12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150 |
- /*
- * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
- * Copyright © 2004 Micron Technology Inc.
- * Copyright © 2004 David Brownell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/platform_device.h>
- #include <linux/dmaengine.h>
- #include <linux/dma-mapping.h>
- #include <linux/delay.h>
- #include <linux/module.h>
- #include <linux/interrupt.h>
- #include <linux/jiffies.h>
- #include <linux/sched.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/nand.h>
- #include <linux/mtd/partitions.h>
- #include <linux/omap-dma.h>
- #include <linux/io.h>
- #include <linux/slab.h>
- #include <linux/of.h>
- #include <linux/of_device.h>
- #include <linux/bch.h>
- #include <linux/platform_data/elm.h>
- #include <linux/platform_data/mtd-nand-omap2.h>
- #define DRIVER_NAME "omap2-nand"
- #define OMAP_NAND_TIMEOUT_MS 5000
- #define NAND_Ecc_P1e (1 << 0)
- #define NAND_Ecc_P2e (1 << 1)
- #define NAND_Ecc_P4e (1 << 2)
- #define NAND_Ecc_P8e (1 << 3)
- #define NAND_Ecc_P16e (1 << 4)
- #define NAND_Ecc_P32e (1 << 5)
- #define NAND_Ecc_P64e (1 << 6)
- #define NAND_Ecc_P128e (1 << 7)
- #define NAND_Ecc_P256e (1 << 8)
- #define NAND_Ecc_P512e (1 << 9)
- #define NAND_Ecc_P1024e (1 << 10)
- #define NAND_Ecc_P2048e (1 << 11)
- #define NAND_Ecc_P1o (1 << 16)
- #define NAND_Ecc_P2o (1 << 17)
- #define NAND_Ecc_P4o (1 << 18)
- #define NAND_Ecc_P8o (1 << 19)
- #define NAND_Ecc_P16o (1 << 20)
- #define NAND_Ecc_P32o (1 << 21)
- #define NAND_Ecc_P64o (1 << 22)
- #define NAND_Ecc_P128o (1 << 23)
- #define NAND_Ecc_P256o (1 << 24)
- #define NAND_Ecc_P512o (1 << 25)
- #define NAND_Ecc_P1024o (1 << 26)
- #define NAND_Ecc_P2048o (1 << 27)
- #define TF(value) (value ? 1 : 0)
- #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
- #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
- #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
- #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
- #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
- #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
- #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
- #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
- #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
- #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
- #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
- #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
- #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
- #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
- #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
- #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
- #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
- #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
- #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
- #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
- #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
- #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
- #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
- #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
- #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
- #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
- #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
- #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
- #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
- #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
- #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
- #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
- #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
- #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
- #define PREFETCH_CONFIG1_CS_SHIFT 24
- #define ECC_CONFIG_CS_SHIFT 1
- #define CS_MASK 0x7
- #define ENABLE_PREFETCH (0x1 << 7)
- #define DMA_MPU_MODE_SHIFT 2
- #define ECCSIZE0_SHIFT 12
- #define ECCSIZE1_SHIFT 22
- #define ECC1RESULTSIZE 0x1
- #define ECCCLEAR 0x100
- #define ECC1 0x1
- #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
- #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
- #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
- #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
- #define STATUS_BUFF_EMPTY 0x00000001
- #define OMAP24XX_DMA_GPMC 4
- #define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
- #define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
- #define SECTOR_BYTES 512
- /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
- #define BCH4_BIT_PAD 4
- #define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
- #define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
- /* GPMC ecc engine settings for read */
- #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
- #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
- #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
- #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
- #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
- /* GPMC ecc engine settings for write */
- #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
- #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
- #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
- #define OMAP_ECC_BCH8_POLYNOMIAL 0x201b
- #ifdef CONFIG_MTD_NAND_OMAP_BCH
- static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
- 0xac, 0x6b, 0xff, 0x99, 0x7b};
- static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
- #endif
- /* oob info generated runtime depending on ecc algorithm and layout selected */
- static struct nand_ecclayout omap_oobinfo;
- /* Define some generic bad / good block scan pattern which are used
- * while scanning a device for factory marked good / bad blocks
- */
- static uint8_t scan_ff_pattern[] = { 0xff };
- static struct nand_bbt_descr bb_descrip_flashbased = {
- .options = NAND_BBT_SCANALLPAGES,
- .offs = 0,
- .len = 1,
- .pattern = scan_ff_pattern,
- };
- struct omap_nand_info {
- struct nand_hw_control controller;
- struct omap_nand_platform_data *pdata;
- struct mtd_info mtd;
- struct nand_chip nand;
- struct platform_device *pdev;
- int gpmc_cs;
- unsigned long phys_base;
- unsigned long mem_size;
- struct completion comp;
- struct dma_chan *dma;
- int gpmc_irq_fifo;
- int gpmc_irq_count;
- enum {
- OMAP_NAND_IO_READ = 0, /* read */
- OMAP_NAND_IO_WRITE, /* write */
- } iomode;
- u_char *buf;
- int buf_len;
- struct gpmc_nand_regs reg;
- /* fields specific for BCHx_HW ECC scheme */
- struct bch_control *bch;
- struct nand_ecclayout ecclayout;
- bool is_elm_used;
- struct device *elm_dev;
- struct device_node *of_node;
- };
- /**
- * omap_prefetch_enable - configures and starts prefetch transfer
- * @cs: cs (chip select) number
- * @fifo_th: fifo threshold to be used for read/ write
- * @dma_mode: dma mode enable (1) or disable (0)
- * @u32_count: number of bytes to be transferred
- * @is_write: prefetch read(0) or write post(1) mode
- */
- static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
- unsigned int u32_count, int is_write, struct omap_nand_info *info)
- {
- u32 val;
- if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
- return -1;
- if (readl(info->reg.gpmc_prefetch_control))
- return -EBUSY;
- /* Set the amount of bytes to be prefetched */
- writel(u32_count, info->reg.gpmc_prefetch_config2);
- /* Set dma/mpu mode, the prefetch read / post write and
- * enable the engine. Set which cs is has requested for.
