sched.c 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * Maintaining per-cpu shares distribution for group scheduling
  300. *
  301. * load_stamp is the last time we updated the load average
  302. * load_last is the last time we updated the load average and saw load
  303. * load_unacc_exec_time is currently unaccounted execution time
  304. */
  305. u64 load_avg;
  306. u64 load_period;
  307. u64 load_stamp, load_last, load_unacc_exec_time;
  308. unsigned long load_contribution;
  309. #endif
  310. #endif
  311. };
  312. /* Real-Time classes' related field in a runqueue: */
  313. struct rt_rq {
  314. struct rt_prio_array active;
  315. unsigned long rt_nr_running;
  316. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  317. struct {
  318. int curr; /* highest queued rt task prio */
  319. #ifdef CONFIG_SMP
  320. int next; /* next highest */
  321. #endif
  322. } highest_prio;
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. unsigned long rt_nr_total;
  327. int overloaded;
  328. struct plist_head pushable_tasks;
  329. #endif
  330. int rt_throttled;
  331. u64 rt_time;
  332. u64 rt_runtime;
  333. /* Nests inside the rq lock: */
  334. raw_spinlock_t rt_runtime_lock;
  335. #ifdef CONFIG_RT_GROUP_SCHED
  336. unsigned long rt_nr_boosted;
  337. struct rq *rq;
  338. struct list_head leaf_rt_rq_list;
  339. struct task_group *tg;
  340. #endif
  341. };
  342. #ifdef CONFIG_SMP
  343. /*
  344. * We add the notion of a root-domain which will be used to define per-domain
  345. * variables. Each exclusive cpuset essentially defines an island domain by
  346. * fully partitioning the member cpus from any other cpuset. Whenever a new
  347. * exclusive cpuset is created, we also create and attach a new root-domain
  348. * object.
  349. *
  350. */
  351. struct root_domain {
  352. atomic_t refcount;
  353. cpumask_var_t span;
  354. cpumask_var_t online;
  355. /*
  356. * The "RT overload" flag: it gets set if a CPU has more than
  357. * one runnable RT task.
  358. */
  359. cpumask_var_t rto_mask;
  360. atomic_t rto_count;
  361. struct cpupri cpupri;
  362. };
  363. /*
  364. * By default the system creates a single root-domain with all cpus as
  365. * members (mimicking the global state we have today).
  366. */
  367. static struct root_domain def_root_domain;
  368. #endif /* CONFIG_SMP */
  369. /*
  370. * This is the main, per-CPU runqueue data structure.
  371. *
  372. * Locking rule: those places that want to lock multiple runqueues
  373. * (such as the load balancing or the thread migration code), lock
  374. * acquire operations must be ordered by ascending &runqueue.
  375. */
  376. struct rq {
  377. /* runqueue lock: */
  378. raw_spinlock_t lock;
  379. /*
  380. * nr_running and cpu_load should be in the same cacheline because
  381. * remote CPUs use both these fields when doing load calculation.
  382. */
  383. unsigned long nr_running;
  384. #define CPU_LOAD_IDX_MAX 5
  385. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  386. unsigned long last_load_update_tick;
  387. #ifdef CONFIG_NO_HZ
  388. u64 nohz_stamp;
  389. unsigned char nohz_balance_kick;
  390. #endif
  391. unsigned int skip_clock_update;
  392. /* capture load from *all* tasks on this cpu: */
  393. struct load_weight load;
  394. unsigned long nr_load_updates;
  395. u64 nr_switches;
  396. struct cfs_rq cfs;
  397. struct rt_rq rt;
  398. #ifdef CONFIG_FAIR_GROUP_SCHED
  399. /* list of leaf cfs_rq on this cpu: */
  400. struct list_head leaf_cfs_rq_list;
  401. #endif
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. struct list_head leaf_rt_rq_list;
  404. #endif
  405. /*
  406. * This is part of a global counter where only the total sum
  407. * over all CPUs matters. A task can increase this counter on
  408. * one CPU and if it got migrated afterwards it may decrease
  409. * it on another CPU. Always updated under the runqueue lock:
  410. */
  411. unsigned long nr_uninterruptible;
  412. struct task_struct *curr, *idle, *stop;
  413. unsigned long next_balance;
  414. struct mm_struct *prev_mm;
  415. u64 clock;
  416. u64 clock_task;
  417. atomic_t nr_iowait;
  418. #ifdef CONFIG_SMP
  419. struct root_domain *rd;
  420. struct sched_domain *sd;
  421. unsigned long cpu_power;
  422. unsigned char idle_at_tick;
  423. /* For active balancing */
  424. int post_schedule;
  425. int active_balance;
  426. int push_cpu;
  427. struct cpu_stop_work active_balance_work;
  428. /* cpu of this runqueue: */
  429. int cpu;
  430. int online;
  431. unsigned long avg_load_per_task;
  432. u64 rt_avg;
  433. u64 age_stamp;
  434. u64 idle_stamp;
  435. u64 avg_idle;
  436. #endif
  437. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  438. u64 prev_irq_time;
  439. #endif
  440. /* calc_load related fields */
  441. unsigned long calc_load_update;
  442. long calc_load_active;
  443. #ifdef CONFIG_SCHED_HRTICK
  444. #ifdef CONFIG_SMP
  445. int hrtick_csd_pending;
  446. struct call_single_data hrtick_csd;
  447. #endif
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. unsigned long long rq_cpu_time;
  454. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  455. /* sys_sched_yield() stats */
  456. unsigned int yld_count;
  457. /* schedule() stats */
  458. unsigned int sched_switch;
  459. unsigned int sched_count;
  460. unsigned int sched_goidle;
  461. /* try_to_wake_up() stats */
  462. unsigned int ttwu_count;
  463. unsigned int ttwu_local;
  464. #endif
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  468. static inline int cpu_of(struct rq *rq)
  469. {
  470. #ifdef CONFIG_SMP
  471. return rq->cpu;
  472. #else
  473. return 0;
  474. #endif
  475. }
  476. #define rcu_dereference_check_sched_domain(p) \
  477. rcu_dereference_check((p), \
  478. rcu_read_lock_sched_held() || \
  479. lockdep_is_held(&sched_domains_mutex))
  480. /*
  481. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  482. * See detach_destroy_domains: synchronize_sched for details.
  483. *
  484. * The domain tree of any CPU may only be accessed from within
  485. * preempt-disabled sections.
  486. */
  487. #define for_each_domain(cpu, __sd) \
  488. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  489. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  490. #define this_rq() (&__get_cpu_var(runqueues))
  491. #define task_rq(p) cpu_rq(task_cpu(p))
  492. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  493. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  494. #ifdef CONFIG_CGROUP_SCHED
  495. /*
  496. * Return the group to which this tasks belongs.
  497. *
  498. * We use task_subsys_state_check() and extend the RCU verification
  499. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  500. * holds that lock for each task it moves into the cgroup. Therefore
  501. * by holding that lock, we pin the task to the current cgroup.
  502. */
  503. static inline struct task_group *task_group(struct task_struct *p)
  504. {
  505. struct task_group *tg;
  506. struct cgroup_subsys_state *css;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&task_rq(p)->lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  551. * @cpu: the processor in question.
  552. *
  553. * This interface allows printk to be called with the runqueue lock
  554. * held and know whether or not it is OK to wake up the klogd.
  555. */
  556. int runqueue_is_locked(int cpu)
  557. {
  558. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  559. }
  560. /*
  561. * Debugging: various feature bits
  562. */
  563. #define SCHED_FEAT(name, enabled) \
  564. __SCHED_FEAT_##name ,
  565. enum {
  566. #include "sched_features.h"
  567. };
  568. #undef SCHED_FEAT
  569. #define SCHED_FEAT(name, enabled) \
  570. (1UL << __SCHED_FEAT_##name) * enabled |
  571. const_debug unsigned int sysctl_sched_features =
  572. #include "sched_features.h"
  573. 0;
  574. #undef SCHED_FEAT
  575. #ifdef CONFIG_SCHED_DEBUG
  576. #define SCHED_FEAT(name, enabled) \
  577. #name ,
  578. static __read_mostly char *sched_feat_names[] = {
  579. #include "sched_features.h"
  580. NULL
  581. };
  582. #undef SCHED_FEAT
  583. static int sched_feat_show(struct seq_file *m, void *v)
  584. {
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. if (!(sysctl_sched_features & (1UL << i)))
  588. seq_puts(m, "NO_");
  589. seq_printf(m, "%s ", sched_feat_names[i]);
  590. }
  591. seq_puts(m, "\n");
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_write(struct file *filp, const char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char buf[64];
  599. char *cmp;
  600. int neg = 0;
  601. int i;
  602. if (cnt > 63)
  603. cnt = 63;
  604. if (copy_from_user(&buf, ubuf, cnt))
  605. return -EFAULT;
  606. buf[cnt] = 0;
  607. cmp = strstrip(buf);
  608. if (strncmp(cmp, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  614. if (neg)
  615. sysctl_sched_features &= ~(1UL << i);
  616. else
  617. sysctl_sched_features |= (1UL << i);
  618. break;
  619. }
  620. }
  621. if (!sched_feat_names[i])
  622. return -EINVAL;
  623. *ppos += cnt;
  624. return cnt;
  625. }
  626. static int sched_feat_open(struct inode *inode, struct file *filp)
  627. {
  628. return single_open(filp, sched_feat_show, NULL);
  629. }
  630. static const struct file_operations sched_feat_fops = {
  631. .open = sched_feat_open,
  632. .write = sched_feat_write,
  633. .read = seq_read,
  634. .llseek = seq_lseek,
  635. .release = single_release,
  636. };
  637. static __init int sched_init_debug(void)
  638. {
  639. debugfs_create_file("sched_features", 0644, NULL, NULL,
  640. &sched_feat_fops);
  641. return 0;
  642. }
  643. late_initcall(sched_init_debug);
  644. #endif
  645. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  646. /*
  647. * Number of tasks to iterate in a single balance run.
  648. * Limited because this is done with IRQs disabled.
  649. */
  650. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  651. /*
  652. * period over which we average the RT time consumption, measured
  653. * in ms.
  654. *
  655. * default: 1s
  656. */
  657. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  658. /*
  659. * period over which we measure -rt task cpu usage in us.
  660. * default: 1s
  661. */
  662. unsigned int sysctl_sched_rt_period = 1000000;
  663. static __read_mostly int scheduler_running;
  664. /*
  665. * part of the period that we allow rt tasks to run in us.
  666. * default: 0.95s
  667. */
  668. int sysctl_sched_rt_runtime = 950000;
  669. static inline u64 global_rt_period(void)
  670. {
  671. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  672. }
  673. static inline u64 global_rt_runtime(void)
  674. {
  675. if (sysctl_sched_rt_runtime < 0)
  676. return RUNTIME_INF;
  677. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  678. }
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. #ifdef CONFIG_SMP
  692. return p->on_cpu;
  693. #else
  694. return task_current(rq, p);
  695. #endif
  696. }
  697. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  698. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  699. {
  700. #ifdef CONFIG_SMP
  701. /*
  702. * We can optimise this out completely for !SMP, because the
  703. * SMP rebalancing from interrupt is the only thing that cares
  704. * here.
  705. */
  706. next->on_cpu = 1;
  707. #endif
  708. }
  709. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  710. {
  711. #ifdef CONFIG_SMP
  712. /*
  713. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  714. * We must ensure this doesn't happen until the switch is completely
  715. * finished.
  716. */
  717. smp_wmb();
  718. prev->on_cpu = 0;
  719. #endif
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. raw_spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->on_cpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->on_cpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. #endif /* CONFIG_NO_HZ */
  1050. static u64 sched_avg_period(void)
  1051. {
  1052. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1053. }
  1054. static void sched_avg_update(struct rq *rq)
  1055. {
  1056. s64 period = sched_avg_period();
  1057. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1058. /*
  1059. * Inline assembly required to prevent the compiler
  1060. * optimising this loop into a divmod call.
  1061. * See __iter_div_u64_rem() for another example of this.
  1062. */
  1063. asm("" : "+rm" (rq->age_stamp));
  1064. rq->age_stamp += period;
  1065. rq->rt_avg /= 2;
  1066. }
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. rq->rt_avg += rt_delta;
  1071. sched_avg_update(rq);
  1072. }
  1073. #else /* !CONFIG_SMP */
  1074. static void resched_task(struct task_struct *p)
  1075. {
  1076. assert_raw_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_need_resched(p);
  1078. }
  1079. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1080. {
  1081. }
  1082. static void sched_avg_update(struct rq *rq)
  1083. {
  1084. }
  1085. #endif /* CONFIG_SMP */
  1086. #if BITS_PER_LONG == 32
  1087. # define WMULT_CONST (~0UL)
  1088. #else
  1089. # define WMULT_CONST (1UL << 32)
  1090. #endif
  1091. #define WMULT_SHIFT 32
  1092. /*
  1093. * Shift right and round:
  1094. */
  1095. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1096. /*
  1097. * delta *= weight / lw
  1098. */
  1099. static unsigned long
  1100. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1101. struct load_weight *lw)
  1102. {
  1103. u64 tmp;
  1104. if (!lw->inv_weight) {
  1105. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1106. lw->inv_weight = 1;
  1107. else
  1108. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1109. / (lw->weight+1);
  1110. }
  1111. tmp = (u64)delta_exec * weight;
  1112. /*
  1113. * Check whether we'd overflow the 64-bit multiplication:
  1114. */
  1115. if (unlikely(tmp > WMULT_CONST))
  1116. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1117. WMULT_SHIFT/2);
  1118. else
  1119. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1120. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1121. }
  1122. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1123. {
  1124. lw->weight += inc;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1128. {
  1129. lw->weight -= dec;
  1130. lw->inv_weight = 0;
  1131. }
  1132. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1133. {
  1134. lw->weight = w;
  1135. lw->inv_weight = 0;
  1136. }
  1137. /*
  1138. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1139. * of tasks with abnormal "nice" values across CPUs the contribution that
  1140. * each task makes to its run queue's load is weighted according to its
  1141. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1142. * scaled version of the new time slice allocation that they receive on time
  1143. * slice expiry etc.
  1144. */
  1145. #define WEIGHT_IDLEPRIO 3
  1146. #define WMULT_IDLEPRIO 1431655765
  1147. /*
  1148. * Nice levels are multiplicative, with a gentle 10% change for every
  1149. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1150. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1151. * that remained on nice 0.
  1152. *
  1153. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1154. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1155. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1156. * If a task goes up by ~10% and another task goes down by ~10% then
  1157. * the relative distance between them is ~25%.)
  1158. */
  1159. static const int prio_to_weight[40] = {
  1160. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1161. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1162. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1163. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1164. /* 0 */ 1024, 820, 655, 526, 423,
  1165. /* 5 */ 335, 272, 215, 172, 137,
  1166. /* 10 */ 110, 87, 70, 56, 45,
  1167. /* 15 */ 36, 29, 23, 18, 15,
  1168. };
  1169. /*
  1170. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1171. *
  1172. * In cases where the weight does not change often, we can use the
  1173. * precalculated inverse to speed up arithmetics by turning divisions
  1174. * into multiplications:
  1175. */
  1176. static const u32 prio_to_wmult[40] = {
  1177. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1178. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1179. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1180. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1181. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1182. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1183. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1184. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1185. };
  1186. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1187. enum cpuacct_stat_index {
  1188. CPUACCT_STAT_USER, /* ... user mode */
  1189. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1190. CPUACCT_STAT_NSTATS,
  1191. };
  1192. #ifdef CONFIG_CGROUP_CPUACCT
  1193. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1194. static void cpuacct_update_stats(struct task_struct *tsk,
  1195. enum cpuacct_stat_index idx, cputime_t val);
  1196. #else
  1197. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1198. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1199. enum cpuacct_stat_index idx, cputime_t val) {}
  1200. #endif
  1201. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1202. {
  1203. update_load_add(&rq->load, load);
  1204. }
  1205. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1206. {
  1207. update_load_sub(&rq->load, load);
  1208. }
  1209. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1210. typedef int (*tg_visitor)(struct task_group *, void *);
  1211. /*
  1212. * Iterate the full tree, calling @down when first entering a node and @up when
  1213. * leaving it for the final time.
  1214. */
  1215. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1216. {
  1217. struct task_group *parent, *child;
  1218. int ret;
  1219. rcu_read_lock();
  1220. parent = &root_task_group;
  1221. down:
  1222. ret = (*down)(parent, data);
  1223. if (ret)
  1224. goto out_unlock;
  1225. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1226. parent = child;
  1227. goto down;
  1228. up:
  1229. continue;
  1230. }
  1231. ret = (*up)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. child = parent;
  1235. parent = parent->parent;
  1236. if (parent)
  1237. goto up;
  1238. out_unlock:
  1239. rcu_read_unlock();
  1240. return ret;
  1241. }
  1242. static int tg_nop(struct task_group *tg, void *data)
  1243. {
  1244. return 0;
  1245. }
  1246. #endif
  1247. #ifdef CONFIG_SMP
  1248. /* Used instead of source_load when we know the type == 0 */
  1249. static unsigned long weighted_cpuload(const int cpu)
  1250. {
  1251. return cpu_rq(cpu)->load.weight;
  1252. }
  1253. /*
  1254. * Return a low guess at the load of a migration-source cpu weighted
  1255. * according to the scheduling class and "nice" value.
  1256. *
  1257. * We want to under-estimate the load of migration sources, to
  1258. * balance conservatively.
  1259. */
  1260. static unsigned long source_load(int cpu, int type)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long total = weighted_cpuload(cpu);
  1264. if (type == 0 || !sched_feat(LB_BIAS))
  1265. return total;
  1266. return min(rq->cpu_load[type-1], total);
  1267. }
  1268. /*
  1269. * Return a high guess at the load of a migration-target cpu weighted
  1270. * according to the scheduling class and "nice" value.
  1271. */
  1272. static unsigned long target_load(int cpu, int type)
  1273. {
  1274. struct rq *rq = cpu_rq(cpu);
  1275. unsigned long total = weighted_cpuload(cpu);
  1276. if (type == 0 || !sched_feat(LB_BIAS))
  1277. return total;
  1278. return max(rq->cpu_load[type-1], total);
  1279. }
  1280. static unsigned long power_of(int cpu)
  1281. {
  1282. return cpu_rq(cpu)->cpu_power;
  1283. }
  1284. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1285. static unsigned long cpu_avg_load_per_task(int cpu)
  1286. {
  1287. struct rq *rq = cpu_rq(cpu);
  1288. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1289. if (nr_running)
  1290. rq->avg_load_per_task = rq->load.weight / nr_running;
  1291. else
  1292. rq->avg_load_per_task = 0;
  1293. return rq->avg_load_per_task;
  1294. }
  1295. #ifdef CONFIG_FAIR_GROUP_SCHED
  1296. /*
  1297. * Compute the cpu's hierarchical load factor for each task group.
  1298. * This needs to be done in a top-down fashion because the load of a child
  1299. * group is a fraction of its parents load.
  1300. */
  1301. static int tg_load_down(struct task_group *tg, void *data)
  1302. {
  1303. unsigned long load;
  1304. long cpu = (long)data;
  1305. if (!tg->parent) {
  1306. load = cpu_rq(cpu)->load.weight;
  1307. } else {
  1308. load = tg->parent->cfs_rq[cpu]->h_load;
  1309. load *= tg->se[cpu]->load.weight;
  1310. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1311. }
  1312. tg->cfs_rq[cpu]->h_load = load;
  1313. return 0;
  1314. }
  1315. static void update_h_load(long cpu)
  1316. {
  1317. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1318. }
  1319. #endif
  1320. #ifdef CONFIG_PREEMPT
  1321. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1322. /*
  1323. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1324. * way at the expense of forcing extra atomic operations in all
  1325. * invocations. This assures that the double_lock is acquired using the
  1326. * same underlying policy as the spinlock_t on this architecture, which
  1327. * reduces latency compared to the unfair variant below. However, it
  1328. * also adds more overhead and therefore may reduce throughput.
  1329. */
  1330. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1331. __releases(this_rq->lock)
  1332. __acquires(busiest->lock)
  1333. __acquires(this_rq->lock)
  1334. {
  1335. raw_spin_unlock(&this_rq->lock);
  1336. double_rq_lock(this_rq, busiest);
  1337. return 1;
  1338. }
  1339. #else
  1340. /*
  1341. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1342. * latency by eliminating extra atomic operations when the locks are
  1343. * already in proper order on entry. This favors lower cpu-ids and will
  1344. * grant the double lock to lower cpus over higher ids under contention,
  1345. * regardless of entry order into the function.
