vmx.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <asm/io.h>
  24. #include <asm/desc.h>
  25. #include "segment_descriptor.h"
  26. #define MSR_IA32_FEATURE_CONTROL 0x03a
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. static inline int is_page_fault(u32 intr_info)
  71. {
  72. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  73. INTR_INFO_VALID_MASK)) ==
  74. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  75. }
  76. static inline int is_external_interrupt(u32 intr_info)
  77. {
  78. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  79. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  80. }
  81. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  82. {
  83. int i;
  84. for (i = 0; i < vcpu->nmsrs; ++i)
  85. if (vcpu->guest_msrs[i].index == msr)
  86. return &vcpu->guest_msrs[i];
  87. return 0;
  88. }
  89. static void vmcs_clear(struct vmcs *vmcs)
  90. {
  91. u64 phys_addr = __pa(vmcs);
  92. u8 error;
  93. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  94. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  95. : "cc", "memory");
  96. if (error)
  97. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  98. vmcs, phys_addr);
  99. }
  100. static void __vcpu_clear(void *arg)
  101. {
  102. struct kvm_vcpu *vcpu = arg;
  103. int cpu = smp_processor_id();
  104. if (vcpu->cpu == cpu)
  105. vmcs_clear(vcpu->vmcs);
  106. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  107. per_cpu(current_vmcs, cpu) = NULL;
  108. }
  109. static unsigned long vmcs_readl(unsigned long field)
  110. {
  111. unsigned long value;
  112. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  113. : "=a"(value) : "d"(field) : "cc");
  114. return value;
  115. }
  116. static u16 vmcs_read16(unsigned long field)
  117. {
  118. return vmcs_readl(field);
  119. }
  120. static u32 vmcs_read32(unsigned long field)
  121. {
  122. return vmcs_readl(field);
  123. }
  124. static u64 vmcs_read64(unsigned long field)
  125. {
  126. #ifdef CONFIG_X86_64
  127. return vmcs_readl(field);
  128. #else
  129. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  130. #endif
  131. }
  132. static void vmcs_writel(unsigned long field, unsigned long value)
  133. {
  134. u8 error;
  135. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  136. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  137. if (error)
  138. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  139. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  140. }
  141. static void vmcs_write16(unsigned long field, u16 value)
  142. {
  143. vmcs_writel(field, value);
  144. }
  145. static void vmcs_write32(unsigned long field, u32 value)
  146. {
  147. vmcs_writel(field, value);
  148. }
  149. static void vmcs_write64(unsigned long field, u64 value)
  150. {
  151. #ifdef CONFIG_X86_64
  152. vmcs_writel(field, value);
  153. #else
  154. vmcs_writel(field, value);
  155. asm volatile ("");
  156. vmcs_writel(field+1, value >> 32);
  157. #endif
  158. }
  159. /*
  160. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  161. * vcpu mutex is already taken.
  162. */
  163. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  164. {
  165. u64 phys_addr = __pa(vcpu->vmcs);
  166. int cpu;
  167. cpu = get_cpu();
  168. if (vcpu->cpu != cpu) {
  169. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  170. vcpu->launched = 0;
  171. }
  172. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  173. u8 error;
  174. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  175. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  176. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  177. : "cc");
  178. if (error)
  179. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  180. vcpu->vmcs, phys_addr);
  181. }
  182. if (vcpu->cpu != cpu) {
  183. struct descriptor_table dt;
  184. unsigned long sysenter_esp;
  185. vcpu->cpu = cpu;
  186. /*
  187. * Linux uses per-cpu TSS and GDT, so set these when switching
  188. * processors.
  189. */
  190. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  191. get_gdt(&dt);
  192. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  193. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  194. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  195. }
  196. return vcpu;
  197. }
  198. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  199. {
  200. put_cpu();
  201. }
  202. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  203. {
  204. return vmcs_readl(GUEST_RFLAGS);
  205. }
  206. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  207. {
  208. vmcs_writel(GUEST_RFLAGS, rflags);
  209. }
  210. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  211. {
  212. unsigned long rip;
  213. u32 interruptibility;
  214. rip = vmcs_readl(GUEST_RIP);
  215. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  216. vmcs_writel(GUEST_RIP, rip);
  217. /*
  218. * We emulated an instruction, so temporary interrupt blocking
  219. * should be removed, if set.
  220. */
  221. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  222. if (interruptibility & 3)
  223. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  224. interruptibility & ~3);
  225. }
  226. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  227. {
  228. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  229. vmcs_readl(GUEST_RIP));
  230. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  231. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  232. GP_VECTOR |
  233. INTR_TYPE_EXCEPTION |
  234. INTR_INFO_DELIEVER_CODE_MASK |
  235. INTR_INFO_VALID_MASK);
  236. }
  237. /*
  238. * reads and returns guest's timestamp counter "register"
  239. * guest_tsc = host_tsc + tsc_offset -- 21.3
  240. */
  241. static u64 guest_read_tsc(void)
  242. {
  243. u64 host_tsc, tsc_offset;
  244. rdtscll(host_tsc);
  245. tsc_offset = vmcs_read64(TSC_OFFSET);
  246. return host_tsc + tsc_offset;
  247. }
  248. /*
  249. * writes 'guest_tsc' into guest's timestamp counter "register"
  250. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  251. */
  252. static void guest_write_tsc(u64 guest_tsc)
  253. {
  254. u64 host_tsc;
  255. rdtscll(host_tsc);
  256. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  257. }
  258. static void reload_tss(void)
  259. {
  260. #ifndef CONFIG_X86_64
  261. /*
  262. * VT restores TR but not its size. Useless.
  263. */
  264. struct descriptor_table gdt;
  265. struct segment_descriptor *descs;
  266. get_gdt(&gdt);
  267. descs = (void *)gdt.base;
  268. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  269. load_TR_desc();
  270. #endif
  271. }
  272. /*
  273. * Reads an msr value (of 'msr_index') into 'pdata'.
  274. * Returns 0 on success, non-0 otherwise.
  275. * Assumes vcpu_load() was already called.