- */
- val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
- PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
- (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
- writel(val, info->reg.gpmc_prefetch_config1);
- /* Start the prefetch engine */
- writel(0x1, info->reg.gpmc_prefetch_control);
- return 0;
- }
- /**
- * omap_prefetch_reset - disables and stops the prefetch engine
- */
- static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
- {
- u32 config1;
- /* check if the same module/cs is trying to reset */
- config1 = readl(info->reg.gpmc_prefetch_config1);
- if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
- return -EINVAL;
- /* Stop the PFPW engine */
- writel(0x0, info->reg.gpmc_prefetch_control);
- /* Reset/disable the PFPW engine */
- writel(0x0, info->reg.gpmc_prefetch_config1);
- return 0;
- }
- /**
- * omap_hwcontrol - hardware specific access to control-lines
- * @mtd: MTD device structure
- * @cmd: command to device
- * @ctrl:
- * NAND_NCE: bit 0 -> don't care
- * NAND_CLE: bit 1 -> Command Latch
- * NAND_ALE: bit 2 -> Address Latch
- *
- * NOTE: boards may use different bits for these!!
- */
- static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- if (cmd != NAND_CMD_NONE) {
- if (ctrl & NAND_CLE)
- writeb(cmd, info->reg.gpmc_nand_command);
- else if (ctrl & NAND_ALE)
- writeb(cmd, info->reg.gpmc_nand_address);
- else /* NAND_NCE */
- writeb(cmd, info->reg.gpmc_nand_data);
- }
- }
- /**
- * omap_read_buf8 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct nand_chip *nand = mtd->priv;
- ioread8_rep(nand->IO_ADDR_R, buf, len);
- }
- /**
- * omap_write_buf8 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- u_char *p = (u_char *)buf;
- u32 status = 0;
- while (len--) {
- iowrite8(*p++, info->nand.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = readl(info->reg.gpmc_status) &
- STATUS_BUFF_EMPTY;
- } while (!status);
- }
- }
- /**
- * omap_read_buf16 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct nand_chip *nand = mtd->priv;
- ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
- }
- /**
- * omap_write_buf16 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- u16 *p = (u16 *) buf;
- u32 status = 0;
- /* FIXME try bursts of writesw() or DMA ... */
- len >>= 1;
- while (len--) {
- iowrite16(*p++, info->nand.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = readl(info->reg.gpmc_status) &
- STATUS_BUFF_EMPTY;
- } while (!status);
- }
- }
- /**
- * omap_read_buf_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- uint32_t r_count = 0;
- int ret = 0;
- u32 *p = (u32 *)buf;
- /* take care of subpage reads */
- if (len % 4) {
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len % 4);
- else
- omap_read_buf8(mtd, buf, len % 4);
- p = (u32 *) (buf + len % 4);
- len -= len % 4;
- }
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, (u_char *)p, len);
- else
- omap_read_buf8(mtd, (u_char *)p, len);
- } else {
- do {
- r_count = readl(info->reg.gpmc_prefetch_status);
- r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
- r_count = r_count >> 2;
- ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
- p += r_count;
- len -= r_count << 2;
- } while (len);
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- }
- }
- /**
- * omap_write_buf_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- uint32_t w_count = 0;
- int i = 0, ret = 0;
- u16 *p = (u16 *)buf;
- unsigned long tim, limit;
- u32 val;
- /* take care of subpage writes */
- if (len % 2 != 0) {
- writeb(*buf, info->nand.IO_ADDR_W);
- p = (u16 *)(buf + 1);
- len--;
- }
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, (u_char *)p, len);
- else
- omap_write_buf8(mtd, (u_char *)p, len);
- } else {
- while (len) {
- w_count = readl(info->reg.gpmc_prefetch_status);
- w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
- w_count = w_count >> 1;
- for (i = 0; (i < w_count) && len; i++, len -= 2)
- iowrite16(*p++, info->nand.IO_ADDR_W);
- }
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy *
- msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- cpu_relax();
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- } while (val && (tim++ < limit));
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- }
- }
- /*
- * omap_nand_dma_callback: callback on the completion of dma transfer
- * @data: pointer to completion data structure
- */
- static void omap_nand_dma_callback(void *data)
- {
- complete((struct completion *) data);
- }
- /*
- * omap_nand_dma_transfer: configure and start dma transfer
- * @mtd: MTD device structure
- * @addr: virtual address in RAM of source/destination
- * @len: number of data bytes to be transferred
- * @is_write: flag for read/write operation
- */
- static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
- unsigned int len, int is_write)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- struct dma_async_tx_descriptor *tx;
- enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
- DMA_FROM_DEVICE;
- struct scatterlist sg;
- unsigned long tim, limit;
- unsigned n;
- int ret;
- u32 val;
- if (addr >= high_memory) {
- struct page *p1;
- if (((size_t)addr & PAGE_MASK) !=
- ((size_t)(addr + len - 1) & PAGE_MASK))
- goto out_copy;
- p1 = vmalloc_to_page(addr);
- if (!p1)
- goto out_copy;
- addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
- }
- sg_init_one(&sg, addr, len);
- n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
- if (n == 0) {
- dev_err(&info->pdev->dev,
- "Couldn't DMA map a %d byte buffer\n", len);
- goto out_copy;
- }
- tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
- is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!tx)
- goto out_copy_unmap;
- tx->callback = omap_nand_dma_callback;
- tx->callback_param = &info->comp;
- dmaengine_submit(tx);
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy_unmap;
- init_completion(&info->comp);
- dma_async_issue_pending(info->dma);
- /* setup and start DMA using dma_addr */
- wait_for_completion(&info->comp);
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- cpu_relax();
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- } while (val && (tim++ < limit));
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
- return 0;
- out_copy_unmap:
- dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
- out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
- : omap_write_buf16(mtd, (u_char *) addr, len);
- else
- is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
- : omap_write_buf8(mtd, (u_char *) addr, len);
- return 0;
- }
- /**
- * omap_read_buf_dma_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
- {
- if (len <= mtd->oobsize)
- omap_read_buf_pref(mtd, buf, len);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, buf, len, 0x0);
- }
- /**
- * omap_write_buf_dma_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf_dma_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
- {
- if (len <= mtd->oobsize)
- omap_write_buf_pref(mtd, buf, len);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
- }
- /*
- * omap_nand_irq - GPMC irq handler
- * @this_irq: gpmc irq number
