if (!ret)
  972. goto clear_child_bitmap;
  973. else if (ret > 0)
  974. nr_unsync_leaf += ret;
  975. else
  976. return ret;
  977. } else if (child->unsync) {
  978. nr_unsync_leaf++;
  979. if (mmu_pages_add(pvec, child, i))
  980. return -ENOSPC;
  981. } else
  982. goto clear_child_bitmap;
  983. continue;
  984. clear_child_bitmap:
  985. __clear_bit(i, sp->unsync_child_bitmap);
  986. sp->unsync_children--;
  987. WARN_ON((int)sp->unsync_children < 0);
  988. }
  989. return nr_unsync_leaf;
  990. }
  991. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  992. struct kvm_mmu_pages *pvec)
  993. {
  994. if (!sp->unsync_children)
  995. return 0;
  996. mmu_pages_add(pvec, sp, 0);
  997. return __mmu_unsync_walk(sp, pvec);
  998. }
  999. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1000. {
  1001. WARN_ON(!sp->unsync);
  1002. trace_kvm_mmu_sync_page(sp);
  1003. sp->unsync = 0;
  1004. --kvm->stat.mmu_unsync;
  1005. }
  1006. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1007. struct list_head *invalid_list);
  1008. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1009. struct list_head *invalid_list);
  1010. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1011. hlist_for_each_entry(sp, pos, \
  1012. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1013. if ((sp)->gfn != (gfn)) {} else
  1014. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1015. hlist_for_each_entry(sp, pos, \
  1016. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1017. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1018. (sp)->role.invalid) {} else
  1019. /* @sp->gfn should be write-protected at the call site */
  1020. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1021. struct list_head *invalid_list, bool clear_unsync)
  1022. {
  1023. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1024. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1025. return 1;
  1026. }
  1027. if (clear_unsync)
  1028. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1029. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1030. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1031. return 1;
  1032. }
  1033. kvm_mmu_flush_tlb(vcpu);
  1034. return 0;
  1035. }
  1036. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1037. struct kvm_mmu_page *sp)
  1038. {
  1039. LIST_HEAD(invalid_list);
  1040. int ret;
  1041. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1042. if (ret)
  1043. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1044. return ret;
  1045. }
  1046. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1047. struct list_head *invalid_list)
  1048. {
  1049. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1050. }
  1051. /* @gfn should be write-protected at the call site */
  1052. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1053. {
  1054. struct kvm_mmu_page *s;
  1055. struct hlist_node *node;
  1056. LIST_HEAD(invalid_list);
  1057. bool flush = false;
  1058. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1059. if (!s->unsync)
  1060. continue;
  1061. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1062. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1063. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1064. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1065. continue;
  1066. }
  1067. kvm_unlink_unsync_page(vcpu->kvm, s);
  1068. flush = true;
  1069. }
  1070. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1071. if (flush)
  1072. kvm_mmu_flush_tlb(vcpu);
  1073. }
  1074. struct mmu_page_path {
  1075. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1076. unsigned int idx[PT64_ROOT_LEVEL-1];
  1077. };
  1078. #define for_each_sp(pvec, sp, parents, i) \
  1079. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1080. sp = pvec.page[i].sp; \
  1081. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1082. i = mmu_pages_next(&pvec, &parents, i))
  1083. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1084. struct mmu_page_path *parents,
  1085. int i)
  1086. {
  1087. int n;
  1088. for (n = i+1; n < pvec->nr; n++) {
  1089. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1090. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1091. parents->idx[0] = pvec->page[n].idx;
  1092. return n;
  1093. }
  1094. parents->parent[sp->role.level-2] = sp;
  1095. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1096. }
  1097. return n;
  1098. }
  1099. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1100. {
  1101. struct kvm_mmu_page *sp;
  1102. unsigned int level = 0;
  1103. do {
  1104. unsigned int idx = parents->idx[level];
  1105. sp = parents->parent[level];
  1106. if (!sp)
  1107. return;
  1108. --sp->unsync_children;
  1109. WARN_ON((int)sp->unsync_children < 0);
  1110. __clear_bit(idx, sp->unsync_child_bitmap);
  1111. level++;
  1112. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1113. }
  1114. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1115. struct mmu_page_path *parents,
  1116. struct kvm_mmu_pages *pvec)
  1117. {
  1118. parents->parent[parent->role.level-1] = NULL;
  1119. pvec->nr = 0;
  1120. }
  1121. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1122. struct kvm_mmu_page *parent)
  1123. {
  1124. int i;
  1125. struct kvm_mmu_page *sp;
  1126. struct mmu_page_path parents;
  1127. struct kvm_mmu_pages pages;
  1128. LIST_HEAD(invalid_list);
  1129. kvm_mmu_pages_init(parent, &parents, &pages);
  1130. while (mmu_unsync_walk(parent, &pages)) {
  1131. int protected = 0;
  1132. for_each_sp(pages, sp, parents, i)
  1133. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1134. if (protected)
  1135. kvm_flush_remote_tlbs(vcpu->kvm);
  1136. for_each_sp(pages, sp, parents, i) {
  1137. kvm_sync_page(vcpu, sp, &invalid_list);
  1138. mmu_pages_clear_parents(&parents);
  1139. }
  1140. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1141. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1142. kvm_mmu_pages_init(parent, &parents, &pages);
  1143. }
  1144. }
  1145. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1146. gfn_t gfn,
  1147. gva_t gaddr,
  1148. unsigned level,
  1149. int direct,
  1150. unsigned access,
  1151. u64 *parent_pte)
  1152. {
  1153. union kvm_mmu_page_role role;
  1154. unsigned quadrant;
  1155. struct kvm_mmu_page *sp;
  1156. struct hlist_node *node;
  1157. bool need_sync = false;
  1158. role = vcpu->arch.mmu.base_role;
  1159. role.level = level;
  1160. role.direct = direct;
  1161. if (role.direct)
  1162. role.cr4_pae = 0;
  1163. role.access = access;
  1164. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1165. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1166. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1167. role.quadrant = quadrant;
  1168. }
  1169. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1170. if (!need_sync && sp->unsync)
  1171. need_sync = true;
  1172. if (sp->role.word != role.word)
  1173. continue;
  1174. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1175. break;
  1176. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1177. if (sp->unsync_children) {
  1178. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1179. kvm_mmu_mark_parents_unsync(sp);
  1180. } else if (sp->unsync)
  1181. kvm_mmu_mark_parents_unsync(sp);
  1182. trace_kvm_mmu_get_page(sp, false);
  1183. return sp;
  1184. }
  1185. ++vcpu->kvm->stat.mmu_cache_miss;
  1186. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1187. if (!sp)
  1188. return sp;
  1189. sp->gfn = gfn;
  1190. sp->role = role;
  1191. hlist_add_head(&sp->hash_link,
  1192. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1193. if (!direct) {
  1194. if (rmap_write_protect(vcpu->kvm, gfn))
  1195. kvm_flush_remote_tlbs(vcpu->kvm);
  1196. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1197. kvm_sync_pages(vcpu, gfn);
  1198. account_shadowed(vcpu->kvm, gfn);
  1199. }
  1200. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1201. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1202. else
  1203. nonpaging_prefetch_page(vcpu, sp);
  1204. trace_kvm_mmu_get_page(sp, true);
  1205. return sp;
  1206. }
  1207. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1208. struct kvm_vcpu *vcpu, u64 addr)
  1209. {
  1210. iterator->addr = addr;
  1211. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1212. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1213. if (iterator->level == PT32E_ROOT_LEVEL) {
  1214. iterator->shadow_addr
  1215. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1216. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1217. --iterator->level;
  1218. if (!iterator->shadow_addr)
  1219. iterator->level = 0;
  1220. }
  1221. }
  1222. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1223. {
  1224. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1225. return false;
  1226. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1227. if (is_large_pte(*iterator->sptep))
  1228. return false;
  1229. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1230. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1231. return true;
  1232. }
  1233. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1234. {
  1235. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1236. --iterator->level;
  1237. }
  1238. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1239. struct kvm_mmu_page *sp)
  1240. {
  1241. unsigned i;
  1242. u64 *pt;
  1243. u64 ent;
  1244. pt = sp->spt;
  1245. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1246. ent = pt[i];
  1247. if (is_shadow_present_pte(ent)) {
  1248. if (!is_last_spte(ent, sp->role.level)) {
  1249. ent &= PT64_BASE_ADDR_MASK;
  1250. mmu_page_remove_parent_pte(page_header(ent),
  1251. &pt[i]);
  1252. } else {
  1253. if (is_large_pte(ent))
  1254. --kvm->stat.lpages;
  1255. drop_spte(kvm, &pt[i],
  1256. shadow_trap_nonpresent_pte);
  1257. }
  1258. }
  1259. pt[i] = shadow_trap_nonpresent_pte;
  1260. }
  1261. }
  1262. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1263. {
  1264. mmu_page_remove_parent_pte(sp, parent_pte);
  1265. }
  1266. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1267. {
  1268. int i;
  1269. struct kvm_vcpu *vcpu;
  1270. kvm_for_each_vcpu(i, vcpu, kvm)