  276. */
  277. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  278. {
  279. u64 data;
  280. struct vmx_msr_entry *msr;
  281. if (!pdata) {
  282. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  283. return -EINVAL;
  284. }
  285. switch (msr_index) {
  286. #ifdef CONFIG_X86_64
  287. case MSR_FS_BASE:
  288. data = vmcs_readl(GUEST_FS_BASE);
  289. break;
  290. case MSR_GS_BASE:
  291. data = vmcs_readl(GUEST_GS_BASE);
  292. break;
  293. case MSR_EFER:
  294. data = vcpu->shadow_efer;
  295. break;
  296. #endif
  297. case MSR_IA32_TIME_STAMP_COUNTER:
  298. data = guest_read_tsc();
  299. break;
  300. case MSR_IA32_SYSENTER_CS:
  301. data = vmcs_read32(GUEST_SYSENTER_CS);
  302. break;
  303. case MSR_IA32_SYSENTER_EIP:
  304. data = vmcs_read32(GUEST_SYSENTER_EIP);
  305. break;
  306. case MSR_IA32_SYSENTER_ESP:
  307. data = vmcs_read32(GUEST_SYSENTER_ESP);
  308. break;
  309. case MSR_IA32_P5_MC_ADDR:
  310. case MSR_IA32_P5_MC_TYPE:
  311. case MSR_IA32_MC0_CTL:
  312. case MSR_IA32_MCG_STATUS:
  313. case MSR_IA32_MCG_CAP:
  314. case MSR_IA32_MC0_MISC:
  315. case MSR_IA32_MC0_MISC+4:
  316. case MSR_IA32_MC0_MISC+8:
  317. case MSR_IA32_MC0_MISC+12:
  318. case MSR_IA32_MC0_MISC+16:
  319. case MSR_IA32_UCODE_REV:
  320. /* MTRR registers */
  321. case 0xfe:
  322. case 0x200 ... 0x2ff:
  323. data = 0;
  324. break;
  325. case MSR_IA32_APICBASE:
  326. data = vcpu->apic_base;
  327. break;
  328. default:
  329. msr = find_msr_entry(vcpu, msr_index);
  330. if (!msr) {
  331. printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
  332. return 1;
  333. }
  334. data = msr->data;
  335. break;
  336. }
  337. *pdata = data;
  338. return 0;
  339. }
  340. /*
  341. * Writes msr value into into the appropriate "register".
  342. * Returns 0 on success, non-0 otherwise.
  343. * Assumes vcpu_load() was already called.
  344. */
  345. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  346. {
  347. struct vmx_msr_entry *msr;
  348. switch (msr_index) {
  349. #ifdef CONFIG_X86_64
  350. case MSR_FS_BASE:
  351. vmcs_writel(GUEST_FS_BASE, data);
  352. break;
  353. case MSR_GS_BASE:
  354. vmcs_writel(GUEST_GS_BASE, data);
  355. break;
  356. #endif
  357. case MSR_IA32_SYSENTER_CS:
  358. vmcs_write32(GUEST_SYSENTER_CS, data);
  359. break;
  360. case MSR_IA32_SYSENTER_EIP:
  361. vmcs_write32(GUEST_SYSENTER_EIP, data);
  362. break;
  363. case MSR_IA32_SYSENTER_ESP:
  364. vmcs_write32(GUEST_SYSENTER_ESP, data);
  365. break;
  366. #ifdef __x86_64
  367. case MSR_EFER:
  368. set_efer(vcpu, data);
  369. break;
  370. case MSR_IA32_MC0_STATUS:
  371. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
  372. , __FUNCTION__, data);
  373. break;
  374. #endif
  375. case MSR_IA32_TIME_STAMP_COUNTER: {
  376. guest_write_tsc(data);
  377. break;
  378. }
  379. case MSR_IA32_UCODE_REV:
  380. case MSR_IA32_UCODE_WRITE:
  381. case 0x200 ... 0x2ff: /* MTRRs */
  382. break;
  383. case MSR_IA32_APICBASE:
  384. vcpu->apic_base = data;
  385. break;
  386. default:
  387. msr = find_msr_entry(vcpu, msr_index);
  388. if (!msr) {
  389. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
  390. return 1;
  391. }
  392. msr->data = data;
  393. break;
  394. }
  395. return 0;
  396. }
  397. /*
  398. * Sync the rsp and rip registers into the vcpu structure. This allows
  399. * registers to be accessed by indexing vcpu->regs.
  400. */
  401. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  402. {
  403. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  404. vcpu->rip = vmcs_readl(GUEST_RIP);
  405. }
  406. /*
  407. * Syncs rsp and rip back into the vmcs. Should be called after possible
  408. * modification.
  409. */
  410. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  411. {
  412. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  413. vmcs_writel(GUEST_RIP, vcpu->rip);
  414. }
  415. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  416. {
  417. unsigned long dr7 = 0x400;
  418. u32 exception_bitmap;
  419. int old_singlestep;
  420. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  421. old_singlestep = vcpu->guest_debug.singlestep;
  422. vcpu->guest_debug.enabled = dbg->enabled;
  423. if (vcpu->guest_debug.enabled) {
  424. int i;
  425. dr7 |= 0x200; /* exact */
  426. for (i = 0; i < 4; ++i) {
  427. if (!dbg->breakpoints[i].enabled)
  428. continue;
  429. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  430. dr7 |= 2 << (i*2); /* global enable */
  431. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  432. }
  433. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  434. vcpu->guest_debug.singlestep = dbg->singlestep;
  435. } else {
  436. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  437. vcpu->guest_debug.singlestep = 0;
  438. }
  439. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  440. unsigned long flags;
  441. flags = vmcs_readl(GUEST_RFLAGS);
  442. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  443. vmcs_writel(GUEST_RFLAGS, flags);
  444. }
  445. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  446. vmcs_writel(GUEST_DR7, dr7);
  447. return 0;
  448. }
  449. static __init int cpu_has_kvm_support(void)
  450. {
  451. unsigned long ecx = cpuid_ecx(1);
  452. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  453. }
  454. static __init int vmx_disabled_by_bios(void)
  455. {
  456. u64 msr;
  457. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  458. return (msr & 5) == 1; /* locked but not enabled */
  459. }
  460. static __init void hardware_enable(void *garbage)
  461. {
  462. int cpu = raw_smp_processor_id();
  463. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  464. u64 old;
  465. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  466. if ((old & 5) != 5)
  467. /* enable and lock */
  468. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  469. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  470. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  471. : "memory", "cc");
  472. }
  473. static void hardware_disable(void *garbage)
  474. {
  475. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  476. }
  477. static __init void setup_vmcs_descriptor(void)
  478. {
  479. u32 vmx_msr_low, vmx_msr_high;
  480. rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
  481. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  482. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  483. vmcs_descriptor.revision_id = vmx_msr_low;
  484. };
  485. static struct vmcs *alloc_vmcs_cpu(int cpu)
  486. {
  487. int node = cpu_to_node(cpu);
  488. struct page *pages;
  489. struct vmcs *vmcs;
  490. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  491. if (!pages)
  492. return NULL;
  493. vmcs = page_address(pages);
  494. memset(vmcs, 0, vmcs_descriptor.size);
  495. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  496. return vmcs;
  497. }
  498. static struct vmcs *alloc_vmcs(void)
  499. {
  500. return alloc_vmcs_cpu(smp_processor_id());
  501. }
  502. static void free_vmcs(struct vmcs *vmcs)
  503. {
  504. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  505. }
  506. static __exit void free_kvm_area(void)
  507. {
  508. int cpu;
  509. for_each_online_cpu(cpu)
  510. free_vmcs(per_cpu(vmxarea, cpu));
  511. }
  512. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  513. static __init int alloc_kvm_area(void)
  514. {
  515. int cpu;
  516. for_each_online_cpu(cpu) {
  517. struct vmcs *vmcs;
  518. vmcs = alloc_vmcs_cpu(cpu);
  519. if (!vmcs) {
  520. free_kvm_area();
  521. return -ENOMEM;
  522. }
  523. per_cpu(vmxarea, cpu) = vmcs;
  524. }
  525. return 0;
  526. }
  527. static __init int hardware_setup(void)
  528. {
  529. setup_vmcs_descriptor();