- * @dev: omap_nand_info structure pointer is passed here
- */
- static irqreturn_t omap_nand_irq(int this_irq, void *dev)
- {
- struct omap_nand_info *info = (struct omap_nand_info *) dev;
- u32 bytes;
- bytes = readl(info->reg.gpmc_prefetch_status);
- bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
- bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
- if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
- if (this_irq == info->gpmc_irq_count)
- goto done;
- if (info->buf_len && (info->buf_len < bytes))
- bytes = info->buf_len;
- else if (!info->buf_len)
- bytes = 0;
- iowrite32_rep(info->nand.IO_ADDR_W,
- (u32 *)info->buf, bytes >> 2);
- info->buf = info->buf + bytes;
- info->buf_len -= bytes;
- } else {
- ioread32_rep(info->nand.IO_ADDR_R,
- (u32 *)info->buf, bytes >> 2);
- info->buf = info->buf + bytes;
- if (this_irq == info->gpmc_irq_count)
- goto done;
- }
- return IRQ_HANDLED;
- done:
- complete(&info->comp);
- disable_irq_nosync(info->gpmc_irq_fifo);
- disable_irq_nosync(info->gpmc_irq_count);
- return IRQ_HANDLED;
- }
- /*
- * omap_read_buf_irq_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- int ret = 0;
- if (len <= mtd->oobsize) {
- omap_read_buf_pref(mtd, buf, len);
- return;
- }
- info->iomode = OMAP_NAND_IO_READ;
- info->buf = buf;
- init_completion(&info->comp);
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
- info->buf_len = len;
- enable_irq(info->gpmc_irq_count);
- enable_irq(info->gpmc_irq_fifo);
- /* waiting for read to complete */
- wait_for_completion(&info->comp);
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- return;
- out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len);
- else
- omap_read_buf8(mtd, buf, len);
- }
- /*
- * omap_write_buf_irq_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf_irq_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- int ret = 0;
- unsigned long tim, limit;
- u32 val;
- if (len <= mtd->oobsize) {
- omap_write_buf_pref(mtd, buf, len);
- return;
- }
- info->iomode = OMAP_NAND_IO_WRITE;
- info->buf = (u_char *) buf;
- init_completion(&info->comp);
- /* configure and start prefetch transfer : size=24 */
- ret = omap_prefetch_enable(info->gpmc_cs,
- (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
- info->buf_len = len;
- enable_irq(info->gpmc_irq_count);
- enable_irq(info->gpmc_irq_fifo);
- /* waiting for write to complete */
- wait_for_completion(&info->comp);
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- cpu_relax();
- } while (val && (tim++ < limit));
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- return;
- out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, buf, len);
- else
- omap_write_buf8(mtd, buf, len);
- }
- /**
- * gen_true_ecc - This function will generate true ECC value
- * @ecc_buf: buffer to store ecc code
- *
- * This generated true ECC value can be used when correcting
- * data read from NAND flash memory core
- */
- static void gen_true_ecc(u8 *ecc_buf)
- {
- u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
- ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
- ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
- P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
- ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
- P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
- ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
- P1e(tmp) | P2048o(tmp) | P2048e(tmp));
- }
- /**
- * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
- * @ecc_data1: ecc code from nand spare area
- * @ecc_data2: ecc code from hardware register obtained from hardware ecc
- * @page_data: page data
- *
- * This function compares two ECC's and indicates if there is an error.
- * If the error can be corrected it will be corrected to the buffer.
- * If there is no error, %0 is returned. If there is an error but it
- * was corrected, %1 is returned. Otherwise, %-1 is returned.
- */
- static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
- u8 *ecc_data2, /* read from register */
- u8 *page_data)
- {
- uint i;
- u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
- u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
- u8 ecc_bit[24];
- u8 ecc_sum = 0;
- u8 find_bit = 0;
- uint find_byte = 0;
- int isEccFF;
- isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
- gen_true_ecc(ecc_data1);
- gen_true_ecc(ecc_data2);
- for (i = 0; i <= 2; i++) {
- *(ecc_data1 + i) = ~(*(ecc_data1 + i));
- *(ecc_data2 + i) = ~(*(ecc_data2 + i));
- }
- for (i = 0; i < 8; i++) {
- tmp0_bit[i] = *ecc_data1 % 2;
- *ecc_data1 = *ecc_data1 / 2;
- }
- for (i = 0; i < 8; i++) {
- tmp1_bit[i] = *(ecc_data1 + 1) % 2;
- *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
- }
- for (i = 0; i < 8; i++) {
- tmp2_bit[i] = *(ecc_data1 + 2) % 2;
- *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
- }
- for (i = 0; i < 8; i++) {
- comp0_bit[i] = *ecc_data2 % 2;
- *ecc_data2 = *ecc_data2 / 2;
- }
- for (i = 0; i < 8; i++) {
- comp1_bit[i] = *(ecc_data2 + 1) % 2;
- *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
- }
- for (i = 0; i < 8; i++) {
- comp2_bit[i] = *(ecc_data2 + 2) % 2;
- *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
- }
- for (i = 0; i < 6; i++)
- ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
- for (i = 0; i < 8; i++)
- ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
- for (i = 0; i < 8; i++)
- ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
- ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
- ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
- for (i = 0; i < 24; i++)
- ecc_sum += ecc_bit[i];
- switch (ecc_sum) {
- case 0:
- /* Not reached because this function is not called if
- * ECC values are equal
- */
- return 0;
- case 1:
- /* Uncorrectable error */
- pr_debug("ECC UNCORRECTED_ERROR 1\n");
- return -1;
- case 11:
- /* UN-Correctable error */
- pr_debug("ECC UNCORRECTED_ERROR B\n");
- return -1;
- case 12:
- /* Correctable error */
- find_byte = (ecc_bit[23] << 8) +
- (ecc_bit[21] << 7) +
- (ecc_bit[19] << 6) +
- (ecc_bit[17] << 5) +
- (ecc_bit[15] << 4) +
- (ecc_bit[13] << 3) +
- (ecc_bit[11] << 2) +
- (ecc_bit[9] << 1) +
- ecc_bit[7];
- find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
- pr_debug("Correcting single bit ECC error at offset: "
- "%d, bit: %d\n", find_byte, find_bit);
- page_data[find_byte] ^= (1 << find_bit);
- return 1;
- default:
- if (isEccFF) {
- if (ecc_data2[0] == 0 &&
- ecc_data2[1] == 0 &&
- ecc_data2[2] == 0)
- return 0;
- }
- pr_debug("UNCORRECTED_ERROR default\n");
- return -1;
- }
- }
- /**
- * omap_correct_data - Compares the ECC read with HW generated ECC
- * @mtd: MTD device structure
- * @dat: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Compares the ecc read from nand spare area with ECC registers values
- * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
- * detection and correction. If there are no errors, %0 is returned. If
- * there were errors and all of the errors were corrected, the number of
- * corrected errors is returned. If uncorrectable errors exist, %-1 is
- * returned.