  1271. vcpu->arch.last_pte_updated = NULL;
  1272. }
  1273. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1274. {
  1275. u64 *parent_pte;
  1276. while (sp->multimapped || sp->parent_pte) {
  1277. if (!sp->multimapped)
  1278. parent_pte = sp->parent_pte;
  1279. else {
  1280. struct kvm_pte_chain *chain;
  1281. chain = container_of(sp->parent_ptes.first,
  1282. struct kvm_pte_chain, link);
  1283. parent_pte = chain->parent_ptes[0];
  1284. }
  1285. BUG_ON(!parent_pte);
  1286. kvm_mmu_put_page(sp, parent_pte);
  1287. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1288. }
  1289. }
  1290. static int mmu_zap_unsync_children(struct kvm *kvm,
  1291. struct kvm_mmu_page *parent,
  1292. struct list_head *invalid_list)
  1293. {
  1294. int i, zapped = 0;
  1295. struct mmu_page_path parents;
  1296. struct kvm_mmu_pages pages;
  1297. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1298. return 0;
  1299. kvm_mmu_pages_init(parent, &parents, &pages);
  1300. while (mmu_unsync_walk(parent, &pages)) {
  1301. struct kvm_mmu_page *sp;
  1302. for_each_sp(pages, sp, parents, i) {
  1303. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1304. mmu_pages_clear_parents(&parents);
  1305. zapped++;
  1306. }
  1307. kvm_mmu_pages_init(parent, &parents, &pages);
  1308. }
  1309. return zapped;
  1310. }
  1311. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1312. struct list_head *invalid_list)
  1313. {
  1314. int ret;
  1315. trace_kvm_mmu_prepare_zap_page(sp);
  1316. ++kvm->stat.mmu_shadow_zapped;
  1317. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1318. kvm_mmu_page_unlink_children(kvm, sp);
  1319. kvm_mmu_unlink_parents(kvm, sp);
  1320. if (!sp->role.invalid && !sp->role.direct)
  1321. unaccount_shadowed(kvm, sp->gfn);
  1322. if (sp->unsync)
  1323. kvm_unlink_unsync_page(kvm, sp);
  1324. if (!sp->root_count) {
  1325. /* Count self */
  1326. ret++;
  1327. list_move(&sp->link, invalid_list);
  1328. } else {
  1329. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1330. kvm_reload_remote_mmus(kvm);
  1331. }
  1332. sp->role.invalid = 1;
  1333. kvm_mmu_reset_last_pte_updated(kvm);
  1334. return ret;
  1335. }
  1336. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1337. struct list_head *invalid_list)
  1338. {
  1339. struct kvm_mmu_page *sp;
  1340. if (list_empty(invalid_list))
  1341. return;
  1342. kvm_flush_remote_tlbs(kvm);
  1343. do {
  1344. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1345. WARN_ON(!sp->role.invalid || sp->root_count);
  1346. kvm_mmu_free_page(kvm, sp);
  1347. } while (!list_empty(invalid_list));
  1348. }
  1349. /*
  1350. * Changing the number of mmu pages allocated to the vm
  1351. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1352. */
  1353. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1354. {
  1355. int used_pages;
  1356. LIST_HEAD(invalid_list);
  1357. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1358. used_pages = max(0, used_pages);
  1359. /*
  1360. * If we set the number of mmu pages to be smaller be than the
  1361. * number of actived pages , we must to free some mmu pages before we
  1362. * change the value
  1363. */
  1364. if (used_pages > kvm_nr_mmu_pages) {
  1365. while (used_pages > kvm_nr_mmu_pages &&
  1366. !list_empty(&kvm->arch.active_mmu_pages)) {
  1367. struct kvm_mmu_page *page;
  1368. page = container_of(kvm->arch.active_mmu_pages.prev,
  1369. struct kvm_mmu_page, link);
  1370. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1371. &invalid_list);
  1372. }
  1373. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1374. kvm_nr_mmu_pages = used_pages;
  1375. kvm->arch.n_free_mmu_pages = 0;
  1376. }
  1377. else
  1378. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1379. - kvm->arch.n_alloc_mmu_pages;
  1380. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1381. }
  1382. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1383. {
  1384. struct kvm_mmu_page *sp;
  1385. struct hlist_node *node;
  1386. LIST_HEAD(invalid_list);
  1387. int r;
  1388. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1389. r = 0;
  1390. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1391. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1392. sp->role.word);
  1393. r = 1;
  1394. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1395. }
  1396. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1397. return r;
  1398. }
  1399. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1400. {
  1401. struct kvm_mmu_page *sp;
  1402. struct hlist_node *node;
  1403. LIST_HEAD(invalid_list);
  1404. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1405. pgprintk("%s: zap %lx %x\n",
  1406. __func__, gfn, sp->role.word);
  1407. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1408. }
  1409. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1410. }
  1411. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1412. {
  1413. int slot = memslot_id(kvm, gfn);
  1414. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1415. __set_bit(slot, sp->slot_bitmap);
  1416. }
  1417. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1418. {
  1419. int i;
  1420. u64 *pt = sp->spt;
  1421. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1422. return;
  1423. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1424. if (pt[i] == shadow_notrap_nonpresent_pte)
  1425. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1426. }
  1427. }
  1428. /*
  1429. * The function is based on mtrr_type_lookup() in
  1430. * arch/x86/kernel/cpu/mtrr/generic.c
  1431. */
  1432. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1433. u64 start, u64 end)
  1434. {
  1435. int i;
  1436. u64 base, mask;
  1437. u8 prev_match, curr_match;
  1438. int num_var_ranges = KVM_NR_VAR_MTRR;
  1439. if (!mtrr_state->enabled)
  1440. return 0xFF;
  1441. /* Make end inclusive end, instead of exclusive */
  1442. end--;
  1443. /* Look in fixed ranges. Just return the type as per start */
  1444. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1445. int idx;
  1446. if (start < 0x80000) {
  1447. idx = 0;
  1448. idx += (start >> 16);
  1449. return mtrr_state->fixed_ranges[idx];
  1450. } else if (start < 0xC0000) {
  1451. idx = 1 * 8;
  1452. idx += ((start - 0x80000) >> 14);
  1453. return mtrr_state->fixed_ranges[idx];
  1454. } else if (start < 0x1000000) {
  1455. idx = 3 * 8;
  1456. idx += ((start - 0xC0000) >> 12);
  1457. return mtrr_state->fixed_ranges[idx];
  1458. }
  1459. }
  1460. /*
  1461. * Look in variable ranges
  1462. * Look of multiple ranges matching this address and pick type
  1463. * as per MTRR precedence
  1464. */
  1465. if (!(mtrr_state->enabled & 2))
  1466. return mtrr_state->def_type;
  1467. prev_match = 0xFF;
  1468. for (i = 0; i < num_var_ranges; ++i) {
  1469. unsigned short start_state, end_state;
  1470. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1471. continue;
  1472. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1473. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1474. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1475. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1476. start_state = ((start & mask) == (base & mask));
  1477. end_state = ((end & mask) == (base & mask));
  1478. if (start_state != end_state)
  1479. return 0xFE;
  1480. if ((start & mask) != (base & mask))
  1481. continue;
  1482. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1483. if (prev_match == 0xFF) {
  1484. prev_match = curr_match;
  1485. continue;
  1486. }
  1487. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1488. curr_match == MTRR_TYPE_UNCACHABLE)
  1489. return MTRR_TYPE_UNCACHABLE;
  1490. if ((prev_match == MTRR_TYPE_WRBACK &&
  1491. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1492. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1493. curr_match == MTRR_TYPE_WRBACK)) {
  1494. prev_match = MTRR_TYPE_WRTHROUGH;
  1495. curr_match = MTRR_TYPE_WRTHROUGH;
  1496. }
  1497. if (prev_match != curr_match)
  1498. return MTRR_TYPE_UNCACHABLE;
  1499. }
  1500. if (prev_match != 0xFF)
  1501. return prev_match;
  1502. return mtrr_state->def_type;
  1503. }
  1504. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1505. {
  1506. u8 mtrr;
  1507. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1508. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1509. if (mtrr == 0xfe || mtrr == 0xff)
  1510. mtrr = MTRR_TYPE_WRBACK;
  1511. return mtrr;
  1512. }
  1513. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1514. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1515. {
  1516. trace_kvm_mmu_unsync_page(sp);
  1517. ++vcpu->kvm->stat.mmu_unsync;
  1518. sp->unsync = 1;
  1519. kvm_mmu_mark_parents_unsync(sp);
  1520. mmu_convert_notrap(sp);
  1521. }
  1522. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1523. {
  1524. struct kvm_mmu_page *s;
  1525. struct hlist_node *node;
  1526. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1527. if (s->unsync)
  1528. continue;
  1529. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1530. __kvm_unsync_page(vcpu, s);
  1531. }
  1532. }
  1533. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1534. bool can_unsync)
  1535. {
  1536. struct kvm_mmu_page *s;
  1537. struct hlist_node *node;
  1538. bool need_unsync = false;
  1539. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1540. if (!can_unsync)
  1541. return 1;
  1542. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1543. return 1;
  1544. if (!need_unsync && !s->unsync) {
  1545. if (!oos_shadow)
  1546. return 1;
  1547. need_unsync = true;
  1548. }
  1549. }
  1550. if (need_unsync)
  1551. kvm_unsync_pages(vcpu, gfn);
  1552. return 0;
  1553. }
  1554. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1555. unsigned pte_access, int user_fault,
  1556. int write_fault, int dirty, int level,
  1557. gfn_t gfn, pfn_t pfn, bool speculative,
  1558. bool can_unsync, bool reset_host_protection)
  1559. {
  1560. u64 spte;
  1561. int ret = 0;
  1562. /*
  1563. * We don't set the accessed bit, since we sometimes want to see
  1564. * whether the guest actually used the pte (in order to detect
  1565. * demand paging).
