kvm-ia64.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/intel-iommu.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/gcc_intrin.h>
  36. #include <asm/pal.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/div64.h>
  39. #include <asm/tlb.h>
  40. #include <asm/elf.h>
  41. #include "misc.h"
  42. #include "vti.h"
  43. #include "iodev.h"
  44. #include "ioapic.h"
  45. #include "lapic.h"
  46. #include "irq.h"
  47. static unsigned long kvm_vmm_base;
  48. static unsigned long kvm_vsa_base;
  49. static unsigned long kvm_vm_buffer;
  50. static unsigned long kvm_vm_buffer_size;
  51. unsigned long kvm_vmm_gp;
  52. static long vp_env_info;
  53. static struct kvm_vmm_info *kvm_vmm_info;
  54. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  55. struct kvm_stats_debugfs_item debugfs_entries[] = {
  56. { NULL }
  57. };
  58. static void kvm_flush_icache(unsigned long start, unsigned long len)
  59. {
  60. int l;
  61. for (l = 0; l < (len + 32); l += 32)
  62. ia64_fc(start + l);
  63. ia64_sync_i();
  64. ia64_srlz_i();
  65. }
  66. static void kvm_flush_tlb_all(void)
  67. {
  68. unsigned long i, j, count0, count1, stride0, stride1, addr;
  69. long flags;
  70. addr = local_cpu_data->ptce_base;
  71. count0 = local_cpu_data->ptce_count[0];
  72. count1 = local_cpu_data->ptce_count[1];
  73. stride0 = local_cpu_data->ptce_stride[0];
  74. stride1 = local_cpu_data->ptce_stride[1];
  75. local_irq_save(flags);
  76. for (i = 0; i < count0; ++i) {
  77. for (j = 0; j < count1; ++j) {
  78. ia64_ptce(addr);
  79. addr += stride1;
  80. }
  81. addr += stride0;
  82. }
  83. local_irq_restore(flags);
  84. ia64_srlz_i(); /* srlz.i implies srlz.d */
  85. }
  86. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  87. {
  88. struct ia64_pal_retval iprv;
  89. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  90. (u64)opt_handler);
  91. return iprv.status;
  92. }
  93. static DEFINE_SPINLOCK(vp_lock);
  94. void kvm_arch_hardware_enable(void *garbage)
  95. {
  96. long status;
  97. long tmp_base;
  98. unsigned long pte;
  99. unsigned long saved_psr;
  100. int slot;
  101. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  102. PAGE_KERNEL));
  103. local_irq_save(saved_psr);
  104. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  105. local_irq_restore(saved_psr);
  106. if (slot < 0)
  107. return;
  108. spin_lock(&vp_lock);
  109. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  110. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  111. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  112. if (status != 0) {
  113. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  114. return ;
  115. }
  116. if (!kvm_vsa_base) {
  117. kvm_vsa_base = tmp_base;
  118. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  119. }
  120. spin_unlock(&vp_lock);
  121. ia64_ptr_entry(0x3, slot);
  122. }
  123. void kvm_arch_hardware_disable(void *garbage)
  124. {
  125. long status;
  126. int slot;
  127. unsigned long pte;
  128. unsigned long saved_psr;
  129. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  130. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  131. PAGE_KERNEL));
  132. local_irq_save(saved_psr);
  133. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  134. local_irq_restore(saved_psr);
  135. if (slot < 0)
  136. return;
  137. status = ia64_pal_vp_exit_env(host_iva);
  138. if (status)
  139. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  140. status);
  141. ia64_ptr_entry(0x3, slot);
  142. }
  143. void kvm_arch_check_processor_compat(void *rtn)
  144. {
  145. *(int *)rtn = 0;
  146. }
  147. int kvm_dev_ioctl_check_extension(long ext)
  148. {
  149. int r;
  150. switch (ext) {
  151. case KVM_CAP_IRQCHIP:
  152. case KVM_CAP_USER_MEMORY:
  153. case KVM_CAP_MP_STATE:
  154. r = 1;
  155. break;
  156. case KVM_CAP_COALESCED_MMIO:
  157. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  158. break;
  159. case KVM_CAP_IOMMU:
  160. r = intel_iommu_found();
  161. break;
  162. default:
  163. r = 0;
  164. }
  165. return r;
  166. }
  167. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  168. gpa_t addr, int len, int is_write)
  169. {
  170. struct kvm_io_device *dev;
  171. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  172. return dev;
  173. }
  174. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  175. {
  176. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  177. kvm_run->hw.hardware_exit_reason = 1;
  178. return 0;
  179. }
  180. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  181. {
  182. struct kvm_mmio_req *p;
  183. struct kvm_io_device *mmio_dev;
  184. p = kvm_get_vcpu_ioreq(vcpu);
  185. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  186. goto mmio;
  187. vcpu->mmio_needed = 1;
  188. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  189. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  190. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  191. if (vcpu->mmio_is_write)
  192. memcpy(vcpu->mmio_data, &p->data, p->size);
  193. memcpy(kvm_run->mmio.data, &p->data, p->size);
  194. kvm_run->exit_reason = KVM_EXIT_MMIO;
  195. return 0;
  196. mmio:
  197. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  198. if (mmio_dev) {
  199. if (!p->dir)
  200. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  201. &p->data);
  202. else
  203. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  204. &p->data);
  205. } else
  206. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  207. p->state = STATE_IORESP_READY;
  208. return 1;
  209. }
  210. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  211. {
  212. struct exit_ctl_data *p;
  213. p = kvm_get_exit_data(vcpu);
  214. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  215. return kvm_pal_emul(vcpu, kvm_run);
  216. else {
  217. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  218. kvm_run->hw.hardware_exit_reason = 2;
  219. return 0;
  220. }
  221. }
  222. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  223. {
  224. struct exit_ctl_data *p;
  225. p = kvm_get_exit_data(vcpu);
  226. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  227. kvm_sal_emul(vcpu);
  228. return 1;
  229. } else {
  230. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  231. kvm_run->hw.hardware_exit_reason = 3;
  232. return 0;
  233. }
  234. }
  235. /*
  236. * offset: address offset to IPI space.