- */
- static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- int blockCnt = 0, i = 0, ret = 0;
- int stat = 0;
- /* Ex NAND_ECC_HW12_2048 */
- if ((info->nand.ecc.mode == NAND_ECC_HW) &&
- (info->nand.ecc.size == 2048))
- blockCnt = 4;
- else
- blockCnt = 1;
- for (i = 0; i < blockCnt; i++) {
- if (memcmp(read_ecc, calc_ecc, 3) != 0) {
- ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
- if (ret < 0)
- return ret;
- /* keep track of the number of corrected errors */
- stat += ret;
- }
- read_ecc += 3;
- calc_ecc += 3;
- dat += 512;
- }
- return stat;
- }
- /**
- * omap_calcuate_ecc - Generate non-inverted ECC bytes.
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as long
- * nobody is trying to write data on the seemingly unused page. Reading
- * an erased page will produce an ECC mismatch between generated and read
- * ECC bytes that has to be dealt with separately.
- */
- static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- u32 val;
- val = readl(info->reg.gpmc_ecc_config);
- if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
- return -EINVAL;
- /* read ecc result */
- val = readl(info->reg.gpmc_ecc1_result);
- *ecc_code++ = val; /* P128e, ..., P1e */
- *ecc_code++ = val >> 16; /* P128o, ..., P1o */
- /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
- *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
- return 0;
- }
- /**
- * omap_enable_hwecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
- static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- struct nand_chip *chip = mtd->priv;
- unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
- u32 val;
- /* clear ecc and enable bits */
- val = ECCCLEAR | ECC1;
- writel(val, info->reg.gpmc_ecc_control);
- /* program ecc and result sizes */
- val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
- ECC1RESULTSIZE);
- writel(val, info->reg.gpmc_ecc_size_config);
- switch (mode) {
- case NAND_ECC_READ:
- case NAND_ECC_WRITE:
- writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
- break;
- case NAND_ECC_READSYN:
- writel(ECCCLEAR, info->reg.gpmc_ecc_control);
- break;
- default:
- dev_info(&info->pdev->dev,
- "error: unrecognized Mode[%d]!\n", mode);
- break;
- }
- /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
- val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
- writel(val, info->reg.gpmc_ecc_config);
- }
- /**
- * omap_wait - wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND Chip structure
- *
- * Wait function is called during Program and erase operations and
- * the way it is called from MTD layer, we should wait till the NAND
- * chip is ready after the programming/erase operation has completed.
- *
- * Erase can take up to 400ms and program up to 20ms according to
- * general NAND and SmartMedia specs
- */
- static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
- {
- struct nand_chip *this = mtd->priv;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- unsigned long timeo = jiffies;
- int status, state = this->state;
- if (state == FL_ERASING)
- timeo += msecs_to_jiffies(400);
- else
- timeo += msecs_to_jiffies(20);
- writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
- while (time_before(jiffies, timeo)) {
- status = readb(info->reg.gpmc_nand_data);
- if (status & NAND_STATUS_READY)
- break;
- cond_resched();
- }
- status = readb(info->reg.gpmc_nand_data);
- return status;
- }
- /**
- * omap_dev_ready - calls the platform specific dev_ready function
- * @mtd: MTD device structure
- */
- static int omap_dev_ready(struct mtd_info *mtd)
- {
- unsigned int val = 0;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- val = readl(info->reg.gpmc_status);
- if ((val & 0x100) == 0x100) {
- return 1;
- } else {
- return 0;
- }
- }
- #if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
- /**
- * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- *
- * When using BCH, sector size is hardcoded to 512 bytes.
- * Using wrapping mode 6 both for reading and writing if ELM module not uses
- * for error correction.
- * On writing,
- * eccsize0 = 0 (no additional protected byte in spare area)
- * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
- */
- static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
- {
- int nerrors;
- unsigned int dev_width, nsectors;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- struct nand_chip *chip = mtd->priv;
- u32 val, wr_mode;
- unsigned int ecc_size1, ecc_size0;
- /* Using wrapping mode 6 for writing */
- wr_mode = BCH_WRAPMODE_6;
- /*
- * ECC engine enabled for valid ecc_size0 nibbles
- * and disabled for ecc_size1 nibbles.
- */
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- /* Perform ecc calculation on 512-byte sector */
- nsectors = 1;
- /* Update number of error correction */
- nerrors = info->nand.ecc.strength;
- /* Multi sector reading/writing for NAND flash with page size < 4096 */
- if (info->is_elm_used && (mtd->writesize <= 4096)) {
- if (mode == NAND_ECC_READ) {
- /* Using wrapping mode 1 for reading */
- wr_mode = BCH_WRAPMODE_1;
- /*
- * ECC engine enabled for ecc_size0 nibbles
- * and disabled for ecc_size1 nibbles.
- */
- ecc_size0 = (nerrors == 8) ?
- BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
- ecc_size1 = (nerrors == 8) ?
- BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
- }
- /* Perform ecc calculation for one page (< 4096) */
- nsectors = info->nand.ecc.steps;
- }
- writel(ECC1, info->reg.gpmc_ecc_control);
- /* Configure ecc size for BCH */
- val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
- writel(val, info->reg.gpmc_ecc_size_config);
- dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
- /* BCH configuration */
- val = ((1 << 16) | /* enable BCH */
- (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
- (wr_mode << 8) | /* wrap mode */
- (dev_width << 7) | /* bus width */
- (((nsectors-1) & 0x7) << 4) | /* number of sectors */
- (info->gpmc_cs << 1) | /* ECC CS */
- (0x1)); /* enable ECC */
- writel(val, info->reg.gpmc_ecc_config);
- /* Clear ecc and enable bits */
- writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
- }
- #endif
- #ifdef CONFIG_MTD_NAND_ECC_BCH
- /**
- * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- */
- static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- unsigned long nsectors, val1, val2;
- int i;
- nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
- for (i = 0; i < nsectors; i++) {
- /* Read hw-computed remainder */
- val1 = readl(info->reg.gpmc_bch_result0[i]);
- val2 = readl(info->reg.gpmc_bch_result1[i]);
- /*
- * Add constant polynomial to remainder, in order to get an ecc
- * sequence of 0xFFs for a buffer filled with 0xFFs; and
- * left-justify the resulting polynomial.
- */
- *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
- *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
- *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
- *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
- *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
- *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
- *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
- }
- return 0;
- }
- /**
- * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- */
- static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- unsigned long nsectors, val1, val2, val3, val4;
- int i;
- nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
- for (i = 0; i < nsectors; i++) {
- /* Read hw-computed remainder */
- val1 = readl(info->reg.gpmc_bch_result0[i]);
- val2 = readl(info->reg.gpmc_bch_result1[i]);
- val3 = readl(info->reg.gpmc_bch_result2[i]);
- val4 = readl(info->reg.gpmc_bch_result3[i]);
- /*
- * Add constant polynomial to remainder, in order to get an ecc
- * sequence of 0xFFs for a buffer filled with 0xFFs.