  1346. */
  1347. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1348. __releases(this_rq->lock)
  1349. __acquires(busiest->lock)
  1350. __acquires(this_rq->lock)
  1351. {
  1352. int ret = 0;
  1353. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1354. if (busiest < this_rq) {
  1355. raw_spin_unlock(&this_rq->lock);
  1356. raw_spin_lock(&busiest->lock);
  1357. raw_spin_lock_nested(&this_rq->lock,
  1358. SINGLE_DEPTH_NESTING);
  1359. ret = 1;
  1360. } else
  1361. raw_spin_lock_nested(&busiest->lock,
  1362. SINGLE_DEPTH_NESTING);
  1363. }
  1364. return ret;
  1365. }
  1366. #endif /* CONFIG_PREEMPT */
  1367. /*
  1368. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1369. */
  1370. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1371. {
  1372. if (unlikely(!irqs_disabled())) {
  1373. /* printk() doesn't work good under rq->lock */
  1374. raw_spin_unlock(&this_rq->lock);
  1375. BUG_ON(1);
  1376. }
  1377. return _double_lock_balance(this_rq, busiest);
  1378. }
  1379. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1380. __releases(busiest->lock)
  1381. {
  1382. raw_spin_unlock(&busiest->lock);
  1383. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1384. }
  1385. /*
  1386. * double_rq_lock - safely lock two runqueues
  1387. *
  1388. * Note this does not disable interrupts like task_rq_lock,
  1389. * you need to do so manually before calling.
  1390. */
  1391. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1392. __acquires(rq1->lock)
  1393. __acquires(rq2->lock)
  1394. {
  1395. BUG_ON(!irqs_disabled());
  1396. if (rq1 == rq2) {
  1397. raw_spin_lock(&rq1->lock);
  1398. __acquire(rq2->lock); /* Fake it out ;) */
  1399. } else {
  1400. if (rq1 < rq2) {
  1401. raw_spin_lock(&rq1->lock);
  1402. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1403. } else {
  1404. raw_spin_lock(&rq2->lock);
  1405. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1406. }
  1407. }
  1408. }
  1409. /*
  1410. * double_rq_unlock - safely unlock two runqueues
  1411. *
  1412. * Note this does not restore interrupts like task_rq_unlock,
  1413. * you need to do so manually after calling.
  1414. */
  1415. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1416. __releases(rq1->lock)
  1417. __releases(rq2->lock)
  1418. {
  1419. raw_spin_unlock(&rq1->lock);
  1420. if (rq1 != rq2)
  1421. raw_spin_unlock(&rq2->lock);
  1422. else
  1423. __release(rq2->lock);
  1424. }
  1425. #else /* CONFIG_SMP */
  1426. /*
  1427. * double_rq_lock - safely lock two runqueues
  1428. *
  1429. * Note this does not disable interrupts like task_rq_lock,
  1430. * you need to do so manually before calling.
  1431. */
  1432. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1433. __acquires(rq1->lock)
  1434. __acquires(rq2->lock)
  1435. {
  1436. BUG_ON(!irqs_disabled());
  1437. BUG_ON(rq1 != rq2);
  1438. raw_spin_lock(&rq1->lock);
  1439. __acquire(rq2->lock); /* Fake it out ;) */
  1440. }
  1441. /*
  1442. * double_rq_unlock - safely unlock two runqueues
  1443. *
  1444. * Note this does not restore interrupts like task_rq_unlock,
  1445. * you need to do so manually after calling.
  1446. */
  1447. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1448. __releases(rq1->lock)
  1449. __releases(rq2->lock)
  1450. {
  1451. BUG_ON(rq1 != rq2);
  1452. raw_spin_unlock(&rq1->lock);
  1453. __release(rq2->lock);
  1454. }
  1455. #endif
  1456. static void calc_load_account_idle(struct rq *this_rq);
  1457. static void update_sysctl(void);
  1458. static int get_update_sysctl_factor(void);
  1459. static void update_cpu_load(struct rq *this_rq);
  1460. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1461. {
  1462. set_task_rq(p, cpu);
  1463. #ifdef CONFIG_SMP
  1464. /*
  1465. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1466. * successfuly executed on another CPU. We must ensure that updates of
  1467. * per-task data have been completed by this moment.
  1468. */
  1469. smp_wmb();
  1470. task_thread_info(p)->cpu = cpu;
  1471. #endif
  1472. }
  1473. static const struct sched_class rt_sched_class;
  1474. #define sched_class_highest (&stop_sched_class)
  1475. #define for_each_class(class) \
  1476. for (class = sched_class_highest; class; class = class->next)
  1477. #include "sched_stats.h"
  1478. static void inc_nr_running(struct rq *rq)
  1479. {
  1480. rq->nr_running++;
  1481. }
  1482. static void dec_nr_running(struct rq *rq)
  1483. {
  1484. rq->nr_running--;
  1485. }
  1486. static void set_load_weight(struct task_struct *p)
  1487. {
  1488. /*
  1489. * SCHED_IDLE tasks get minimal weight:
  1490. */
  1491. if (p->policy == SCHED_IDLE) {
  1492. p->se.load.weight = WEIGHT_IDLEPRIO;
  1493. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1494. return;
  1495. }
  1496. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1497. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1498. }
  1499. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1500. {
  1501. update_rq_clock(rq);
  1502. sched_info_queued(p);
  1503. p->sched_class->enqueue_task(rq, p, flags);
  1504. }
  1505. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1506. {
  1507. update_rq_clock(rq);
  1508. sched_info_dequeued(p);
  1509. p->sched_class->dequeue_task(rq, p, flags);
  1510. }
  1511. /*
  1512. * activate_task - move a task to the runqueue.
  1513. */
  1514. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1515. {
  1516. if (task_contributes_to_load(p))
  1517. rq->nr_uninterruptible--;
  1518. enqueue_task(rq, p, flags);
  1519. inc_nr_running(rq);
  1520. }
  1521. /*
  1522. * deactivate_task - remove a task from the runqueue.
  1523. */
  1524. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1525. {
  1526. if (task_contributes_to_load(p))
  1527. rq->nr_uninterruptible++;
  1528. dequeue_task(rq, p, flags);
  1529. dec_nr_running(rq);
  1530. }
  1531. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1532. /*
  1533. * There are no locks covering percpu hardirq/softirq time.
  1534. * They are only modified in account_system_vtime, on corresponding CPU
  1535. * with interrupts disabled. So, writes are safe.
  1536. * They are read and saved off onto struct rq in update_rq_clock().
  1537. * This may result in other CPU reading this CPU's irq time and can
  1538. * race with irq/account_system_vtime on this CPU. We would either get old
  1539. * or new value with a side effect of accounting a slice of irq time to wrong
  1540. * task when irq is in progress while we read rq->clock. That is a worthy
  1541. * compromise in place of having locks on each irq in account_system_time.
  1542. */
  1543. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1544. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1545. static DEFINE_PER_CPU(u64, irq_start_time);
  1546. static int sched_clock_irqtime;
  1547. void enable_sched_clock_irqtime(void)
  1548. {
  1549. sched_clock_irqtime = 1;
  1550. }
  1551. void disable_sched_clock_irqtime(void)
  1552. {
  1553. sched_clock_irqtime = 0;
  1554. }
  1555. #ifndef CONFIG_64BIT
  1556. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1557. static inline void irq_time_write_begin(void)
  1558. {
  1559. __this_cpu_inc(irq_time_seq.sequence);
  1560. smp_wmb();
  1561. }
  1562. static inline void irq_time_write_end(void)
  1563. {
  1564. smp_wmb();
  1565. __this_cpu_inc(irq_time_seq.sequence);
  1566. }
  1567. static inline u64 irq_time_read(int cpu)
  1568. {
  1569. u64 irq_time;
  1570. unsigned seq;
  1571. do {
  1572. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1573. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1574. per_cpu(cpu_hardirq_time, cpu);
  1575. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1576. return irq_time;
  1577. }
  1578. #else /* CONFIG_64BIT */
  1579. static inline void irq_time_write_begin(void)
  1580. {
  1581. }
  1582. static inline void irq_time_write_end(void)
  1583. {
  1584. }
  1585. static inline u64 irq_time_read(int cpu)
  1586. {
  1587. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1588. }
  1589. #endif /* CONFIG_64BIT */
  1590. /*
  1591. * Called before incrementing preempt_count on {soft,}irq_enter
  1592. * and before decrementing preempt_count on {soft,}irq_exit.
  1593. */
  1594. void account_system_vtime(struct task_struct *curr)
  1595. {
  1596. unsigned long flags;
  1597. s64 delta;
  1598. int cpu;
  1599. if (!sched_clock_irqtime)
  1600. return;
  1601. local_irq_save(flags);
  1602. cpu = smp_processor_id();
  1603. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1604. __this_cpu_add(irq_start_time, delta);
  1605. irq_time_write_begin();
  1606. /*
  1607. * We do not account for softirq time from ksoftirqd here.
  1608. * We want to continue accounting softirq time to ksoftirqd thread
  1609. * in that case, so as not to confuse scheduler with a special task
  1610. * that do not consume any time, but still wants to run.
  1611. */
  1612. if (hardirq_count())
  1613. __this_cpu_add(cpu_hardirq_time, delta);
  1614. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1615. __this_cpu_add(cpu_softirq_time, delta);
  1616. irq_time_write_end();
  1617. local_irq_restore(flags);
  1618. }
  1619. EXPORT_SYMBOL_GPL(account_system_vtime);
  1620. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1621. {
  1622. s64 irq_delta;
  1623. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1624. /*
  1625. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1626. * this case when a previous update_rq_clock() happened inside a
  1627. * {soft,}irq region.
  1628. *
  1629. * When this happens, we stop ->clock_task and only update the
  1630. * prev_irq_time stamp to account for the part that fit, so that a next
  1631. * update will consume the rest. This ensures ->clock_task is
  1632. * monotonic.
  1633. *
  1634. * It does however cause some slight miss-attribution of {soft,}irq
  1635. * time, a more accurate solution would be to update the irq_time using
  1636. * the current rq->clock timestamp, except that would require using
  1637. * atomic ops.
  1638. */
  1639. if (irq_delta > delta)
  1640. irq_delta = delta;
  1641. rq->prev_irq_time += irq_delta;
  1642. delta -= irq_delta;
  1643. rq->clock_task += delta;
  1644. if (irq_delta && sched_feat(NONIRQ_POWER))
  1645. sched_rt_avg_update(rq, irq_delta);
  1646. }
  1647. static int irqtime_account_hi_update(void)
  1648. {
  1649. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1650. unsigned long flags;
  1651. u64 latest_ns;
  1652. int ret = 0;
  1653. local_irq_save(flags);
  1654. latest_ns = this_cpu_read(cpu_hardirq_time);
  1655. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1656. ret = 1;
  1657. local_irq_restore(flags);
  1658. return ret;
  1659. }
  1660. static int irqtime_account_si_update(void)
  1661. {
  1662. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1663. unsigned long flags;
  1664. u64 latest_ns;
  1665. int ret = 0;
  1666. local_irq_save(flags);
  1667. latest_ns = this_cpu_read(cpu_softirq_time);
  1668. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1669. ret = 1;
  1670. local_irq_restore(flags);
  1671. return ret;
  1672. }
  1673. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1674. #define sched_clock_irqtime (0)
  1675. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1676. {
  1677. rq->clock_task += delta;
  1678. }
  1679. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1680. #include "sched_idletask.c"
  1681. #include "sched_fair.c"
  1682. #include "sched_rt.c"
  1683. #include "sched_autogroup.c"
  1684. #include "sched_stoptask.c"
  1685. #ifdef CONFIG_SCHED_DEBUG
  1686. # include "sched_debug.c"
  1687. #endif
  1688. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1689. {
  1690. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1691. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1692. if (stop) {
  1693. /*
  1694. * Make it appear like a SCHED_FIFO task, its something
  1695. * userspace knows about and won't get confused about.
  1696. *
  1697. * Also, it will make PI more or less work without too
  1698. * much confusion -- but then, stop work should not
  1699. * rely on PI working anyway.
  1700. */
  1701. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1702. stop->sched_class = &stop_sched_class;
  1703. }
  1704. cpu_rq(cpu)->stop = stop;
  1705. if (old_stop) {
  1706. /*
  1707. * Reset it back to a normal scheduling class so that
  1708. * it can die in pieces.
  1709. */
  1710. old_stop->sched_class = &rt_sched_class;
  1711. }
  1712. }
  1713. /*
  1714. * __normal_prio - return the priority that is based on the static prio
  1715. */
  1716. static inline int __normal_prio(struct task_struct *p)
  1717. {
  1718. return p->static_prio;
  1719. }
  1720. /*
  1721. * Calculate the expected normal priority: i.e. priority
  1722. * without taking RT-inheritance into account. Might be
  1723. * boosted by interactivity modifiers. Changes upon fork,
  1724. * setprio syscalls, and whenever the interactivity
  1725. * estimator recalculates.
  1726. */
  1727. static inline int normal_prio(struct task_struct *p)
  1728. {
  1729. int prio;
  1730. if (task_has_rt_policy(p))
  1731. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1732. else
  1733. prio = __normal_prio(p);
  1734. return prio;
  1735. }
  1736. /*
  1737. * Calculate the current priority, i.e. the priority
  1738. * taken into account by the scheduler. This value might
  1739. * be boosted by RT tasks, or might be boosted by
  1740. * interactivity modifiers. Will be RT if the task got
  1741. * RT-boosted. If not then it returns p->normal_prio.
  1742. */
  1743. static int effective_prio(struct task_struct *p)
  1744. {
  1745. p->normal_prio = normal_prio(p);
  1746. /*
  1747. * If we are RT tasks or we were boosted to RT priority,
  1748. * keep the priority unchanged. Otherwise, update priority
  1749. * to the normal priority:
  1750. */
  1751. if (!rt_prio(p->prio))
  1752. return p->normal_prio;
  1753. return p->prio;
  1754. }
  1755. /**
  1756. * task_curr - is this task currently executing on a CPU?
  1757. * @p: the task in question.
  1758. */
  1759. inline int task_curr(const struct task_struct *p)
  1760. {
  1761. return cpu_curr(task_cpu(p)) == p;
  1762. }
  1763. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1764. const struct sched_class *prev_class,
  1765. int oldprio)
  1766. {
  1767. if (prev_class != p->sched_class) {
  1768. if (prev_class->switched_from)
  1769. prev_class->switched_from(rq, p);
  1770. p->sched_class->switched_to(rq, p);
  1771. } else if (oldprio != p->prio)
  1772. p->sched_class->prio_changed(rq, p, oldprio);
  1773. }
  1774. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1775. {
  1776. const struct sched_class *class;
  1777. if (p->sched_class == rq->curr->sched_class) {
  1778. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1779. } else {
  1780. for_each_class(class) {
  1781. if (class == rq->curr->sched_class)
  1782. break;
  1783. if (class == p->sched_class) {
  1784. resched_task(rq->curr);
  1785. break;
  1786. }
  1787. }
  1788. }
  1789. /*
  1790. * A queue event has occurred, and we're going to schedule. In
  1791. * this case, we can save a useless back to back clock update.
  1792. */
  1793. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1794. rq->skip_clock_update = 1;
  1795. }
  1796. #ifdef CONFIG_SMP
  1797. /*
  1798. * Is this task likely cache-hot:
  1799. */
  1800. static int
  1801. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1802. {
  1803. s64 delta;
  1804. if (p->sched_class != &fair_sched_class)
  1805. return 0;
  1806. if (unlikely(p->policy == SCHED_IDLE))
  1807. return 0;
  1808. /*
  1809. * Buddy candidates are cache hot:
  1810. */
  1811. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1812. (&p->se == cfs_rq_of(&p->se)->next ||
  1813. &p->se == cfs_rq_of(&p->se)->last))
  1814. return 1;
  1815. if (sysctl_sched_migration_cost == -1)
  1816. return 1;
  1817. if (sysctl_sched_migration_cost == 0)
  1818. return 0;
  1819. delta = now - p->se.exec_start;
  1820. return delta < (s64)sysctl_sched_migration_cost;
  1821. }
  1822. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1823. {
  1824. #ifdef CONFIG_SCHED_DEBUG
  1825. /*
  1826. * We should never call set_task_cpu() on a blocked task,
  1827. * ttwu() will sort out the placement.
  1828. */
  1829. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1830. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1831. #endif
  1832. trace_sched_migrate_task(p, new_cpu);
  1833. if (task_cpu(p) != new_cpu) {
  1834. p->se.nr_migrations++;
  1835. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1836. }
  1837. __set_task_cpu(p, new_cpu);
  1838. }
  1839. struct migration_arg {
  1840. struct task_struct *task;
  1841. int dest_cpu;
  1842. };
  1843. static int migration_cpu_stop(void *data);
  1844. /*
  1845. * The task's runqueue lock must be held.
  1846. * Returns true if you have to wait for migration thread.
  1847. */
  1848. static bool need_migrate_task(struct task_struct *p)
  1849. {
  1850. /*
  1851. * If the task is not on a runqueue (and not running), then
  1852. * the next wake-up will properly place the task.
  1853. */
  1854. bool running = p->on_rq || p->on_cpu;
  1855. smp_rmb(); /* finish_lock_switch() */
  1856. return running;
  1857. }
  1858. /*
  1859. * wait_task_inactive - wait for a thread to unschedule.
  1860. *
  1861. * If @match_state is nonzero, it's the @p->state value just checked and
  1862. * not expected to change. If it changes, i.e. @p might have woken up,
  1863. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1864. * we return a positive number (its total switch count). If a second call
  1865. * a short while later returns the same number, the caller can be sure that
  1866. * @p has remained unscheduled the whole time.
  1867. *
  1868. * The caller must ensure that the task *will* unschedule sometime soon,
  1869. * else this function might spin for a *long* time. This function can't
  1870. * be called with interrupts off, or it may introduce deadlock with
  1871. * smp_call_function() if an IPI is sent by the same process we are
  1872. * waiting to become inactive.
  1873. */
  1874. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1875. {
  1876. unsigned long flags;
  1877. int running, on_rq;
  1878. unsigned long ncsw;
  1879. struct rq *rq;
  1880. for (;;) {
  1881. /*
  1882. * We do the initial early heuristics without holding
  1883. * any task-queue locks at all. We'll only try to get
  1884. * the runqueue lock when things look like they will
  1885. * work out!
  1886. */
  1887. rq = task_rq(p);
  1888. /*
  1889. * If the task is actively running on another CPU
  1890. * still, just relax and busy-wait without holding
  1891. * any locks.
  1892. *
  1893. * NOTE! Since we don't hold any locks, it's not
  1894. * even sure that "rq" stays as the right runqueue!
  1895. * But we don't care, since "task_running()" will
  1896. * return false if the runqueue has changed and p
  1897. * is actually now running somewhere else!
  1898. */
  1899. while (task_running(rq, p)) {
  1900. if (match_state && unlikely(p->state != match_state))
  1901. return 0;
  1902. cpu_relax();
  1903. }
  1904. /*
  1905. * Ok, time to look more closely! We need the rq
  1906. * lock now, to be *sure*. If we're wrong, we'll
  1907. * just go back and repeat.
  1908. */
  1909. rq = task_rq_lock(p, &flags);
  1910. trace_sched_wait_task(p);
  1911. running = task_running(rq, p);
  1912. on_rq = p->on_rq;
  1913. ncsw = 0;
  1914. if (!match_state || p->state == match_state)
  1915. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1916. task_rq_unlock(rq, &flags);
  1917. /*
  1918. * If it changed from the expected state, bail out now.
  1919. */
  1920. if (unlikely(!ncsw))
  1921. break;
  1922. /*
  1923. * Was it really running after all now that we
  1924. * checked with the proper locks actually held?
  1925. *
  1926. * Oops. Go back and try again..
  1927. */
  1928. if (unlikely(running)) {
  1929. cpu_relax();
  1930. continue;
  1931. }
  1932. /*
  1933. * It's not enough that it's not actively running,
  1934. * it must be off the runqueue _entirely_, and not
  1935. * preempted!
  1936. *
  1937. * So if it was still runnable (but just not actively
  1938. * running right now), it's preempted, and we should
  1939. * yield - it could be a while.
  1940. */
  1941. if (unlikely(on_rq)) {
  1942. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1943. set_current_state(TASK_UNINTERRUPTIBLE);
  1944. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1945. continue;
  1946. }
  1947. /*
  1948. * Ahh, all good. It wasn't running, and it wasn't
  1949. * runnable, which means that it will never become
  1950. * running in the future either. We're all done!