  237. * value: deliver value.
  238. */
  239. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  240. uint64_t vector)
  241. {
  242. switch (dm) {
  243. case SAPIC_FIXED:
  244. kvm_apic_set_irq(vcpu, vector, 0);
  245. break;
  246. case SAPIC_NMI:
  247. kvm_apic_set_irq(vcpu, 2, 0);
  248. break;
  249. case SAPIC_EXTINT:
  250. kvm_apic_set_irq(vcpu, 0, 0);
  251. break;
  252. case SAPIC_INIT:
  253. case SAPIC_PMI:
  254. default:
  255. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  256. break;
  257. }
  258. }
  259. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  260. unsigned long eid)
  261. {
  262. union ia64_lid lid;
  263. int i;
  264. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  265. if (kvm->vcpus[i]) {
  266. lid.val = VCPU_LID(kvm->vcpus[i]);
  267. if (lid.id == id && lid.eid == eid)
  268. return kvm->vcpus[i];
  269. }
  270. }
  271. return NULL;
  272. }
  273. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  274. {
  275. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  276. struct kvm_vcpu *target_vcpu;
  277. struct kvm_pt_regs *regs;
  278. union ia64_ipi_a addr = p->u.ipi_data.addr;
  279. union ia64_ipi_d data = p->u.ipi_data.data;
  280. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  281. if (!target_vcpu)
  282. return handle_vm_error(vcpu, kvm_run);
  283. if (!target_vcpu->arch.launched) {
  284. regs = vcpu_regs(target_vcpu);
  285. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  286. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  287. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  288. if (waitqueue_active(&target_vcpu->wq))
  289. wake_up_interruptible(&target_vcpu->wq);
  290. } else {
  291. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  292. if (target_vcpu != vcpu)
  293. kvm_vcpu_kick(target_vcpu);
  294. }
  295. return 1;
  296. }
  297. struct call_data {
  298. struct kvm_ptc_g ptc_g_data;
  299. struct kvm_vcpu *vcpu;
  300. };
  301. static void vcpu_global_purge(void *info)
  302. {
  303. struct call_data *p = (struct call_data *)info;
  304. struct kvm_vcpu *vcpu = p->vcpu;
  305. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  306. return;
  307. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  308. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  309. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  310. p->ptc_g_data;
  311. } else {
  312. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  313. vcpu->arch.ptc_g_count = 0;
  314. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  315. }
  316. }
  317. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  318. {
  319. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  320. struct kvm *kvm = vcpu->kvm;
  321. struct call_data call_data;
  322. int i;
  323. call_data.ptc_g_data = p->u.ptc_g_data;
  324. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  325. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  326. KVM_MP_STATE_UNINITIALIZED ||
  327. vcpu == kvm->vcpus[i])
  328. continue;
  329. if (waitqueue_active(&kvm->vcpus[i]->wq))
  330. wake_up_interruptible(&kvm->vcpus[i]->wq);
  331. if (kvm->vcpus[i]->cpu != -1) {
  332. call_data.vcpu = kvm->vcpus[i];
  333. smp_call_function_single(kvm->vcpus[i]->cpu,
  334. vcpu_global_purge, &call_data, 1);
  335. } else
  336. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  337. }
  338. return 1;
  339. }
  340. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  341. {
  342. return 1;
  343. }
  344. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  345. {
  346. ktime_t kt;
  347. long itc_diff;
  348. unsigned long vcpu_now_itc;
  349. unsigned long expires;
  350. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  351. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  352. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  353. if (irqchip_in_kernel(vcpu->kvm)) {
  354. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  355. if (time_after(vcpu_now_itc, vpd->itm)) {
  356. vcpu->arch.timer_check = 1;
  357. return 1;
  358. }
  359. itc_diff = vpd->itm - vcpu_now_itc;
  360. if (itc_diff < 0)
  361. itc_diff = -itc_diff;
  362. expires = div64_u64(itc_diff, cyc_per_usec);
  363. kt = ktime_set(0, 1000 * expires);
  364. down_read(&vcpu->kvm->slots_lock);
  365. vcpu->arch.ht_active = 1;
  366. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  367. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  368. kvm_vcpu_block(vcpu);
  369. hrtimer_cancel(p_ht);
  370. vcpu->arch.ht_active = 0;
  371. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  372. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  373. vcpu->arch.mp_state =
  374. KVM_MP_STATE_RUNNABLE;
  375. up_read(&vcpu->kvm->slots_lock);
  376. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  377. return -EINTR;
  378. return 1;
  379. } else {
  380. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  381. return 0;
  382. }
  383. }
  384. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  385. struct kvm_run *kvm_run)
  386. {
  387. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  388. return 0;
  389. }
  390. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  391. struct kvm_run *kvm_run)
  392. {
  393. return 1;
  394. }
  395. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  396. struct kvm_run *kvm_run) = {
  397. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  398. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  399. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  400. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  401. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  402. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  403. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  404. [EXIT_REASON_IPI] = handle_ipi,
  405. [EXIT_REASON_PTC_G] = handle_global_purge,
  406. };
  407. static const int kvm_vti_max_exit_handlers =
  408. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  409. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  410. {
  411. struct exit_ctl_data *p_exit_data;
  412. p_exit_data = kvm_get_exit_data(vcpu);
  413. return p_exit_data->exit_reason;
  414. }
  415. /*
  416. * The guest has exited. See if we can fix it or if we need userspace
  417. * assistance.