- */
- *ecc_code++ = 0xef ^ (val4 & 0xFF);
- *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
- *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
- *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
- *ecc_code++ = 0xed ^ (val3 & 0xFF);
- *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
- *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
- *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
- *ecc_code++ = 0x97 ^ (val2 & 0xFF);
- *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
- *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
- *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
- *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
- }
- return 0;
- }
- #endif /* CONFIG_MTD_NAND_ECC_BCH */
- #ifdef CONFIG_MTD_NAND_OMAP_BCH
- /**
- * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Support calculating of BCH4/8 ecc vectors for the page
- */
- static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
- int i, eccbchtsel;
- nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
- /*
- * find BCH scheme used
- * 0 -> BCH4
- * 1 -> BCH8
- */
- eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
- for (i = 0; i < nsectors; i++) {
- /* Read hw-computed remainder */
- bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
- bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
- if (eccbchtsel) {
- bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
- bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
- }
- if (eccbchtsel) {
- /* BCH8 ecc scheme */
- *ecc_code++ = (bch_val4 & 0xFF);
- *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
- *ecc_code++ = (bch_val3 & 0xFF);
- *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
- *ecc_code++ = (bch_val2 & 0xFF);
- *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
- *ecc_code++ = (bch_val1 & 0xFF);
- /*
- * Setting 14th byte to zero to handle
- * erased page & maintain compatibility
- * with RBL
- */
- *ecc_code++ = 0x0;
- } else {
- /* BCH4 ecc scheme */
- *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
- *ecc_code++ = ((bch_val2 & 0xF) << 4) |
- ((bch_val1 >> 28) & 0xF);
- *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
- *ecc_code++ = ((bch_val1 & 0xF) << 4);
- /*
- * Setting 8th byte to zero to handle
- * erased page
- */
- *ecc_code++ = 0x0;
- }
- }
- return 0;
- }
- /**
- * erased_sector_bitflips - count bit flips
- * @data: data sector buffer
- * @oob: oob buffer
- * @info: omap_nand_info
- *
- * Check the bit flips in erased page falls below correctable level.
- * If falls below, report the page as erased with correctable bit
- * flip, else report as uncorrectable page.
- */
- static int erased_sector_bitflips(u_char *data, u_char *oob,
- struct omap_nand_info *info)
- {
- int flip_bits = 0, i;
- for (i = 0; i < info->nand.ecc.size; i++) {
- flip_bits += hweight8(~data[i]);
- if (flip_bits > info->nand.ecc.strength)
- return 0;
- }
- for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
- flip_bits += hweight8(~oob[i]);
- if (flip_bits > info->nand.ecc.strength)
- return 0;
- }
- /*
- * Bit flips falls in correctable level.
- * Fill data area with 0xFF
- */
- if (flip_bits) {
- memset(data, 0xFF, info->nand.ecc.size);
- memset(oob, 0xFF, info->nand.ecc.bytes);
- }
- return flip_bits;
- }
- /**
- * omap_elm_correct_data - corrects page data area in case error reported
- * @mtd: MTD device structure
- * @data: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Calculated ecc vector reported as zero in case of non-error pages.
- * In case of error/erased pages non-zero error vector is reported.
- * In case of non-zero ecc vector, check read_ecc at fixed offset
- * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
- * To handle bit flips in this data, count the number of 0's in
- * read_ecc[x] and check if it greater than 4. If it is less, it is
- * programmed page, else erased page.
- *
- * 1. If page is erased, check with standard ecc vector (ecc vector
- * for erased page to find any bit flip). If check fails, bit flip
- * is present in erased page. Count the bit flips in erased page and
- * if it falls under correctable level, report page with 0xFF and
- * update the correctable bit information.
- * 2. If error is reported on programmed page, update elm error
- * vector and correct the page with ELM error correction routine.
- *
- */
- static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
- u_char *read_ecc, u_char *calc_ecc)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- int eccsteps = info->nand.ecc.steps;
- int i , j, stat = 0;
- int eccsize, eccflag, ecc_vector_size;
- struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
- u_char *ecc_vec = calc_ecc;
- u_char *spare_ecc = read_ecc;
- u_char *erased_ecc_vec;
- enum bch_ecc type;
- bool is_error_reported = false;
- /* Initialize elm error vector to zero */
- memset(err_vec, 0, sizeof(err_vec));
- if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
- type = BCH8_ECC;
- erased_ecc_vec = bch8_vector;
- } else {
- type = BCH4_ECC;
- erased_ecc_vec = bch4_vector;
- }
- ecc_vector_size = info->nand.ecc.bytes;
- /*
- * Remove extra byte padding for BCH8 RBL
- * compatibility and erased page handling
- */
- eccsize = ecc_vector_size - 1;
- for (i = 0; i < eccsteps ; i++) {
- eccflag = 0; /* initialize eccflag */
- /*
- * Check any error reported,
- * In case of error, non zero ecc reported.
- */
- for (j = 0; (j < eccsize); j++) {
- if (calc_ecc[j] != 0) {
- eccflag = 1; /* non zero ecc, error present */
- break;
- }
- }
- if (eccflag == 1) {
- /*
- * Set threshold to minimum of 4, half of ecc.strength/2
- * to allow max bit flip in byte to 4
- */
- unsigned int threshold = min_t(unsigned int, 4,
- info->nand.ecc.strength / 2);
- /*
- * Check data area is programmed by counting
- * number of 0's at fixed offset in spare area.
- * Checking count of 0's against threshold.
- * In case programmed page expects at least threshold
- * zeros in byte.
- * If zeros are less than threshold for programmed page/
- * zeros are more than threshold erased page, either
- * case page reported as uncorrectable.