  1951. */
  1952. break;
  1953. }
  1954. return ncsw;
  1955. }
  1956. /***
  1957. * kick_process - kick a running thread to enter/exit the kernel
  1958. * @p: the to-be-kicked thread
  1959. *
  1960. * Cause a process which is running on another CPU to enter
  1961. * kernel-mode, without any delay. (to get signals handled.)
  1962. *
  1963. * NOTE: this function doesn't have to take the runqueue lock,
  1964. * because all it wants to ensure is that the remote task enters
  1965. * the kernel. If the IPI races and the task has been migrated
  1966. * to another CPU then no harm is done and the purpose has been
  1967. * achieved as well.
  1968. */
  1969. void kick_process(struct task_struct *p)
  1970. {
  1971. int cpu;
  1972. preempt_disable();
  1973. cpu = task_cpu(p);
  1974. if ((cpu != smp_processor_id()) && task_curr(p))
  1975. smp_send_reschedule(cpu);
  1976. preempt_enable();
  1977. }
  1978. EXPORT_SYMBOL_GPL(kick_process);
  1979. #endif /* CONFIG_SMP */
  1980. #ifdef CONFIG_SMP
  1981. /*
  1982. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1983. */
  1984. static int select_fallback_rq(int cpu, struct task_struct *p)
  1985. {
  1986. int dest_cpu;
  1987. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1988. /* Look for allowed, online CPU in same node. */
  1989. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1990. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1991. return dest_cpu;
  1992. /* Any allowed, online CPU? */
  1993. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1994. if (dest_cpu < nr_cpu_ids)
  1995. return dest_cpu;
  1996. /* No more Mr. Nice Guy. */
  1997. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1998. /*
  1999. * Don't tell them about moving exiting tasks or
  2000. * kernel threads (both mm NULL), since they never
  2001. * leave kernel.
  2002. */
  2003. if (p->mm && printk_ratelimit()) {
  2004. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2005. task_pid_nr(p), p->comm, cpu);
  2006. }
  2007. return dest_cpu;
  2008. }
  2009. /*
  2010. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2011. */
  2012. static inline
  2013. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2014. {
  2015. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2016. /*
  2017. * In order not to call set_task_cpu() on a blocking task we need
  2018. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2019. * cpu.
  2020. *
  2021. * Since this is common to all placement strategies, this lives here.
  2022. *
  2023. * [ this allows ->select_task() to simply return task_cpu(p) and
  2024. * not worry about this generic constraint ]
  2025. */
  2026. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2027. !cpu_online(cpu)))
  2028. cpu = select_fallback_rq(task_cpu(p), p);
  2029. return cpu;
  2030. }
  2031. static void update_avg(u64 *avg, u64 sample)
  2032. {
  2033. s64 diff = sample - *avg;
  2034. *avg += diff >> 3;
  2035. }
  2036. #endif
  2037. static void
  2038. ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
  2039. {
  2040. #ifdef CONFIG_SCHEDSTATS
  2041. #ifdef CONFIG_SMP
  2042. int this_cpu = smp_processor_id();
  2043. if (cpu == this_cpu) {
  2044. schedstat_inc(rq, ttwu_local);
  2045. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2046. } else {
  2047. struct sched_domain *sd;
  2048. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2049. for_each_domain(this_cpu, sd) {
  2050. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2051. schedstat_inc(sd, ttwu_wake_remote);
  2052. break;
  2053. }
  2054. }
  2055. }
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(rq, ttwu_count);
  2058. schedstat_inc(p, se.statistics.nr_wakeups);
  2059. if (wake_flags & WF_SYNC)
  2060. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2061. if (cpu != task_cpu(p))
  2062. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2063. #endif /* CONFIG_SCHEDSTATS */
  2064. }
  2065. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2066. {
  2067. activate_task(rq, p, en_flags);
  2068. p->on_rq = 1;
  2069. /* if a worker is waking up, notify workqueue */
  2070. if (p->flags & PF_WQ_WORKER)
  2071. wq_worker_waking_up(p, cpu_of(rq));
  2072. }
  2073. static void
  2074. ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
  2075. {
  2076. trace_sched_wakeup(p, true);
  2077. check_preempt_curr(rq, p, wake_flags);
  2078. p->state = TASK_RUNNING;
  2079. #ifdef CONFIG_SMP
  2080. if (p->sched_class->task_woken)
  2081. p->sched_class->task_woken(rq, p);
  2082. if (unlikely(rq->idle_stamp)) {
  2083. u64 delta = rq->clock - rq->idle_stamp;
  2084. u64 max = 2*sysctl_sched_migration_cost;
  2085. if (delta > max)
  2086. rq->avg_idle = max;
  2087. else
  2088. update_avg(&rq->avg_idle, delta);
  2089. rq->idle_stamp = 0;
  2090. }
  2091. #endif
  2092. }
  2093. /**
  2094. * try_to_wake_up - wake up a thread
  2095. * @p: the thread to be awakened
  2096. * @state: the mask of task states that can be woken
  2097. * @wake_flags: wake modifier flags (WF_*)
  2098. *
  2099. * Put it on the run-queue if it's not already there. The "current"
  2100. * thread is always on the run-queue (except when the actual
  2101. * re-schedule is in progress), and as such you're allowed to do
  2102. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2103. * runnable without the overhead of this.
  2104. *
  2105. * Returns %true if @p was woken up, %false if it was already running
  2106. * or @state didn't match @p's state.
  2107. */
  2108. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2109. int wake_flags)
  2110. {
  2111. int cpu, orig_cpu, this_cpu, success = 0;
  2112. unsigned long flags;
  2113. unsigned long en_flags = ENQUEUE_WAKEUP;
  2114. struct rq *rq;
  2115. this_cpu = get_cpu();
  2116. smp_wmb();
  2117. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2118. rq = __task_rq_lock(p);
  2119. if (!(p->state & state))
  2120. goto out;
  2121. cpu = task_cpu(p);
  2122. if (p->on_rq)
  2123. goto out_running;
  2124. orig_cpu = cpu;
  2125. #ifdef CONFIG_SMP
  2126. if (unlikely(task_running(rq, p)))
  2127. goto out_activate;
  2128. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2129. p->state = TASK_WAKING;
  2130. if (p->sched_class->task_waking) {
  2131. p->sched_class->task_waking(p);
  2132. en_flags |= ENQUEUE_WAKING;
  2133. }
  2134. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2135. if (cpu != orig_cpu)
  2136. set_task_cpu(p, cpu);
  2137. __task_rq_unlock(rq);
  2138. rq = cpu_rq(cpu);
  2139. raw_spin_lock(&rq->lock);
  2140. /*
  2141. * We migrated the task without holding either rq->lock, however
  2142. * since the task is not on the task list itself, nobody else
  2143. * will try and migrate the task, hence the rq should match the
  2144. * cpu we just moved it to.
  2145. */
  2146. WARN_ON(task_cpu(p) != cpu);
  2147. WARN_ON(p->state != TASK_WAKING);
  2148. if (p->sched_contributes_to_load)
  2149. rq->nr_uninterruptible--;
  2150. out_activate:
  2151. #endif /* CONFIG_SMP */
  2152. ttwu_activate(rq, p, en_flags);
  2153. out_running:
  2154. ttwu_post_activation(p, rq, wake_flags);
  2155. ttwu_stat(rq, p, cpu, wake_flags);
  2156. success = 1;
  2157. out:
  2158. __task_rq_unlock(rq);
  2159. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2160. put_cpu();
  2161. return success;
  2162. }
  2163. /**
  2164. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2165. * @p: the thread to be awakened
  2166. *
  2167. * Put @p on the run-queue if it's not already there. The caller must
  2168. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2169. * the current task. this_rq() stays locked over invocation.
  2170. */
  2171. static void try_to_wake_up_local(struct task_struct *p)
  2172. {
  2173. struct rq *rq = task_rq(p);
  2174. BUG_ON(rq != this_rq());
  2175. BUG_ON(p == current);
  2176. lockdep_assert_held(&rq->lock);
  2177. if (!(p->state & TASK_NORMAL))
  2178. return;
  2179. if (!p->on_rq)
  2180. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2181. ttwu_post_activation(p, rq, 0);
  2182. ttwu_stat(rq, p, smp_processor_id(), 0);
  2183. }
  2184. /**
  2185. * wake_up_process - Wake up a specific process
  2186. * @p: The process to be woken up.
  2187. *
  2188. * Attempt to wake up the nominated process and move it to the set of runnable
  2189. * processes. Returns 1 if the process was woken up, 0 if it was already
  2190. * running.
  2191. *
  2192. * It may be assumed that this function implies a write memory barrier before
  2193. * changing the task state if and only if any tasks are woken up.
  2194. */
  2195. int wake_up_process(struct task_struct *p)
  2196. {
  2197. return try_to_wake_up(p, TASK_ALL, 0);
  2198. }
  2199. EXPORT_SYMBOL(wake_up_process);
  2200. int wake_up_state(struct task_struct *p, unsigned int state)
  2201. {
  2202. return try_to_wake_up(p, state, 0);
  2203. }
  2204. /*
  2205. * Perform scheduler related setup for a newly forked process p.
  2206. * p is forked by current.
  2207. *
  2208. * __sched_fork() is basic setup used by init_idle() too:
  2209. */
  2210. static void __sched_fork(struct task_struct *p)
  2211. {
  2212. p->on_rq = 0;
  2213. p->se.on_rq = 0;
  2214. p->se.exec_start = 0;
  2215. p->se.sum_exec_runtime = 0;
  2216. p->se.prev_sum_exec_runtime = 0;
  2217. p->se.nr_migrations = 0;
  2218. p->se.vruntime = 0;
  2219. INIT_LIST_HEAD(&p->se.group_node);
  2220. #ifdef CONFIG_SCHEDSTATS
  2221. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2222. #endif
  2223. INIT_LIST_HEAD(&p->rt.run_list);
  2224. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2225. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2226. #endif
  2227. }
  2228. /*
  2229. * fork()/clone()-time setup:
  2230. */
  2231. void sched_fork(struct task_struct *p, int clone_flags)
  2232. {
  2233. int cpu = get_cpu();
  2234. __sched_fork(p);
  2235. /*
  2236. * We mark the process as running here. This guarantees that
  2237. * nobody will actually run it, and a signal or other external
  2238. * event cannot wake it up and insert it on the runqueue either.
  2239. */
  2240. p->state = TASK_RUNNING;
  2241. /*
  2242. * Revert to default priority/policy on fork if requested.
  2243. */
  2244. if (unlikely(p->sched_reset_on_fork)) {
  2245. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2246. p->policy = SCHED_NORMAL;
  2247. p->normal_prio = p->static_prio;
  2248. }
  2249. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2250. p->static_prio = NICE_TO_PRIO(0);
  2251. p->normal_prio = p->static_prio;
  2252. set_load_weight(p);
  2253. }
  2254. /*
  2255. * We don't need the reset flag anymore after the fork. It has
  2256. * fulfilled its duty:
  2257. */
  2258. p->sched_reset_on_fork = 0;
  2259. }
  2260. /*
  2261. * Make sure we do not leak PI boosting priority to the child.
  2262. */
  2263. p->prio = current->normal_prio;
  2264. if (!rt_prio(p->prio))
  2265. p->sched_class = &fair_sched_class;
  2266. if (p->sched_class->task_fork)
  2267. p->sched_class->task_fork(p);
  2268. /*
  2269. * The child is not yet in the pid-hash so no cgroup attach races,
  2270. * and the cgroup is pinned to this child due to cgroup_fork()
  2271. * is ran before sched_fork().
  2272. *
  2273. * Silence PROVE_RCU.
  2274. */
  2275. rcu_read_lock();
  2276. set_task_cpu(p, cpu);
  2277. rcu_read_unlock();
  2278. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2279. if (likely(sched_info_on()))
  2280. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2281. #endif
  2282. #if defined(CONFIG_SMP)
  2283. p->on_cpu = 0;
  2284. #endif
  2285. #ifdef CONFIG_PREEMPT
  2286. /* Want to start with kernel preemption disabled. */
  2287. task_thread_info(p)->preempt_count = 1;
  2288. #endif
  2289. #ifdef CONFIG_SMP
  2290. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2291. #endif
  2292. put_cpu();
  2293. }
  2294. /*
  2295. * wake_up_new_task - wake up a newly created task for the first time.
  2296. *
  2297. * This function will do some initial scheduler statistics housekeeping
  2298. * that must be done for every newly created context, then puts the task
  2299. * on the runqueue and wakes it.
  2300. */
  2301. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2302. {
  2303. unsigned long flags;
  2304. struct rq *rq;
  2305. int cpu __maybe_unused = get_cpu();
  2306. #ifdef CONFIG_SMP
  2307. rq = task_rq_lock(p, &flags);
  2308. p->state = TASK_WAKING;
  2309. /*
  2310. * Fork balancing, do it here and not earlier because:
  2311. * - cpus_allowed can change in the fork path
  2312. * - any previously selected cpu might disappear through hotplug
  2313. *
  2314. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2315. * without people poking at ->cpus_allowed.
  2316. */
  2317. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2318. set_task_cpu(p, cpu);
  2319. p->state = TASK_RUNNING;
  2320. task_rq_unlock(rq, &flags);
  2321. #endif
  2322. rq = task_rq_lock(p, &flags);
  2323. activate_task(rq, p, 0);
  2324. p->on_rq = 1;
  2325. trace_sched_wakeup_new(p, true);
  2326. check_preempt_curr(rq, p, WF_FORK);
  2327. #ifdef CONFIG_SMP
  2328. if (p->sched_class->task_woken)
  2329. p->sched_class->task_woken(rq, p);
  2330. #endif
  2331. task_rq_unlock(rq, &flags);
  2332. put_cpu();
  2333. }
  2334. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2335. /**
  2336. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2337. * @notifier: notifier struct to register
  2338. */
  2339. void preempt_notifier_register(struct preempt_notifier *notifier)
  2340. {
  2341. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2342. }
  2343. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2344. /**
  2345. * preempt_notifier_unregister - no longer interested in preemption notifications
  2346. * @notifier: notifier struct to unregister
  2347. *
  2348. * This is safe to call from within a preemption notifier.
  2349. */
  2350. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2351. {
  2352. hlist_del(&notifier->link);
  2353. }
  2354. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2355. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2356. {
  2357. struct preempt_notifier *notifier;
  2358. struct hlist_node *node;
  2359. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2360. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2361. }
  2362. static void
  2363. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2364. struct task_struct *next)
  2365. {
  2366. struct preempt_notifier *notifier;
  2367. struct hlist_node *node;
  2368. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2369. notifier->ops->sched_out(notifier, next);
  2370. }
  2371. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2372. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2373. {
  2374. }
  2375. static void
  2376. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2377. struct task_struct *next)
  2378. {
  2379. }
  2380. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2381. /**
  2382. * prepare_task_switch - prepare to switch tasks
  2383. * @rq: the runqueue preparing to switch
  2384. * @prev: the current task that is being switched out
  2385. * @next: the task we are going to switch to.
  2386. *
  2387. * This is called with the rq lock held and interrupts off. It must
  2388. * be paired with a subsequent finish_task_switch after the context
  2389. * switch.
  2390. *
  2391. * prepare_task_switch sets up locking and calls architecture specific
  2392. * hooks.
  2393. */
  2394. static inline void
  2395. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2396. struct task_struct *next)
  2397. {
  2398. sched_info_switch(prev, next);
  2399. perf_event_task_sched_out(prev, next);
  2400. fire_sched_out_preempt_notifiers(prev, next);
  2401. prepare_lock_switch(rq, next);
  2402. prepare_arch_switch(next);
  2403. trace_sched_switch(prev, next);
  2404. }
  2405. /**
  2406. * finish_task_switch - clean up after a task-switch
  2407. * @rq: runqueue associated with task-switch
  2408. * @prev: the thread we just switched away from.
  2409. *
  2410. * finish_task_switch must be called after the context switch, paired
  2411. * with a prepare_task_switch call before the context switch.
  2412. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2413. * and do any other architecture-specific cleanup actions.
  2414. *
  2415. * Note that we may have delayed dropping an mm in context_switch(). If
  2416. * so, we finish that here outside of the runqueue lock. (Doing it
  2417. * with the lock held can cause deadlocks; see schedule() for
  2418. * details.)
  2419. */
  2420. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2421. __releases(rq->lock)
  2422. {
  2423. struct mm_struct *mm = rq->prev_mm;
  2424. long prev_state;
  2425. rq->prev_mm = NULL;
  2426. /*
  2427. * A task struct has one reference for the use as "current".
  2428. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2429. * schedule one last time. The schedule call will never return, and
  2430. * the scheduled task must drop that reference.
  2431. * The test for TASK_DEAD must occur while the runqueue locks are
  2432. * still held, otherwise prev could be scheduled on another cpu, die
  2433. * there before we look at prev->state, and then the reference would
  2434. * be dropped twice.
  2435. * Manfred Spraul <manfred@colorfullife.com>
  2436. */
  2437. prev_state = prev->state;
  2438. finish_arch_switch(prev);
  2439. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2440. local_irq_disable();
  2441. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2442. perf_event_task_sched_in(current);
  2443. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2444. local_irq_enable();
  2445. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2446. finish_lock_switch(rq, prev);
  2447. fire_sched_in_preempt_notifiers(current);
  2448. if (mm)
  2449. mmdrop(mm);
  2450. if (unlikely(prev_state == TASK_DEAD)) {
  2451. /*
  2452. * Remove function-return probe instances associated with this
  2453. * task and put them back on the free list.
  2454. */
  2455. kprobe_flush_task(prev);
  2456. put_task_struct(prev);
  2457. }
  2458. }
  2459. #ifdef CONFIG_SMP
  2460. /* assumes rq->lock is held */
  2461. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2462. {
  2463. if (prev->sched_class->pre_schedule)
  2464. prev->sched_class->pre_schedule(rq, prev);
  2465. }
  2466. /* rq->lock is NOT held, but preemption is disabled */
  2467. static inline void post_schedule(struct rq *rq)
  2468. {
  2469. if (rq->post_schedule) {
  2470. unsigned long flags;
  2471. raw_spin_lock_irqsave(&rq->lock, flags);
  2472. if (rq->curr->sched_class->post_schedule)
  2473. rq->curr->sched_class->post_schedule(rq);
  2474. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2475. rq->post_schedule = 0;
  2476. }
  2477. }
  2478. #else
  2479. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2480. {
  2481. }
  2482. static inline void post_schedule(struct rq *rq)
  2483. {
  2484. }
  2485. #endif
  2486. /**
  2487. * schedule_tail - first thing a freshly forked thread must call.
  2488. * @prev: the thread we just switched away from.
  2489. */
  2490. asmlinkage void schedule_tail(struct task_struct *prev)
  2491. __releases(rq->lock)
  2492. {
  2493. struct rq *rq = this_rq();
  2494. finish_task_switch(rq, prev);
  2495. /*
  2496. * FIXME: do we need to worry about rq being invalidated by the
  2497. * task_switch?
  2498. */
  2499. post_schedule(rq);
  2500. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2501. /* In this case, finish_task_switch does not reenable preemption */
  2502. preempt_enable();
  2503. #endif
  2504. if (current->set_child_tid)
  2505. put_user(task_pid_vnr(current), current->set_child_tid);
  2506. }
  2507. /*
  2508. * context_switch - switch to the new MM and the new
  2509. * thread's register state.
  2510. */
  2511. static inline void
  2512. context_switch(struct rq *rq, struct task_struct *prev,
  2513. struct task_struct *next)
  2514. {
  2515. struct mm_struct *mm, *oldmm;
  2516. prepare_task_switch(rq, prev, next);
  2517. mm = next->mm;
  2518. oldmm = prev->active_mm;
  2519. /*
  2520. * For paravirt, this is coupled with an exit in switch_to to
  2521. * combine the page table reload and the switch backend into
  2522. * one hypercall.
  2523. */
  2524. arch_start_context_switch(prev);
  2525. if (!mm) {
  2526. next->active_mm = oldmm;
  2527. atomic_inc(&oldmm->mm_count);
  2528. enter_lazy_tlb(oldmm, next);
  2529. } else
  2530. switch_mm(oldmm, mm, next);
  2531. if (!prev->mm) {
  2532. prev->active_mm = NULL;
  2533. rq->prev_mm = oldmm;
  2534. }
  2535. /*
  2536. * Since the runqueue lock will be released by the next
  2537. * task (which is an invalid locking op but in the case
  2538. * of the scheduler it's an obvious special-case), so we
  2539. * do an early lockdep release here:
  2540. */
  2541. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2542. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2543. #endif
  2544. /* Here we just switch the register state and the stack. */
  2545. switch_to(prev, next, prev);
  2546. barrier();
  2547. /*
  2548. * this_rq must be evaluated again because prev may have moved
  2549. * CPUs since it called schedule(), thus the 'rq' on its stack
  2550. * frame will be invalid.