  1566. */
  1567. spte = shadow_base_present_pte | shadow_dirty_mask;
  1568. if (!speculative)
  1569. spte |= shadow_accessed_mask;
  1570. if (!dirty)
  1571. pte_access &= ~ACC_WRITE_MASK;
  1572. if (pte_access & ACC_EXEC_MASK)
  1573. spte |= shadow_x_mask;
  1574. else
  1575. spte |= shadow_nx_mask;
  1576. if (pte_access & ACC_USER_MASK)
  1577. spte |= shadow_user_mask;
  1578. if (level > PT_PAGE_TABLE_LEVEL)
  1579. spte |= PT_PAGE_SIZE_MASK;
  1580. if (tdp_enabled)
  1581. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1582. kvm_is_mmio_pfn(pfn));
  1583. if (reset_host_protection)
  1584. spte |= SPTE_HOST_WRITEABLE;
  1585. spte |= (u64)pfn << PAGE_SHIFT;
  1586. if ((pte_access & ACC_WRITE_MASK)
  1587. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1588. && !user_fault)) {
  1589. if (level > PT_PAGE_TABLE_LEVEL &&
  1590. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1591. ret = 1;
  1592. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1593. goto done;
  1594. }
  1595. spte |= PT_WRITABLE_MASK;
  1596. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1597. spte &= ~PT_USER_MASK;
  1598. /*
  1599. * Optimization: for pte sync, if spte was writable the hash
  1600. * lookup is unnecessary (and expensive). Write protection
  1601. * is responsibility of mmu_get_page / kvm_sync_page.
  1602. * Same reasoning can be applied to dirty page accounting.
  1603. */
  1604. if (!can_unsync && is_writable_pte(*sptep))
  1605. goto set_pte;
  1606. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1607. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1608. __func__, gfn);
  1609. ret = 1;
  1610. pte_access &= ~ACC_WRITE_MASK;
  1611. if (is_writable_pte(spte))
  1612. spte &= ~PT_WRITABLE_MASK;
  1613. }
  1614. }
  1615. if (pte_access & ACC_WRITE_MASK)
  1616. mark_page_dirty(vcpu->kvm, gfn);
  1617. set_pte:
  1618. __set_spte(sptep, spte);
  1619. done:
  1620. return ret;
  1621. }
  1622. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1623. unsigned pt_access, unsigned pte_access,
  1624. int user_fault, int write_fault, int dirty,
  1625. int *ptwrite, int level, gfn_t gfn,
  1626. pfn_t pfn, bool speculative,
  1627. bool reset_host_protection)
  1628. {
  1629. int was_rmapped = 0;
  1630. int was_writable = is_writable_pte(*sptep);
  1631. int rmap_count;
  1632. pgprintk("%s: spte %llx access %x write_fault %d"
  1633. " user_fault %d gfn %lx\n",
  1634. __func__, *sptep, pt_access,
  1635. write_fault, user_fault, gfn);
  1636. if (is_rmap_spte(*sptep)) {
  1637. /*
  1638. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1639. * the parent of the now unreachable PTE.
  1640. */
  1641. if (level > PT_PAGE_TABLE_LEVEL &&
  1642. !is_large_pte(*sptep)) {
  1643. struct kvm_mmu_page *child;
  1644. u64 pte = *sptep;
  1645. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1646. mmu_page_remove_parent_pte(child, sptep);
  1647. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1648. kvm_flush_remote_tlbs(vcpu->kvm);
  1649. } else if (pfn != spte_to_pfn(*sptep)) {
  1650. pgprintk("hfn old %lx new %lx\n",
  1651. spte_to_pfn(*sptep), pfn);
  1652. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1653. kvm_flush_remote_tlbs(vcpu->kvm);
  1654. } else
  1655. was_rmapped = 1;
  1656. }
  1657. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1658. dirty, level, gfn, pfn, speculative, true,
  1659. reset_host_protection)) {
  1660. if (write_fault)
  1661. *ptwrite = 1;
  1662. kvm_mmu_flush_tlb(vcpu);
  1663. }
  1664. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1665. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1666. is_large_pte(*sptep)? "2MB" : "4kB",
  1667. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1668. *sptep, sptep);
  1669. if (!was_rmapped && is_large_pte(*sptep))
  1670. ++vcpu->kvm->stat.lpages;
  1671. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1672. if (!was_rmapped) {
  1673. rmap_count = rmap_add(vcpu, sptep, gfn);
  1674. kvm_release_pfn_clean(pfn);
  1675. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1676. rmap_recycle(vcpu, sptep, gfn);
  1677. } else {
  1678. if (was_writable)
  1679. kvm_release_pfn_dirty(pfn);
  1680. else
  1681. kvm_release_pfn_clean(pfn);
  1682. }
  1683. if (speculative) {
  1684. vcpu->arch.last_pte_updated = sptep;
  1685. vcpu->arch.last_pte_gfn = gfn;
  1686. }
  1687. }
  1688. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1689. {
  1690. }
  1691. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1692. int level, gfn_t gfn, pfn_t pfn)
  1693. {
  1694. struct kvm_shadow_walk_iterator iterator;
  1695. struct kvm_mmu_page *sp;
  1696. int pt_write = 0;
  1697. gfn_t pseudo_gfn;
  1698. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1699. if (iterator.level == level) {
  1700. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1701. 0, write, 1, &pt_write,
  1702. level, gfn, pfn, false, true);
  1703. ++vcpu->stat.pf_fixed;
  1704. break;
  1705. }
  1706. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1707. u64 base_addr = iterator.addr;
  1708. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1709. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1710. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1711. iterator.level - 1,
  1712. 1, ACC_ALL, iterator.sptep);
  1713. if (!sp) {
  1714. pgprintk("nonpaging_map: ENOMEM\n");
  1715. kvm_release_pfn_clean(pfn);
  1716. return -ENOMEM;
  1717. }
  1718. __set_spte(iterator.sptep,
  1719. __pa(sp->spt)
  1720. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1721. | shadow_user_mask | shadow_x_mask);
  1722. }
  1723. }
  1724. return pt_write;
  1725. }
  1726. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1727. {
  1728. char buf[1];
  1729. void __user *hva;
  1730. int r;
  1731. /* Touch the page, so send SIGBUS */
  1732. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1733. r = copy_from_user(buf, hva, 1);
  1734. }
  1735. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1736. {
  1737. kvm_release_pfn_clean(pfn);
  1738. if (is_hwpoison_pfn(pfn)) {
  1739. kvm_send_hwpoison_signal(kvm, gfn);
  1740. return 0;
  1741. }
  1742. return 1;
  1743. }
  1744. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1745. {
  1746. int r;
  1747. int level;
  1748. pfn_t pfn;
  1749. unsigned long mmu_seq;
  1750. level = mapping_level(vcpu, gfn);
  1751. /*
  1752. * This path builds a PAE pagetable - so we can map 2mb pages at
  1753. * maximum. Therefore check if the level is larger than that.