  530. return alloc_kvm_area();
  531. }
  532. static __exit void hardware_unsetup(void)
  533. {
  534. free_kvm_area();
  535. }
  536. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  537. {
  538. if (vcpu->rmode.active)
  539. vmcs_write32(EXCEPTION_BITMAP, ~0);
  540. else
  541. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  542. }
  543. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  544. {
  545. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  546. if (vmcs_readl(sf->base) == save->base) {
  547. vmcs_write16(sf->selector, save->selector);
  548. vmcs_writel(sf->base, save->base);
  549. vmcs_write32(sf->limit, save->limit);
  550. vmcs_write32(sf->ar_bytes, save->ar);
  551. } else {
  552. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  553. << AR_DPL_SHIFT;
  554. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  555. }
  556. }
  557. static void enter_pmode(struct kvm_vcpu *vcpu)
  558. {
  559. unsigned long flags;
  560. vcpu->rmode.active = 0;
  561. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  562. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  563. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  564. flags = vmcs_readl(GUEST_RFLAGS);
  565. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  566. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  567. vmcs_writel(GUEST_RFLAGS, flags);
  568. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  569. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  570. update_exception_bitmap(vcpu);
  571. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  572. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  573. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  574. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  575. vmcs_write16(GUEST_SS_SELECTOR, 0);
  576. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  577. vmcs_write16(GUEST_CS_SELECTOR,
  578. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  579. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  580. }
  581. static int rmode_tss_base(struct kvm* kvm)
  582. {
  583. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  584. return base_gfn << PAGE_SHIFT;
  585. }
  586. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  587. {
  588. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  589. save->selector = vmcs_read16(sf->selector);
  590. save->base = vmcs_readl(sf->base);
  591. save->limit = vmcs_read32(sf->limit);
  592. save->ar = vmcs_read32(sf->ar_bytes);
  593. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  594. vmcs_write32(sf->limit, 0xffff);
  595. vmcs_write32(sf->ar_bytes, 0xf3);
  596. }
  597. static void enter_rmode(struct kvm_vcpu *vcpu)
  598. {
  599. unsigned long flags;
  600. vcpu->rmode.active = 1;
  601. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  602. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  603. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  604. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  605. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  606. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  607. flags = vmcs_readl(GUEST_RFLAGS);
  608. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  609. flags |= IOPL_MASK | X86_EFLAGS_VM;
  610. vmcs_writel(GUEST_RFLAGS, flags);
  611. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  612. update_exception_bitmap(vcpu);
  613. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  614. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  615. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  616. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  617. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  618. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  619. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  620. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  621. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  622. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  623. }
  624. #ifdef CONFIG_X86_64
  625. static void enter_lmode(struct kvm_vcpu *vcpu)
  626. {
  627. u32 guest_tr_ar;
  628. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  629. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  630. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  631. __FUNCTION__);
  632. vmcs_write32(GUEST_TR_AR_BYTES,
  633. (guest_tr_ar & ~AR_TYPE_MASK)
  634. | AR_TYPE_BUSY_64_TSS);
  635. }
  636. vcpu->shadow_efer |= EFER_LMA;
  637. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  638. vmcs_write32(VM_ENTRY_CONTROLS,
  639. vmcs_read32(VM_ENTRY_CONTROLS)
  640. | VM_ENTRY_CONTROLS_IA32E_MASK);
  641. }
  642. static void exit_lmode(struct kvm_vcpu *vcpu)
  643. {
  644. vcpu->shadow_efer &= ~EFER_LMA;
  645. vmcs_write32(VM_ENTRY_CONTROLS,
  646. vmcs_read32(VM_ENTRY_CONTROLS)
  647. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  648. }
  649. #endif
  650. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  651. {
  652. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  653. enter_pmode(vcpu);
  654. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  655. enter_rmode(vcpu);
  656. #ifdef CONFIG_X86_64
  657. if (vcpu->shadow_efer & EFER_LME) {
  658. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  659. enter_lmode(vcpu);
  660. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  661. exit_lmode(vcpu);
  662. }
  663. #endif
  664. vmcs_writel(CR0_READ_SHADOW, cr0);
  665. vmcs_writel(GUEST_CR0,
  666. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  667. vcpu->cr0 = cr0;
  668. }
  669. /*
  670. * Used when restoring the VM to avoid corrupting segment registers
  671. */
  672. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  673. {
  674. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  675. update_exception_bitmap(vcpu);
  676. vmcs_writel(CR0_READ_SHADOW, cr0);
  677. vmcs_writel(GUEST_CR0,
  678. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  679. vcpu->cr0 = cr0;
  680. }
  681. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  682. {
  683. vmcs_writel(GUEST_CR3, cr3);
  684. }
  685. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  686. {
  687. vmcs_writel(CR4_READ_SHADOW, cr4);
  688. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  689. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  690. vcpu->cr4 = cr4;
  691. }
  692. #ifdef CONFIG_X86_64
  693. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  694. {
  695. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  696. vcpu->shadow_efer = efer;
  697. if (efer & EFER_LMA) {
  698. vmcs_write32(VM_ENTRY_CONTROLS,
  699. vmcs_read32(VM_ENTRY_CONTROLS) |
  700. VM_ENTRY_CONTROLS_IA32E_MASK);
  701. msr->data = efer;
  702. } else {
  703. vmcs_write32(VM_ENTRY_CONTROLS,
  704. vmcs_read32(VM_ENTRY_CONTROLS) &
  705. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  706. msr->data = efer & ~EFER_LME;
  707. }
  708. }
  709. #endif
  710. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  711. {
  712. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  713. return vmcs_readl(sf->base);
  714. }
  715. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  716. struct kvm_segment *var, int seg)
  717. {
  718. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  719. u32 ar;
  720. var->base = vmcs_readl(sf->base);
  721. var->limit = vmcs_read32(sf->limit);
  722. var->selector = vmcs_read16(sf->selector);
  723. ar = vmcs_read32(sf->ar_bytes);
  724. if (ar & AR_UNUSABLE_MASK)
  725. ar = 0;
  726. var->type = ar & 15;
  727. var->s = (ar >> 4) & 1;
  728. var->dpl = (ar >> 5) & 3;
  729. var->present = (ar >> 7) & 1;
  730. var->avl = (ar >> 12) & 1;
  731. var->l = (ar >> 13) & 1;
  732. var->db = (ar >> 14) & 1;
  733. var->g = (ar >> 15) & 1;