- */
- if (hweight8(~read_ecc[eccsize]) >= threshold) {
- /*
- * Update elm error vector as
- * data area is programmed
- */
- err_vec[i].error_reported = true;
- is_error_reported = true;
- } else {
- /* Error reported in erased page */
- int bitflip_count;
- u_char *buf = &data[info->nand.ecc.size * i];
- if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
- bitflip_count = erased_sector_bitflips(
- buf, read_ecc, info);
- if (bitflip_count)
- stat += bitflip_count;
- else
- return -EINVAL;
- }
- }
- }
- /* Update the ecc vector */
- calc_ecc += ecc_vector_size;
- read_ecc += ecc_vector_size;
- }
- /* Check if any error reported */
- if (!is_error_reported)
- return 0;
- /* Decode BCH error using ELM module */
- elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
- for (i = 0; i < eccsteps; i++) {
- if (err_vec[i].error_reported) {
- for (j = 0; j < err_vec[i].error_count; j++) {
- u32 bit_pos, byte_pos, error_max, pos;
- if (type == BCH8_ECC)
- error_max = BCH8_ECC_MAX;
- else
- error_max = BCH4_ECC_MAX;
- if (info->nand.ecc.strength == BCH8_MAX_ERROR)
- pos = err_vec[i].error_loc[j];
- else
- /* Add 4 to take care 4 bit padding */
- pos = err_vec[i].error_loc[j] +
- BCH4_BIT_PAD;
- /* Calculate bit position of error */
- bit_pos = pos % 8;
- /* Calculate byte position of error */
- byte_pos = (error_max - pos - 1) / 8;
- if (pos < error_max) {
- if (byte_pos < 512)
- data[byte_pos] ^= 1 << bit_pos;
- else
- spare_ecc[byte_pos - 512] ^=
- 1 << bit_pos;
- }
- /* else, not interested to correct ecc */
- }
- }
- /* Update number of correctable errors */
- stat += err_vec[i].error_count;
- /* Update page data with sector size */
- data += info->nand.ecc.size;
- spare_ecc += ecc_vector_size;
- }
- for (i = 0; i < eccsteps; i++)
- /* Return error if uncorrectable error present */
- if (err_vec[i].error_uncorrectable)
- return -EINVAL;
- return stat;
- }
- #endif /* CONFIG_MTD_NAND_OMAP_BCH */
- #ifdef CONFIG_MTD_NAND_ECC_BCH
- /**
- * omap3_correct_data_bch - Decode received data and correct errors
- * @mtd: MTD device structure
- * @data: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- */
- static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
- u_char *read_ecc, u_char *calc_ecc)
- {
- int i, count;
- /* cannot correct more than 8 errors */
- unsigned int errloc[8];
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
- errloc);
- if (count > 0) {
- /* correct errors */
- for (i = 0; i < count; i++) {
- /* correct data only, not ecc bytes */
- if (errloc[i] < 8*512)
- data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
- pr_debug("corrected bitflip %u\n", errloc[i]);
- }
- } else if (count < 0) {
- pr_err("ecc unrecoverable error\n");
- }
- return count;
- }
- #endif /* CONFIG_MTD_NAND_ECC_BCH */
- #ifdef CONFIG_MTD_NAND_OMAP_BCH
- /**
- * omap_write_page_bch - BCH ecc based write page function for entire page
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- *
- * Custom write page method evolved to support multi sector writing in one shot
- */
- static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required)
- {
- int i;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- uint32_t *eccpos = chip->ecc.layout->eccpos;
- /* Enable GPMC ecc engine */
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
- /* Write data */
- chip->write_buf(mtd, buf, mtd->writesize);
- /* Update ecc vector from GPMC result registers */
- chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
- for (i = 0; i < chip->ecc.total; i++)
- chip->oob_poi[eccpos[i]] = ecc_calc[i];
- /* Write ecc vector to OOB area */
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
- return 0;
- }
- /**
- * omap_read_page_bch - BCH ecc based page read function for entire page
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
- * used for error correction.
- * Custom method evolved to support ELM error correction & multi sector
- * reading. On reading page data area is read along with OOB data with
- * ecc engine enabled. ecc vector updated after read of OOB data.
- * For non error pages ecc vector reported as zero.
- */
- static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
- {
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- uint8_t *ecc_code = chip->buffers->ecccode;
- uint32_t *eccpos = chip->ecc.layout->eccpos;
- uint8_t *oob = &chip->oob_poi[eccpos[0]];
- uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
- int stat;
- unsigned int max_bitflips = 0;
- /* Enable GPMC ecc engine */
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- /* Read data */
- chip->read_buf(mtd, buf, mtd->writesize);
- /* Read oob bytes */
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
- chip->read_buf(mtd, oob, chip->ecc.total);
- /* Calculate ecc bytes */
- chip->ecc.calculate(mtd, buf, ecc_calc);
- memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
- stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- return max_bitflips;
- }
- /**
- * is_elm_present - checks for presence of ELM module by scanning DT nodes
- * @omap_nand_info: NAND device structure containing platform data
- * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
- */
- static int is_elm_present(struct omap_nand_info *info,
- struct device_node *elm_node, enum bch_ecc bch_type)
- {
- struct platform_device *pdev;
- info->is_elm_used = false;
- /* check whether elm-id is passed via DT */
- if (!elm_node) {
- pr_err("nand: error: ELM DT node not found\n");
- return -ENODEV;
- }
- pdev = of_find_device_by_node(elm_node);
- /* check whether ELM device is registered */
- if (!pdev) {
- pr_err("nand: error: ELM device not found\n");
- return -ENODEV;
- }
- /* ELM module available, now configure it */
- info->elm_dev = &pdev->dev;
- if (elm_config(info->elm_dev, bch_type))
- return -ENODEV;
- info->is_elm_used = true;
- return 0;
- }
- #endif /* CONFIG_MTD_NAND_ECC_BCH */
- #ifdef CONFIG_MTD_NAND_ECC_BCH
- /**
- * omap3_free_bch - Release BCH ecc resources
- * @mtd: MTD device structure
- */
- static void omap3_free_bch(struct mtd_info *mtd)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- if (info->bch) {
- free_bch(info->bch);
- info->bch = NULL;
- }
- }
- /**
- * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
- * @mtd: MTD device structure
- */
- static int omap3_init_bch_tail(struct mtd_info *mtd)
- {