  2551. */
  2552. finish_task_switch(this_rq(), prev);
  2553. }
  2554. /*
  2555. * nr_running, nr_uninterruptible and nr_context_switches:
  2556. *
  2557. * externally visible scheduler statistics: current number of runnable
  2558. * threads, current number of uninterruptible-sleeping threads, total
  2559. * number of context switches performed since bootup.
  2560. */
  2561. unsigned long nr_running(void)
  2562. {
  2563. unsigned long i, sum = 0;
  2564. for_each_online_cpu(i)
  2565. sum += cpu_rq(i)->nr_running;
  2566. return sum;
  2567. }
  2568. unsigned long nr_uninterruptible(void)
  2569. {
  2570. unsigned long i, sum = 0;
  2571. for_each_possible_cpu(i)
  2572. sum += cpu_rq(i)->nr_uninterruptible;
  2573. /*
  2574. * Since we read the counters lockless, it might be slightly
  2575. * inaccurate. Do not allow it to go below zero though:
  2576. */
  2577. if (unlikely((long)sum < 0))
  2578. sum = 0;
  2579. return sum;
  2580. }
  2581. unsigned long long nr_context_switches(void)
  2582. {
  2583. int i;
  2584. unsigned long long sum = 0;
  2585. for_each_possible_cpu(i)
  2586. sum += cpu_rq(i)->nr_switches;
  2587. return sum;
  2588. }
  2589. unsigned long nr_iowait(void)
  2590. {
  2591. unsigned long i, sum = 0;
  2592. for_each_possible_cpu(i)
  2593. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2594. return sum;
  2595. }
  2596. unsigned long nr_iowait_cpu(int cpu)
  2597. {
  2598. struct rq *this = cpu_rq(cpu);
  2599. return atomic_read(&this->nr_iowait);
  2600. }
  2601. unsigned long this_cpu_load(void)
  2602. {
  2603. struct rq *this = this_rq();
  2604. return this->cpu_load[0];
  2605. }
  2606. /* Variables and functions for calc_load */
  2607. static atomic_long_t calc_load_tasks;
  2608. static unsigned long calc_load_update;
  2609. unsigned long avenrun[3];
  2610. EXPORT_SYMBOL(avenrun);
  2611. static long calc_load_fold_active(struct rq *this_rq)
  2612. {
  2613. long nr_active, delta = 0;
  2614. nr_active = this_rq->nr_running;
  2615. nr_active += (long) this_rq->nr_uninterruptible;
  2616. if (nr_active != this_rq->calc_load_active) {
  2617. delta = nr_active - this_rq->calc_load_active;
  2618. this_rq->calc_load_active = nr_active;
  2619. }
  2620. return delta;
  2621. }
  2622. static unsigned long
  2623. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2624. {
  2625. load *= exp;
  2626. load += active * (FIXED_1 - exp);
  2627. load += 1UL << (FSHIFT - 1);
  2628. return load >> FSHIFT;
  2629. }
  2630. #ifdef CONFIG_NO_HZ
  2631. /*
  2632. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2633. *
  2634. * When making the ILB scale, we should try to pull this in as well.
  2635. */
  2636. static atomic_long_t calc_load_tasks_idle;
  2637. static void calc_load_account_idle(struct rq *this_rq)
  2638. {
  2639. long delta;
  2640. delta = calc_load_fold_active(this_rq);
  2641. if (delta)
  2642. atomic_long_add(delta, &calc_load_tasks_idle);
  2643. }
  2644. static long calc_load_fold_idle(void)
  2645. {
  2646. long delta = 0;
  2647. /*
  2648. * Its got a race, we don't care...
  2649. */
  2650. if (atomic_long_read(&calc_load_tasks_idle))
  2651. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2652. return delta;
  2653. }
  2654. /**
  2655. * fixed_power_int - compute: x^n, in O(log n) time
  2656. *
  2657. * @x: base of the power
  2658. * @frac_bits: fractional bits of @x
  2659. * @n: power to raise @x to.
  2660. *
  2661. * By exploiting the relation between the definition of the natural power
  2662. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2663. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2664. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2665. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2666. * of course trivially computable in O(log_2 n), the length of our binary
  2667. * vector.
  2668. */
  2669. static unsigned long
  2670. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2671. {
  2672. unsigned long result = 1UL << frac_bits;
  2673. if (n) for (;;) {
  2674. if (n & 1) {
  2675. result *= x;
  2676. result += 1UL << (frac_bits - 1);
  2677. result >>= frac_bits;
  2678. }
  2679. n >>= 1;
  2680. if (!n)
  2681. break;
  2682. x *= x;
  2683. x += 1UL << (frac_bits - 1);
  2684. x >>= frac_bits;
  2685. }
  2686. return result;
  2687. }
  2688. /*
  2689. * a1 = a0 * e + a * (1 - e)
  2690. *
  2691. * a2 = a1 * e + a * (1 - e)
  2692. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2693. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2694. *
  2695. * a3 = a2 * e + a * (1 - e)
  2696. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2697. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2698. *
  2699. * ...
  2700. *
  2701. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2702. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2703. * = a0 * e^n + a * (1 - e^n)
  2704. *
  2705. * [1] application of the geometric series:
  2706. *
  2707. * n 1 - x^(n+1)
  2708. * S_n := \Sum x^i = -------------
  2709. * i=0 1 - x
  2710. */
  2711. static unsigned long
  2712. calc_load_n(unsigned long load, unsigned long exp,
  2713. unsigned long active, unsigned int n)
  2714. {
  2715. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2716. }
  2717. /*
  2718. * NO_HZ can leave us missing all per-cpu ticks calling
  2719. * calc_load_account_active(), but since an idle CPU folds its delta into
  2720. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2721. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2722. *
  2723. * Once we've updated the global active value, we need to apply the exponential
  2724. * weights adjusted to the number of cycles missed.
  2725. */
  2726. static void calc_global_nohz(unsigned long ticks)
  2727. {
  2728. long delta, active, n;
  2729. if (time_before(jiffies, calc_load_update))
  2730. return;
  2731. /*
  2732. * If we crossed a calc_load_update boundary, make sure to fold
  2733. * any pending idle changes, the respective CPUs might have
  2734. * missed the tick driven calc_load_account_active() update
  2735. * due to NO_HZ.
  2736. */
  2737. delta = calc_load_fold_idle();
  2738. if (delta)
  2739. atomic_long_add(delta, &calc_load_tasks);
  2740. /*
  2741. * If we were idle for multiple load cycles, apply them.
  2742. */
  2743. if (ticks >= LOAD_FREQ) {
  2744. n = ticks / LOAD_FREQ;
  2745. active = atomic_long_read(&calc_load_tasks);
  2746. active = active > 0 ? active * FIXED_1 : 0;
  2747. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2748. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2749. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2750. calc_load_update += n * LOAD_FREQ;
  2751. }
  2752. /*
  2753. * Its possible the remainder of the above division also crosses
  2754. * a LOAD_FREQ period, the regular check in calc_global_load()
  2755. * which comes after this will take care of that.
  2756. *
  2757. * Consider us being 11 ticks before a cycle completion, and us
  2758. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2759. * age us 4 cycles, and the test in calc_global_load() will
  2760. * pick up the final one.
  2761. */
  2762. }
  2763. #else
  2764. static void calc_load_account_idle(struct rq *this_rq)
  2765. {
  2766. }
  2767. static inline long calc_load_fold_idle(void)
  2768. {
  2769. return 0;
  2770. }
  2771. static void calc_global_nohz(unsigned long ticks)
  2772. {
  2773. }
  2774. #endif
  2775. /**
  2776. * get_avenrun - get the load average array
  2777. * @loads: pointer to dest load array
  2778. * @offset: offset to add
  2779. * @shift: shift count to shift the result left
  2780. *
  2781. * These values are estimates at best, so no need for locking.
  2782. */
  2783. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2784. {
  2785. loads[0] = (avenrun[0] + offset) << shift;
  2786. loads[1] = (avenrun[1] + offset) << shift;
  2787. loads[2] = (avenrun[2] + offset) << shift;
  2788. }
  2789. /*
  2790. * calc_load - update the avenrun load estimates 10 ticks after the
  2791. * CPUs have updated calc_load_tasks.
  2792. */
  2793. void calc_global_load(unsigned long ticks)
  2794. {
  2795. long active;
  2796. calc_global_nohz(ticks);
  2797. if (time_before(jiffies, calc_load_update + 10))
  2798. return;
  2799. active = atomic_long_read(&calc_load_tasks);
  2800. active = active > 0 ? active * FIXED_1 : 0;
  2801. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2802. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2803. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2804. calc_load_update += LOAD_FREQ;
  2805. }
  2806. /*
  2807. * Called from update_cpu_load() to periodically update this CPU's
  2808. * active count.
  2809. */
  2810. static void calc_load_account_active(struct rq *this_rq)
  2811. {
  2812. long delta;
  2813. if (time_before(jiffies, this_rq->calc_load_update))
  2814. return;
  2815. delta = calc_load_fold_active(this_rq);
  2816. delta += calc_load_fold_idle();
  2817. if (delta)
  2818. atomic_long_add(delta, &calc_load_tasks);
  2819. this_rq->calc_load_update += LOAD_FREQ;
  2820. }
  2821. /*
  2822. * The exact cpuload at various idx values, calculated at every tick would be
  2823. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2824. *
  2825. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2826. * on nth tick when cpu may be busy, then we have:
  2827. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2828. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2829. *
  2830. * decay_load_missed() below does efficient calculation of
  2831. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2832. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2833. *
  2834. * The calculation is approximated on a 128 point scale.
  2835. * degrade_zero_ticks is the number of ticks after which load at any
  2836. * particular idx is approximated to be zero.
  2837. * degrade_factor is a precomputed table, a row for each load idx.
  2838. * Each column corresponds to degradation factor for a power of two ticks,
  2839. * based on 128 point scale.
  2840. * Example:
  2841. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2842. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2843. *
  2844. * With this power of 2 load factors, we can degrade the load n times
  2845. * by looking at 1 bits in n and doing as many mult/shift instead of
  2846. * n mult/shifts needed by the exact degradation.
  2847. */
  2848. #define DEGRADE_SHIFT 7
  2849. static const unsigned char
  2850. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2851. static const unsigned char
  2852. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2853. {0, 0, 0, 0, 0, 0, 0, 0},
  2854. {64, 32, 8, 0, 0, 0, 0, 0},
  2855. {96, 72, 40, 12, 1, 0, 0},
  2856. {112, 98, 75, 43, 15, 1, 0},
  2857. {120, 112, 98, 76, 45, 16, 2} };
  2858. /*
  2859. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2860. * would be when CPU is idle and so we just decay the old load without
  2861. * adding any new load.
  2862. */
  2863. static unsigned long
  2864. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2865. {
  2866. int j = 0;
  2867. if (!missed_updates)
  2868. return load;
  2869. if (missed_updates >= degrade_zero_ticks[idx])
  2870. return 0;
  2871. if (idx == 1)
  2872. return load >> missed_updates;
  2873. while (missed_updates) {
  2874. if (missed_updates % 2)
  2875. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2876. missed_updates >>= 1;
  2877. j++;
  2878. }
  2879. return load;
  2880. }
  2881. /*
  2882. * Update rq->cpu_load[] statistics. This function is usually called every
  2883. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2884. * every tick. We fix it up based on jiffies.
  2885. */
  2886. static void update_cpu_load(struct rq *this_rq)
  2887. {
  2888. unsigned long this_load = this_rq->load.weight;
  2889. unsigned long curr_jiffies = jiffies;
  2890. unsigned long pending_updates;
  2891. int i, scale;
  2892. this_rq->nr_load_updates++;
  2893. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2894. if (curr_jiffies == this_rq->last_load_update_tick)
  2895. return;
  2896. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2897. this_rq->last_load_update_tick = curr_jiffies;
  2898. /* Update our load: */
  2899. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2900. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2901. unsigned long old_load, new_load;
  2902. /* scale is effectively 1 << i now, and >> i divides by scale */
  2903. old_load = this_rq->cpu_load[i];
  2904. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2905. new_load = this_load;
  2906. /*
  2907. * Round up the averaging division if load is increasing. This
  2908. * prevents us from getting stuck on 9 if the load is 10, for
  2909. * example.
  2910. */
  2911. if (new_load > old_load)
  2912. new_load += scale - 1;
  2913. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2914. }
  2915. sched_avg_update(this_rq);
  2916. }
  2917. static void update_cpu_load_active(struct rq *this_rq)
  2918. {
  2919. update_cpu_load(this_rq);
  2920. calc_load_account_active(this_rq);
  2921. }
  2922. #ifdef CONFIG_SMP
  2923. /*
  2924. * sched_exec - execve() is a valuable balancing opportunity, because at
  2925. * this point the task has the smallest effective memory and cache footprint.
  2926. */
  2927. void sched_exec(void)
  2928. {
  2929. struct task_struct *p = current;
  2930. unsigned long flags;
  2931. struct rq *rq;
  2932. int dest_cpu;
  2933. rq = task_rq_lock(p, &flags);
  2934. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2935. if (dest_cpu == smp_processor_id())
  2936. goto unlock;
  2937. /*
  2938. * select_task_rq() can race against ->cpus_allowed
  2939. */
  2940. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2941. likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
  2942. struct migration_arg arg = { p, dest_cpu };
  2943. task_rq_unlock(rq, &flags);
  2944. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2945. return;
  2946. }
  2947. unlock:
  2948. task_rq_unlock(rq, &flags);
  2949. }
  2950. #endif
  2951. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2952. EXPORT_PER_CPU_SYMBOL(kstat);
  2953. /*
  2954. * Return any ns on the sched_clock that have not yet been accounted in
  2955. * @p in case that task is currently running.
  2956. *
  2957. * Called with task_rq_lock() held on @rq.
  2958. */
  2959. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2960. {
  2961. u64 ns = 0;
  2962. if (task_current(rq, p)) {
  2963. update_rq_clock(rq);
  2964. ns = rq->clock_task - p->se.exec_start;
  2965. if ((s64)ns < 0)
  2966. ns = 0;
  2967. }
  2968. return ns;
  2969. }
  2970. unsigned long long task_delta_exec(struct task_struct *p)
  2971. {
  2972. unsigned long flags;
  2973. struct rq *rq;
  2974. u64 ns = 0;
  2975. rq = task_rq_lock(p, &flags);
  2976. ns = do_task_delta_exec(p, rq);
  2977. task_rq_unlock(rq, &flags);
  2978. return ns;
  2979. }
  2980. /*
  2981. * Return accounted runtime for the task.
  2982. * In case the task is currently running, return the runtime plus current's
  2983. * pending runtime that have not been accounted yet.
  2984. */
  2985. unsigned long long task_sched_runtime(struct task_struct *p)
  2986. {
  2987. unsigned long flags;
  2988. struct rq *rq;
  2989. u64 ns = 0;
  2990. rq = task_rq_lock(p, &flags);
  2991. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2992. task_rq_unlock(rq, &flags);
  2993. return ns;
  2994. }
  2995. /*
  2996. * Return sum_exec_runtime for the thread group.
  2997. * In case the task is currently running, return the sum plus current's
  2998. * pending runtime that have not been accounted yet.
  2999. *
  3000. * Note that the thread group might have other running tasks as well,
  3001. * so the return value not includes other pending runtime that other
  3002. * running tasks might have.
  3003. */
  3004. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3005. {
  3006. struct task_cputime totals;
  3007. unsigned long flags;
  3008. struct rq *rq;
  3009. u64 ns;
  3010. rq = task_rq_lock(p, &flags);
  3011. thread_group_cputime(p, &totals);
  3012. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3013. task_rq_unlock(rq, &flags);
  3014. return ns;
  3015. }
  3016. /*
  3017. * Account user cpu time to a process.
  3018. * @p: the process that the cpu time gets accounted to
  3019. * @cputime: the cpu time spent in user space since the last update
  3020. * @cputime_scaled: cputime scaled by cpu frequency
  3021. */
  3022. void account_user_time(struct task_struct *p, cputime_t cputime,
  3023. cputime_t cputime_scaled)
  3024. {
  3025. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3026. cputime64_t tmp;
  3027. /* Add user time to process. */
  3028. p->utime = cputime_add(p->utime, cputime);
  3029. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3030. account_group_user_time(p, cputime);
  3031. /* Add user time to cpustat. */
  3032. tmp = cputime_to_cputime64(cputime);
  3033. if (TASK_NICE(p) > 0)
  3034. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3035. else
  3036. cpustat->user = cputime64_add(cpustat->user, tmp);
  3037. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3038. /* Account for user time used */
  3039. acct_update_integrals(p);
  3040. }
  3041. /*
  3042. * Account guest cpu time to a process.
  3043. * @p: the process that the cpu time gets accounted to
  3044. * @cputime: the cpu time spent in virtual machine since the last update
  3045. * @cputime_scaled: cputime scaled by cpu frequency
  3046. */
  3047. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3048. cputime_t cputime_scaled)
  3049. {
  3050. cputime64_t tmp;
  3051. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3052. tmp = cputime_to_cputime64(cputime);
  3053. /* Add guest time to process. */
  3054. p->utime = cputime_add(p->utime, cputime);
  3055. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3056. account_group_user_time(p, cputime);
  3057. p->gtime = cputime_add(p->gtime, cputime);
  3058. /* Add guest time to cpustat. */
  3059. if (TASK_NICE(p) > 0) {
  3060. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3061. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3062. } else {
  3063. cpustat->user = cputime64_add(cpustat->user, tmp);
  3064. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3065. }
  3066. }
  3067. /*
  3068. * Account system cpu time to a process and desired cpustat field
  3069. * @p: the process that the cpu time gets accounted to
  3070. * @cputime: the cpu time spent in kernel space since the last update
  3071. * @cputime_scaled: cputime scaled by cpu frequency
  3072. * @target_cputime64: pointer to cpustat field that has to be updated
  3073. */
  3074. static inline
  3075. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3076. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3077. {
  3078. cputime64_t tmp = cputime_to_cputime64(cputime);
  3079. /* Add system time to process. */
  3080. p->stime = cputime_add(p->stime, cputime);
  3081. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3082. account_group_system_time(p, cputime);
  3083. /* Add system time to cpustat. */
  3084. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3085. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3086. /* Account for system time used */
  3087. acct_update_integrals(p);
  3088. }
  3089. /*
  3090. * Account system cpu time to a process.
  3091. * @p: the process that the cpu time gets accounted to
  3092. * @hardirq_offset: the offset to subtract from hardirq_count()
  3093. * @cputime: the cpu time spent in kernel space since the last update
  3094. * @cputime_scaled: cputime scaled by cpu frequency
  3095. */
  3096. void account_system_time(struct task_struct *p, int hardirq_offset,
  3097. cputime_t cputime, cputime_t cputime_scaled)
  3098. {
  3099. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3100. cputime64_t *target_cputime64;
  3101. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3102. account_guest_time(p, cputime, cputime_scaled);
  3103. return;
  3104. }
  3105. if (hardirq_count() - hardirq_offset)
  3106. target_cputime64 = &cpustat->irq;
  3107. else if (in_serving_softirq())
  3108. target_cputime64 = &cpustat->softirq;
  3109. else
  3110. target_cputime64 = &cpustat->system;
  3111. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3112. }
  3113. /*
  3114. * Account for involuntary wait time.
  3115. * @cputime: the cpu time spent in involuntary wait
  3116. */
  3117. void account_steal_time(cputime_t cputime)
  3118. {
  3119. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3120. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3121. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3122. }
  3123. /*
  3124. * Account for idle time.
  3125. * @cputime: the cpu time spent in idle wait
  3126. */
  3127. void account_idle_time(cputime_t cputime)
  3128. {
  3129. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3130. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3131. struct rq *rq = this_rq();
  3132. if (atomic_read(&rq->nr_iowait) > 0)
  3133. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3134. else
  3135. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3136. }
  3137. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3138. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3139. /*
  3140. * Account a tick to a process and cpustat
  3141. * @p: the process that the cpu time gets accounted to
  3142. * @user_tick: is the tick from userspace
  3143. * @rq: the pointer to rq
  3144. *
  3145. * Tick demultiplexing follows the order
  3146. * - pending hardirq update
  3147. * - pending softirq update
  3148. * - user_time
  3149. * - idle_time
  3150. * - system time
  3151. * - check for guest_time
  3152. * - else account as system_time
  3153. *
  3154. * Check for hardirq is done both for system and user time as there is
  3155. * no timer going off while we are on hardirq and hence we may never get an
  3156. * opportunity to update it solely in system time.