  734. var->unusable = (ar >> 16) & 1;
  735. }
  736. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  737. struct kvm_segment *var, int seg)
  738. {
  739. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  740. u32 ar;
  741. vmcs_writel(sf->base, var->base);
  742. vmcs_write32(sf->limit, var->limit);
  743. vmcs_write16(sf->selector, var->selector);
  744. if (var->unusable)
  745. ar = 1 << 16;
  746. else {
  747. ar = var->type & 15;
  748. ar |= (var->s & 1) << 4;
  749. ar |= (var->dpl & 3) << 5;
  750. ar |= (var->present & 1) << 7;
  751. ar |= (var->avl & 1) << 12;
  752. ar |= (var->l & 1) << 13;
  753. ar |= (var->db & 1) << 14;
  754. ar |= (var->g & 1) << 15;
  755. }
  756. if (ar == 0) /* a 0 value means unusable */
  757. ar = AR_UNUSABLE_MASK;
  758. vmcs_write32(sf->ar_bytes, ar);
  759. }
  760. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  761. {
  762. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  763. *db = (ar >> 14) & 1;
  764. *l = (ar >> 13) & 1;
  765. }
  766. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  767. {
  768. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  769. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  770. }
  771. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  772. {
  773. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  774. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  775. }
  776. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  777. {
  778. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  779. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  780. }
  781. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  782. {
  783. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  784. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  785. }
  786. static int init_rmode_tss(struct kvm* kvm)
  787. {
  788. struct page *p1, *p2, *p3;
  789. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  790. char *page;
  791. p1 = _gfn_to_page(kvm, fn++);
  792. p2 = _gfn_to_page(kvm, fn++);
  793. p3 = _gfn_to_page(kvm, fn);
  794. if (!p1 || !p2 || !p3) {
  795. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  796. return 0;
  797. }
  798. page = kmap_atomic(p1, KM_USER0);
  799. memset(page, 0, PAGE_SIZE);
  800. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  801. kunmap_atomic(page, KM_USER0);
  802. page = kmap_atomic(p2, KM_USER0);
  803. memset(page, 0, PAGE_SIZE);
  804. kunmap_atomic(page, KM_USER0);
  805. page = kmap_atomic(p3, KM_USER0);
  806. memset(page, 0, PAGE_SIZE);
  807. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  808. kunmap_atomic(page, KM_USER0);
  809. return 1;
  810. }
  811. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  812. {
  813. u32 msr_high, msr_low;
  814. rdmsr(msr, msr_low, msr_high);
  815. val &= msr_high;
  816. val |= msr_low;
  817. vmcs_write32(vmcs_field, val);
  818. }
  819. static void seg_setup(int seg)
  820. {
  821. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  822. vmcs_write16(sf->selector, 0);
  823. vmcs_writel(sf->base, 0);
  824. vmcs_write32(sf->limit, 0xffff);
  825. vmcs_write32(sf->ar_bytes, 0x93);
  826. }
  827. /*
  828. * Sets up the vmcs for emulated real mode.
  829. */
  830. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  831. {
  832. u32 host_sysenter_cs;
  833. u32 junk;
  834. unsigned long a;
  835. struct descriptor_table dt;
  836. int i;
  837. int ret = 0;
  838. int nr_good_msrs;
  839. extern asmlinkage void kvm_vmx_return(void);
  840. if (!init_rmode_tss(vcpu->kvm)) {
  841. ret = -ENOMEM;
  842. goto out;
  843. }
  844. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  845. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  846. vcpu->cr8 = 0;
  847. vcpu->apic_base = 0xfee00000 |
  848. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  849. MSR_IA32_APICBASE_ENABLE;
  850. fx_init(vcpu);
  851. /*
  852. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  853. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  854. */
  855. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  856. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  857. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  858. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  859. seg_setup(VCPU_SREG_DS);
  860. seg_setup(VCPU_SREG_ES);
  861. seg_setup(VCPU_SREG_FS);
  862. seg_setup(VCPU_SREG_GS);
  863. seg_setup(VCPU_SREG_SS);
  864. vmcs_write16(GUEST_TR_SELECTOR, 0);
  865. vmcs_writel(GUEST_TR_BASE, 0);
  866. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  867. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  868. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  869. vmcs_writel(GUEST_LDTR_BASE, 0);
  870. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  871. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  872. vmcs_write32(GUEST_SYSENTER_CS, 0);
  873. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  874. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  875. vmcs_writel(GUEST_RFLAGS, 0x02);
  876. vmcs_writel(GUEST_RIP, 0xfff0);
  877. vmcs_writel(GUEST_RSP, 0);
  878. vmcs_writel(GUEST_CR3, 0);
  879. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  880. vmcs_writel(GUEST_DR7, 0x400);
  881. vmcs_writel(GUEST_GDTR_BASE, 0);
  882. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  883. vmcs_writel(GUEST_IDTR_BASE, 0);
  884. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  885. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  886. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  887. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  888. /* I/O */
  889. vmcs_write64(IO_BITMAP_A, 0);
  890. vmcs_write64(IO_BITMAP_B, 0);
  891. guest_write_tsc(0);
  892. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  893. /* Special registers */
  894. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  895. /* Control */
  896. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
  897. PIN_BASED_VM_EXEC_CONTROL,
  898. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  899. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  900. );
  901. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
  902. CPU_BASED_VM_EXEC_CONTROL,
  903. CPU_BASED_HLT_EXITING /* 20.6.2 */
  904. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  905. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  906. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  907. | CPU_BASED_INVDPG_EXITING
  908. | CPU_BASED_MOV_DR_EXITING
  909. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  910. );
  911. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  912. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  913. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  914. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  915. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  916. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  917. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  918. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  919. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  920. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  921. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  922. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  923. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  924. #ifdef CONFIG_X86_64
  925. rdmsrl(MSR_FS_BASE, a);
  926. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  927. rdmsrl(MSR_GS_BASE, a);
  928. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  929. #else
  930. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  931. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  932. #endif
  933. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  934. get_idt(&dt);