  1754. */
  1755. if (level > PT_DIRECTORY_LEVEL)
  1756. level = PT_DIRECTORY_LEVEL;
  1757. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1758. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1759. smp_rmb();
  1760. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1761. /* mmio */
  1762. if (is_error_pfn(pfn))
  1763. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1764. spin_lock(&vcpu->kvm->mmu_lock);
  1765. if (mmu_notifier_retry(vcpu, mmu_seq))
  1766. goto out_unlock;
  1767. kvm_mmu_free_some_pages(vcpu);
  1768. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1769. spin_unlock(&vcpu->kvm->mmu_lock);
  1770. return r;
  1771. out_unlock:
  1772. spin_unlock(&vcpu->kvm->mmu_lock);
  1773. kvm_release_pfn_clean(pfn);
  1774. return 0;
  1775. }
  1776. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1777. {
  1778. int i;
  1779. struct kvm_mmu_page *sp;
  1780. LIST_HEAD(invalid_list);
  1781. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1782. return;
  1783. spin_lock(&vcpu->kvm->mmu_lock);
  1784. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1785. hpa_t root = vcpu->arch.mmu.root_hpa;
  1786. sp = page_header(root);
  1787. --sp->root_count;
  1788. if (!sp->root_count && sp->role.invalid) {
  1789. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1790. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1791. }
  1792. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1793. spin_unlock(&vcpu->kvm->mmu_lock);
  1794. return;
  1795. }
  1796. for (i = 0; i < 4; ++i) {
  1797. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1798. if (root) {
  1799. root &= PT64_BASE_ADDR_MASK;
  1800. sp = page_header(root);
  1801. --sp->root_count;
  1802. if (!sp->root_count && sp->role.invalid)
  1803. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1804. &invalid_list);
  1805. }
  1806. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1807. }
  1808. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1809. spin_unlock(&vcpu->kvm->mmu_lock);
  1810. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1811. }
  1812. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1813. {
  1814. int ret = 0;
  1815. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1816. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1817. ret = 1;
  1818. }
  1819. return ret;
  1820. }
  1821. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1822. {
  1823. int i;
  1824. gfn_t root_gfn;
  1825. struct kvm_mmu_page *sp;
  1826. int direct = 0;
  1827. u64 pdptr;
  1828. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1829. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1830. hpa_t root = vcpu->arch.mmu.root_hpa;
  1831. ASSERT(!VALID_PAGE(root));
  1832. if (mmu_check_root(vcpu, root_gfn))
  1833. return 1;
  1834. if (tdp_enabled) {
  1835. direct = 1;
  1836. root_gfn = 0;
  1837. }
  1838. spin_lock(&vcpu->kvm->mmu_lock);
  1839. kvm_mmu_free_some_pages(vcpu);
  1840. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1841. PT64_ROOT_LEVEL, direct,
  1842. ACC_ALL, NULL);
  1843. root = __pa(sp->spt);
  1844. ++sp->root_count;
  1845. spin_unlock(&vcpu->kvm->mmu_lock);
  1846. vcpu->arch.mmu.root_hpa = root;
  1847. return 0;
  1848. }
  1849. direct = !is_paging(vcpu);
  1850. for (i = 0; i < 4; ++i) {
  1851. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1852. ASSERT(!VALID_PAGE(root));
  1853. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1854. pdptr = kvm_pdptr_read(vcpu, i);
  1855. if (!is_present_gpte(pdptr)) {
  1856. vcpu->arch.mmu.pae_root[i] = 0;
  1857. continue;
  1858. }
  1859. root_gfn = pdptr >> PAGE_SHIFT;
  1860. } else if (vcpu->arch.mmu.root_level == 0)
  1861. root_gfn = 0;
  1862. if (mmu_check_root(vcpu, root_gfn))
  1863. return 1;
  1864. if (tdp_enabled) {
  1865. direct = 1;
  1866. root_gfn = i << 30;
  1867. }
  1868. spin_lock(&vcpu->kvm->mmu_lock);
  1869. kvm_mmu_free_some_pages(vcpu);
  1870. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1871. PT32_ROOT_LEVEL, direct,
  1872. ACC_ALL, NULL);
  1873. root = __pa(sp->spt);
  1874. ++sp->root_count;
  1875. spin_unlock(&vcpu->kvm->mmu_lock);
  1876. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1877. }
  1878. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1879. return 0;
  1880. }
  1881. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1882. {
  1883. int i;
  1884. struct kvm_mmu_page *sp;
  1885. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1886. return;
  1887. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1888. hpa_t root = vcpu->arch.mmu.root_hpa;
  1889. sp = page_header(root);
  1890. mmu_sync_children(vcpu, sp);
  1891. return;
  1892. }
  1893. for (i = 0; i < 4; ++i) {
  1894. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1895. if (root && VALID_PAGE(root)) {
  1896. root &= PT64_BASE_ADDR_MASK;
  1897. sp = page_header(root);
  1898. mmu_sync_children(vcpu, sp);
  1899. }
  1900. }
  1901. }
  1902. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1903. {
  1904. spin_lock(&vcpu->kvm->mmu_lock);
  1905. mmu_sync_roots(vcpu);
  1906. spin_unlock(&vcpu->kvm->mmu_lock);
  1907. }
  1908. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1909. u32 access, u32 *error)
  1910. {
  1911. if (error)
  1912. *error = 0;
  1913. return vaddr;
  1914. }
  1915. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1916. u32 error_code)
  1917. {
  1918. gfn_t gfn;
  1919. int r;
  1920. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1921. r = mmu_topup_memory_caches(vcpu);
  1922. if (r)
  1923. return r;
  1924. ASSERT(vcpu);
  1925. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1926. gfn = gva >> PAGE_SHIFT;
  1927. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1928. error_code & PFERR_WRITE_MASK, gfn);
  1929. }
  1930. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1931. u32 error_code)
  1932. {
  1933. pfn_t pfn;
  1934. int r;
  1935. int level;
  1936. gfn_t gfn = gpa >> PAGE_SHIFT;
  1937. unsigned long mmu_seq;
  1938. ASSERT(vcpu);
  1939. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1940. r = mmu_topup_memory_caches(vcpu);
  1941. if (r)
  1942. return r;
  1943. level = mapping_level(vcpu, gfn);
  1944. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1945. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1946. smp_rmb();
  1947. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1948. if (is_error_pfn(pfn))
  1949. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1950. spin_lock(&vcpu->kvm->mmu_lock);
  1951. if (mmu_notifier_retry(vcpu, mmu_seq))
  1952. goto out_unlock;
  1953. kvm_mmu_free_some_pages(vcpu);
  1954. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1955. level, gfn, pfn);
  1956. spin_unlock(&vcpu->kvm->mmu_lock);
  1957. return r;
  1958. out_unlock:
  1959. spin_unlock(&vcpu->kvm->mmu_lock);
  1960. kvm_release_pfn_clean(pfn);
  1961. return 0;
  1962. }
  1963. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1964. {
  1965. mmu_free_roots(vcpu);
  1966. }
  1967. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1968. {
  1969. struct kvm_mmu *context = &vcpu->arch.mmu;
  1970. context->new_cr3 = nonpaging_new_cr3;
  1971. context->page_fault = nonpaging_page_fault;
  1972. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1973. context->free = nonpaging_free;
  1974. context->prefetch_page = nonpaging_prefetch_page;
  1975. context->sync_page = nonpaging_sync_page;
  1976. context->invlpg = nonpaging_invlpg;
  1977. context->root_level = 0;
  1978. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1979. context->root_hpa = INVALID_PAGE;
  1980. return 0;
  1981. }
  1982. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1983. {
  1984. ++vcpu->stat.tlb_flush;
  1985. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1986. }
  1987. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1988. {
  1989. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1990. mmu_free_roots(vcpu);
  1991. }
  1992. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1993. u64 addr,
  1994. u32 err_code)
  1995. {
  1996. kvm_inject_page_fault(vcpu, addr, err_code);
  1997. }
  1998. static void paging_free(struct kvm_vcpu *vcpu)
  1999. {
  2000. nonpaging_free(vcpu);
  2001. }
  2002. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2003. {
  2004. int bit7;
  2005. bit7 = (gpte >> 7) & 1;
  2006. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2007. }
  2008. #define PTTYPE 64
  2009. #include "paging_tmpl.h"
  2010. #undef PTTYPE
  2011. #define PTTYPE 32
  2012. #include "paging_tmpl.h"
  2013. #undef PTTYPE
  2014. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2015. {