  418. */
  419. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  420. {
  421. u32 exit_reason = kvm_get_exit_reason(vcpu);
  422. vcpu->arch.last_exit = exit_reason;
  423. if (exit_reason < kvm_vti_max_exit_handlers
  424. && kvm_vti_exit_handlers[exit_reason])
  425. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  426. else {
  427. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  428. kvm_run->hw.hardware_exit_reason = exit_reason;
  429. }
  430. return 0;
  431. }
  432. static inline void vti_set_rr6(unsigned long rr6)
  433. {
  434. ia64_set_rr(RR6, rr6);
  435. ia64_srlz_i();
  436. }
  437. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  438. {
  439. unsigned long pte;
  440. struct kvm *kvm = vcpu->kvm;
  441. int r;
  442. /*Insert a pair of tr to map vmm*/
  443. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  444. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  445. if (r < 0)
  446. goto out;
  447. vcpu->arch.vmm_tr_slot = r;
  448. /*Insert a pairt of tr to map data of vm*/
  449. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  450. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  451. pte, KVM_VM_DATA_SHIFT);
  452. if (r < 0)
  453. goto out;
  454. vcpu->arch.vm_tr_slot = r;
  455. r = 0;
  456. out:
  457. return r;
  458. }
  459. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  460. {
  461. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  462. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  463. }
  464. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  465. {
  466. int cpu = smp_processor_id();
  467. if (vcpu->arch.last_run_cpu != cpu ||
  468. per_cpu(last_vcpu, cpu) != vcpu) {
  469. per_cpu(last_vcpu, cpu) = vcpu;
  470. vcpu->arch.last_run_cpu = cpu;
  471. kvm_flush_tlb_all();
  472. }
  473. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  474. vti_set_rr6(vcpu->arch.vmm_rr);
  475. return kvm_insert_vmm_mapping(vcpu);
  476. }
  477. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  478. {
  479. kvm_purge_vmm_mapping(vcpu);
  480. vti_set_rr6(vcpu->arch.host_rr6);
  481. }
  482. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  483. {
  484. union context *host_ctx, *guest_ctx;
  485. int r;
  486. /*Get host and guest context with guest address space.*/
  487. host_ctx = kvm_get_host_context(vcpu);
  488. guest_ctx = kvm_get_guest_context(vcpu);
  489. r = kvm_vcpu_pre_transition(vcpu);
  490. if (r < 0)
  491. goto out;
  492. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  493. kvm_vcpu_post_transition(vcpu);
  494. r = 0;
  495. out:
  496. return r;
  497. }
  498. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  499. {
  500. int r;
  501. again:
  502. preempt_disable();
  503. local_irq_disable();
  504. if (signal_pending(current)) {
  505. local_irq_enable();
  506. preempt_enable();
  507. r = -EINTR;
  508. kvm_run->exit_reason = KVM_EXIT_INTR;
  509. goto out;
  510. }
  511. vcpu->guest_mode = 1;
  512. kvm_guest_enter();
  513. down_read(&vcpu->kvm->slots_lock);
  514. r = vti_vcpu_run(vcpu, kvm_run);
  515. if (r < 0) {
  516. local_irq_enable();
  517. preempt_enable();
  518. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  519. goto out;
  520. }
  521. vcpu->arch.launched = 1;
  522. vcpu->guest_mode = 0;
  523. local_irq_enable();
  524. /*
  525. * We must have an instruction between local_irq_enable() and
  526. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  527. * the interrupt shadow. The stat.exits increment will do nicely.
  528. * But we need to prevent reordering, hence this barrier():
  529. */
  530. barrier();
  531. kvm_guest_exit();
  532. up_read(&vcpu->kvm->slots_lock);
  533. preempt_enable();
  534. r = kvm_handle_exit(kvm_run, vcpu);
  535. if (r > 0) {
  536. if (!need_resched())
  537. goto again;
  538. }
  539. out:
  540. if (r > 0) {
  541. kvm_resched(vcpu);
  542. goto again;
  543. }
  544. return r;
  545. }
  546. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  547. {
  548. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  549. if (!vcpu->mmio_is_write)
  550. memcpy(&p->data, vcpu->mmio_data, 8);
  551. p->state = STATE_IORESP_READY;
  552. }
  553. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  554. {
  555. int r;
  556. sigset_t sigsaved;
  557. vcpu_load(vcpu);
  558. if (vcpu->sigset_active)
  559. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  560. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  561. kvm_vcpu_block(vcpu);
  562. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  563. r = -EAGAIN;
  564. goto out;
  565. }
  566. if (vcpu->mmio_needed) {
  567. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  568. kvm_set_mmio_data(vcpu);
  569. vcpu->mmio_read_completed = 1;
  570. vcpu->mmio_needed = 0;
  571. }
  572. r = __vcpu_run(vcpu, kvm_run);
  573. out:
  574. if (vcpu->sigset_active)
  575. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  576. vcpu_put(vcpu);
  577. return r;
  578. }
  579. static struct kvm *kvm_alloc_kvm(void)
  580. {
  581. struct kvm *kvm;
  582. uint64_t vm_base;
  583. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  584. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  585. if (!vm_base)
  586. return ERR_PTR(-ENOMEM);
  587. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  588. kvm = (struct kvm *)(vm_base +
  589. offsetof(struct kvm_vm_data, kvm_vm_struct));
  590. kvm->arch.vm_base = vm_base;
  591. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  592. return kvm;
  593. }
  594. struct kvm_io_range {
  595. unsigned long start;
  596. unsigned long size;
  597. unsigned long type;
  598. };
  599. static const struct kvm_io_range io_ranges[] = {
  600. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  601. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  602. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  603. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  604. {PIB_START, PIB_SIZE, GPFN_PIB},