  935. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  936. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  937. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  938. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  939. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  940. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  941. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  942. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  943. ret = -ENOMEM;
  944. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  945. if (!vcpu->guest_msrs)
  946. goto out;
  947. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  948. if (!vcpu->host_msrs)
  949. goto out_free_guest_msrs;
  950. for (i = 0; i < NR_VMX_MSR; ++i) {
  951. u32 index = vmx_msr_index[i];
  952. u32 data_low, data_high;
  953. u64 data;
  954. int j = vcpu->nmsrs;
  955. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  956. continue;
  957. data = data_low | ((u64)data_high << 32);
  958. vcpu->host_msrs[j].index = index;
  959. vcpu->host_msrs[j].reserved = 0;
  960. vcpu->host_msrs[j].data = data;
  961. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  962. ++vcpu->nmsrs;
  963. }
  964. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  965. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  966. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  967. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  968. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  969. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  970. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  971. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  972. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
  973. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  974. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  975. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  976. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  977. /* 22.2.1, 20.8.1 */
  978. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
  979. VM_ENTRY_CONTROLS, 0);
  980. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  981. #ifdef CONFIG_X86_64
  982. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  983. vmcs_writel(TPR_THRESHOLD, 0);
  984. #endif
  985. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  986. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  987. vcpu->cr0 = 0x60000010;
  988. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  989. vmx_set_cr4(vcpu, 0);
  990. #ifdef CONFIG_X86_64
  991. vmx_set_efer(vcpu, 0);
  992. #endif
  993. return 0;
  994. out_free_guest_msrs:
  995. kfree(vcpu->guest_msrs);
  996. out:
  997. return ret;
  998. }
  999. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1000. {
  1001. u16 ent[2];
  1002. u16 cs;
  1003. u16 ip;
  1004. unsigned long flags;
  1005. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1006. u16 sp = vmcs_readl(GUEST_RSP);
  1007. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1008. if (sp > ss_limit || sp - 6 > sp) {
  1009. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1010. __FUNCTION__,
  1011. vmcs_readl(GUEST_RSP),
  1012. vmcs_readl(GUEST_SS_BASE),
  1013. vmcs_read32(GUEST_SS_LIMIT));
  1014. return;
  1015. }
  1016. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1017. sizeof(ent)) {
  1018. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1019. return;
  1020. }
  1021. flags = vmcs_readl(GUEST_RFLAGS);
  1022. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1023. ip = vmcs_readl(GUEST_RIP);
  1024. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1025. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1026. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1027. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1028. return;
  1029. }
  1030. vmcs_writel(GUEST_RFLAGS, flags &
  1031. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1032. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1033. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1034. vmcs_writel(GUEST_RIP, ent[0]);
  1035. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1036. }
  1037. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1038. {
  1039. int word_index = __ffs(vcpu->irq_summary);
  1040. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1041. int irq = word_index * BITS_PER_LONG + bit_index;
  1042. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1043. if (!vcpu->irq_pending[word_index])
  1044. clear_bit(word_index, &vcpu->irq_summary);
  1045. if (vcpu->rmode.active) {
  1046. inject_rmode_irq(vcpu, irq);
  1047. return;
  1048. }
  1049. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1050. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1051. }
  1052. static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
  1053. {
  1054. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
  1055. && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
  1056. /*
  1057. * Interrupts enabled, and not blocked by sti or mov ss. Good.
  1058. */
  1059. kvm_do_inject_irq(vcpu);
  1060. else
  1061. /*
  1062. * Interrupts blocked. Wait for unblock.
  1063. */
  1064. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1065. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1066. | CPU_BASED_VIRTUAL_INTR_PENDING);
  1067. }
  1068. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1069. {
  1070. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1071. set_debugreg(dbg->bp[0], 0);
  1072. set_debugreg(dbg->bp[1], 1);
  1073. set_debugreg(dbg->bp[2], 2);
  1074. set_debugreg(dbg->bp[3], 3);
  1075. if (dbg->singlestep) {
  1076. unsigned long flags;
  1077. flags = vmcs_readl(GUEST_RFLAGS);
  1078. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1079. vmcs_writel(GUEST_RFLAGS, flags);
  1080. }
  1081. }
  1082. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1083. int vec, u32 err_code)
  1084. {
  1085. if (!vcpu->rmode.active)
  1086. return 0;
  1087. if (vec == GP_VECTOR && err_code == 0)
  1088. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1089. return 1;
  1090. return 0;
  1091. }
  1092. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1093. {
  1094. u32 intr_info, error_code;
  1095. unsigned long cr2, rip;
  1096. u32 vect_info;
  1097. enum emulation_result er;
  1098. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1099. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1100. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1101. !is_page_fault(intr_info)) {
  1102. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1103. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1104. }
  1105. if (is_external_interrupt(vect_info)) {
  1106. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1107. set_bit(irq, vcpu->irq_pending);
  1108. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1109. }
  1110. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1111. asm ("int $2");
  1112. return 1;
  1113. }
  1114. error_code = 0;
  1115. rip = vmcs_readl(GUEST_RIP);
  1116. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1117. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1118. if (is_page_fault(intr_info)) {
  1119. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1120. spin_lock(&vcpu->kvm->lock);
  1121. if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
  1122. spin_unlock(&vcpu->kvm->lock);
  1123. return 1;
  1124. }
  1125. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1126. spin_unlock(&vcpu->kvm->lock);
  1127. switch (er) {
  1128. case EMULATE_DONE:
  1129. return 1;
  1130. case EMULATE_DO_MMIO:
  1131. ++kvm_stat.mmio_exits;
  1132. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1133. return 0;
  1134. case EMULATE_FAIL:
  1135. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1136. break;