- int i, steps, offset;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- struct nand_ecclayout *layout = &info->ecclayout;
- /* build oob layout */
- steps = mtd->writesize/info->nand.ecc.size;
- layout->eccbytes = steps*info->nand.ecc.bytes;
- /* do not bother creating special oob layouts for small page devices */
- if (mtd->oobsize < 64) {
- pr_err("BCH ecc is not supported on small page devices\n");
- goto fail;
- }
- /* reserve 2 bytes for bad block marker */
- if (layout->eccbytes+2 > mtd->oobsize) {
- pr_err("no oob layout available for oobsize %d eccbytes %u\n",
- mtd->oobsize, layout->eccbytes);
- goto fail;
- }
- /* ECC layout compatible with RBL for BCH8 */
- if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
- offset = 2;
- else
- offset = mtd->oobsize - layout->eccbytes;
- /* put ecc bytes at oob tail */
- for (i = 0; i < layout->eccbytes; i++)
- layout->eccpos[i] = offset + i;
- if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
- layout->oobfree[0].offset = 2 + layout->eccbytes * steps;
- else
- layout->oobfree[0].offset = 2;
- layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
- info->nand.ecc.layout = layout;
- if (!(info->nand.options & NAND_BUSWIDTH_16))
- info->nand.badblock_pattern = &bb_descrip_flashbased;
- return 0;
- fail:
- omap3_free_bch(mtd);
- return -1;
- }
- #else
- static int omap3_init_bch_tail(struct mtd_info *mtd)
- {
- return -1;
- }
- static void omap3_free_bch(struct mtd_info *mtd)
- {
- }
- #endif /* CONFIG_MTD_NAND_ECC_BCH */
- static int omap_nand_probe(struct platform_device *pdev)
- {
- struct omap_nand_info *info;
- struct omap_nand_platform_data *pdata;
- struct mtd_info *mtd;
- struct nand_chip *nand_chip;
- int err;
- int i, offset;
- dma_cap_mask_t mask;
- unsigned sig;
- struct resource *res;
- struct mtd_part_parser_data ppdata = {};
- pdata = dev_get_platdata(&pdev->dev);
- if (pdata == NULL) {
- dev_err(&pdev->dev, "platform data missing\n");
- return -ENODEV;
- }
- info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
- if (!info)
- return -ENOMEM;
- platform_set_drvdata(pdev, info);
- spin_lock_init(&info->controller.lock);
- init_waitqueue_head(&info->controller.wq);
- info->pdev = pdev;
- info->gpmc_cs = pdata->cs;
- info->reg = pdata->reg;
- info->bch = NULL;
- info->of_node = pdata->of_node;
- mtd = &info->mtd;
- mtd->priv = &info->nand;
- mtd->name = dev_name(&pdev->dev);
- mtd->owner = THIS_MODULE;
- nand_chip = &info->nand;
- nand_chip->options |= NAND_SKIP_BBTSCAN;
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- if (res == NULL) {
- err = -EINVAL;
- dev_err(&pdev->dev, "error getting memory resource\n");
- goto out_free_info;
- }
- info->phys_base = res->start;
- info->mem_size = resource_size(res);
- if (!request_mem_region(info->phys_base, info->mem_size,
- pdev->dev.driver->name)) {
- err = -EBUSY;
- goto out_free_info;
- }
- nand_chip->IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
- if (!nand_chip->IO_ADDR_R) {
- err = -ENOMEM;
- goto out_release_mem_region;
- }
- nand_chip->controller = &info->controller;
- nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
- nand_chip->cmd_ctrl = omap_hwcontrol;
- /*
- * If RDY/BSY line is connected to OMAP then use the omap ready
- * function and the generic nand_wait function which reads the status
- * register after monitoring the RDY/BSY line. Otherwise use a standard
- * chip delay which is slightly more than tR (AC Timing) of the NAND
- * device and read status register until you get a failure or success
- */
- if (pdata->dev_ready) {
- nand_chip->dev_ready = omap_dev_ready;
- nand_chip->chip_delay = 0;
- } else {
- nand_chip->waitfunc = omap_wait;
- nand_chip->chip_delay = 50;
- }
- /* scan NAND device connected to chip controller */
- nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
- if (nand_scan_ident(mtd, 1, NULL)) {
- pr_err("nand device scan failed, may be bus-width mismatch\n");
- err = -ENXIO;
- goto out_release_mem_region;
- }
- /* re-populate low-level callbacks based on xfer modes */
- switch (pdata->xfer_type) {
- case NAND_OMAP_PREFETCH_POLLED:
- nand_chip->read_buf = omap_read_buf_pref;
- nand_chip->write_buf = omap_write_buf_pref;
- break;
- case NAND_OMAP_POLLED:
- if (nand_chip->options & NAND_BUSWIDTH_16) {
- nand_chip->read_buf = omap_read_buf16;
- nand_chip->write_buf = omap_write_buf16;
- } else {
- nand_chip->read_buf = omap_read_buf8;
- nand_chip->write_buf = omap_write_buf8;
- }
- break;
- case NAND_OMAP_PREFETCH_DMA:
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- sig = OMAP24XX_DMA_GPMC;
- info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
- if (!info->dma) {
- dev_err(&pdev->dev, "DMA engine request failed\n");
- err = -ENXIO;
- goto out_release_mem_region;
- } else {
- struct dma_slave_config cfg;
- memset(&cfg, 0, sizeof(cfg));
- cfg.src_addr = info->phys_base;
- cfg.dst_addr = info->phys_base;
- cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.src_maxburst = 16;
- cfg.dst_maxburst = 16;
- err = dmaengine_slave_config(info->dma, &cfg);
- if (err) {
- dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
- err);
- goto out_release_mem_region;
- }
- nand_chip->read_buf = omap_read_buf_dma_pref;
- nand_chip->write_buf = omap_write_buf_dma_pref;
- }
- break;
- case NAND_OMAP_PREFETCH_IRQ:
- info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
- if (info->gpmc_irq_fifo <= 0) {
- dev_err(&pdev->dev, "error getting fifo irq\n");
- err = -ENODEV;
- goto out_release_mem_region;
- }
- err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
- IRQF_SHARED, "gpmc-nand-fifo", info);
- if (err) {
- dev_err(&pdev->dev, "requesting irq(%d) error:%d",
- info->gpmc_irq_fifo, err);
- info->gpmc_irq_fifo = 0;
- goto out_release_mem_region;
- }
- info->gpmc_irq_count = platform_get_irq(pdev, 1);
- if (info->gpmc_irq_count <= 0) {
- dev_err(&pdev->dev, "error getting count irq\n");
- err = -ENODEV;
- goto out_release_mem_region;
- }
- err = request_irq(info->gpmc_irq_count, omap_nand_irq,
- IRQF_SHARED, "gpmc-nand-count", info);
- if (err) {
- dev_err(&pdev->dev, "requesting irq(%d) error:%d",
- info->gpmc_irq_count, err);
- info->gpmc_irq_count = 0;
- goto out_release_mem_region;
- }
- nand_chip->read_buf = omap_read_buf_irq_pref;
- nand_chip->write_buf = omap_write_buf_irq_pref;
- break;
- default:
- dev_err(&pdev->dev,