  605. };
  606. static void kvm_build_io_pmt(struct kvm *kvm)
  607. {
  608. unsigned long i, j;
  609. /* Mark I/O ranges */
  610. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  611. i++) {
  612. for (j = io_ranges[i].start;
  613. j < io_ranges[i].start + io_ranges[i].size;
  614. j += PAGE_SIZE)
  615. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  616. io_ranges[i].type, 0);
  617. }
  618. }
  619. /*Use unused rids to virtualize guest rid.*/
  620. #define GUEST_PHYSICAL_RR0 0x1739
  621. #define GUEST_PHYSICAL_RR4 0x2739
  622. #define VMM_INIT_RR 0x1660
  623. static void kvm_init_vm(struct kvm *kvm)
  624. {
  625. BUG_ON(!kvm);
  626. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  627. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  628. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  629. /*
  630. *Fill P2M entries for MMIO/IO ranges
  631. */
  632. kvm_build_io_pmt(kvm);
  633. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  634. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  635. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  636. }
  637. struct kvm *kvm_arch_create_vm(void)
  638. {
  639. struct kvm *kvm = kvm_alloc_kvm();
  640. if (IS_ERR(kvm))
  641. return ERR_PTR(-ENOMEM);
  642. kvm_init_vm(kvm);
  643. return kvm;
  644. }
  645. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  646. struct kvm_irqchip *chip)
  647. {
  648. int r;
  649. r = 0;
  650. switch (chip->chip_id) {
  651. case KVM_IRQCHIP_IOAPIC:
  652. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  653. sizeof(struct kvm_ioapic_state));
  654. break;
  655. default:
  656. r = -EINVAL;
  657. break;
  658. }
  659. return r;
  660. }
  661. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  662. {
  663. int r;
  664. r = 0;
  665. switch (chip->chip_id) {
  666. case KVM_IRQCHIP_IOAPIC:
  667. memcpy(ioapic_irqchip(kvm),
  668. &chip->chip.ioapic,
  669. sizeof(struct kvm_ioapic_state));
  670. break;
  671. default:
  672. r = -EINVAL;
  673. break;
  674. }
  675. return r;
  676. }
  677. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  678. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  679. {
  680. int i;
  681. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  682. int r;
  683. vcpu_load(vcpu);
  684. for (i = 0; i < 16; i++) {
  685. vpd->vgr[i] = regs->vpd.vgr[i];
  686. vpd->vbgr[i] = regs->vpd.vbgr[i];
  687. }
  688. for (i = 0; i < 128; i++)
  689. vpd->vcr[i] = regs->vpd.vcr[i];
  690. vpd->vhpi = regs->vpd.vhpi;
  691. vpd->vnat = regs->vpd.vnat;
  692. vpd->vbnat = regs->vpd.vbnat;
  693. vpd->vpsr = regs->vpd.vpsr;
  694. vpd->vpr = regs->vpd.vpr;
  695. r = -EFAULT;
  696. r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
  697. sizeof(union context));
  698. if (r)
  699. goto out;
  700. r = copy_from_user(vcpu + 1, regs->saved_stack +
  701. sizeof(struct kvm_vcpu),
  702. KVM_STK_OFFSET - sizeof(struct kvm_vcpu));
  703. if (r)
  704. goto out;
  705. vcpu->arch.exit_data =
  706. ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
  707. RESTORE_REGS(mp_state);
  708. RESTORE_REGS(vmm_rr);
  709. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  710. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  711. RESTORE_REGS(itr_regions);
  712. RESTORE_REGS(dtr_regions);
  713. RESTORE_REGS(tc_regions);
  714. RESTORE_REGS(irq_check);
  715. RESTORE_REGS(itc_check);
  716. RESTORE_REGS(timer_check);
  717. RESTORE_REGS(timer_pending);
  718. RESTORE_REGS(last_itc);
  719. for (i = 0; i < 8; i++) {
  720. vcpu->arch.vrr[i] = regs->vrr[i];
  721. vcpu->arch.ibr[i] = regs->ibr[i];
  722. vcpu->arch.dbr[i] = regs->dbr[i];
  723. }
  724. for (i = 0; i < 4; i++)
  725. vcpu->arch.insvc[i] = regs->insvc[i];
  726. RESTORE_REGS(xtp);
  727. RESTORE_REGS(metaphysical_rr0);
  728. RESTORE_REGS(metaphysical_rr4);
  729. RESTORE_REGS(metaphysical_saved_rr0);
  730. RESTORE_REGS(metaphysical_saved_rr4);
  731. RESTORE_REGS(fp_psr);
  732. RESTORE_REGS(saved_gp);
  733. vcpu->arch.irq_new_pending = 1;
  734. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  735. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  736. vcpu_put(vcpu);
  737. r = 0;
  738. out:
  739. return r;
  740. }
  741. long kvm_arch_vm_ioctl(struct file *filp,
  742. unsigned int ioctl, unsigned long arg)
  743. {
  744. struct kvm *kvm = filp->private_data;
  745. void __user *argp = (void __user *)arg;
  746. int r = -EINVAL;
  747. switch (ioctl) {
  748. case KVM_SET_MEMORY_REGION: {
  749. struct kvm_memory_region kvm_mem;
  750. struct kvm_userspace_memory_region kvm_userspace_mem;
  751. r = -EFAULT;
  752. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  753. goto out;
  754. kvm_userspace_mem.slot = kvm_mem.slot;
  755. kvm_userspace_mem.flags = kvm_mem.flags;
  756. kvm_userspace_mem.guest_phys_addr =
  757. kvm_mem.guest_phys_addr;
  758. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  759. r = kvm_vm_ioctl_set_memory_region(kvm,
  760. &kvm_userspace_mem, 0);
  761. if (r)
  762. goto out;
  763. break;
  764. }
  765. case KVM_CREATE_IRQCHIP:
  766. r = -EFAULT;
  767. r = kvm_ioapic_init(kvm);
  768. if (r)
  769. goto out;
  770. break;
  771. case KVM_IRQ_LINE: {
  772. struct kvm_irq_level irq_event;
  773. r = -EFAULT;
  774. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  775. goto out;
  776. if (irqchip_in_kernel(kvm)) {
  777. mutex_lock(&kvm->lock);
  778. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  779. irq_event.irq, irq_event.level);
  780. mutex_unlock(&kvm->lock);
  781. r = 0;
  782. }
  783. break;
  784. }
  785. case KVM_GET_IRQCHIP: {
  786. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  787. struct kvm_irqchip chip;
  788. r = -EFAULT;
  789. if (copy_from_user(&chip, argp, sizeof chip))
  790. goto out;
  791. r = -ENXIO;