  3157. * p->stime and friends are only updated on system time and not on irq
  3158. * softirq as those do not count in task exec_runtime any more.
  3159. */
  3160. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3161. struct rq *rq)
  3162. {
  3163. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3164. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3165. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3166. if (irqtime_account_hi_update()) {
  3167. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3168. } else if (irqtime_account_si_update()) {
  3169. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3170. } else if (this_cpu_ksoftirqd() == p) {
  3171. /*
  3172. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3173. * So, we have to handle it separately here.
  3174. * Also, p->stime needs to be updated for ksoftirqd.
  3175. */
  3176. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3177. &cpustat->softirq);
  3178. } else if (user_tick) {
  3179. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3180. } else if (p == rq->idle) {
  3181. account_idle_time(cputime_one_jiffy);
  3182. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3183. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3184. } else {
  3185. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3186. &cpustat->system);
  3187. }
  3188. }
  3189. static void irqtime_account_idle_ticks(int ticks)
  3190. {
  3191. int i;
  3192. struct rq *rq = this_rq();
  3193. for (i = 0; i < ticks; i++)
  3194. irqtime_account_process_tick(current, 0, rq);
  3195. }
  3196. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3197. static void irqtime_account_idle_ticks(int ticks) {}
  3198. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3199. struct rq *rq) {}
  3200. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3201. /*
  3202. * Account a single tick of cpu time.
  3203. * @p: the process that the cpu time gets accounted to
  3204. * @user_tick: indicates if the tick is a user or a system tick
  3205. */
  3206. void account_process_tick(struct task_struct *p, int user_tick)
  3207. {
  3208. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3209. struct rq *rq = this_rq();
  3210. if (sched_clock_irqtime) {
  3211. irqtime_account_process_tick(p, user_tick, rq);
  3212. return;
  3213. }
  3214. if (user_tick)
  3215. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3216. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3217. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3218. one_jiffy_scaled);
  3219. else
  3220. account_idle_time(cputime_one_jiffy);
  3221. }
  3222. /*
  3223. * Account multiple ticks of steal time.
  3224. * @p: the process from which the cpu time has been stolen
  3225. * @ticks: number of stolen ticks
  3226. */
  3227. void account_steal_ticks(unsigned long ticks)
  3228. {
  3229. account_steal_time(jiffies_to_cputime(ticks));
  3230. }
  3231. /*
  3232. * Account multiple ticks of idle time.
  3233. * @ticks: number of stolen ticks
  3234. */
  3235. void account_idle_ticks(unsigned long ticks)
  3236. {
  3237. if (sched_clock_irqtime) {
  3238. irqtime_account_idle_ticks(ticks);
  3239. return;
  3240. }
  3241. account_idle_time(jiffies_to_cputime(ticks));
  3242. }
  3243. #endif
  3244. /*
  3245. * Use precise platform statistics if available:
  3246. */
  3247. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3248. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3249. {
  3250. *ut = p->utime;
  3251. *st = p->stime;
  3252. }
  3253. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3254. {
  3255. struct task_cputime cputime;
  3256. thread_group_cputime(p, &cputime);
  3257. *ut = cputime.utime;
  3258. *st = cputime.stime;
  3259. }
  3260. #else
  3261. #ifndef nsecs_to_cputime
  3262. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3263. #endif
  3264. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3265. {
  3266. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3267. /*
  3268. * Use CFS's precise accounting:
  3269. */
  3270. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3271. if (total) {
  3272. u64 temp = rtime;
  3273. temp *= utime;
  3274. do_div(temp, total);
  3275. utime = (cputime_t)temp;
  3276. } else
  3277. utime = rtime;
  3278. /*
  3279. * Compare with previous values, to keep monotonicity:
  3280. */
  3281. p->prev_utime = max(p->prev_utime, utime);
  3282. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3283. *ut = p->prev_utime;
  3284. *st = p->prev_stime;
  3285. }
  3286. /*
  3287. * Must be called with siglock held.
  3288. */
  3289. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3290. {
  3291. struct signal_struct *sig = p->signal;
  3292. struct task_cputime cputime;
  3293. cputime_t rtime, utime, total;
  3294. thread_group_cputime(p, &cputime);
  3295. total = cputime_add(cputime.utime, cputime.stime);
  3296. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3297. if (total) {
  3298. u64 temp = rtime;
  3299. temp *= cputime.utime;
  3300. do_div(temp, total);
  3301. utime = (cputime_t)temp;
  3302. } else
  3303. utime = rtime;
  3304. sig->prev_utime = max(sig->prev_utime, utime);
  3305. sig->prev_stime = max(sig->prev_stime,
  3306. cputime_sub(rtime, sig->prev_utime));
  3307. *ut = sig->prev_utime;
  3308. *st = sig->prev_stime;
  3309. }
  3310. #endif
  3311. /*
  3312. * This function gets called by the timer code, with HZ frequency.
  3313. * We call it with interrupts disabled.
  3314. *
  3315. * It also gets called by the fork code, when changing the parent's
  3316. * timeslices.
  3317. */
  3318. void scheduler_tick(void)
  3319. {
  3320. int cpu = smp_processor_id();
  3321. struct rq *rq = cpu_rq(cpu);
  3322. struct task_struct *curr = rq->curr;
  3323. sched_clock_tick();
  3324. raw_spin_lock(&rq->lock);
  3325. update_rq_clock(rq);
  3326. update_cpu_load_active(rq);
  3327. curr->sched_class->task_tick(rq, curr, 0);
  3328. raw_spin_unlock(&rq->lock);
  3329. perf_event_task_tick();
  3330. #ifdef CONFIG_SMP
  3331. rq->idle_at_tick = idle_cpu(cpu);
  3332. trigger_load_balance(rq, cpu);
  3333. #endif
  3334. }
  3335. notrace unsigned long get_parent_ip(unsigned long addr)
  3336. {
  3337. if (in_lock_functions(addr)) {
  3338. addr = CALLER_ADDR2;
  3339. if (in_lock_functions(addr))
  3340. addr = CALLER_ADDR3;
  3341. }
  3342. return addr;
  3343. }
  3344. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3345. defined(CONFIG_PREEMPT_TRACER))
  3346. void __kprobes add_preempt_count(int val)
  3347. {
  3348. #ifdef CONFIG_DEBUG_PREEMPT
  3349. /*
  3350. * Underflow?
  3351. */
  3352. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3353. return;
  3354. #endif
  3355. preempt_count() += val;
  3356. #ifdef CONFIG_DEBUG_PREEMPT
  3357. /*
  3358. * Spinlock count overflowing soon?
  3359. */
  3360. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3361. PREEMPT_MASK - 10);
  3362. #endif
  3363. if (preempt_count() == val)
  3364. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3365. }
  3366. EXPORT_SYMBOL(add_preempt_count);
  3367. void __kprobes sub_preempt_count(int val)
  3368. {
  3369. #ifdef CONFIG_DEBUG_PREEMPT
  3370. /*
  3371. * Underflow?
  3372. */
  3373. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3374. return;
  3375. /*
  3376. * Is the spinlock portion underflowing?
  3377. */
  3378. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3379. !(preempt_count() & PREEMPT_MASK)))
  3380. return;
  3381. #endif
  3382. if (preempt_count() == val)
  3383. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3384. preempt_count() -= val;
  3385. }
  3386. EXPORT_SYMBOL(sub_preempt_count);
  3387. #endif
  3388. /*
  3389. * Print scheduling while atomic bug:
  3390. */
  3391. static noinline void __schedule_bug(struct task_struct *prev)
  3392. {
  3393. struct pt_regs *regs = get_irq_regs();
  3394. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3395. prev->comm, prev->pid, preempt_count());
  3396. debug_show_held_locks(prev);
  3397. print_modules();
  3398. if (irqs_disabled())
  3399. print_irqtrace_events(prev);
  3400. if (regs)
  3401. show_regs(regs);
  3402. else
  3403. dump_stack();
  3404. }
  3405. /*
  3406. * Various schedule()-time debugging checks and statistics:
  3407. */
  3408. static inline void schedule_debug(struct task_struct *prev)
  3409. {
  3410. /*
  3411. * Test if we are atomic. Since do_exit() needs to call into
  3412. * schedule() atomically, we ignore that path for now.
  3413. * Otherwise, whine if we are scheduling when we should not be.
  3414. */
  3415. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3416. __schedule_bug(prev);
  3417. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3418. schedstat_inc(this_rq(), sched_count);
  3419. #ifdef CONFIG_SCHEDSTATS
  3420. if (unlikely(prev->lock_depth >= 0)) {
  3421. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3422. schedstat_inc(prev, sched_info.bkl_count);
  3423. }
  3424. #endif
  3425. }
  3426. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3427. {
  3428. if (prev->on_rq)
  3429. update_rq_clock(rq);
  3430. prev->sched_class->put_prev_task(rq, prev);
  3431. }
  3432. /*
  3433. * Pick up the highest-prio task:
  3434. */
  3435. static inline struct task_struct *
  3436. pick_next_task(struct rq *rq)
  3437. {
  3438. const struct sched_class *class;
  3439. struct task_struct *p;
  3440. /*
  3441. * Optimization: we know that if all tasks are in
  3442. * the fair class we can call that function directly:
  3443. */
  3444. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3445. p = fair_sched_class.pick_next_task(rq);
  3446. if (likely(p))
  3447. return p;
  3448. }
  3449. for_each_class(class) {
  3450. p = class->pick_next_task(rq);
  3451. if (p)
  3452. return p;
  3453. }
  3454. BUG(); /* the idle class will always have a runnable task */
  3455. }
  3456. /*
  3457. * schedule() is the main scheduler function.
  3458. */
  3459. asmlinkage void __sched schedule(void)
  3460. {
  3461. struct task_struct *prev, *next;
  3462. unsigned long *switch_count;
  3463. struct rq *rq;
  3464. int cpu;
  3465. need_resched:
  3466. preempt_disable();
  3467. cpu = smp_processor_id();
  3468. rq = cpu_rq(cpu);
  3469. rcu_note_context_switch(cpu);
  3470. prev = rq->curr;
  3471. schedule_debug(prev);
  3472. if (sched_feat(HRTICK))
  3473. hrtick_clear(rq);
  3474. raw_spin_lock_irq(&rq->lock);
  3475. switch_count = &prev->nivcsw;
  3476. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3477. if (unlikely(signal_pending_state(prev->state, prev))) {
  3478. prev->state = TASK_RUNNING;
  3479. } else {
  3480. /*
  3481. * If a worker is going to sleep, notify and
  3482. * ask workqueue whether it wants to wake up a
  3483. * task to maintain concurrency. If so, wake
  3484. * up the task.
  3485. */
  3486. if (prev->flags & PF_WQ_WORKER) {
  3487. struct task_struct *to_wakeup;
  3488. to_wakeup = wq_worker_sleeping(prev, cpu);
  3489. if (to_wakeup)
  3490. try_to_wake_up_local(to_wakeup);
  3491. }
  3492. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3493. prev->on_rq = 0;
  3494. /*
  3495. * If we are going to sleep and we have plugged IO queued, make
  3496. * sure to submit it to avoid deadlocks.
  3497. */
  3498. if (blk_needs_flush_plug(prev)) {
  3499. raw_spin_unlock(&rq->lock);
  3500. blk_flush_plug(prev);
  3501. raw_spin_lock(&rq->lock);
  3502. }
  3503. }
  3504. switch_count = &prev->nvcsw;
  3505. }
  3506. pre_schedule(rq, prev);
  3507. if (unlikely(!rq->nr_running))
  3508. idle_balance(cpu, rq);
  3509. put_prev_task(rq, prev);
  3510. next = pick_next_task(rq);
  3511. clear_tsk_need_resched(prev);
  3512. rq->skip_clock_update = 0;
  3513. if (likely(prev != next)) {
  3514. rq->nr_switches++;
  3515. rq->curr = next;
  3516. ++*switch_count;
  3517. context_switch(rq, prev, next); /* unlocks the rq */
  3518. /*
  3519. * The context switch have flipped the stack from under us
  3520. * and restored the local variables which were saved when
  3521. * this task called schedule() in the past. prev == current
  3522. * is still correct, but it can be moved to another cpu/rq.
  3523. */
  3524. cpu = smp_processor_id();
  3525. rq = cpu_rq(cpu);
  3526. } else
  3527. raw_spin_unlock_irq(&rq->lock);
  3528. post_schedule(rq);
  3529. preempt_enable_no_resched();
  3530. if (need_resched())
  3531. goto need_resched;
  3532. }
  3533. EXPORT_SYMBOL(schedule);
  3534. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3535. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3536. {
  3537. bool ret = false;
  3538. rcu_read_lock();
  3539. if (lock->owner != owner)
  3540. goto fail;
  3541. /*
  3542. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3543. * lock->owner still matches owner, if that fails, owner might
  3544. * point to free()d memory, if it still matches, the rcu_read_lock()
  3545. * ensures the memory stays valid.
  3546. */
  3547. barrier();
  3548. ret = owner->on_cpu;
  3549. fail:
  3550. rcu_read_unlock();
  3551. return ret;
  3552. }
  3553. /*
  3554. * Look out! "owner" is an entirely speculative pointer
  3555. * access and not reliable.
  3556. */
  3557. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3558. {
  3559. if (!sched_feat(OWNER_SPIN))
  3560. return 0;
  3561. while (owner_running(lock, owner)) {
  3562. if (need_resched())
  3563. return 0;
  3564. arch_mutex_cpu_relax();
  3565. }
  3566. /*
  3567. * If the owner changed to another task there is likely
  3568. * heavy contention, stop spinning.
  3569. */
  3570. if (lock->owner)
  3571. return 0;
  3572. return 1;
  3573. }
  3574. #endif
  3575. #ifdef CONFIG_PREEMPT
  3576. /*
  3577. * this is the entry point to schedule() from in-kernel preemption
  3578. * off of preempt_enable. Kernel preemptions off return from interrupt
  3579. * occur there and call schedule directly.
  3580. */
  3581. asmlinkage void __sched notrace preempt_schedule(void)
  3582. {
  3583. struct thread_info *ti = current_thread_info();
  3584. /*
  3585. * If there is a non-zero preempt_count or interrupts are disabled,
  3586. * we do not want to preempt the current task. Just return..
  3587. */
  3588. if (likely(ti->preempt_count || irqs_disabled()))
  3589. return;
  3590. do {
  3591. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3592. schedule();
  3593. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3594. /*
  3595. * Check again in case we missed a preemption opportunity
  3596. * between schedule and now.
  3597. */
  3598. barrier();
  3599. } while (need_resched());
  3600. }
  3601. EXPORT_SYMBOL(preempt_schedule);
  3602. /*
  3603. * this is the entry point to schedule() from kernel preemption
  3604. * off of irq context.
  3605. * Note, that this is called and return with irqs disabled. This will
  3606. * protect us against recursive calling from irq.
  3607. */
  3608. asmlinkage void __sched preempt_schedule_irq(void)
  3609. {
  3610. struct thread_info *ti = current_thread_info();
  3611. /* Catch callers which need to be fixed */
  3612. BUG_ON(ti->preempt_count || !irqs_disabled());
  3613. do {
  3614. add_preempt_count(PREEMPT_ACTIVE);
  3615. local_irq_enable();
  3616. schedule();
  3617. local_irq_disable();
  3618. sub_preempt_count(PREEMPT_ACTIVE);
  3619. /*
  3620. * Check again in case we missed a preemption opportunity
  3621. * between schedule and now.
  3622. */
  3623. barrier();
  3624. } while (need_resched());
  3625. }
  3626. #endif /* CONFIG_PREEMPT */
  3627. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3628. void *key)
  3629. {
  3630. return try_to_wake_up(curr->private, mode, wake_flags);
  3631. }
  3632. EXPORT_SYMBOL(default_wake_function);
  3633. /*
  3634. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3635. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3636. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3637. *
  3638. * There are circumstances in which we can try to wake a task which has already
  3639. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3640. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3641. */
  3642. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3643. int nr_exclusive, int wake_flags, void *key)
  3644. {
  3645. wait_queue_t *curr, *next;
  3646. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3647. unsigned flags = curr->flags;
  3648. if (curr->func(curr, mode, wake_flags, key) &&
  3649. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3650. break;
  3651. }
  3652. }
  3653. /**
  3654. * __wake_up - wake up threads blocked on a waitqueue.
  3655. * @q: the waitqueue
  3656. * @mode: which threads
  3657. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3658. * @key: is directly passed to the wakeup function
  3659. *
  3660. * It may be assumed that this function implies a write memory barrier before
  3661. * changing the task state if and only if any tasks are woken up.
  3662. */
  3663. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3664. int nr_exclusive, void *key)
  3665. {
  3666. unsigned long flags;
  3667. spin_lock_irqsave(&q->lock, flags);
  3668. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3669. spin_unlock_irqrestore(&q->lock, flags);
  3670. }
  3671. EXPORT_SYMBOL(__wake_up);
  3672. /*
  3673. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3674. */
  3675. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3676. {
  3677. __wake_up_common(q, mode, 1, 0, NULL);
  3678. }
  3679. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3680. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3681. {
  3682. __wake_up_common(q, mode, 1, 0, key);
  3683. }
  3684. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3685. /**
  3686. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3687. * @q: the waitqueue
  3688. * @mode: which threads
  3689. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3690. * @key: opaque value to be passed to wakeup targets
  3691. *
  3692. * The sync wakeup differs that the waker knows that it will schedule
  3693. * away soon, so while the target thread will be woken up, it will not
  3694. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3695. * with each other. This can prevent needless bouncing between CPUs.
  3696. *
  3697. * On UP it can prevent extra preemption.
  3698. *
  3699. * It may be assumed that this function implies a write memory barrier before
  3700. * changing the task state if and only if any tasks are woken up.
  3701. */
  3702. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3703. int nr_exclusive, void *key)
  3704. {
  3705. unsigned long flags;
  3706. int wake_flags = WF_SYNC;
  3707. if (unlikely(!q))
  3708. return;
  3709. if (unlikely(!nr_exclusive))
  3710. wake_flags = 0;
  3711. spin_lock_irqsave(&q->lock, flags);
  3712. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3713. spin_unlock_irqrestore(&q->lock, flags);
  3714. }
  3715. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3716. /*
  3717. * __wake_up_sync - see __wake_up_sync_key()
  3718. */
  3719. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3720. {
  3721. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3722. }
  3723. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3724. /**
  3725. * complete: - signals a single thread waiting on this completion
  3726. * @x: holds the state of this particular completion
  3727. *
  3728. * This will wake up a single thread waiting on this completion. Threads will be
  3729. * awakened in the same order in which they were queued.
  3730. *
  3731. * See also complete_all(), wait_for_completion() and related routines.
  3732. *
  3733. * It may be assumed that this function implies a write memory barrier before
  3734. * changing the task state if and only if any tasks are woken up.
  3735. */
  3736. void complete(struct completion *x)
  3737. {
  3738. unsigned long flags;
  3739. spin_lock_irqsave(&x->wait.lock, flags);
  3740. x->done++;
  3741. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3742. spin_unlock_irqrestore(&x->wait.lock, flags);
  3743. }
  3744. EXPORT_SYMBOL(complete);
  3745. /**
  3746. * complete_all: - signals all threads waiting on this completion
  3747. * @x: holds the state of this particular completion
  3748. *
  3749. * This will wake up all threads waiting on this particular completion event.
  3750. *
  3751. * It may be assumed that this function implies a write memory barrier before
  3752. * changing the task state if and only if any tasks are woken up.
  3753. */
  3754. void complete_all(struct completion *x)
  3755. {
  3756. unsigned long flags;
  3757. spin_lock_irqsave(&x->wait.lock, flags);
  3758. x->done += UINT_MAX/2;
  3759. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3760. spin_unlock_irqrestore(&x->wait.lock, flags);
  3761. }
  3762. EXPORT_SYMBOL(complete_all);
  3763. static inline long __sched
  3764. do_wait_for_common(struct completion *x, long timeout, int state)
  3765. {
  3766. if (!x->done) {
  3767. DECLARE_WAITQUEUE(wait, current);
  3768. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3769. do {
  3770. if (signal_pending_state(state, current)) {
  3771. timeout = -ERESTARTSYS;
  3772. break;
  3773. }
  3774. __set_current_state(state);
  3775. spin_unlock_irq(&x->wait.lock);
  3776. timeout = schedule_timeout(timeout);
  3777. spin_lock_irq(&x->wait.lock);
  3778. } while (!x->done && timeout);
  3779. __remove_wait_queue(&x->wait, &wait);
  3780. if (!x->done)
  3781. return timeout;
  3782. }
  3783. x->done--;
  3784. return timeout ?: 1;
  3785. }
  3786. static long __sched
  3787. wait_for_common(struct completion *x, long timeout, int state)
  3788. {
  3789. might_sleep();
  3790. spin_lock_irq(&x->wait.lock);
  3791. timeout = do_wait_for_common(x, timeout, state);
  3792. spin_unlock_irq(&x->wait.lock);
  3793. return timeout;
  3794. }
  3795. /**
  3796. * wait_for_completion: - waits for completion of a task
  3797. * @x: holds the state of this particular completion
  3798. *
  3799. * This waits to be signaled for completion of a specific task. It is NOT
  3800. * interruptible and there is no timeout.