  1137. default:
  1138. BUG();
  1139. }
  1140. }
  1141. if (vcpu->rmode.active &&
  1142. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1143. error_code))
  1144. return 1;
  1145. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1146. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1147. return 0;
  1148. }
  1149. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1150. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1151. kvm_run->ex.error_code = error_code;
  1152. return 0;
  1153. }
  1154. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1155. struct kvm_run *kvm_run)
  1156. {
  1157. ++kvm_stat.irq_exits;
  1158. return 1;
  1159. }
  1160. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1161. {
  1162. u64 inst;
  1163. gva_t rip;
  1164. int countr_size;
  1165. int i, n;
  1166. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1167. countr_size = 2;
  1168. } else {
  1169. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1170. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1171. (cs_ar & AR_DB_MASK) ? 4: 2;
  1172. }
  1173. rip = vmcs_readl(GUEST_RIP);
  1174. if (countr_size != 8)
  1175. rip += vmcs_readl(GUEST_CS_BASE);
  1176. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1177. for (i = 0; i < n; i++) {
  1178. switch (((u8*)&inst)[i]) {
  1179. case 0xf0:
  1180. case 0xf2:
  1181. case 0xf3:
  1182. case 0x2e:
  1183. case 0x36:
  1184. case 0x3e:
  1185. case 0x26:
  1186. case 0x64:
  1187. case 0x65:
  1188. case 0x66:
  1189. break;
  1190. case 0x67:
  1191. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1192. default:
  1193. goto done;
  1194. }
  1195. }
  1196. return 0;
  1197. done:
  1198. countr_size *= 8;
  1199. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1200. return 1;
  1201. }
  1202. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1203. {
  1204. u64 exit_qualification;
  1205. ++kvm_stat.io_exits;
  1206. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1207. kvm_run->exit_reason = KVM_EXIT_IO;
  1208. if (exit_qualification & 8)
  1209. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1210. else
  1211. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1212. kvm_run->io.size = (exit_qualification & 7) + 1;
  1213. kvm_run->io.string = (exit_qualification & 16) != 0;
  1214. kvm_run->io.string_down
  1215. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1216. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1217. kvm_run->io.port = exit_qualification >> 16;
  1218. if (kvm_run->io.string) {
  1219. if (!get_io_count(vcpu, &kvm_run->io.count))
  1220. return 1;
  1221. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1222. } else
  1223. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1224. return 0;
  1225. }
  1226. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1227. {
  1228. u64 address = vmcs_read64(EXIT_QUALIFICATION);
  1229. int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1230. spin_lock(&vcpu->kvm->lock);
  1231. vcpu->mmu.inval_page(vcpu, address);
  1232. spin_unlock(&vcpu->kvm->lock);
  1233. vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
  1234. return 1;
  1235. }
  1236. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1237. {
  1238. u64 exit_qualification;
  1239. int cr;
  1240. int reg;
  1241. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1242. cr = exit_qualification & 15;
  1243. reg = (exit_qualification >> 8) & 15;
  1244. switch ((exit_qualification >> 4) & 3) {
  1245. case 0: /* mov to cr */
  1246. switch (cr) {
  1247. case 0:
  1248. vcpu_load_rsp_rip(vcpu);
  1249. set_cr0(vcpu, vcpu->regs[reg]);
  1250. skip_emulated_instruction(vcpu);
  1251. return 1;
  1252. case 3:
  1253. vcpu_load_rsp_rip(vcpu);
  1254. set_cr3(vcpu, vcpu->regs[reg]);
  1255. skip_emulated_instruction(vcpu);
  1256. return 1;
  1257. case 4:
  1258. vcpu_load_rsp_rip(vcpu);
  1259. set_cr4(vcpu, vcpu->regs[reg]);
  1260. skip_emulated_instruction(vcpu);
  1261. return 1;
  1262. case 8:
  1263. vcpu_load_rsp_rip(vcpu);
  1264. set_cr8(vcpu, vcpu->regs[reg]);
  1265. skip_emulated_instruction(vcpu);
  1266. return 1;
  1267. };
  1268. break;
  1269. case 1: /*mov from cr*/
  1270. switch (cr) {
  1271. case 3:
  1272. vcpu_load_rsp_rip(vcpu);
  1273. vcpu->regs[reg] = vcpu->cr3;
  1274. vcpu_put_rsp_rip(vcpu);
  1275. skip_emulated_instruction(vcpu);
  1276. return 1;
  1277. case 8:
  1278. printk(KERN_DEBUG "handle_cr: read CR8 "
  1279. "cpu erratum AA15\n");
  1280. vcpu_load_rsp_rip(vcpu);
  1281. vcpu->regs[reg] = vcpu->cr8;
  1282. vcpu_put_rsp_rip(vcpu);
  1283. skip_emulated_instruction(vcpu);
  1284. return 1;
  1285. }
  1286. break;
  1287. case 3: /* lmsw */
  1288. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1289. skip_emulated_instruction(vcpu);
  1290. return 1;
  1291. default:
  1292. break;
  1293. }
  1294. kvm_run->exit_reason = 0;
  1295. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1296. (int)(exit_qualification >> 4) & 3, cr);
  1297. return 0;
  1298. }
  1299. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1300. {
  1301. u64 exit_qualification;
  1302. unsigned long val;
  1303. int dr, reg;
  1304. /*
  1305. * FIXME: this code assumes the host is debugging the guest.
  1306. * need to deal with guest debugging itself too.
  1307. */
  1308. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1309. dr = exit_qualification & 7;
  1310. reg = (exit_qualification >> 8) & 15;
  1311. vcpu_load_rsp_rip(vcpu);
  1312. if (exit_qualification & 16) {
  1313. /* mov from dr */
  1314. switch (dr) {
  1315. case 6:
  1316. val = 0xffff0ff0;
  1317. break;
  1318. case 7:
  1319. val = 0x400;
  1320. break;
  1321. default:
  1322. val = 0;
  1323. }
  1324. vcpu->regs[reg] = val;
  1325. } else {
  1326. /* mov to dr */
  1327. }
  1328. vcpu_put_rsp_rip(vcpu);
  1329. skip_emulated_instruction(vcpu);
  1330. return 1;
  1331. }
  1332. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1333. {
  1334. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1335. return 0;
  1336. }
  1337. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1338. {
  1339. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1340. u64 data;
  1341. if (vmx_get_msr(vcpu, ecx, &data)) {
  1342. vmx_inject_gp(vcpu, 0);
  1343. return 1;
  1344. }
  1345. /* FIXME: handling of bits 32:63 of rax, rdx */
  1346. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1347. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1348. skip_emulated_instruction(vcpu);
  1349. return 1;
  1350. }
  1351. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1352. {
  1353. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1354. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1355. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1356. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1357. vmx_inject_gp(vcpu, 0);
  1358. return 1;
  1359. }
  1360. skip_emulated_instruction(vcpu);
  1361. return 1;
  1362. }
  1363. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1364. struct kvm_run *kvm_run)
  1365. {
  1366. /* Turn off interrupt window reporting. */
  1367. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1368. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1369. & ~CPU_BASED_VIRTUAL_INTR_PENDING);
  1370. return 1;
  1371. }
  1372. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1373. {
  1374. skip_emulated_instruction(vcpu);
  1375. if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
  1376. return 1;
  1377. kvm_run->exit_reason = KVM_EXIT_HLT;
  1378. return 0;
  1379. }
  1380. /*
  1381. * The exit handlers return 1 if the exit was handled fully and guest execution
  1382. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1383. * to be done to userspace and return 0.