  792. if (!irqchip_in_kernel(kvm))
  793. goto out;
  794. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  795. if (r)
  796. goto out;
  797. r = -EFAULT;
  798. if (copy_to_user(argp, &chip, sizeof chip))
  799. goto out;
  800. r = 0;
  801. break;
  802. }
  803. case KVM_SET_IRQCHIP: {
  804. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  805. struct kvm_irqchip chip;
  806. r = -EFAULT;
  807. if (copy_from_user(&chip, argp, sizeof chip))
  808. goto out;
  809. r = -ENXIO;
  810. if (!irqchip_in_kernel(kvm))
  811. goto out;
  812. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  813. if (r)
  814. goto out;
  815. r = 0;
  816. break;
  817. }
  818. default:
  819. ;
  820. }
  821. out:
  822. return r;
  823. }
  824. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  825. struct kvm_sregs *sregs)
  826. {
  827. return -EINVAL;
  828. }
  829. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  830. struct kvm_sregs *sregs)
  831. {
  832. return -EINVAL;
  833. }
  834. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  835. struct kvm_translation *tr)
  836. {
  837. return -EINVAL;
  838. }
  839. static int kvm_alloc_vmm_area(void)
  840. {
  841. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  842. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  843. get_order(KVM_VMM_SIZE));
  844. if (!kvm_vmm_base)
  845. return -ENOMEM;
  846. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  847. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  848. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  849. kvm_vmm_base, kvm_vm_buffer);
  850. }
  851. return 0;
  852. }
  853. static void kvm_free_vmm_area(void)
  854. {
  855. if (kvm_vmm_base) {
  856. /*Zero this area before free to avoid bits leak!!*/
  857. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  858. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  859. kvm_vmm_base = 0;
  860. kvm_vm_buffer = 0;
  861. kvm_vsa_base = 0;
  862. }
  863. }
  864. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  865. {
  866. }
  867. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  868. {
  869. int i;
  870. union cpuid3_t cpuid3;
  871. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  872. if (IS_ERR(vpd))
  873. return PTR_ERR(vpd);
  874. /* CPUID init */
  875. for (i = 0; i < 5; i++)
  876. vpd->vcpuid[i] = ia64_get_cpuid(i);
  877. /* Limit the CPUID number to 5 */
  878. cpuid3.value = vpd->vcpuid[3];
  879. cpuid3.number = 4; /* 5 - 1 */
  880. vpd->vcpuid[3] = cpuid3.value;
  881. /*Set vac and vdc fields*/
  882. vpd->vac.a_from_int_cr = 1;
  883. vpd->vac.a_to_int_cr = 1;
  884. vpd->vac.a_from_psr = 1;
  885. vpd->vac.a_from_cpuid = 1;
  886. vpd->vac.a_cover = 1;
  887. vpd->vac.a_bsw = 1;
  888. vpd->vac.a_int = 1;
  889. vpd->vdc.d_vmsw = 1;
  890. /*Set virtual buffer*/
  891. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  892. return 0;
  893. }
  894. static int vti_create_vp(struct kvm_vcpu *vcpu)
  895. {
  896. long ret;
  897. struct vpd *vpd = vcpu->arch.vpd;
  898. unsigned long vmm_ivt;
  899. vmm_ivt = kvm_vmm_info->vmm_ivt;
  900. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  901. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  902. if (ret) {
  903. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  904. return -EINVAL;
  905. }
  906. return 0;
  907. }
  908. static void init_ptce_info(struct kvm_vcpu *vcpu)
  909. {
  910. ia64_ptce_info_t ptce = {0};
  911. ia64_get_ptce(&ptce);
  912. vcpu->arch.ptce_base = ptce.base;
  913. vcpu->arch.ptce_count[0] = ptce.count[0];
  914. vcpu->arch.ptce_count[1] = ptce.count[1];
  915. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  916. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  917. }
  918. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  919. {
  920. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  921. if (hrtimer_cancel(p_ht))
  922. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  923. }
  924. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  925. {
  926. struct kvm_vcpu *vcpu;
  927. wait_queue_head_t *q;
  928. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  929. q = &vcpu->wq;
  930. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  931. goto out;
  932. if (waitqueue_active(q))
  933. wake_up_interruptible(q);
  934. out:
  935. vcpu->arch.timer_fired = 1;
  936. vcpu->arch.timer_check = 1;
  937. return HRTIMER_NORESTART;
  938. }
  939. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  940. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  941. {
  942. struct kvm_vcpu *v;
  943. int r;
  944. int i;
  945. long itc_offset;
  946. struct kvm *kvm = vcpu->kvm;
  947. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  948. union context *p_ctx = &vcpu->arch.guest;
  949. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  950. /*Init vcpu context for first run.*/
  951. if (IS_ERR(vmm_vcpu))
  952. return PTR_ERR(vmm_vcpu);
  953. if (vcpu->vcpu_id == 0) {
  954. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  955. /*Set entry address for first run.*/
  956. regs->cr_iip = PALE_RESET_ENTRY;
  957. /*Initialize itc offset for vcpus*/
  958. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  959. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  960. v = (struct kvm_vcpu *)((char *)vcpu +
  961. sizeof(struct kvm_vcpu_data) * i);
  962. v->arch.itc_offset = itc_offset;
  963. v->arch.last_itc = 0;
  964. }
  965. } else
  966. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  967. r = -ENOMEM;
  968. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  969. if (!vcpu->arch.apic)
  970. goto out;
  971. vcpu->arch.apic->vcpu = vcpu;
  972. p_ctx->gr[1] = 0;
  973. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  974. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  975. p_ctx->psr = 0x1008522000UL;