  2016. struct kvm_mmu *context = &vcpu->arch.mmu;
  2017. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2018. u64 exb_bit_rsvd = 0;
  2019. if (!is_nx(vcpu))
  2020. exb_bit_rsvd = rsvd_bits(63, 63);
  2021. switch (level) {
  2022. case PT32_ROOT_LEVEL:
  2023. /* no rsvd bits for 2 level 4K page table entries */
  2024. context->rsvd_bits_mask[0][1] = 0;
  2025. context->rsvd_bits_mask[0][0] = 0;
  2026. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2027. if (!is_pse(vcpu)) {
  2028. context->rsvd_bits_mask[1][1] = 0;
  2029. break;
  2030. }
  2031. if (is_cpuid_PSE36())
  2032. /* 36bits PSE 4MB page */
  2033. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2034. else
  2035. /* 32 bits PSE 4MB page */
  2036. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2037. break;
  2038. case PT32E_ROOT_LEVEL:
  2039. context->rsvd_bits_mask[0][2] =
  2040. rsvd_bits(maxphyaddr, 63) |
  2041. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2042. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2043. rsvd_bits(maxphyaddr, 62); /* PDE */
  2044. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2045. rsvd_bits(maxphyaddr, 62); /* PTE */
  2046. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2047. rsvd_bits(maxphyaddr, 62) |
  2048. rsvd_bits(13, 20); /* large page */
  2049. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2050. break;
  2051. case PT64_ROOT_LEVEL:
  2052. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2053. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2054. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2055. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2056. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2057. rsvd_bits(maxphyaddr, 51);
  2058. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2059. rsvd_bits(maxphyaddr, 51);
  2060. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2061. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2062. rsvd_bits(maxphyaddr, 51) |
  2063. rsvd_bits(13, 29);
  2064. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2065. rsvd_bits(maxphyaddr, 51) |
  2066. rsvd_bits(13, 20); /* large page */
  2067. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2068. break;
  2069. }
  2070. }
  2071. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2072. {
  2073. struct kvm_mmu *context = &vcpu->arch.mmu;
  2074. ASSERT(is_pae(vcpu));
  2075. context->new_cr3 = paging_new_cr3;
  2076. context->page_fault = paging64_page_fault;
  2077. context->gva_to_gpa = paging64_gva_to_gpa;
  2078. context->prefetch_page = paging64_prefetch_page;
  2079. context->sync_page = paging64_sync_page;
  2080. context->invlpg = paging64_invlpg;
  2081. context->free = paging_free;
  2082. context->root_level = level;
  2083. context->shadow_root_level = level;
  2084. context->root_hpa = INVALID_PAGE;
  2085. return 0;
  2086. }
  2087. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2088. {
  2089. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2090. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2091. }
  2092. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2093. {
  2094. struct kvm_mmu *context = &vcpu->arch.mmu;
  2095. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2096. context->new_cr3 = paging_new_cr3;
  2097. context->page_fault = paging32_page_fault;
  2098. context->gva_to_gpa = paging32_gva_to_gpa;
  2099. context->free = paging_free;
  2100. context->prefetch_page = paging32_prefetch_page;
  2101. context->sync_page = paging32_sync_page;
  2102. context->invlpg = paging32_invlpg;
  2103. context->root_level = PT32_ROOT_LEVEL;
  2104. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2105. context->root_hpa = INVALID_PAGE;
  2106. return 0;
  2107. }
  2108. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2109. {
  2110. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2111. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2112. }
  2113. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2114. {
  2115. struct kvm_mmu *context = &vcpu->arch.mmu;
  2116. context->new_cr3 = nonpaging_new_cr3;
  2117. context->page_fault = tdp_page_fault;
  2118. context->free = nonpaging_free;
  2119. context->prefetch_page = nonpaging_prefetch_page;
  2120. context->sync_page = nonpaging_sync_page;
  2121. context->invlpg = nonpaging_invlpg;
  2122. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2123. context->root_hpa = INVALID_PAGE;
  2124. if (!is_paging(vcpu)) {
  2125. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2126. context->root_level = 0;
  2127. } else if (is_long_mode(vcpu)) {
  2128. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2129. context->gva_to_gpa = paging64_gva_to_gpa;
  2130. context->root_level = PT64_ROOT_LEVEL;
  2131. } else if (is_pae(vcpu)) {
  2132. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2133. context->gva_to_gpa = paging64_gva_to_gpa;
  2134. context->root_level = PT32E_ROOT_LEVEL;
  2135. } else {
  2136. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2137. context->gva_to_gpa = paging32_gva_to_gpa;
  2138. context->root_level = PT32_ROOT_LEVEL;
  2139. }
  2140. return 0;
  2141. }
  2142. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2143. {
  2144. int r;
  2145. ASSERT(vcpu);
  2146. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2147. if (!is_paging(vcpu))
  2148. r = nonpaging_init_context(vcpu);
  2149. else if (is_long_mode(vcpu))
  2150. r = paging64_init_context(vcpu);
  2151. else if (is_pae(vcpu))
  2152. r = paging32E_init_context(vcpu);
  2153. else
  2154. r = paging32_init_context(vcpu);
  2155. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2156. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2157. return r;
  2158. }
  2159. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2160. {
  2161. vcpu->arch.update_pte.pfn = bad_pfn;
  2162. if (tdp_enabled)
  2163. return init_kvm_tdp_mmu(vcpu);
  2164. else
  2165. return init_kvm_softmmu(vcpu);
  2166. }
  2167. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2168. {
  2169. ASSERT(vcpu);
  2170. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2171. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2172. vcpu->arch.mmu.free(vcpu);
  2173. }
  2174. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2175. {
  2176. destroy_kvm_mmu(vcpu);
  2177. return init_kvm_mmu(vcpu);
  2178. }
  2179. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2180. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2181. {
  2182. int r;
  2183. r = mmu_topup_memory_caches(vcpu);
  2184. if (r)
  2185. goto out;
  2186. r = mmu_alloc_roots(vcpu);
  2187. spin_lock(&vcpu->kvm->mmu_lock);
  2188. mmu_sync_roots(vcpu);
  2189. spin_unlock(&vcpu->kvm->mmu_lock);
  2190. if (r)
  2191. goto out;
  2192. /* set_cr3() should ensure TLB has been flushed */
  2193. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2194. out:
  2195. return r;
  2196. }
  2197. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2198. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2199. {
  2200. mmu_free_roots(vcpu);
  2201. }
  2202. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2203. struct kvm_mmu_page *sp,
  2204. u64 *spte)
  2205. {
  2206. u64 pte;
  2207. struct kvm_mmu_page *child;
  2208. pte = *spte;
  2209. if (is_shadow_present_pte(pte)) {
  2210. if (is_last_spte(pte, sp->role.level))
  2211. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2212. else {
  2213. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2214. mmu_page_remove_parent_pte(child, spte);
  2215. }
  2216. }
  2217. __set_spte(spte, shadow_trap_nonpresent_pte);
  2218. if (is_large_pte(pte))
  2219. --vcpu->kvm->stat.lpages;
  2220. }
  2221. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2222. struct kvm_mmu_page *sp,
  2223. u64 *spte,
  2224. const void *new)
  2225. {
  2226. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2227. ++vcpu->kvm->stat.mmu_pde_zapped;
  2228. return;
  2229. }
  2230. ++vcpu->kvm->stat.mmu_pte_updated;
  2231. if (!sp->role.cr4_pae)
  2232. paging32_update_pte(vcpu, sp, spte, new);
  2233. else
  2234. paging64_update_pte(vcpu, sp, spte, new);
  2235. }
  2236. static bool need_remote_flush(u64 old, u64 new)
  2237. {
  2238. if (!is_shadow_present_pte(old))
  2239. return false;
  2240. if (!is_shadow_present_pte(new))
  2241. return true;
  2242. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2243. return true;
  2244. old ^= PT64_NX_MASK;
  2245. new ^= PT64_NX_MASK;
  2246. return (old & ~new & PT64_PERM_MASK) != 0;
  2247. }
  2248. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2249. bool remote_flush, bool local_flush)