  1384. */
  1385. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1386. struct kvm_run *kvm_run) = {
  1387. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1388. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1389. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1390. [EXIT_REASON_INVLPG] = handle_invlpg,
  1391. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1392. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1393. [EXIT_REASON_CPUID] = handle_cpuid,
  1394. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1395. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1396. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1397. [EXIT_REASON_HLT] = handle_halt,
  1398. };
  1399. static const int kvm_vmx_max_exit_handlers =
  1400. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1401. /*
  1402. * The guest has exited. See if we can fix it or if we need userspace
  1403. * assistance.
  1404. */
  1405. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1406. {
  1407. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1408. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1409. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1410. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1411. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1412. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1413. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1414. if (exit_reason < kvm_vmx_max_exit_handlers
  1415. && kvm_vmx_exit_handlers[exit_reason])
  1416. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1417. else {
  1418. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1419. kvm_run->hw.hardware_exit_reason = exit_reason;
  1420. }
  1421. return 0;
  1422. }
  1423. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1424. {
  1425. u8 fail;
  1426. u16 fs_sel, gs_sel, ldt_sel;
  1427. int fs_gs_ldt_reload_needed;
  1428. again:
  1429. /*
  1430. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1431. * allow segment selectors with cpl > 0 or ti == 1.
  1432. */
  1433. fs_sel = read_fs();
  1434. gs_sel = read_gs();
  1435. ldt_sel = read_ldt();
  1436. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1437. if (!fs_gs_ldt_reload_needed) {
  1438. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1439. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1440. } else {
  1441. vmcs_write16(HOST_FS_SELECTOR, 0);
  1442. vmcs_write16(HOST_GS_SELECTOR, 0);
  1443. }
  1444. #ifdef CONFIG_X86_64
  1445. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1446. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1447. #else
  1448. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1449. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1450. #endif
  1451. if (vcpu->irq_summary &&
  1452. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1453. kvm_try_inject_irq(vcpu);
  1454. if (vcpu->guest_debug.enabled)
  1455. kvm_guest_debug_pre(vcpu);
  1456. fx_save(vcpu->host_fx_image);
  1457. fx_restore(vcpu->guest_fx_image);
  1458. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1459. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1460. asm (
  1461. /* Store host registers */
  1462. "pushf \n\t"
  1463. #ifdef CONFIG_X86_64
  1464. "push %%rax; push %%rbx; push %%rdx;"
  1465. "push %%rsi; push %%rdi; push %%rbp;"
  1466. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1467. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1468. "push %%rcx \n\t"
  1469. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1470. #else
  1471. "pusha; push %%ecx \n\t"
  1472. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1473. #endif
  1474. /* Check if vmlaunch of vmresume is needed */
  1475. "cmp $0, %1 \n\t"
  1476. /* Load guest registers. Don't clobber flags. */
  1477. #ifdef CONFIG_X86_64
  1478. "mov %c[cr2](%3), %%rax \n\t"
  1479. "mov %%rax, %%cr2 \n\t"
  1480. "mov %c[rax](%3), %%rax \n\t"
  1481. "mov %c[rbx](%3), %%rbx \n\t"
  1482. "mov %c[rdx](%3), %%rdx \n\t"
  1483. "mov %c[rsi](%3), %%rsi \n\t"
  1484. "mov %c[rdi](%3), %%rdi \n\t"
  1485. "mov %c[rbp](%3), %%rbp \n\t"
  1486. "mov %c[r8](%3), %%r8 \n\t"
  1487. "mov %c[r9](%3), %%r9 \n\t"
  1488. "mov %c[r10](%3), %%r10 \n\t"
  1489. "mov %c[r11](%3), %%r11 \n\t"
  1490. "mov %c[r12](%3), %%r12 \n\t"
  1491. "mov %c[r13](%3), %%r13 \n\t"
  1492. "mov %c[r14](%3), %%r14 \n\t"
  1493. "mov %c[r15](%3), %%r15 \n\t"
  1494. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1495. #else
  1496. "mov %c[cr2](%3), %%eax \n\t"
  1497. "mov %%eax, %%cr2 \n\t"
  1498. "mov %c[rax](%3), %%eax \n\t"
  1499. "mov %c[rbx](%3), %%ebx \n\t"
  1500. "mov %c[rdx](%3), %%edx \n\t"
  1501. "mov %c[rsi](%3), %%esi \n\t"
  1502. "mov %c[rdi](%3), %%edi \n\t"
  1503. "mov %c[rbp](%3), %%ebp \n\t"
  1504. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1505. #endif
  1506. /* Enter guest mode */
  1507. "jne launched \n\t"
  1508. ASM_VMX_VMLAUNCH "\n\t"
  1509. "jmp kvm_vmx_return \n\t"
  1510. "launched: " ASM_VMX_VMRESUME "\n\t"
  1511. ".globl kvm_vmx_return \n\t"
  1512. "kvm_vmx_return: "
  1513. /* Save guest registers, load host registers, keep flags */
  1514. #ifdef CONFIG_X86_64
  1515. "xchg %3, 0(%%rsp) \n\t"
  1516. "mov %%rax, %c[rax](%3) \n\t"
  1517. "mov %%rbx, %c[rbx](%3) \n\t"
  1518. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1519. "mov %%rdx, %c[rdx](%3) \n\t"
  1520. "mov %%rsi, %c[rsi](%3) \n\t"
  1521. "mov %%rdi, %c[rdi](%3) \n\t"
  1522. "mov %%rbp, %c[rbp](%3) \n\t"
  1523. "mov %%r8, %c[r8](%3) \n\t"
  1524. "mov %%r9, %c[r9](%3) \n\t"
  1525. "mov %%r10, %c[r10](%3) \n\t"
  1526. "mov %%r11, %c[r11](%3) \n\t"
  1527. "mov %%r12, %c[r12](%3) \n\t"
  1528. "mov %%r13, %c[r13](%3) \n\t"
  1529. "mov %%r14, %c[r14](%3) \n\t"
  1530. "mov %%r15, %c[r15](%3) \n\t"
  1531. "mov %%cr2, %%rax \n\t"
  1532. "mov %%rax, %c[cr2](%3) \n\t"
  1533. "mov 0(%%rsp), %3 \n\t"
  1534. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1535. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1536. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1537. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1538. #else
  1539. "xchg %3, 0(%%esp) \n\t"
  1540. "mov %%eax, %c[rax](%3) \n\t"
  1541. "mov %%ebx, %c[rbx](%3) \n\t"
  1542. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1543. "mov %%edx, %c[rdx](%3) \n\t"
  1544. "mov %%esi, %c[rsi](%3) \n\t"
  1545. "mov %%edi, %c[rdi](%3) \n\t"
  1546. "mov %%ebp, %c[rbp](%3) \n\t"
  1547. "mov %%cr2, %%eax \n\t"
  1548. "mov %%eax, %c[cr2](%3) \n\t"
  1549. "mov 0(%%esp), %3 \n\t"
  1550. "pop %%ecx; popa \n\t"
  1551. #endif
  1552. "setbe %0 \n\t"
  1553. "popf \n\t"
  1554. : "=g" (fail)
  1555. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1556. "c"(vcpu),
  1557. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1558. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1559. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1560. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1561. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1562. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1563. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1564. #ifdef CONFIG_X86_64
  1565. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1566. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1567. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1568. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1569. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1570. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1571. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1572. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1573. #endif
  1574. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1575. : "cc", "memory" );
  1576. ++kvm_stat.exits;
  1577. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1578. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1579. fx_save(vcpu->guest_fx_image);
  1580. fx_restore(vcpu->host_fx_image);
  1581. #ifndef CONFIG_X86_64
  1582. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1583. #endif
  1584. kvm_run->exit_type = 0;
  1585. if (fail) {
  1586. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1587. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1588. } else {
  1589. if (fs_gs_ldt_reload_needed) {
  1590. load_ldt(ldt_sel);
  1591. load_fs(fs_sel);
  1592. /*
  1593. * If we have to reload gs, we must take care to
  1594. * preserve our gs base.