  976. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  977. p_ctx->caller_unat = 0;
  978. p_ctx->pr = 0x0;
  979. p_ctx->ar[36] = 0x0; /*unat*/
  980. p_ctx->ar[19] = 0x0; /*rnat*/
  981. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  982. ((sizeof(struct kvm_vcpu)+15) & ~15);
  983. p_ctx->ar[64] = 0x0; /*pfs*/
  984. p_ctx->cr[0] = 0x7e04UL;
  985. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  986. p_ctx->cr[8] = 0x3c;
  987. /*Initilize region register*/
  988. p_ctx->rr[0] = 0x30;
  989. p_ctx->rr[1] = 0x30;
  990. p_ctx->rr[2] = 0x30;
  991. p_ctx->rr[3] = 0x30;
  992. p_ctx->rr[4] = 0x30;
  993. p_ctx->rr[5] = 0x30;
  994. p_ctx->rr[7] = 0x30;
  995. /*Initilize branch register 0*/
  996. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  997. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  998. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  999. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1000. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1001. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1002. vcpu->arch.last_run_cpu = -1;
  1003. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1004. vcpu->arch.vsa_base = kvm_vsa_base;
  1005. vcpu->arch.__gp = kvm_vmm_gp;
  1006. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1007. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1008. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1009. init_ptce_info(vcpu);
  1010. r = 0;
  1011. out:
  1012. return r;
  1013. }
  1014. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1015. {
  1016. unsigned long psr;
  1017. int r;
  1018. local_irq_save(psr);
  1019. r = kvm_insert_vmm_mapping(vcpu);
  1020. if (r)
  1021. goto fail;
  1022. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1023. if (r)
  1024. goto fail;
  1025. r = vti_init_vpd(vcpu);
  1026. if (r) {
  1027. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1028. goto uninit;
  1029. }
  1030. r = vti_create_vp(vcpu);
  1031. if (r)
  1032. goto uninit;
  1033. kvm_purge_vmm_mapping(vcpu);
  1034. local_irq_restore(psr);
  1035. return 0;
  1036. uninit:
  1037. kvm_vcpu_uninit(vcpu);
  1038. fail:
  1039. local_irq_restore(psr);
  1040. return r;
  1041. }
  1042. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1043. unsigned int id)
  1044. {
  1045. struct kvm_vcpu *vcpu;
  1046. unsigned long vm_base = kvm->arch.vm_base;
  1047. int r;
  1048. int cpu;
  1049. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1050. r = -EINVAL;
  1051. if (id >= KVM_MAX_VCPUS) {
  1052. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1053. KVM_MAX_VCPUS);
  1054. goto fail;
  1055. }
  1056. r = -ENOMEM;
  1057. if (!vm_base) {
  1058. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1059. goto fail;
  1060. }
  1061. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1062. vcpu_data[id].vcpu_struct));
  1063. vcpu->kvm = kvm;
  1064. cpu = get_cpu();
  1065. vti_vcpu_load(vcpu, cpu);
  1066. r = vti_vcpu_setup(vcpu, id);
  1067. put_cpu();
  1068. if (r) {
  1069. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1070. goto fail;
  1071. }
  1072. return vcpu;
  1073. fail:
  1074. return ERR_PTR(r);
  1075. }
  1076. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1077. {
  1078. return 0;
  1079. }
  1080. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1081. {
  1082. return -EINVAL;
  1083. }
  1084. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1085. {
  1086. return -EINVAL;
  1087. }
  1088. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1089. struct kvm_debug_guest *dbg)
  1090. {
  1091. return -EINVAL;
  1092. }
  1093. static void free_kvm(struct kvm *kvm)
  1094. {
  1095. unsigned long vm_base = kvm->arch.vm_base;
  1096. if (vm_base) {
  1097. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1098. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1099. }
  1100. }
  1101. static void kvm_release_vm_pages(struct kvm *kvm)
  1102. {
  1103. struct kvm_memory_slot *memslot;
  1104. int i, j;
  1105. unsigned long base_gfn;
  1106. for (i = 0; i < kvm->nmemslots; i++) {
  1107. memslot = &kvm->memslots[i];
  1108. base_gfn = memslot->base_gfn;
  1109. for (j = 0; j < memslot->npages; j++) {
  1110. if (memslot->rmap[j])
  1111. put_page((struct page *)memslot->rmap[j]);
  1112. }
  1113. }
  1114. }
  1115. void kvm_arch_destroy_vm(struct kvm *kvm)
  1116. {
  1117. kvm_iommu_unmap_guest(kvm);
  1118. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1119. kvm_free_all_assigned_devices(kvm);
  1120. #endif
  1121. kfree(kvm->arch.vioapic);
  1122. kvm_release_vm_pages(kvm);
  1123. kvm_free_physmem(kvm);
  1124. free_kvm(kvm);
  1125. }
  1126. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1127. {
  1128. }
  1129. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1130. {
  1131. if (cpu != vcpu->cpu) {
  1132. vcpu->cpu = cpu;
  1133. if (vcpu->arch.ht_active)
  1134. kvm_migrate_hlt_timer(vcpu);
  1135. }
  1136. }
  1137. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1138. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1139. {
  1140. int i;
  1141. int r;
  1142. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1143. vcpu_load(vcpu);
  1144. for (i = 0; i < 16; i++) {
  1145. regs->vpd.vgr[i] = vpd->vgr[i];
  1146. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1147. }
  1148. for (i = 0; i < 128; i++)
  1149. regs->vpd.vcr[i] = vpd->vcr[i];
  1150. regs->vpd.vhpi = vpd->vhpi;
  1151. regs->vpd.vnat = vpd->vnat;
  1152. regs->vpd.vbnat = vpd->vbnat;
  1153. regs->vpd.vpsr = vpd->vpsr;
  1154. regs->vpd.vpr = vpd->vpr;
  1155. r = -EFAULT;
  1156. r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
  1157. sizeof(union context));
  1158. if (r)
  1159. goto out;
  1160. r = copy_to_user(regs->saved_stack, (void *)vcpu, KVM_STK_OFFSET);
  1161. if (r)
  1162. goto out;
  1163. SAVE_REGS(mp_state);
  1164. SAVE_REGS(vmm_rr);