  3801. *
  3802. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3803. * and interrupt capability. Also see complete().
  3804. */
  3805. void __sched wait_for_completion(struct completion *x)
  3806. {
  3807. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3808. }
  3809. EXPORT_SYMBOL(wait_for_completion);
  3810. /**
  3811. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3812. * @x: holds the state of this particular completion
  3813. * @timeout: timeout value in jiffies
  3814. *
  3815. * This waits for either a completion of a specific task to be signaled or for a
  3816. * specified timeout to expire. The timeout is in jiffies. It is not
  3817. * interruptible.
  3818. */
  3819. unsigned long __sched
  3820. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3821. {
  3822. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3823. }
  3824. EXPORT_SYMBOL(wait_for_completion_timeout);
  3825. /**
  3826. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3827. * @x: holds the state of this particular completion
  3828. *
  3829. * This waits for completion of a specific task to be signaled. It is
  3830. * interruptible.
  3831. */
  3832. int __sched wait_for_completion_interruptible(struct completion *x)
  3833. {
  3834. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3835. if (t == -ERESTARTSYS)
  3836. return t;
  3837. return 0;
  3838. }
  3839. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3840. /**
  3841. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3842. * @x: holds the state of this particular completion
  3843. * @timeout: timeout value in jiffies
  3844. *
  3845. * This waits for either a completion of a specific task to be signaled or for a
  3846. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3847. */
  3848. long __sched
  3849. wait_for_completion_interruptible_timeout(struct completion *x,
  3850. unsigned long timeout)
  3851. {
  3852. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3853. }
  3854. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3855. /**
  3856. * wait_for_completion_killable: - waits for completion of a task (killable)
  3857. * @x: holds the state of this particular completion
  3858. *
  3859. * This waits to be signaled for completion of a specific task. It can be
  3860. * interrupted by a kill signal.
  3861. */
  3862. int __sched wait_for_completion_killable(struct completion *x)
  3863. {
  3864. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3865. if (t == -ERESTARTSYS)
  3866. return t;
  3867. return 0;
  3868. }
  3869. EXPORT_SYMBOL(wait_for_completion_killable);
  3870. /**
  3871. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3872. * @x: holds the state of this particular completion
  3873. * @timeout: timeout value in jiffies
  3874. *
  3875. * This waits for either a completion of a specific task to be
  3876. * signaled or for a specified timeout to expire. It can be
  3877. * interrupted by a kill signal. The timeout is in jiffies.
  3878. */
  3879. long __sched
  3880. wait_for_completion_killable_timeout(struct completion *x,
  3881. unsigned long timeout)
  3882. {
  3883. return wait_for_common(x, timeout, TASK_KILLABLE);
  3884. }
  3885. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3886. /**
  3887. * try_wait_for_completion - try to decrement a completion without blocking
  3888. * @x: completion structure
  3889. *
  3890. * Returns: 0 if a decrement cannot be done without blocking
  3891. * 1 if a decrement succeeded.
  3892. *
  3893. * If a completion is being used as a counting completion,
  3894. * attempt to decrement the counter without blocking. This
  3895. * enables us to avoid waiting if the resource the completion
  3896. * is protecting is not available.
  3897. */
  3898. bool try_wait_for_completion(struct completion *x)
  3899. {
  3900. unsigned long flags;
  3901. int ret = 1;
  3902. spin_lock_irqsave(&x->wait.lock, flags);
  3903. if (!x->done)
  3904. ret = 0;
  3905. else
  3906. x->done--;
  3907. spin_unlock_irqrestore(&x->wait.lock, flags);
  3908. return ret;
  3909. }
  3910. EXPORT_SYMBOL(try_wait_for_completion);
  3911. /**
  3912. * completion_done - Test to see if a completion has any waiters
  3913. * @x: completion structure
  3914. *
  3915. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3916. * 1 if there are no waiters.
  3917. *
  3918. */
  3919. bool completion_done(struct completion *x)
  3920. {
  3921. unsigned long flags;
  3922. int ret = 1;
  3923. spin_lock_irqsave(&x->wait.lock, flags);
  3924. if (!x->done)
  3925. ret = 0;
  3926. spin_unlock_irqrestore(&x->wait.lock, flags);
  3927. return ret;
  3928. }
  3929. EXPORT_SYMBOL(completion_done);
  3930. static long __sched
  3931. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3932. {
  3933. unsigned long flags;
  3934. wait_queue_t wait;
  3935. init_waitqueue_entry(&wait, current);
  3936. __set_current_state(state);
  3937. spin_lock_irqsave(&q->lock, flags);
  3938. __add_wait_queue(q, &wait);
  3939. spin_unlock(&q->lock);
  3940. timeout = schedule_timeout(timeout);
  3941. spin_lock_irq(&q->lock);
  3942. __remove_wait_queue(q, &wait);
  3943. spin_unlock_irqrestore(&q->lock, flags);
  3944. return timeout;
  3945. }
  3946. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3947. {
  3948. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3949. }
  3950. EXPORT_SYMBOL(interruptible_sleep_on);
  3951. long __sched
  3952. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3953. {
  3954. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3955. }
  3956. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3957. void __sched sleep_on(wait_queue_head_t *q)
  3958. {
  3959. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3960. }
  3961. EXPORT_SYMBOL(sleep_on);
  3962. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3963. {
  3964. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3965. }
  3966. EXPORT_SYMBOL(sleep_on_timeout);
  3967. #ifdef CONFIG_RT_MUTEXES
  3968. /*
  3969. * rt_mutex_setprio - set the current priority of a task
  3970. * @p: task
  3971. * @prio: prio value (kernel-internal form)
  3972. *
  3973. * This function changes the 'effective' priority of a task. It does
  3974. * not touch ->normal_prio like __setscheduler().
  3975. *
  3976. * Used by the rt_mutex code to implement priority inheritance logic.
  3977. */
  3978. void rt_mutex_setprio(struct task_struct *p, int prio)
  3979. {
  3980. unsigned long flags;
  3981. int oldprio, on_rq, running;
  3982. struct rq *rq;
  3983. const struct sched_class *prev_class;
  3984. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3985. lockdep_assert_held(&p->pi_lock);
  3986. rq = task_rq_lock(p, &flags);
  3987. trace_sched_pi_setprio(p, prio);
  3988. oldprio = p->prio;
  3989. prev_class = p->sched_class;
  3990. on_rq = p->on_rq;
  3991. running = task_current(rq, p);
  3992. if (on_rq)
  3993. dequeue_task(rq, p, 0);
  3994. if (running)
  3995. p->sched_class->put_prev_task(rq, p);
  3996. if (rt_prio(prio))
  3997. p->sched_class = &rt_sched_class;
  3998. else
  3999. p->sched_class = &fair_sched_class;
  4000. p->prio = prio;
  4001. if (running)
  4002. p->sched_class->set_curr_task(rq);
  4003. if (on_rq)
  4004. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4005. check_class_changed(rq, p, prev_class, oldprio);
  4006. task_rq_unlock(rq, &flags);
  4007. }
  4008. #endif
  4009. void set_user_nice(struct task_struct *p, long nice)
  4010. {
  4011. int old_prio, delta, on_rq;
  4012. unsigned long flags;
  4013. struct rq *rq;
  4014. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4015. return;
  4016. /*
  4017. * We have to be careful, if called from sys_setpriority(),
  4018. * the task might be in the middle of scheduling on another CPU.
  4019. */
  4020. rq = task_rq_lock(p, &flags);
  4021. /*
  4022. * The RT priorities are set via sched_setscheduler(), but we still
  4023. * allow the 'normal' nice value to be set - but as expected
  4024. * it wont have any effect on scheduling until the task is
  4025. * SCHED_FIFO/SCHED_RR:
  4026. */
  4027. if (task_has_rt_policy(p)) {
  4028. p->static_prio = NICE_TO_PRIO(nice);
  4029. goto out_unlock;
  4030. }
  4031. on_rq = p->on_rq;
  4032. if (on_rq)
  4033. dequeue_task(rq, p, 0);
  4034. p->static_prio = NICE_TO_PRIO(nice);
  4035. set_load_weight(p);
  4036. old_prio = p->prio;
  4037. p->prio = effective_prio(p);
  4038. delta = p->prio - old_prio;
  4039. if (on_rq) {
  4040. enqueue_task(rq, p, 0);
  4041. /*
  4042. * If the task increased its priority or is running and
  4043. * lowered its priority, then reschedule its CPU:
  4044. */
  4045. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4046. resched_task(rq->curr);
  4047. }
  4048. out_unlock:
  4049. task_rq_unlock(rq, &flags);
  4050. }
  4051. EXPORT_SYMBOL(set_user_nice);
  4052. /*
  4053. * can_nice - check if a task can reduce its nice value
  4054. * @p: task
  4055. * @nice: nice value
  4056. */
  4057. int can_nice(const struct task_struct *p, const int nice)
  4058. {
  4059. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4060. int nice_rlim = 20 - nice;
  4061. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4062. capable(CAP_SYS_NICE));
  4063. }
  4064. #ifdef __ARCH_WANT_SYS_NICE
  4065. /*
  4066. * sys_nice - change the priority of the current process.
  4067. * @increment: priority increment
  4068. *
  4069. * sys_setpriority is a more generic, but much slower function that
  4070. * does similar things.
  4071. */
  4072. SYSCALL_DEFINE1(nice, int, increment)
  4073. {
  4074. long nice, retval;
  4075. /*
  4076. * Setpriority might change our priority at the same moment.
  4077. * We don't have to worry. Conceptually one call occurs first
  4078. * and we have a single winner.
  4079. */
  4080. if (increment < -40)
  4081. increment = -40;
  4082. if (increment > 40)
  4083. increment = 40;
  4084. nice = TASK_NICE(current) + increment;
  4085. if (nice < -20)
  4086. nice = -20;
  4087. if (nice > 19)
  4088. nice = 19;
  4089. if (increment < 0 && !can_nice(current, nice))
  4090. return -EPERM;
  4091. retval = security_task_setnice(current, nice);
  4092. if (retval)
  4093. return retval;
  4094. set_user_nice(current, nice);
  4095. return 0;
  4096. }
  4097. #endif
  4098. /**
  4099. * task_prio - return the priority value of a given task.
  4100. * @p: the task in question.
  4101. *
  4102. * This is the priority value as seen by users in /proc.
  4103. * RT tasks are offset by -200. Normal tasks are centered
  4104. * around 0, value goes from -16 to +15.
  4105. */
  4106. int task_prio(const struct task_struct *p)
  4107. {
  4108. return p->prio - MAX_RT_PRIO;
  4109. }
  4110. /**
  4111. * task_nice - return the nice value of a given task.
  4112. * @p: the task in question.
  4113. */
  4114. int task_nice(const struct task_struct *p)
  4115. {
  4116. return TASK_NICE(p);
  4117. }
  4118. EXPORT_SYMBOL(task_nice);
  4119. /**
  4120. * idle_cpu - is a given cpu idle currently?
  4121. * @cpu: the processor in question.
  4122. */
  4123. int idle_cpu(int cpu)
  4124. {
  4125. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4126. }
  4127. /**
  4128. * idle_task - return the idle task for a given cpu.
  4129. * @cpu: the processor in question.
  4130. */
  4131. struct task_struct *idle_task(int cpu)
  4132. {
  4133. return cpu_rq(cpu)->idle;
  4134. }
  4135. /**
  4136. * find_process_by_pid - find a process with a matching PID value.
  4137. * @pid: the pid in question.
  4138. */
  4139. static struct task_struct *find_process_by_pid(pid_t pid)
  4140. {
  4141. return pid ? find_task_by_vpid(pid) : current;
  4142. }
  4143. /* Actually do priority change: must hold rq lock. */
  4144. static void
  4145. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4146. {
  4147. p->policy = policy;
  4148. p->rt_priority = prio;
  4149. p->normal_prio = normal_prio(p);
  4150. /* we are holding p->pi_lock already */
  4151. p->prio = rt_mutex_getprio(p);
  4152. if (rt_prio(p->prio))
  4153. p->sched_class = &rt_sched_class;
  4154. else
  4155. p->sched_class = &fair_sched_class;
  4156. set_load_weight(p);
  4157. }
  4158. /*
  4159. * check the target process has a UID that matches the current process's
  4160. */
  4161. static bool check_same_owner(struct task_struct *p)
  4162. {
  4163. const struct cred *cred = current_cred(), *pcred;
  4164. bool match;
  4165. rcu_read_lock();
  4166. pcred = __task_cred(p);
  4167. if (cred->user->user_ns == pcred->user->user_ns)
  4168. match = (cred->euid == pcred->euid ||
  4169. cred->euid == pcred->uid);
  4170. else
  4171. match = false;
  4172. rcu_read_unlock();
  4173. return match;
  4174. }
  4175. static int __sched_setscheduler(struct task_struct *p, int policy,
  4176. const struct sched_param *param, bool user)
  4177. {
  4178. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4179. unsigned long flags;
  4180. const struct sched_class *prev_class;
  4181. struct rq *rq;
  4182. int reset_on_fork;
  4183. /* may grab non-irq protected spin_locks */
  4184. BUG_ON(in_interrupt());
  4185. recheck:
  4186. /* double check policy once rq lock held */
  4187. if (policy < 0) {
  4188. reset_on_fork = p->sched_reset_on_fork;
  4189. policy = oldpolicy = p->policy;
  4190. } else {
  4191. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4192. policy &= ~SCHED_RESET_ON_FORK;
  4193. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4194. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4195. policy != SCHED_IDLE)
  4196. return -EINVAL;
  4197. }
  4198. /*
  4199. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4200. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4201. * SCHED_BATCH and SCHED_IDLE is 0.
  4202. */
  4203. if (param->sched_priority < 0 ||
  4204. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4205. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4206. return -EINVAL;
  4207. if (rt_policy(policy) != (param->sched_priority != 0))
  4208. return -EINVAL;
  4209. /*
  4210. * Allow unprivileged RT tasks to decrease priority:
  4211. */
  4212. if (user && !capable(CAP_SYS_NICE)) {
  4213. if (rt_policy(policy)) {
  4214. unsigned long rlim_rtprio =
  4215. task_rlimit(p, RLIMIT_RTPRIO);
  4216. /* can't set/change the rt policy */
  4217. if (policy != p->policy && !rlim_rtprio)
  4218. return -EPERM;
  4219. /* can't increase priority */
  4220. if (param->sched_priority > p->rt_priority &&
  4221. param->sched_priority > rlim_rtprio)
  4222. return -EPERM;
  4223. }
  4224. /*
  4225. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4226. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4227. */
  4228. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4229. if (!can_nice(p, TASK_NICE(p)))
  4230. return -EPERM;
  4231. }
  4232. /* can't change other user's priorities */
  4233. if (!check_same_owner(p))
  4234. return -EPERM;
  4235. /* Normal users shall not reset the sched_reset_on_fork flag */
  4236. if (p->sched_reset_on_fork && !reset_on_fork)
  4237. return -EPERM;
  4238. }
  4239. if (user) {
  4240. retval = security_task_setscheduler(p);
  4241. if (retval)
  4242. return retval;
  4243. }
  4244. /*
  4245. * make sure no PI-waiters arrive (or leave) while we are
  4246. * changing the priority of the task:
  4247. */
  4248. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4249. /*
  4250. * To be able to change p->policy safely, the appropriate
  4251. * runqueue lock must be held.
  4252. */
  4253. rq = __task_rq_lock(p);
  4254. /*
  4255. * Changing the policy of the stop threads its a very bad idea
  4256. */
  4257. if (p == rq->stop) {
  4258. __task_rq_unlock(rq);
  4259. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4260. return -EINVAL;
  4261. }
  4262. /*
  4263. * If not changing anything there's no need to proceed further:
  4264. */
  4265. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4266. param->sched_priority == p->rt_priority))) {
  4267. __task_rq_unlock(rq);
  4268. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4269. return 0;
  4270. }
  4271. #ifdef CONFIG_RT_GROUP_SCHED
  4272. if (user) {
  4273. /*
  4274. * Do not allow realtime tasks into groups that have no runtime
  4275. * assigned.
  4276. */
  4277. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4278. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4279. !task_group_is_autogroup(task_group(p))) {
  4280. __task_rq_unlock(rq);
  4281. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4282. return -EPERM;
  4283. }
  4284. }
  4285. #endif
  4286. /* recheck policy now with rq lock held */
  4287. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4288. policy = oldpolicy = -1;
  4289. __task_rq_unlock(rq);
  4290. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4291. goto recheck;
  4292. }
  4293. on_rq = p->on_rq;
  4294. running = task_current(rq, p);
  4295. if (on_rq)
  4296. deactivate_task(rq, p, 0);
  4297. if (running)
  4298. p->sched_class->put_prev_task(rq, p);
  4299. p->sched_reset_on_fork = reset_on_fork;
  4300. oldprio = p->prio;
  4301. prev_class = p->sched_class;
  4302. __setscheduler(rq, p, policy, param->sched_priority);
  4303. if (running)
  4304. p->sched_class->set_curr_task(rq);
  4305. if (on_rq)
  4306. activate_task(rq, p, 0);
  4307. check_class_changed(rq, p, prev_class, oldprio);
  4308. __task_rq_unlock(rq);
  4309. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4310. rt_mutex_adjust_pi(p);
  4311. return 0;
  4312. }
  4313. /**
  4314. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4315. * @p: the task in question.
  4316. * @policy: new policy.
  4317. * @param: structure containing the new RT priority.
  4318. *
  4319. * NOTE that the task may be already dead.
  4320. */
  4321. int sched_setscheduler(struct task_struct *p, int policy,
  4322. const struct sched_param *param)
  4323. {
  4324. return __sched_setscheduler(p, policy, param, true);
  4325. }
  4326. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4327. /**
  4328. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4329. * @p: the task in question.
  4330. * @policy: new policy.
  4331. * @param: structure containing the new RT priority.
  4332. *
  4333. * Just like sched_setscheduler, only don't bother checking if the
  4334. * current context has permission. For example, this is needed in
  4335. * stop_machine(): we create temporary high priority worker threads,
  4336. * but our caller might not have that capability.
  4337. */
  4338. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4339. const struct sched_param *param)
  4340. {
  4341. return __sched_setscheduler(p, policy, param, false);
  4342. }
  4343. static int
  4344. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4345. {
  4346. struct sched_param lparam;
  4347. struct task_struct *p;
  4348. int retval;
  4349. if (!param || pid < 0)
  4350. return -EINVAL;
  4351. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4352. return -EFAULT;
  4353. rcu_read_lock();
  4354. retval = -ESRCH;
  4355. p = find_process_by_pid(pid);
  4356. if (p != NULL)
  4357. retval = sched_setscheduler(p, policy, &lparam);
  4358. rcu_read_unlock();
  4359. return retval;
  4360. }
  4361. /**
  4362. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4363. * @pid: the pid in question.
  4364. * @policy: new policy.
  4365. * @param: structure containing the new RT priority.
  4366. */
  4367. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4368. struct sched_param __user *, param)
  4369. {
  4370. /* negative values for policy are not valid */
  4371. if (policy < 0)
  4372. return -EINVAL;
  4373. return do_sched_setscheduler(pid, policy, param);
  4374. }
  4375. /**
  4376. * sys_sched_setparam - set/change the RT priority of a thread
  4377. * @pid: the pid in question.
  4378. * @param: structure containing the new RT priority.
  4379. */
  4380. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4381. {
  4382. return do_sched_setscheduler(pid, -1, param);
  4383. }
  4384. /**
  4385. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4386. * @pid: the pid in question.
  4387. */
  4388. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4389. {
  4390. struct task_struct *p;
  4391. int retval;
  4392. if (pid < 0)
  4393. return -EINVAL;
  4394. retval = -ESRCH;
  4395. rcu_read_lock();
  4396. p = find_process_by_pid(pid);
  4397. if (p) {
  4398. retval = security_task_getscheduler(p);
  4399. if (!retval)
  4400. retval = p->policy
  4401. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4402. }
  4403. rcu_read_unlock();
  4404. return retval;
  4405. }
  4406. /**
  4407. * sys_sched_getparam - get the RT priority of a thread
  4408. * @pid: the pid in question.