  2250. {
  2251. if (zap_page)
  2252. return;
  2253. if (remote_flush)
  2254. kvm_flush_remote_tlbs(vcpu->kvm);
  2255. else if (local_flush)
  2256. kvm_mmu_flush_tlb(vcpu);
  2257. }
  2258. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2259. {
  2260. u64 *spte = vcpu->arch.last_pte_updated;
  2261. return !!(spte && (*spte & shadow_accessed_mask));
  2262. }
  2263. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2264. u64 gpte)
  2265. {
  2266. gfn_t gfn;
  2267. pfn_t pfn;
  2268. if (!is_present_gpte(gpte))
  2269. return;
  2270. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2271. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2272. smp_rmb();
  2273. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2274. if (is_error_pfn(pfn)) {
  2275. kvm_release_pfn_clean(pfn);
  2276. return;
  2277. }
  2278. vcpu->arch.update_pte.gfn = gfn;
  2279. vcpu->arch.update_pte.pfn = pfn;
  2280. }
  2281. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2282. {
  2283. u64 *spte = vcpu->arch.last_pte_updated;
  2284. if (spte
  2285. && vcpu->arch.last_pte_gfn == gfn
  2286. && shadow_accessed_mask
  2287. && !(*spte & shadow_accessed_mask)
  2288. && is_shadow_present_pte(*spte))
  2289. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2290. }
  2291. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2292. const u8 *new, int bytes,
  2293. bool guest_initiated)
  2294. {
  2295. gfn_t gfn = gpa >> PAGE_SHIFT;
  2296. struct kvm_mmu_page *sp;
  2297. struct hlist_node *node;
  2298. LIST_HEAD(invalid_list);
  2299. u64 entry, gentry;
  2300. u64 *spte;
  2301. unsigned offset = offset_in_page(gpa);
  2302. unsigned pte_size;
  2303. unsigned page_offset;
  2304. unsigned misaligned;
  2305. unsigned quadrant;
  2306. int level;
  2307. int flooded = 0;
  2308. int npte;
  2309. int r;
  2310. int invlpg_counter;
  2311. bool remote_flush, local_flush, zap_page;
  2312. zap_page = remote_flush = local_flush = false;
  2313. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2314. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2315. /*
  2316. * Assume that the pte write on a page table of the same type
  2317. * as the current vcpu paging mode. This is nearly always true
  2318. * (might be false while changing modes). Note it is verified later
  2319. * by update_pte().
  2320. */
  2321. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2322. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2323. if (is_pae(vcpu)) {
  2324. gpa &= ~(gpa_t)7;
  2325. bytes = 8;
  2326. }
  2327. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2328. if (r)
  2329. gentry = 0;
  2330. new = (const u8 *)&gentry;
  2331. }
  2332. switch (bytes) {
  2333. case 4:
  2334. gentry = *(const u32 *)new;
  2335. break;
  2336. case 8:
  2337. gentry = *(const u64 *)new;
  2338. break;
  2339. default:
  2340. gentry = 0;
  2341. break;
  2342. }
  2343. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2344. spin_lock(&vcpu->kvm->mmu_lock);
  2345. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2346. gentry = 0;
  2347. kvm_mmu_access_page(vcpu, gfn);
  2348. kvm_mmu_free_some_pages(vcpu);
  2349. ++vcpu->kvm->stat.mmu_pte_write;
  2350. kvm_mmu_audit(vcpu, "pre pte write");
  2351. if (guest_initiated) {
  2352. if (gfn == vcpu->arch.last_pt_write_gfn
  2353. && !last_updated_pte_accessed(vcpu)) {
  2354. ++vcpu->arch.last_pt_write_count;
  2355. if (vcpu->arch.last_pt_write_count >= 3)
  2356. flooded = 1;
  2357. } else {
  2358. vcpu->arch.last_pt_write_gfn = gfn;
  2359. vcpu->arch.last_pt_write_count = 1;
  2360. vcpu->arch.last_pte_updated = NULL;
  2361. }
  2362. }
  2363. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2364. pte_size = sp->role.cr4_pae ? 8 : 4;
  2365. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2366. misaligned |= bytes < 4;
  2367. if (misaligned || flooded) {
  2368. /*
  2369. * Misaligned accesses are too much trouble to fix
  2370. * up; also, they usually indicate a page is not used
  2371. * as a page table.
  2372. *
  2373. * If we're seeing too many writes to a page,
  2374. * it may no longer be a page table, or we may be
  2375. * forking, in which case it is better to unmap the
  2376. * page.
  2377. */
  2378. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2379. gpa, bytes, sp->role.word);
  2380. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2381. &invalid_list);
  2382. ++vcpu->kvm->stat.mmu_flooded;
  2383. continue;
  2384. }
  2385. page_offset = offset;
  2386. level = sp->role.level;
  2387. npte = 1;
  2388. if (!sp->role.cr4_pae) {
  2389. page_offset <<= 1; /* 32->64 */
  2390. /*
  2391. * A 32-bit pde maps 4MB while the shadow pdes map
  2392. * only 2MB. So we need to double the offset again
  2393. * and zap two pdes instead of one.
  2394. */
  2395. if (level == PT32_ROOT_LEVEL) {
  2396. page_offset &= ~7; /* kill rounding error */
  2397. page_offset <<= 1;
  2398. npte = 2;
  2399. }
  2400. quadrant = page_offset >> PAGE_SHIFT;
  2401. page_offset &= ~PAGE_MASK;
  2402. if (quadrant != sp->role.quadrant)
  2403. continue;
  2404. }
  2405. local_flush = true;
  2406. spte = &sp->spt[page_offset / sizeof(*spte)];
  2407. while (npte--) {
  2408. entry = *spte;
  2409. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2410. if (gentry)
  2411. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2412. if (!remote_flush && need_remote_flush(entry, *spte))
  2413. remote_flush = true;
  2414. ++spte;
  2415. }
  2416. }
  2417. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2418. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2419. kvm_mmu_audit(vcpu, "post pte write");
  2420. spin_unlock(&vcpu->kvm->mmu_lock);
  2421. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2422. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2423. vcpu->arch.update_pte.pfn = bad_pfn;
  2424. }
  2425. }
  2426. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2427. {
  2428. gpa_t gpa;
  2429. int r;
  2430. if (tdp_enabled)
  2431. return 0;
  2432. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2433. spin_lock(&vcpu->kvm->mmu_lock);
  2434. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2435. spin_unlock(&vcpu->kvm->mmu_lock);
  2436. return r;
  2437. }
  2438. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2439. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2440. {
  2441. int free_pages;
  2442. LIST_HEAD(invalid_list);
  2443. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2444. while (free_pages < KVM_REFILL_PAGES &&
  2445. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2446. struct kvm_mmu_page *sp;
  2447. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2448. struct kvm_mmu_page, link);
  2449. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2450. &invalid_list);
  2451. ++vcpu->kvm->stat.mmu_recycled;
  2452. }
  2453. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2454. }
  2455. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2456. {
  2457. int r;
  2458. enum emulation_result er;
  2459. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2460. if (r < 0)
  2461. goto out;
  2462. if (!r) {
  2463. r = 1;
  2464. goto out;
  2465. }
  2466. r = mmu_topup_memory_caches(vcpu);
  2467. if (r)
  2468. goto out;
  2469. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2470. switch (er) {
  2471. case EMULATE_DONE:
  2472. return 1;
  2473. case EMULATE_DO_MMIO:
  2474. ++vcpu->stat.mmio_exits;
  2475. /* fall through */
  2476. case EMULATE_FAIL:
  2477. return 0;
  2478. default:
  2479. BUG();
  2480. }
  2481. out:
  2482. return r;
  2483. }
  2484. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2485. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2486. {
  2487. vcpu->arch.mmu.invlpg(vcpu, gva);
  2488. kvm_mmu_flush_tlb(vcpu);
  2489. ++vcpu->stat.invlpg;
  2490. }
  2491. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2492. void kvm_enable_tdp(void)
  2493. {
  2494. tdp_enabled = true;
  2495. }
  2496. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2497. void kvm_disable_tdp(void)
  2498. {
  2499. tdp_enabled = false;
  2500. }
  2501. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2502. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2503. {
  2504. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2505. }
  2506. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2507. {
  2508. struct page *page;
  2509. int i;
  2510. ASSERT(vcpu);
  2511. /*
  2512. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2513. * Therefore we need to allocate shadow page tables in the first
  2514. * 4GB of memory, which happens to fit the DMA32 zone.