  1165. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1166. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1167. SAVE_REGS(itr_regions);
  1168. SAVE_REGS(dtr_regions);
  1169. SAVE_REGS(tc_regions);
  1170. SAVE_REGS(irq_check);
  1171. SAVE_REGS(itc_check);
  1172. SAVE_REGS(timer_check);
  1173. SAVE_REGS(timer_pending);
  1174. SAVE_REGS(last_itc);
  1175. for (i = 0; i < 8; i++) {
  1176. regs->vrr[i] = vcpu->arch.vrr[i];
  1177. regs->ibr[i] = vcpu->arch.ibr[i];
  1178. regs->dbr[i] = vcpu->arch.dbr[i];
  1179. }
  1180. for (i = 0; i < 4; i++)
  1181. regs->insvc[i] = vcpu->arch.insvc[i];
  1182. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1183. SAVE_REGS(xtp);
  1184. SAVE_REGS(metaphysical_rr0);
  1185. SAVE_REGS(metaphysical_rr4);
  1186. SAVE_REGS(metaphysical_saved_rr0);
  1187. SAVE_REGS(metaphysical_saved_rr4);
  1188. SAVE_REGS(fp_psr);
  1189. SAVE_REGS(saved_gp);
  1190. vcpu_put(vcpu);
  1191. r = 0;
  1192. out:
  1193. return r;
  1194. }
  1195. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1196. {
  1197. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1198. kfree(vcpu->arch.apic);
  1199. }
  1200. long kvm_arch_vcpu_ioctl(struct file *filp,
  1201. unsigned int ioctl, unsigned long arg)
  1202. {
  1203. return -EINVAL;
  1204. }
  1205. int kvm_arch_set_memory_region(struct kvm *kvm,
  1206. struct kvm_userspace_memory_region *mem,
  1207. struct kvm_memory_slot old,
  1208. int user_alloc)
  1209. {
  1210. unsigned long i;
  1211. unsigned long pfn;
  1212. int npages = mem->memory_size >> PAGE_SHIFT;
  1213. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1214. unsigned long base_gfn = memslot->base_gfn;
  1215. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1216. return -ENOMEM;
  1217. for (i = 0; i < npages; i++) {
  1218. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1219. if (!kvm_is_mmio_pfn(pfn)) {
  1220. kvm_set_pmt_entry(kvm, base_gfn + i,
  1221. pfn << PAGE_SHIFT,
  1222. _PAGE_AR_RWX | _PAGE_MA_WB);
  1223. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1224. } else {
  1225. kvm_set_pmt_entry(kvm, base_gfn + i,
  1226. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1227. _PAGE_MA_UC);
  1228. memslot->rmap[i] = 0;
  1229. }
  1230. }
  1231. return 0;
  1232. }
  1233. void kvm_arch_flush_shadow(struct kvm *kvm)
  1234. {
  1235. }
  1236. long kvm_arch_dev_ioctl(struct file *filp,
  1237. unsigned int ioctl, unsigned long arg)
  1238. {
  1239. return -EINVAL;
  1240. }
  1241. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1242. {
  1243. kvm_vcpu_uninit(vcpu);
  1244. }
  1245. static int vti_cpu_has_kvm_support(void)
  1246. {
  1247. long avail = 1, status = 1, control = 1;
  1248. long ret;
  1249. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1250. if (ret)
  1251. goto out;
  1252. if (!(avail & PAL_PROC_VM_BIT))
  1253. goto out;
  1254. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1255. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1256. if (ret)
  1257. goto out;
  1258. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1259. if (!(vp_env_info & VP_OPCODE)) {
  1260. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1261. "vm_env_info:0x%lx\n", vp_env_info);
  1262. }
  1263. return 1;
  1264. out:
  1265. return 0;
  1266. }
  1267. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1268. struct module *module)
  1269. {
  1270. unsigned long module_base;
  1271. unsigned long vmm_size;
  1272. unsigned long vmm_offset, func_offset, fdesc_offset;
  1273. struct fdesc *p_fdesc;
  1274. BUG_ON(!module);
  1275. if (!kvm_vmm_base) {
  1276. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1277. return -EFAULT;
  1278. }
  1279. /*Calculate new position of relocated vmm module.*/
  1280. module_base = (unsigned long)module->module_core;
  1281. vmm_size = module->core_size;
  1282. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1283. return -EFAULT;
  1284. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1285. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1286. /*Recalculate kvm_vmm_info based on new VMM*/
  1287. vmm_offset = vmm_info->vmm_ivt - module_base;
  1288. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1289. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1290. kvm_vmm_info->vmm_ivt);
  1291. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1292. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1293. fdesc_offset);
  1294. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1295. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1296. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1297. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1298. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1299. KVM_VMM_BASE+func_offset);
  1300. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1301. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1302. fdesc_offset);
  1303. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1304. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1305. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1306. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1307. kvm_vmm_gp = p_fdesc->gp;
  1308. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1309. kvm_vmm_info->vmm_entry);
  1310. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1311. KVM_VMM_BASE + func_offset);
  1312. return 0;
  1313. }
  1314. int kvm_arch_init(void *opaque)
  1315. {
  1316. int r;
  1317. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1318. if (!vti_cpu_has_kvm_support()) {
  1319. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1320. r = -EOPNOTSUPP;
  1321. goto out;
  1322. }
  1323. if (kvm_vmm_info) {
  1324. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1325. r = -EEXIST;
  1326. goto out;
  1327. }
  1328. r = -ENOMEM;
  1329. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1330. if (!kvm_vmm_info)
  1331. goto out;
  1332. if (kvm_alloc_vmm_area())