  4409. * @param: structure containing the RT priority.
  4410. */
  4411. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4412. {
  4413. struct sched_param lp;
  4414. struct task_struct *p;
  4415. int retval;
  4416. if (!param || pid < 0)
  4417. return -EINVAL;
  4418. rcu_read_lock();
  4419. p = find_process_by_pid(pid);
  4420. retval = -ESRCH;
  4421. if (!p)
  4422. goto out_unlock;
  4423. retval = security_task_getscheduler(p);
  4424. if (retval)
  4425. goto out_unlock;
  4426. lp.sched_priority = p->rt_priority;
  4427. rcu_read_unlock();
  4428. /*
  4429. * This one might sleep, we cannot do it with a spinlock held ...
  4430. */
  4431. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4432. return retval;
  4433. out_unlock:
  4434. rcu_read_unlock();
  4435. return retval;
  4436. }
  4437. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4438. {
  4439. cpumask_var_t cpus_allowed, new_mask;
  4440. struct task_struct *p;
  4441. int retval;
  4442. get_online_cpus();
  4443. rcu_read_lock();
  4444. p = find_process_by_pid(pid);
  4445. if (!p) {
  4446. rcu_read_unlock();
  4447. put_online_cpus();
  4448. return -ESRCH;
  4449. }
  4450. /* Prevent p going away */
  4451. get_task_struct(p);
  4452. rcu_read_unlock();
  4453. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4454. retval = -ENOMEM;
  4455. goto out_put_task;
  4456. }
  4457. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4458. retval = -ENOMEM;
  4459. goto out_free_cpus_allowed;
  4460. }
  4461. retval = -EPERM;
  4462. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4463. goto out_unlock;
  4464. retval = security_task_setscheduler(p);
  4465. if (retval)
  4466. goto out_unlock;
  4467. cpuset_cpus_allowed(p, cpus_allowed);
  4468. cpumask_and(new_mask, in_mask, cpus_allowed);
  4469. again:
  4470. retval = set_cpus_allowed_ptr(p, new_mask);
  4471. if (!retval) {
  4472. cpuset_cpus_allowed(p, cpus_allowed);
  4473. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4474. /*
  4475. * We must have raced with a concurrent cpuset
  4476. * update. Just reset the cpus_allowed to the
  4477. * cpuset's cpus_allowed
  4478. */
  4479. cpumask_copy(new_mask, cpus_allowed);
  4480. goto again;
  4481. }
  4482. }
  4483. out_unlock:
  4484. free_cpumask_var(new_mask);
  4485. out_free_cpus_allowed:
  4486. free_cpumask_var(cpus_allowed);
  4487. out_put_task:
  4488. put_task_struct(p);
  4489. put_online_cpus();
  4490. return retval;
  4491. }
  4492. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4493. struct cpumask *new_mask)
  4494. {
  4495. if (len < cpumask_size())
  4496. cpumask_clear(new_mask);
  4497. else if (len > cpumask_size())
  4498. len = cpumask_size();
  4499. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4500. }
  4501. /**
  4502. * sys_sched_setaffinity - set the cpu affinity of a process
  4503. * @pid: pid of the process
  4504. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4505. * @user_mask_ptr: user-space pointer to the new cpu mask
  4506. */
  4507. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4508. unsigned long __user *, user_mask_ptr)
  4509. {
  4510. cpumask_var_t new_mask;
  4511. int retval;
  4512. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4513. return -ENOMEM;
  4514. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4515. if (retval == 0)
  4516. retval = sched_setaffinity(pid, new_mask);
  4517. free_cpumask_var(new_mask);
  4518. return retval;
  4519. }
  4520. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4521. {
  4522. struct task_struct *p;
  4523. unsigned long flags;
  4524. int retval;
  4525. get_online_cpus();
  4526. rcu_read_lock();
  4527. retval = -ESRCH;
  4528. p = find_process_by_pid(pid);
  4529. if (!p)
  4530. goto out_unlock;
  4531. retval = security_task_getscheduler(p);
  4532. if (retval)
  4533. goto out_unlock;
  4534. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4535. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4536. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4537. out_unlock:
  4538. rcu_read_unlock();
  4539. put_online_cpus();
  4540. return retval;
  4541. }
  4542. /**
  4543. * sys_sched_getaffinity - get the cpu affinity of a process
  4544. * @pid: pid of the process
  4545. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4546. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4547. */
  4548. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4549. unsigned long __user *, user_mask_ptr)
  4550. {
  4551. int ret;
  4552. cpumask_var_t mask;
  4553. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4554. return -EINVAL;
  4555. if (len & (sizeof(unsigned long)-1))
  4556. return -EINVAL;
  4557. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4558. return -ENOMEM;
  4559. ret = sched_getaffinity(pid, mask);
  4560. if (ret == 0) {
  4561. size_t retlen = min_t(size_t, len, cpumask_size());
  4562. if (copy_to_user(user_mask_ptr, mask, retlen))
  4563. ret = -EFAULT;
  4564. else
  4565. ret = retlen;
  4566. }
  4567. free_cpumask_var(mask);
  4568. return ret;
  4569. }
  4570. /**
  4571. * sys_sched_yield - yield the current processor to other threads.
  4572. *
  4573. * This function yields the current CPU to other tasks. If there are no
  4574. * other threads running on this CPU then this function will return.
  4575. */
  4576. SYSCALL_DEFINE0(sched_yield)
  4577. {
  4578. struct rq *rq = this_rq_lock();
  4579. schedstat_inc(rq, yld_count);
  4580. current->sched_class->yield_task(rq);
  4581. /*
  4582. * Since we are going to call schedule() anyway, there's
  4583. * no need to preempt or enable interrupts:
  4584. */
  4585. __release(rq->lock);
  4586. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4587. do_raw_spin_unlock(&rq->lock);
  4588. preempt_enable_no_resched();
  4589. schedule();
  4590. return 0;
  4591. }
  4592. static inline int should_resched(void)
  4593. {
  4594. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4595. }
  4596. static void __cond_resched(void)
  4597. {
  4598. add_preempt_count(PREEMPT_ACTIVE);
  4599. schedule();
  4600. sub_preempt_count(PREEMPT_ACTIVE);
  4601. }
  4602. int __sched _cond_resched(void)
  4603. {
  4604. if (should_resched()) {
  4605. __cond_resched();
  4606. return 1;
  4607. }
  4608. return 0;
  4609. }
  4610. EXPORT_SYMBOL(_cond_resched);
  4611. /*
  4612. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4613. * call schedule, and on return reacquire the lock.
  4614. *
  4615. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4616. * operations here to prevent schedule() from being called twice (once via
  4617. * spin_unlock(), once by hand).
  4618. */
  4619. int __cond_resched_lock(spinlock_t *lock)
  4620. {
  4621. int resched = should_resched();
  4622. int ret = 0;
  4623. lockdep_assert_held(lock);
  4624. if (spin_needbreak(lock) || resched) {
  4625. spin_unlock(lock);
  4626. if (resched)
  4627. __cond_resched();
  4628. else
  4629. cpu_relax();
  4630. ret = 1;
  4631. spin_lock(lock);
  4632. }
  4633. return ret;
  4634. }
  4635. EXPORT_SYMBOL(__cond_resched_lock);
  4636. int __sched __cond_resched_softirq(void)
  4637. {
  4638. BUG_ON(!in_softirq());
  4639. if (should_resched()) {
  4640. local_bh_enable();
  4641. __cond_resched();
  4642. local_bh_disable();
  4643. return 1;
  4644. }
  4645. return 0;
  4646. }
  4647. EXPORT_SYMBOL(__cond_resched_softirq);
  4648. /**
  4649. * yield - yield the current processor to other threads.
  4650. *
  4651. * This is a shortcut for kernel-space yielding - it marks the
  4652. * thread runnable and calls sys_sched_yield().
  4653. */
  4654. void __sched yield(void)
  4655. {
  4656. set_current_state(TASK_RUNNING);
  4657. sys_sched_yield();
  4658. }
  4659. EXPORT_SYMBOL(yield);
  4660. /**
  4661. * yield_to - yield the current processor to another thread in
  4662. * your thread group, or accelerate that thread toward the
  4663. * processor it's on.
  4664. * @p: target task
  4665. * @preempt: whether task preemption is allowed or not
  4666. *
  4667. * It's the caller's job to ensure that the target task struct
  4668. * can't go away on us before we can do any checks.
  4669. *
  4670. * Returns true if we indeed boosted the target task.
  4671. */
  4672. bool __sched yield_to(struct task_struct *p, bool preempt)
  4673. {
  4674. struct task_struct *curr = current;
  4675. struct rq *rq, *p_rq;
  4676. unsigned long flags;
  4677. bool yielded = 0;
  4678. local_irq_save(flags);
  4679. rq = this_rq();
  4680. again:
  4681. p_rq = task_rq(p);
  4682. double_rq_lock(rq, p_rq);
  4683. while (task_rq(p) != p_rq) {
  4684. double_rq_unlock(rq, p_rq);
  4685. goto again;
  4686. }
  4687. if (!curr->sched_class->yield_to_task)
  4688. goto out;
  4689. if (curr->sched_class != p->sched_class)
  4690. goto out;
  4691. if (task_running(p_rq, p) || p->state)
  4692. goto out;
  4693. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4694. if (yielded) {
  4695. schedstat_inc(rq, yld_count);
  4696. /*
  4697. * Make p's CPU reschedule; pick_next_entity takes care of
  4698. * fairness.
  4699. */
  4700. if (preempt && rq != p_rq)
  4701. resched_task(p_rq->curr);
  4702. }
  4703. out:
  4704. double_rq_unlock(rq, p_rq);
  4705. local_irq_restore(flags);
  4706. if (yielded)
  4707. schedule();
  4708. return yielded;
  4709. }
  4710. EXPORT_SYMBOL_GPL(yield_to);
  4711. /*
  4712. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4713. * that process accounting knows that this is a task in IO wait state.
  4714. */
  4715. void __sched io_schedule(void)
  4716. {
  4717. struct rq *rq = raw_rq();
  4718. delayacct_blkio_start();
  4719. atomic_inc(&rq->nr_iowait);
  4720. blk_flush_plug(current);
  4721. current->in_iowait = 1;
  4722. schedule();
  4723. current->in_iowait = 0;
  4724. atomic_dec(&rq->nr_iowait);
  4725. delayacct_blkio_end();
  4726. }
  4727. EXPORT_SYMBOL(io_schedule);
  4728. long __sched io_schedule_timeout(long timeout)
  4729. {
  4730. struct rq *rq = raw_rq();
  4731. long ret;
  4732. delayacct_blkio_start();
  4733. atomic_inc(&rq->nr_iowait);
  4734. blk_flush_plug(current);
  4735. current->in_iowait = 1;
  4736. ret = schedule_timeout(timeout);
  4737. current->in_iowait = 0;
  4738. atomic_dec(&rq->nr_iowait);
  4739. delayacct_blkio_end();
  4740. return ret;
  4741. }
  4742. /**
  4743. * sys_sched_get_priority_max - return maximum RT priority.
  4744. * @policy: scheduling class.
  4745. *
  4746. * this syscall returns the maximum rt_priority that can be used
  4747. * by a given scheduling class.
  4748. */
  4749. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4750. {
  4751. int ret = -EINVAL;
  4752. switch (policy) {
  4753. case SCHED_FIFO:
  4754. case SCHED_RR:
  4755. ret = MAX_USER_RT_PRIO-1;
  4756. break;
  4757. case SCHED_NORMAL:
  4758. case SCHED_BATCH:
  4759. case SCHED_IDLE:
  4760. ret = 0;
  4761. break;
  4762. }
  4763. return ret;
  4764. }
  4765. /**
  4766. * sys_sched_get_priority_min - return minimum RT priority.
  4767. * @policy: scheduling class.
  4768. *
  4769. * this syscall returns the minimum rt_priority that can be used
  4770. * by a given scheduling class.
  4771. */
  4772. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4773. {
  4774. int ret = -EINVAL;
  4775. switch (policy) {
  4776. case SCHED_FIFO:
  4777. case SCHED_RR:
  4778. ret = 1;
  4779. break;
  4780. case SCHED_NORMAL:
  4781. case SCHED_BATCH:
  4782. case SCHED_IDLE:
  4783. ret = 0;
  4784. }
  4785. return ret;
  4786. }
  4787. /**
  4788. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4789. * @pid: pid of the process.
  4790. * @interval: userspace pointer to the timeslice value.
  4791. *
  4792. * this syscall writes the default timeslice value of a given process
  4793. * into the user-space timespec buffer. A value of '0' means infinity.
  4794. */
  4795. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4796. struct timespec __user *, interval)
  4797. {
  4798. struct task_struct *p;
  4799. unsigned int time_slice;
  4800. unsigned long flags;
  4801. struct rq *rq;
  4802. int retval;
  4803. struct timespec t;
  4804. if (pid < 0)
  4805. return -EINVAL;
  4806. retval = -ESRCH;
  4807. rcu_read_lock();
  4808. p = find_process_by_pid(pid);
  4809. if (!p)
  4810. goto out_unlock;
  4811. retval = security_task_getscheduler(p);
  4812. if (retval)
  4813. goto out_unlock;
  4814. rq = task_rq_lock(p, &flags);
  4815. time_slice = p->sched_class->get_rr_interval(rq, p);
  4816. task_rq_unlock(rq, &flags);
  4817. rcu_read_unlock();
  4818. jiffies_to_timespec(time_slice, &t);
  4819. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4820. return retval;
  4821. out_unlock:
  4822. rcu_read_unlock();
  4823. return retval;
  4824. }
  4825. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4826. void sched_show_task(struct task_struct *p)
  4827. {
  4828. unsigned long free = 0;
  4829. unsigned state;
  4830. state = p->state ? __ffs(p->state) + 1 : 0;
  4831. printk(KERN_INFO "%-15.15s %c", p->comm,
  4832. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4833. #if BITS_PER_LONG == 32
  4834. if (state == TASK_RUNNING)
  4835. printk(KERN_CONT " running ");
  4836. else
  4837. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4838. #else
  4839. if (state == TASK_RUNNING)
  4840. printk(KERN_CONT " running task ");
  4841. else
  4842. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4843. #endif
  4844. #ifdef CONFIG_DEBUG_STACK_USAGE
  4845. free = stack_not_used(p);
  4846. #endif
  4847. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4848. task_pid_nr(p), task_pid_nr(p->real_parent),
  4849. (unsigned long)task_thread_info(p)->flags);
  4850. show_stack(p, NULL);
  4851. }
  4852. void show_state_filter(unsigned long state_filter)
  4853. {
  4854. struct task_struct *g, *p;
  4855. #if BITS_PER_LONG == 32
  4856. printk(KERN_INFO
  4857. " task PC stack pid father\n");
  4858. #else
  4859. printk(KERN_INFO
  4860. " task PC stack pid father\n");
  4861. #endif
  4862. read_lock(&tasklist_lock);
  4863. do_each_thread(g, p) {
  4864. /*
  4865. * reset the NMI-timeout, listing all files on a slow
  4866. * console might take a lot of time:
  4867. */
  4868. touch_nmi_watchdog();
  4869. if (!state_filter || (p->state & state_filter))
  4870. sched_show_task(p);
  4871. } while_each_thread(g, p);
  4872. touch_all_softlockup_watchdogs();
  4873. #ifdef CONFIG_SCHED_DEBUG
  4874. sysrq_sched_debug_show();
  4875. #endif
  4876. read_unlock(&tasklist_lock);
  4877. /*
  4878. * Only show locks if all tasks are dumped:
  4879. */
  4880. if (!state_filter)
  4881. debug_show_all_locks();
  4882. }
  4883. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4884. {
  4885. idle->sched_class = &idle_sched_class;
  4886. }
  4887. /**
  4888. * init_idle - set up an idle thread for a given CPU
  4889. * @idle: task in question
  4890. * @cpu: cpu the idle task belongs to
  4891. *
  4892. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4893. * flag, to make booting more robust.
  4894. */
  4895. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4896. {
  4897. struct rq *rq = cpu_rq(cpu);
  4898. unsigned long flags;
  4899. raw_spin_lock_irqsave(&rq->lock, flags);
  4900. __sched_fork(idle);
  4901. idle->state = TASK_RUNNING;
  4902. idle->se.exec_start = sched_clock();
  4903. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4904. /*
  4905. * We're having a chicken and egg problem, even though we are
  4906. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4907. * lockdep check in task_group() will fail.
  4908. *
  4909. * Similar case to sched_fork(). / Alternatively we could
  4910. * use task_rq_lock() here and obtain the other rq->lock.
  4911. *
  4912. * Silence PROVE_RCU
  4913. */
  4914. rcu_read_lock();
  4915. __set_task_cpu(idle, cpu);
  4916. rcu_read_unlock();
  4917. rq->curr = rq->idle = idle;
  4918. #if defined(CONFIG_SMP)
  4919. idle->on_cpu = 1;
  4920. #endif
  4921. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4922. /* Set the preempt count _outside_ the spinlocks! */
  4923. #if defined(CONFIG_PREEMPT)
  4924. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4925. #else
  4926. task_thread_info(idle)->preempt_count = 0;
  4927. #endif
  4928. /*
  4929. * The idle tasks have their own, simple scheduling class:
  4930. */
  4931. idle->sched_class = &idle_sched_class;
  4932. ftrace_graph_init_idle_task(idle, cpu);
  4933. }
  4934. /*
  4935. * In a system that switches off the HZ timer nohz_cpu_mask
  4936. * indicates which cpus entered this state. This is used
  4937. * in the rcu update to wait only for active cpus. For system
  4938. * which do not switch off the HZ timer nohz_cpu_mask should
  4939. * always be CPU_BITS_NONE.
  4940. */
  4941. cpumask_var_t nohz_cpu_mask;
  4942. /*
  4943. * Increase the granularity value when there are more CPUs,
  4944. * because with more CPUs the 'effective latency' as visible
  4945. * to users decreases. But the relationship is not linear,
  4946. * so pick a second-best guess by going with the log2 of the
  4947. * number of CPUs.
  4948. *
  4949. * This idea comes from the SD scheduler of Con Kolivas:
  4950. */
  4951. static int get_update_sysctl_factor(void)
  4952. {
  4953. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4954. unsigned int factor;
  4955. switch (sysctl_sched_tunable_scaling) {
  4956. case SCHED_TUNABLESCALING_NONE:
  4957. factor = 1;
  4958. break;
  4959. case SCHED_TUNABLESCALING_LINEAR:
  4960. factor = cpus;
  4961. break;
  4962. case SCHED_TUNABLESCALING_LOG:
  4963. default:
  4964. factor = 1 + ilog2(cpus);
  4965. break;
  4966. }
  4967. return factor;
  4968. }
  4969. static void update_sysctl(void)
  4970. {
  4971. unsigned int factor = get_update_sysctl_factor();
  4972. #define SET_SYSCTL(name) \
  4973. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4974. SET_SYSCTL(sched_min_granularity);
  4975. SET_SYSCTL(sched_latency);
  4976. SET_SYSCTL(sched_wakeup_granularity);
  4977. #undef SET_SYSCTL
  4978. }
  4979. static inline void sched_init_granularity(void)
  4980. {
  4981. update_sysctl();
  4982. }
  4983. #ifdef CONFIG_SMP
  4984. /*
  4985. * This is how migration works:
  4986. *
  4987. * 1) we invoke migration_cpu_stop() on the target CPU using
  4988. * stop_one_cpu().
  4989. * 2) stopper starts to run (implicitly forcing the migrated thread
  4990. * off the CPU)
  4991. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4992. * 4) if it's in the wrong runqueue then the migration thread removes
  4993. * it and puts it into the right queue.
  4994. * 5) stopper completes and stop_one_cpu() returns and the migration
  4995. * is done.
  4996. */
  4997. /*
  4998. * Change a given task's CPU affinity. Migrate the thread to a
  4999. * proper CPU and schedule it away if the CPU it's executing on
  5000. * is removed from the allowed bitmask.
  5001. *
  5002. * NOTE: the caller must have a valid reference to the task, the
  5003. * task must not exit() & deallocate itself prematurely. The
  5004. * call is not atomic; no spinlocks may be held.