  2515. */
  2516. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2517. if (!page)
  2518. return -ENOMEM;
  2519. vcpu->arch.mmu.pae_root = page_address(page);
  2520. for (i = 0; i < 4; ++i)
  2521. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2522. return 0;
  2523. }
  2524. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2525. {
  2526. ASSERT(vcpu);
  2527. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2528. return alloc_mmu_pages(vcpu);
  2529. }
  2530. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2531. {
  2532. ASSERT(vcpu);
  2533. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2534. return init_kvm_mmu(vcpu);
  2535. }
  2536. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2537. {
  2538. ASSERT(vcpu);
  2539. destroy_kvm_mmu(vcpu);
  2540. free_mmu_pages(vcpu);
  2541. mmu_free_memory_caches(vcpu);
  2542. }
  2543. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2544. {
  2545. struct kvm_mmu_page *sp;
  2546. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2547. int i;
  2548. u64 *pt;
  2549. if (!test_bit(slot, sp->slot_bitmap))
  2550. continue;
  2551. pt = sp->spt;
  2552. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2553. /* avoid RMW */
  2554. if (is_writable_pte(pt[i]))
  2555. pt[i] &= ~PT_WRITABLE_MASK;
  2556. }
  2557. kvm_flush_remote_tlbs(kvm);
  2558. }
  2559. void kvm_mmu_zap_all(struct kvm *kvm)
  2560. {
  2561. struct kvm_mmu_page *sp, *node;
  2562. LIST_HEAD(invalid_list);
  2563. spin_lock(&kvm->mmu_lock);
  2564. restart:
  2565. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2566. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2567. goto restart;
  2568. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2569. spin_unlock(&kvm->mmu_lock);
  2570. }
  2571. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2572. struct list_head *invalid_list)
  2573. {
  2574. struct kvm_mmu_page *page;
  2575. page = container_of(kvm->arch.active_mmu_pages.prev,
  2576. struct kvm_mmu_page, link);
  2577. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2578. }
  2579. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2580. {
  2581. struct kvm *kvm;
  2582. struct kvm *kvm_freed = NULL;
  2583. int cache_count = 0;
  2584. spin_lock(&kvm_lock);
  2585. list_for_each_entry(kvm, &vm_list, vm_list) {
  2586. int npages, idx, freed_pages;
  2587. LIST_HEAD(invalid_list);
  2588. idx = srcu_read_lock(&kvm->srcu);
  2589. spin_lock(&kvm->mmu_lock);
  2590. npages = kvm->arch.n_alloc_mmu_pages -
  2591. kvm->arch.n_free_mmu_pages;
  2592. cache_count += npages;
  2593. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2594. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2595. &invalid_list);
  2596. cache_count -= freed_pages;
  2597. kvm_freed = kvm;
  2598. }
  2599. nr_to_scan--;
  2600. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2601. spin_unlock(&kvm->mmu_lock);
  2602. srcu_read_unlock(&kvm->srcu, idx);
  2603. }
  2604. if (kvm_freed)
  2605. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2606. spin_unlock(&kvm_lock);
  2607. return cache_count;
  2608. }
  2609. static struct shrinker mmu_shrinker = {
  2610. .shrink = mmu_shrink,
  2611. .seeks = DEFAULT_SEEKS * 10,
  2612. };
  2613. static void mmu_destroy_caches(void)
  2614. {
  2615. if (pte_chain_cache)
  2616. kmem_cache_destroy(pte_chain_cache);
  2617. if (rmap_desc_cache)
  2618. kmem_cache_destroy(rmap_desc_cache);
  2619. if (mmu_page_header_cache)
  2620. kmem_cache_destroy(mmu_page_header_cache);
  2621. }
  2622. void kvm_mmu_module_exit(void)
  2623. {
  2624. mmu_destroy_caches();
  2625. unregister_shrinker(&mmu_shrinker);
  2626. }
  2627. int kvm_mmu_module_init(void)
  2628. {
  2629. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2630. sizeof(struct kvm_pte_chain),
  2631. 0, 0, NULL);
  2632. if (!pte_chain_cache)
  2633. goto nomem;
  2634. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2635. sizeof(struct kvm_rmap_desc),
  2636. 0, 0, NULL);
  2637. if (!rmap_desc_cache)
  2638. goto nomem;
  2639. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2640. sizeof(struct kvm_mmu_page),
  2641. 0, 0, NULL);
  2642. if (!mmu_page_header_cache)
  2643. goto nomem;
  2644. register_shrinker(&mmu_shrinker);
  2645. return 0;
  2646. nomem:
  2647. mmu_destroy_caches();
  2648. return -ENOMEM;
  2649. }
  2650. /*
  2651. * Caculate mmu pages needed for kvm.