  1333. goto out_free0;
  1334. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1335. if (r)
  1336. goto out_free1;
  1337. return 0;
  1338. out_free1:
  1339. kvm_free_vmm_area();
  1340. out_free0:
  1341. kfree(kvm_vmm_info);
  1342. out:
  1343. return r;
  1344. }
  1345. void kvm_arch_exit(void)
  1346. {
  1347. kvm_free_vmm_area();
  1348. kfree(kvm_vmm_info);
  1349. kvm_vmm_info = NULL;
  1350. }
  1351. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1352. struct kvm_dirty_log *log)
  1353. {
  1354. struct kvm_memory_slot *memslot;
  1355. int r, i;
  1356. long n, base;
  1357. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1358. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1359. r = -EINVAL;
  1360. if (log->slot >= KVM_MEMORY_SLOTS)
  1361. goto out;
  1362. memslot = &kvm->memslots[log->slot];
  1363. r = -ENOENT;
  1364. if (!memslot->dirty_bitmap)
  1365. goto out;
  1366. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1367. base = memslot->base_gfn / BITS_PER_LONG;
  1368. for (i = 0; i < n/sizeof(long); ++i) {
  1369. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1370. dirty_bitmap[base + i] = 0;
  1371. }
  1372. r = 0;
  1373. out:
  1374. return r;
  1375. }
  1376. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1377. struct kvm_dirty_log *log)
  1378. {
  1379. int r;
  1380. int n;
  1381. struct kvm_memory_slot *memslot;
  1382. int is_dirty = 0;
  1383. spin_lock(&kvm->arch.dirty_log_lock);
  1384. r = kvm_ia64_sync_dirty_log(kvm, log);
  1385. if (r)
  1386. goto out;
  1387. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1388. if (r)
  1389. goto out;
  1390. /* If nothing is dirty, don't bother messing with page tables. */
  1391. if (is_dirty) {
  1392. kvm_flush_remote_tlbs(kvm);
  1393. memslot = &kvm->memslots[log->slot];
  1394. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1395. memset(memslot->dirty_bitmap, 0, n);
  1396. }
  1397. r = 0;
  1398. out:
  1399. spin_unlock(&kvm->arch.dirty_log_lock);
  1400. return r;
  1401. }
  1402. int kvm_arch_hardware_setup(void)
  1403. {
  1404. return 0;
  1405. }
  1406. void kvm_arch_hardware_unsetup(void)
  1407. {
  1408. }
  1409. static void vcpu_kick_intr(void *info)
  1410. {
  1411. #ifdef DEBUG
  1412. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1413. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1414. #endif
  1415. }
  1416. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1417. {
  1418. int ipi_pcpu = vcpu->cpu;
  1419. int cpu = get_cpu();
  1420. if (waitqueue_active(&vcpu->wq))
  1421. wake_up_interruptible(&vcpu->wq);
  1422. if (vcpu->guest_mode && cpu != ipi_pcpu)
  1423. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1424. put_cpu();
  1425. }
  1426. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1427. {
  1428. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1429. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1430. vcpu->arch.irq_new_pending = 1;
  1431. kvm_vcpu_kick(vcpu);
  1432. return 1;
  1433. }
  1434. return 0;
  1435. }
  1436. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1437. {
  1438. return apic->vcpu->vcpu_id == dest;
  1439. }
  1440. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1441. {
  1442. return 0;
  1443. }
  1444. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1445. unsigned long bitmap)
  1446. {
  1447. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1448. int i;
  1449. for (i = 1; i < KVM_MAX_VCPUS; i++) {
  1450. if (!kvm->vcpus[i])
  1451. continue;
  1452. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1453. lvcpu = kvm->vcpus[i];
  1454. }
  1455. return lvcpu;
  1456. }
  1457. static int find_highest_bits(int *dat)
  1458. {
  1459. u32 bits, bitnum;
  1460. int i;
  1461. /* loop for all 256 bits */
  1462. for (i = 7; i >= 0 ; i--) {
  1463. bits = dat[i];
  1464. if (bits) {
  1465. bitnum = fls(bits);
  1466. return i * 32 + bitnum - 1;
  1467. }
  1468. }
  1469. return -1;
  1470. }
  1471. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1472. {
  1473. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1474. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1475. return NMI_VECTOR;
  1476. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1477. return ExtINT_VECTOR;
  1478. return find_highest_bits((int *)&vpd->irr[0]);
  1479. }
  1480. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1481. {
  1482. if (kvm_highest_pending_irq(vcpu) != -1)
  1483. return 1;
  1484. return 0;
  1485. }
  1486. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1487. {
  1488. return vcpu->arch.timer_fired;
  1489. }
  1490. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1491. {
  1492. return gfn;
  1493. }
  1494. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1495. {
  1496. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1497. }
  1498. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1499. struct kvm_mp_state *mp_state)
  1500. {
  1501. vcpu_load(vcpu);
  1502. mp_state->mp_state = vcpu->arch.mp_state;
  1503. vcpu_put(vcpu);
  1504. return 0;
  1505. }
  1506. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1507. {
  1508. int r;
  1509. long psr;
  1510. local_irq_save(psr);
  1511. r = kvm_insert_vmm_mapping(vcpu);
  1512. if (r)
  1513. goto fail;
  1514. vcpu->arch.launched = 0;
  1515. kvm_arch_vcpu_uninit(vcpu);
  1516. r = kvm_arch_vcpu_init(vcpu);
  1517. if (r)
  1518. goto fail;
  1519. kvm_purge_vmm_mapping(vcpu);
  1520. r = 0;
  1521. fail:
  1522. local_irq_restore(psr);
  1523. return r;
  1524. }
  1525. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1526. struct kvm_mp_state *mp_state)
  1527. {
  1528. int r = 0;
  1529. vcpu_load(vcpu);
  1530. vcpu->arch.mp_state = mp_state->mp_state;
  1531. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1532. r = vcpu_reset(vcpu);
  1533. vcpu_put(vcpu);
  1534. return r;
  1535. }