  1595. */
  1596. local_irq_disable();
  1597. load_gs(gs_sel);
  1598. #ifdef CONFIG_X86_64
  1599. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1600. #endif
  1601. local_irq_enable();
  1602. reload_tss();
  1603. }
  1604. vcpu->launched = 1;
  1605. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1606. if (kvm_handle_exit(kvm_run, vcpu)) {
  1607. /* Give scheduler a change to reschedule. */
  1608. if (signal_pending(current)) {
  1609. ++kvm_stat.signal_exits;
  1610. return -EINTR;
  1611. }
  1612. kvm_resched(vcpu);
  1613. goto again;
  1614. }
  1615. }
  1616. return 0;
  1617. }
  1618. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1619. {
  1620. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1621. }
  1622. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1623. unsigned long addr,
  1624. u32 err_code)
  1625. {
  1626. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1627. ++kvm_stat.pf_guest;
  1628. if (is_page_fault(vect_info)) {
  1629. printk(KERN_DEBUG "inject_page_fault: "
  1630. "double fault 0x%lx @ 0x%lx\n",
  1631. addr, vmcs_readl(GUEST_RIP));
  1632. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1633. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1634. DF_VECTOR |
  1635. INTR_TYPE_EXCEPTION |
  1636. INTR_INFO_DELIEVER_CODE_MASK |
  1637. INTR_INFO_VALID_MASK);
  1638. return;
  1639. }
  1640. vcpu->cr2 = addr;
  1641. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1642. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1643. PF_VECTOR |
  1644. INTR_TYPE_EXCEPTION |
  1645. INTR_INFO_DELIEVER_CODE_MASK |
  1646. INTR_INFO_VALID_MASK);
  1647. }
  1648. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1649. {
  1650. if (vcpu->vmcs) {
  1651. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1652. free_vmcs(vcpu->vmcs);
  1653. vcpu->vmcs = NULL;
  1654. }
  1655. }
  1656. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1657. {
  1658. vmx_free_vmcs(vcpu);
  1659. }
  1660. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1661. {
  1662. struct vmcs *vmcs;
  1663. vmcs = alloc_vmcs();
  1664. if (!vmcs)
  1665. return -ENOMEM;
  1666. vmcs_clear(vmcs);
  1667. vcpu->vmcs = vmcs;
  1668. vcpu->launched = 0;
  1669. return 0;
  1670. }
  1671. static struct kvm_arch_ops vmx_arch_ops = {
  1672. .cpu_has_kvm_support = cpu_has_kvm_support,
  1673. .disabled_by_bios = vmx_disabled_by_bios,
  1674. .hardware_setup = hardware_setup,
  1675. .hardware_unsetup = hardware_unsetup,
  1676. .hardware_enable = hardware_enable,
  1677. .hardware_disable = hardware_disable,
  1678. .vcpu_create = vmx_create_vcpu,
  1679. .vcpu_free = vmx_free_vcpu,
  1680. .vcpu_load = vmx_vcpu_load,
  1681. .vcpu_put = vmx_vcpu_put,
  1682. .set_guest_debug = set_guest_debug,
  1683. .get_msr = vmx_get_msr,
  1684. .set_msr = vmx_set_msr,
  1685. .get_segment_base = vmx_get_segment_base,
  1686. .get_segment = vmx_get_segment,
  1687. .set_segment = vmx_set_segment,
  1688. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1689. .set_cr0 = vmx_set_cr0,
  1690. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1691. .set_cr3 = vmx_set_cr3,
  1692. .set_cr4 = vmx_set_cr4,
  1693. #ifdef CONFIG_X86_64
  1694. .set_efer = vmx_set_efer,
  1695. #endif
  1696. .get_idt = vmx_get_idt,
  1697. .set_idt = vmx_set_idt,
  1698. .get_gdt = vmx_get_gdt,
  1699. .set_gdt = vmx_set_gdt,
  1700. .cache_regs = vcpu_load_rsp_rip,
  1701. .decache_regs = vcpu_put_rsp_rip,
  1702. .get_rflags = vmx_get_rflags,
  1703. .set_rflags = vmx_set_rflags,
  1704. .tlb_flush = vmx_flush_tlb,
  1705. .inject_page_fault = vmx_inject_page_fault,
  1706. .inject_gp = vmx_inject_gp,
  1707. .run = vmx_vcpu_run,
  1708. .skip_emulated_instruction = skip_emulated_instruction,
  1709. .vcpu_setup = vmx_vcpu_setup,
  1710. };
  1711. static int __init vmx_init(void)
  1712. {
  1713. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1714. }
  1715. static void __exit vmx_exit(void)
  1716. {
  1717. kvm_exit_arch();
  1718. }
  1719. module_init(vmx_init)
  1720. module_exit(vmx_exit)