  2652. */
  2653. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2654. {
  2655. int i;
  2656. unsigned int nr_mmu_pages;
  2657. unsigned int nr_pages = 0;
  2658. struct kvm_memslots *slots;
  2659. slots = kvm_memslots(kvm);
  2660. for (i = 0; i < slots->nmemslots; i++)
  2661. nr_pages += slots->memslots[i].npages;
  2662. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2663. nr_mmu_pages = max(nr_mmu_pages,
  2664. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2665. return nr_mmu_pages;
  2666. }
  2667. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2668. unsigned len)
  2669. {
  2670. if (len > buffer->len)
  2671. return NULL;
  2672. return buffer->ptr;
  2673. }
  2674. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2675. unsigned len)
  2676. {
  2677. void *ret;
  2678. ret = pv_mmu_peek_buffer(buffer, len);
  2679. if (!ret)
  2680. return ret;
  2681. buffer->ptr += len;
  2682. buffer->len -= len;
  2683. buffer->processed += len;
  2684. return ret;
  2685. }
  2686. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2687. gpa_t addr, gpa_t value)
  2688. {
  2689. int bytes = 8;
  2690. int r;
  2691. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2692. bytes = 4;
  2693. r = mmu_topup_memory_caches(vcpu);
  2694. if (r)
  2695. return r;
  2696. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2697. return -EFAULT;
  2698. return 1;
  2699. }
  2700. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2701. {
  2702. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2703. return 1;
  2704. }
  2705. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2706. {
  2707. spin_lock(&vcpu->kvm->mmu_lock);
  2708. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2709. spin_unlock(&vcpu->kvm->mmu_lock);
  2710. return 1;
  2711. }
  2712. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2713. struct kvm_pv_mmu_op_buffer *buffer)
  2714. {
  2715. struct kvm_mmu_op_header *header;
  2716. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2717. if (!header)
  2718. return 0;
  2719. switch (header->op) {
  2720. case KVM_MMU_OP_WRITE_PTE: {
  2721. struct kvm_mmu_op_write_pte *wpte;
  2722. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2723. if (!wpte)
  2724. return 0;
  2725. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2726. wpte->pte_val);
  2727. }
  2728. case KVM_MMU_OP_FLUSH_TLB: {
  2729. struct kvm_mmu_op_flush_tlb *ftlb;
  2730. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2731. if (!ftlb)
  2732. return 0;
  2733. return kvm_pv_mmu_flush_tlb(vcpu);
  2734. }
  2735. case KVM_MMU_OP_RELEASE_PT: {
  2736. struct kvm_mmu_op_release_pt *rpt;
  2737. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2738. if (!rpt)
  2739. return 0;
  2740. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2741. }
  2742. default: return 0;
  2743. }
  2744. }
  2745. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2746. gpa_t addr, unsigned long *ret)
  2747. {
  2748. int r;
  2749. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2750. buffer->ptr = buffer->buf;
  2751. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2752. buffer->processed = 0;
  2753. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2754. if (r)
  2755. goto out;
  2756. while (buffer->len) {
  2757. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2758. if (r < 0)
  2759. goto out;
  2760. if (r == 0)
  2761. break;
  2762. }
  2763. r = 1;
  2764. out:
  2765. *ret = buffer->processed;
  2766. return r;
  2767. }
  2768. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2769. {
  2770. struct kvm_shadow_walk_iterator iterator;
  2771. int nr_sptes = 0;
  2772. spin_lock(&vcpu->kvm->mmu_lock);
  2773. for_each_shadow_entry(vcpu, addr, iterator) {
  2774. sptes[iterator.level-1] = *iterator.sptep;
  2775. nr_sptes++;
  2776. if (!is_shadow_present_pte(*iterator.sptep))
  2777. break;
  2778. }
  2779. spin_unlock(&vcpu->kvm->mmu_lock);
  2780. return nr_sptes;
  2781. }
  2782. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2783. #ifdef AUDIT
  2784. static const char *audit_msg;
  2785. static gva_t canonicalize(gva_t gva)
  2786. {
  2787. #ifdef CONFIG_X86_64
  2788. gva = (long long)(gva << 16) >> 16;
  2789. #endif
  2790. return gva;
  2791. }
  2792. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2793. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2794. inspect_spte_fn fn)
  2795. {
  2796. int i;
  2797. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2798. u64 ent = sp->spt[i];
  2799. if (is_shadow_present_pte(ent)) {
  2800. if (!is_last_spte(ent, sp->role.level)) {
  2801. struct kvm_mmu_page *child;
  2802. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2803. __mmu_spte_walk(kvm, child, fn);
  2804. } else
  2805. fn(kvm, &sp->spt[i]);
  2806. }
  2807. }
  2808. }
  2809. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2810. {
  2811. int i;
  2812. struct kvm_mmu_page *sp;
  2813. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2814. return;
  2815. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2816. hpa_t root = vcpu->arch.mmu.root_hpa;
  2817. sp = page_header(root);
  2818. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2819. return;
  2820. }
  2821. for (i = 0; i < 4; ++i) {
  2822. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2823. if (root && VALID_PAGE(root)) {
  2824. root &= PT64_BASE_ADDR_MASK;
  2825. sp = page_header(root);
  2826. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2827. }
  2828. }
  2829. return;
  2830. }
  2831. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2832. gva_t va, int level)
  2833. {
  2834. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2835. int i;
  2836. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2837. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2838. u64 ent = pt[i];
  2839. if (ent == shadow_trap_nonpresent_pte)
  2840. continue;
  2841. va = canonicalize(va);
  2842. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2843. audit_mappings_page(vcpu, ent, va, level - 1);
  2844. else {
  2845. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2846. gfn_t gfn = gpa >> PAGE_SHIFT;
  2847. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2848. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2849. if (is_error_pfn(pfn)) {
  2850. kvm_release_pfn_clean(pfn);
  2851. continue;
  2852. }
  2853. if (is_shadow_present_pte(ent)
  2854. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2855. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2856. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2857. audit_msg, vcpu->arch.mmu.root_level,
  2858. va, gpa, hpa, ent,
  2859. is_shadow_present_pte(ent));
  2860. else if (ent == shadow_notrap_nonpresent_pte
  2861. && !is_error_hpa(hpa))
  2862. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2863. " valid guest gva %lx\n", audit_msg, va);
  2864. kvm_release_pfn_clean(pfn);
  2865. }
  2866. }
  2867. }
  2868. static void audit_mappings(struct kvm_vcpu *vcpu)
  2869. {
  2870. unsigned i;
  2871. if (vcpu->arch.mmu.root_level == 4)
  2872. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2873. else
  2874. for (i = 0; i < 4; ++i)
  2875. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2876. audit_mappings_page(vcpu,
  2877. vcpu->arch.mmu.pae_root[i],
  2878. i << 30,
  2879. 2);
  2880. }
  2881. static int count_rmaps(struct kvm_vcpu *vcpu)
  2882. {
  2883. struct kvm *kvm = vcpu->kvm;
  2884. struct kvm_memslots *slots;
  2885. int nmaps = 0;
  2886. int i, j, k, idx;
  2887. idx = srcu_read_lock(&kvm->srcu);
  2888. slots = kvm_memslots(kvm);
  2889. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2890. struct kvm_memory_slot *m = &slots->memslots[i];
  2891. struct kvm_rmap_desc *d;
  2892. for (j = 0; j < m->npages; ++j) {
  2893. unsigned long *rmapp = &m->rmap[j];
  2894. if (!*rmapp)
  2895. continue;
  2896. if (!(*rmapp & 1)) {
  2897. ++nmaps;
  2898. continue;
  2899. }
  2900. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2901. while (d) {
  2902. for (k = 0; k < RMAP_EXT; ++k)
  2903. if (d->sptes[k])
  2904. ++nmaps;
  2905. else
  2906. break;
  2907. d = d->more;
  2908. }
  2909. }
  2910. }
  2911. srcu_read_unlock(&kvm->srcu, idx);
  2912. return nmaps;
  2913. }
  2914. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2915. {
  2916. unsigned long *rmapp;
  2917. struct kvm_mmu_page *rev_sp;
  2918. gfn_t gfn;
  2919. if (is_writable_pte(*sptep)) {
  2920. rev_sp = page_header(__pa(sptep));
  2921. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2922. if (!gfn_to_memslot(kvm, gfn)) {
  2923. if (!printk_ratelimit())
  2924. return;
  2925. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2926. audit_msg, gfn);
  2927. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2928. audit_msg, (long int)(sptep - rev_sp->spt),
  2929. rev_sp->gfn);
  2930. dump_stack();
  2931. return;
  2932. }
  2933. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2934. if (!*rmapp) {
  2935. if (!printk_ratelimit())
  2936. return;
  2937. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2938. audit_msg, *sptep);
  2939. dump_stack();
  2940. }
  2941. }
  2942. }
  2943. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2944. {
  2945. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2946. }
  2947. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2948. {
  2949. struct kvm_mmu_page *sp;
  2950. int i;
  2951. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2952. u64 *pt = sp->spt;
  2953. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2954. continue;
  2955. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2956. u64 ent = pt[i];
  2957. if (!(ent & PT_PRESENT_MASK))
  2958. continue;
  2959. if (!is_writable_pte(ent))
  2960. continue;
  2961. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2962. }
  2963. }
  2964. return;
  2965. }
  2966. static void audit_rmap(struct kvm_vcpu *vcpu)
  2967. {
  2968. check_writable_mappings_rmap(vcpu);
  2969. count_rmaps(vcpu);
  2970. }
  2971. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2972. {
  2973. struct kvm_mmu_page *sp;
  2974. struct kvm_memory_slot *slot;
  2975. unsigned long *rmapp;
  2976. u64 *spte;
  2977. gfn_t gfn;
  2978. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2979. if (sp->role.direct)
  2980. continue;
  2981. if (sp->unsync)
  2982. continue;
  2983. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2984. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2985. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2986. while (spte) {
  2987. if (is_writable_pte(*spte))
  2988. printk(KERN_ERR "%s: (%s) shadow page has "
  2989. "writable mappings: gfn %lx role %x\n",
  2990. __func__, audit_msg, sp->gfn,
  2991. sp->role.word);
  2992. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2993. }
  2994. }
  2995. }
  2996. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2997. {
  2998. int olddbg = dbg;
  2999. dbg = 0;
  3000. audit_msg = msg;
  3001. audit_rmap(vcpu);
  3002. audit_write_protection(vcpu);
  3003. if (strcmp("pre pte write", audit_msg) != 0)
  3004. audit_mappings(vcpu);
  3005. audit_writable_sptes_have_rmaps(vcpu);
  3006. dbg = olddbg;
  3007. }
  3008. #endif