- "xfer_type(%d) not supported!\n", pdata->xfer_type);
- err = -EINVAL;
- goto out_release_mem_region;
- }
- /* populate MTD interface based on ECC scheme */
- switch (pdata->ecc_opt) {
- case OMAP_ECC_HAM1_CODE_HW:
- pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.bytes = 3;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.strength = 1;
- nand_chip->ecc.calculate = omap_calculate_ecc;
- nand_chip->ecc.hwctl = omap_enable_hwecc;
- nand_chip->ecc.correct = omap_correct_data;
- break;
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- #ifdef CONFIG_MTD_NAND_ECC_BCH
- pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.bytes = 7;
- nand_chip->ecc.strength = 4;
- nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
- nand_chip->ecc.correct = omap3_correct_data_bch;
- nand_chip->ecc.calculate = omap3_calculate_ecc_bch4;
- /* software bch library is used for locating errors */
- info->bch = init_bch(nand_chip->ecc.bytes,
- nand_chip->ecc.strength,
- OMAP_ECC_BCH8_POLYNOMIAL);
- if (!info->bch) {
- pr_err("nand: error: unable to use s/w BCH library\n");
- err = -EINVAL;
- }
- break;
- #else
- pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
- err = -EINVAL;
- goto out_release_mem_region;
- #endif
- case OMAP_ECC_BCH4_CODE_HW:
- #ifdef CONFIG_MTD_NAND_OMAP_BCH
- pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- /* 14th bit is kept reserved for ROM-code compatibility */
- nand_chip->ecc.bytes = 7 + 1;
- nand_chip->ecc.strength = 4;
- nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
- nand_chip->ecc.correct = omap_elm_correct_data;
- nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
- nand_chip->ecc.read_page = omap_read_page_bch;
- nand_chip->ecc.write_page = omap_write_page_bch;
- /* This ECC scheme requires ELM H/W block */
- if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
- pr_err("nand: error: could not initialize ELM\n");
- err = -ENODEV;
- goto out_release_mem_region;
- }
- break;
- #else
- pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
- err = -EINVAL;
- goto out_release_mem_region;
- #endif
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- #ifdef CONFIG_MTD_NAND_ECC_BCH
- pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.bytes = 13;
- nand_chip->ecc.strength = 8;
- nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
- nand_chip->ecc.correct = omap3_correct_data_bch;
- nand_chip->ecc.calculate = omap3_calculate_ecc_bch8;
- /* software bch library is used for locating errors */
- info->bch = init_bch(nand_chip->ecc.bytes,
- nand_chip->ecc.strength,
- OMAP_ECC_BCH8_POLYNOMIAL);
- if (!info->bch) {
- pr_err("nand: error: unable to use s/w BCH library\n");
- err = -EINVAL;
- goto out_release_mem_region;
- }
- break;
- #else
- pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
- err = -EINVAL;
- goto out_release_mem_region;
- #endif
- case OMAP_ECC_BCH8_CODE_HW:
- #ifdef CONFIG_MTD_NAND_OMAP_BCH
- pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- /* 14th bit is kept reserved for ROM-code compatibility */
- nand_chip->ecc.bytes = 13 + 1;
- nand_chip->ecc.strength = 8;
- nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
- nand_chip->ecc.correct = omap_elm_correct_data;
- nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
- nand_chip->ecc.read_page = omap_read_page_bch;
- nand_chip->ecc.write_page = omap_write_page_bch;
- /* This ECC scheme requires ELM H/W block */
- if (is_elm_present(info, pdata->elm_of_node, BCH8_ECC) < 0) {
- pr_err("nand: error: could not initialize ELM\n");
- goto out_release_mem_region;
- }
- break;
- #else
- pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
- err = -EINVAL;
- goto out_release_mem_region;
- #endif
- default:
- pr_err("nand: error: invalid or unsupported ECC scheme\n");
- err = -EINVAL;
- goto out_release_mem_region;
- }
- /* rom code layout */
- if (pdata->ecc_opt == OMAP_ECC_HAM1_CODE_HW) {
- if (nand_chip->options & NAND_BUSWIDTH_16) {
- offset = 2;
- } else {
- offset = 1;
- nand_chip->badblock_pattern = &bb_descrip_flashbased;
- }
- omap_oobinfo.eccbytes = 3 * (mtd->writesize / 512);
- for (i = 0; i < omap_oobinfo.eccbytes; i++)
- omap_oobinfo.eccpos[i] = i+offset;
- omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
- omap_oobinfo.oobfree->length = mtd->oobsize -
- (offset + omap_oobinfo.eccbytes);
- nand_chip->ecc.layout = &omap_oobinfo;
- } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
- (pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW_DETECTION_SW) ||
- (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW_DETECTION_SW) ||
- (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
- /* build OOB layout for BCH ECC correction */
- err = omap3_init_bch_tail(mtd);
- if (err) {
- err = -EINVAL;
- goto out_release_mem_region;
- }
- }
- /* second phase scan */
- if (nand_scan_tail(mtd)) {
- err = -ENXIO;
- goto out_release_mem_region;
- }
- ppdata.of_node = pdata->of_node;
- mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
- pdata->nr_parts);
- platform_set_drvdata(pdev, mtd);
- return 0;
- out_release_mem_region:
- if (info->dma)
- dma_release_channel(info->dma);
- if (info->gpmc_irq_count > 0)
- free_irq(info->gpmc_irq_count, info);
- if (info->gpmc_irq_fifo > 0)
- free_irq(info->gpmc_irq_fifo, info);
- release_mem_region(info->phys_base, info->mem_size);
- out_free_info:
- omap3_free_bch(mtd);
- kfree(info);
- return err;
- }
- static int omap_nand_remove(struct platform_device *pdev)
- {
- struct mtd_info *mtd = platform_get_drvdata(pdev);
- struct nand_chip *nand_chip = mtd->priv;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- omap3_free_bch(mtd);
- if (info->dma)
- dma_release_channel(info->dma);
- if (info->gpmc_irq_count > 0)
- free_irq(info->gpmc_irq_count, info);
- if (info->gpmc_irq_fifo > 0)
- free_irq(info->gpmc_irq_fifo, info);
- /* Release NAND device, its internal structures and partitions */
- nand_release(mtd);
- iounmap(nand_chip->IO_ADDR_R);
- release_mem_region(info->phys_base, info->mem_size);
- kfree(info);
- return 0;
- }
- static struct platform_driver omap_nand_driver = {
- .probe = omap_nand_probe,
- .remove = omap_nand_remove,
- .driver = {
- .name = DRIVER_NAME,
- .owner = THIS_MODULE,
- },
- };
- module_platform_driver(omap_nand_driver);
- MODULE_ALIAS("platform:" DRIVER_NAME);
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|