  5005. */
  5006. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5007. {
  5008. unsigned long flags;
  5009. struct rq *rq;
  5010. unsigned int dest_cpu;
  5011. int ret = 0;
  5012. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5013. rq = __task_rq_lock(p);
  5014. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5015. ret = -EINVAL;
  5016. goto out;
  5017. }
  5018. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5019. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5020. ret = -EINVAL;
  5021. goto out;
  5022. }
  5023. if (p->sched_class->set_cpus_allowed)
  5024. p->sched_class->set_cpus_allowed(p, new_mask);
  5025. else {
  5026. cpumask_copy(&p->cpus_allowed, new_mask);
  5027. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5028. }
  5029. /* Can the task run on the task's current CPU? If so, we're done */
  5030. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5031. goto out;
  5032. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5033. if (need_migrate_task(p)) {
  5034. struct migration_arg arg = { p, dest_cpu };
  5035. /* Need help from migration thread: drop lock and wait. */
  5036. __task_rq_unlock(rq);
  5037. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5038. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5039. tlb_migrate_finish(p->mm);
  5040. return 0;
  5041. }
  5042. out:
  5043. __task_rq_unlock(rq);
  5044. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5045. return ret;
  5046. }
  5047. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5048. /*
  5049. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5050. * this because either it can't run here any more (set_cpus_allowed()
  5051. * away from this CPU, or CPU going down), or because we're
  5052. * attempting to rebalance this task on exec (sched_exec).
  5053. *
  5054. * So we race with normal scheduler movements, but that's OK, as long
  5055. * as the task is no longer on this CPU.
  5056. *
  5057. * Returns non-zero if task was successfully migrated.
  5058. */
  5059. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5060. {
  5061. struct rq *rq_dest, *rq_src;
  5062. int ret = 0;
  5063. if (unlikely(!cpu_active(dest_cpu)))
  5064. return ret;
  5065. rq_src = cpu_rq(src_cpu);
  5066. rq_dest = cpu_rq(dest_cpu);
  5067. double_rq_lock(rq_src, rq_dest);
  5068. /* Already moved. */
  5069. if (task_cpu(p) != src_cpu)
  5070. goto done;
  5071. /* Affinity changed (again). */
  5072. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5073. goto fail;
  5074. /*
  5075. * If we're not on a rq, the next wake-up will ensure we're
  5076. * placed properly.
  5077. */
  5078. if (p->on_rq) {
  5079. deactivate_task(rq_src, p, 0);
  5080. set_task_cpu(p, dest_cpu);
  5081. activate_task(rq_dest, p, 0);
  5082. check_preempt_curr(rq_dest, p, 0);
  5083. }
  5084. done:
  5085. ret = 1;
  5086. fail:
  5087. double_rq_unlock(rq_src, rq_dest);
  5088. return ret;
  5089. }
  5090. /*
  5091. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5092. * and performs thread migration by bumping thread off CPU then
  5093. * 'pushing' onto another runqueue.
  5094. */
  5095. static int migration_cpu_stop(void *data)
  5096. {
  5097. struct migration_arg *arg = data;
  5098. /*
  5099. * The original target cpu might have gone down and we might
  5100. * be on another cpu but it doesn't matter.
  5101. */
  5102. local_irq_disable();
  5103. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5104. local_irq_enable();
  5105. return 0;
  5106. }
  5107. #ifdef CONFIG_HOTPLUG_CPU
  5108. /*
  5109. * Ensures that the idle task is using init_mm right before its cpu goes
  5110. * offline.
  5111. */
  5112. void idle_task_exit(void)
  5113. {
  5114. struct mm_struct *mm = current->active_mm;
  5115. BUG_ON(cpu_online(smp_processor_id()));
  5116. if (mm != &init_mm)
  5117. switch_mm(mm, &init_mm, current);
  5118. mmdrop(mm);
  5119. }
  5120. /*
  5121. * While a dead CPU has no uninterruptible tasks queued at this point,
  5122. * it might still have a nonzero ->nr_uninterruptible counter, because
  5123. * for performance reasons the counter is not stricly tracking tasks to
  5124. * their home CPUs. So we just add the counter to another CPU's counter,
  5125. * to keep the global sum constant after CPU-down:
  5126. */
  5127. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5128. {
  5129. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5130. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5131. rq_src->nr_uninterruptible = 0;
  5132. }
  5133. /*
  5134. * remove the tasks which were accounted by rq from calc_load_tasks.
  5135. */
  5136. static void calc_global_load_remove(struct rq *rq)
  5137. {
  5138. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5139. rq->calc_load_active = 0;
  5140. }
  5141. /*
  5142. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5143. * try_to_wake_up()->select_task_rq().
  5144. *
  5145. * Called with rq->lock held even though we'er in stop_machine() and
  5146. * there's no concurrency possible, we hold the required locks anyway
  5147. * because of lock validation efforts.
  5148. */
  5149. static void migrate_tasks(unsigned int dead_cpu)
  5150. {
  5151. struct rq *rq = cpu_rq(dead_cpu);
  5152. struct task_struct *next, *stop = rq->stop;
  5153. int dest_cpu;
  5154. /*
  5155. * Fudge the rq selection such that the below task selection loop
  5156. * doesn't get stuck on the currently eligible stop task.
  5157. *
  5158. * We're currently inside stop_machine() and the rq is either stuck
  5159. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5160. * either way we should never end up calling schedule() until we're
  5161. * done here.
  5162. */
  5163. rq->stop = NULL;
  5164. for ( ; ; ) {
  5165. /*
  5166. * There's this thread running, bail when that's the only
  5167. * remaining thread.
  5168. */
  5169. if (rq->nr_running == 1)
  5170. break;
  5171. next = pick_next_task(rq);
  5172. BUG_ON(!next);
  5173. next->sched_class->put_prev_task(rq, next);
  5174. /* Find suitable destination for @next, with force if needed. */
  5175. dest_cpu = select_fallback_rq(dead_cpu, next);
  5176. raw_spin_unlock(&rq->lock);
  5177. __migrate_task(next, dead_cpu, dest_cpu);
  5178. raw_spin_lock(&rq->lock);
  5179. }
  5180. rq->stop = stop;
  5181. }
  5182. #endif /* CONFIG_HOTPLUG_CPU */
  5183. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5184. static struct ctl_table sd_ctl_dir[] = {
  5185. {
  5186. .procname = "sched_domain",
  5187. .mode = 0555,
  5188. },
  5189. {}
  5190. };
  5191. static struct ctl_table sd_ctl_root[] = {
  5192. {
  5193. .procname = "kernel",
  5194. .mode = 0555,
  5195. .child = sd_ctl_dir,
  5196. },
  5197. {}
  5198. };
  5199. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5200. {
  5201. struct ctl_table *entry =
  5202. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5203. return entry;
  5204. }
  5205. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5206. {
  5207. struct ctl_table *entry;
  5208. /*
  5209. * In the intermediate directories, both the child directory and
  5210. * procname are dynamically allocated and could fail but the mode
  5211. * will always be set. In the lowest directory the names are
  5212. * static strings and all have proc handlers.
  5213. */
  5214. for (entry = *tablep; entry->mode; entry++) {
  5215. if (entry->child)
  5216. sd_free_ctl_entry(&entry->child);
  5217. if (entry->proc_handler == NULL)
  5218. kfree(entry->procname);
  5219. }
  5220. kfree(*tablep);
  5221. *tablep = NULL;
  5222. }
  5223. static void
  5224. set_table_entry(struct ctl_table *entry,
  5225. const char *procname, void *data, int maxlen,
  5226. mode_t mode, proc_handler *proc_handler)
  5227. {
  5228. entry->procname = procname;
  5229. entry->data = data;
  5230. entry->maxlen = maxlen;
  5231. entry->mode = mode;
  5232. entry->proc_handler = proc_handler;
  5233. }
  5234. static struct ctl_table *
  5235. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5236. {
  5237. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5238. if (table == NULL)
  5239. return NULL;
  5240. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5241. sizeof(long), 0644, proc_doulongvec_minmax);
  5242. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5243. sizeof(long), 0644, proc_doulongvec_minmax);
  5244. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5245. sizeof(int), 0644, proc_dointvec_minmax);
  5246. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5247. sizeof(int), 0644, proc_dointvec_minmax);
  5248. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5249. sizeof(int), 0644, proc_dointvec_minmax);
  5250. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5251. sizeof(int), 0644, proc_dointvec_minmax);
  5252. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5253. sizeof(int), 0644, proc_dointvec_minmax);
  5254. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5255. sizeof(int), 0644, proc_dointvec_minmax);
  5256. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5257. sizeof(int), 0644, proc_dointvec_minmax);
  5258. set_table_entry(&table[9], "cache_nice_tries",
  5259. &sd->cache_nice_tries,
  5260. sizeof(int), 0644, proc_dointvec_minmax);
  5261. set_table_entry(&table[10], "flags", &sd->flags,
  5262. sizeof(int), 0644, proc_dointvec_minmax);
  5263. set_table_entry(&table[11], "name", sd->name,
  5264. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5265. /* &table[12] is terminator */
  5266. return table;
  5267. }
  5268. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5269. {
  5270. struct ctl_table *entry, *table;
  5271. struct sched_domain *sd;
  5272. int domain_num = 0, i;
  5273. char buf[32];
  5274. for_each_domain(cpu, sd)
  5275. domain_num++;
  5276. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5277. if (table == NULL)
  5278. return NULL;
  5279. i = 0;
  5280. for_each_domain(cpu, sd) {
  5281. snprintf(buf, 32, "domain%d", i);
  5282. entry->procname = kstrdup(buf, GFP_KERNEL);
  5283. entry->mode = 0555;
  5284. entry->child = sd_alloc_ctl_domain_table(sd);
  5285. entry++;
  5286. i++;
  5287. }
  5288. return table;
  5289. }
  5290. static struct ctl_table_header *sd_sysctl_header;
  5291. static void register_sched_domain_sysctl(void)
  5292. {
  5293. int i, cpu_num = num_possible_cpus();
  5294. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5295. char buf[32];
  5296. WARN_ON(sd_ctl_dir[0].child);
  5297. sd_ctl_dir[0].child = entry;
  5298. if (entry == NULL)
  5299. return;
  5300. for_each_possible_cpu(i) {
  5301. snprintf(buf, 32, "cpu%d", i);
  5302. entry->procname = kstrdup(buf, GFP_KERNEL);
  5303. entry->mode = 0555;
  5304. entry->child = sd_alloc_ctl_cpu_table(i);
  5305. entry++;
  5306. }
  5307. WARN_ON(sd_sysctl_header);
  5308. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5309. }
  5310. /* may be called multiple times per register */
  5311. static void unregister_sched_domain_sysctl(void)
  5312. {
  5313. if (sd_sysctl_header)
  5314. unregister_sysctl_table(sd_sysctl_header);
  5315. sd_sysctl_header = NULL;
  5316. if (sd_ctl_dir[0].child)
  5317. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5318. }
  5319. #else
  5320. static void register_sched_domain_sysctl(void)
  5321. {
  5322. }
  5323. static void unregister_sched_domain_sysctl(void)
  5324. {
  5325. }
  5326. #endif
  5327. static void set_rq_online(struct rq *rq)
  5328. {
  5329. if (!rq->online) {
  5330. const struct sched_class *class;
  5331. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5332. rq->online = 1;
  5333. for_each_class(class) {
  5334. if (class->rq_online)
  5335. class->rq_online(rq);
  5336. }
  5337. }
  5338. }
  5339. static void set_rq_offline(struct rq *rq)
  5340. {
  5341. if (rq->online) {
  5342. const struct sched_class *class;
  5343. for_each_class(class) {
  5344. if (class->rq_offline)
  5345. class->rq_offline(rq);
  5346. }
  5347. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5348. rq->online = 0;
  5349. }
  5350. }
  5351. /*
  5352. * migration_call - callback that gets triggered when a CPU is added.
  5353. * Here we can start up the necessary migration thread for the new CPU.
  5354. */
  5355. static int __cpuinit
  5356. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5357. {
  5358. int cpu = (long)hcpu;
  5359. unsigned long flags;
  5360. struct rq *rq = cpu_rq(cpu);
  5361. switch (action & ~CPU_TASKS_FROZEN) {
  5362. case CPU_UP_PREPARE:
  5363. rq->calc_load_update = calc_load_update;
  5364. break;
  5365. case CPU_ONLINE:
  5366. /* Update our root-domain */
  5367. raw_spin_lock_irqsave(&rq->lock, flags);
  5368. if (rq->rd) {
  5369. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5370. set_rq_online(rq);
  5371. }
  5372. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5373. break;
  5374. #ifdef CONFIG_HOTPLUG_CPU
  5375. case CPU_DYING:
  5376. /* Update our root-domain */
  5377. raw_spin_lock_irqsave(&rq->lock, flags);
  5378. if (rq->rd) {
  5379. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5380. set_rq_offline(rq);
  5381. }
  5382. migrate_tasks(cpu);
  5383. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5384. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5385. migrate_nr_uninterruptible(rq);
  5386. calc_global_load_remove(rq);
  5387. break;
  5388. #endif
  5389. }
  5390. update_max_interval();
  5391. return NOTIFY_OK;
  5392. }
  5393. /*
  5394. * Register at high priority so that task migration (migrate_all_tasks)
  5395. * happens before everything else. This has to be lower priority than
  5396. * the notifier in the perf_event subsystem, though.
  5397. */
  5398. static struct notifier_block __cpuinitdata migration_notifier = {
  5399. .notifier_call = migration_call,
  5400. .priority = CPU_PRI_MIGRATION,
  5401. };
  5402. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5403. unsigned long action, void *hcpu)
  5404. {
  5405. switch (action & ~CPU_TASKS_FROZEN) {
  5406. case CPU_ONLINE:
  5407. case CPU_DOWN_FAILED:
  5408. set_cpu_active((long)hcpu, true);
  5409. return NOTIFY_OK;
  5410. default:
  5411. return NOTIFY_DONE;
  5412. }
  5413. }
  5414. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5415. unsigned long action, void *hcpu)
  5416. {
  5417. switch (action & ~CPU_TASKS_FROZEN) {
  5418. case CPU_DOWN_PREPARE:
  5419. set_cpu_active((long)hcpu, false);
  5420. return NOTIFY_OK;
  5421. default:
  5422. return NOTIFY_DONE;
  5423. }
  5424. }
  5425. static int __init migration_init(void)
  5426. {
  5427. void *cpu = (void *)(long)smp_processor_id();
  5428. int err;
  5429. /* Initialize migration for the boot CPU */
  5430. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5431. BUG_ON(err == NOTIFY_BAD);
  5432. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5433. register_cpu_notifier(&migration_notifier);
  5434. /* Register cpu active notifiers */
  5435. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5436. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5437. return 0;
  5438. }
  5439. early_initcall(migration_init);
  5440. #endif
  5441. #ifdef CONFIG_SMP
  5442. #ifdef CONFIG_SCHED_DEBUG
  5443. static __read_mostly int sched_domain_debug_enabled;
  5444. static int __init sched_domain_debug_setup(char *str)
  5445. {
  5446. sched_domain_debug_enabled = 1;
  5447. return 0;
  5448. }
  5449. early_param("sched_debug", sched_domain_debug_setup);
  5450. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5451. struct cpumask *groupmask)
  5452. {
  5453. struct sched_group *group = sd->groups;
  5454. char str[256];
  5455. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5456. cpumask_clear(groupmask);
  5457. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5458. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5459. printk("does not load-balance\n");
  5460. if (sd->parent)
  5461. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5462. " has parent");
  5463. return -1;
  5464. }
  5465. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5466. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5467. printk(KERN_ERR "ERROR: domain->span does not contain "
  5468. "CPU%d\n", cpu);
  5469. }
  5470. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5471. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5472. " CPU%d\n", cpu);
  5473. }
  5474. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5475. do {
  5476. if (!group) {
  5477. printk("\n");
  5478. printk(KERN_ERR "ERROR: group is NULL\n");
  5479. break;
  5480. }
  5481. if (!group->cpu_power) {
  5482. printk(KERN_CONT "\n");
  5483. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5484. "set\n");
  5485. break;
  5486. }
  5487. if (!cpumask_weight(sched_group_cpus(group))) {
  5488. printk(KERN_CONT "\n");
  5489. printk(KERN_ERR "ERROR: empty group\n");
  5490. break;
  5491. }
  5492. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5493. printk(KERN_CONT "\n");
  5494. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5495. break;
  5496. }
  5497. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5498. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5499. printk(KERN_CONT " %s", str);
  5500. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5501. printk(KERN_CONT " (cpu_power = %d)",
  5502. group->cpu_power);
  5503. }
  5504. group = group->next;
  5505. } while (group != sd->groups);
  5506. printk(KERN_CONT "\n");
  5507. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5508. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5509. if (sd->parent &&
  5510. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5511. printk(KERN_ERR "ERROR: parent span is not a superset "
  5512. "of domain->span\n");
  5513. return 0;
  5514. }
  5515. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5516. {
  5517. cpumask_var_t groupmask;
  5518. int level = 0;
  5519. if (!sched_domain_debug_enabled)
  5520. return;
  5521. if (!sd) {
  5522. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5523. return;
  5524. }
  5525. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5526. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5527. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5528. return;
  5529. }
  5530. for (;;) {
  5531. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5532. break;
  5533. level++;
  5534. sd = sd->parent;
  5535. if (!sd)
  5536. break;
  5537. }
  5538. free_cpumask_var(groupmask);
  5539. }
  5540. #else /* !CONFIG_SCHED_DEBUG */
  5541. # define sched_domain_debug(sd, cpu) do { } while (0)
  5542. #endif /* CONFIG_SCHED_DEBUG */
  5543. static int sd_degenerate(struct sched_domain *sd)
  5544. {
  5545. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5546. return 1;
  5547. /* Following flags need at least 2 groups */
  5548. if (sd->flags & (SD_LOAD_BALANCE |
  5549. SD_BALANCE_NEWIDLE |
  5550. SD_BALANCE_FORK |
  5551. SD_BALANCE_EXEC |
  5552. SD_SHARE_CPUPOWER |
  5553. SD_SHARE_PKG_RESOURCES)) {
  5554. if (sd->groups != sd->groups->next)
  5555. return 0;
  5556. }
  5557. /* Following flags don't use groups */
  5558. if (sd->flags & (SD_WAKE_AFFINE))
  5559. return 0;
  5560. return 1;
  5561. }
  5562. static int
  5563. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5564. {
  5565. unsigned long cflags = sd->flags, pflags = parent->flags;
  5566. if (sd_degenerate(parent))
  5567. return 1;
  5568. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5569. return 0;
  5570. /* Flags needing groups don't count if only 1 group in parent */
  5571. if (parent->groups == parent->groups->next) {
  5572. pflags &= ~(SD_LOAD_BALANCE |
  5573. SD_BALANCE_NEWIDLE |
  5574. SD_BALANCE_FORK |
  5575. SD_BALANCE_EXEC |
  5576. SD_SHARE_CPUPOWER |
  5577. SD_SHARE_PKG_RESOURCES);
  5578. if (nr_node_ids == 1)
  5579. pflags &= ~SD_SERIALIZE;
  5580. }
  5581. if (~cflags & pflags)
  5582. return 0;
  5583. return 1;
  5584. }
  5585. static void free_rootdomain(struct root_domain *rd)
  5586. {
  5587. synchronize_sched();
  5588. cpupri_cleanup(&rd->cpupri);
  5589. free_cpumask_var(rd->rto_mask);
  5590. free_cpumask_var(rd->online);
  5591. free_cpumask_var(rd->span);
  5592. kfree(rd);
  5593. }
  5594. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5595. {
  5596. struct root_domain *old_rd = NULL;
  5597. unsigned long flags;
  5598. raw_spin_lock_irqsave(&rq->lock, flags);
  5599. if (rq->rd) {
  5600. old_rd = rq->rd;
  5601. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5602. set_rq_offline(rq);
  5603. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5604. /*
  5605. * If we dont want to free the old_rt yet then
  5606. * set old_rd to NULL to skip the freeing later
  5607. * in this function:
  5608. */
  5609. if (!atomic_dec_and_test(&old_rd->refcount))
  5610. old_rd = NULL;
  5611. }
  5612. atomic_inc(&rd->refcount);
  5613. rq->rd = rd;
  5614. cpumask_set_cpu(rq->cpu, rd->span);
  5615. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5616. set_rq_online(rq);
  5617. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5618. if (old_rd)
  5619. free_rootdomain(old_rd);
  5620. }
  5621. static int init_rootdomain(struct root_domain *rd)
  5622. {
  5623. memset(rd, 0, sizeof(*rd));
  5624. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5625. goto out;
  5626. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5627. goto free_span;
  5628. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5629. goto free_online;
  5630. if (cpupri_init(&rd->cpupri) != 0)
  5631. goto free_rto_mask;
  5632. return 0;
  5633. free_rto_mask:
  5634. free_cpumask_var(rd->rto_mask);
  5635. free_online:
  5636. free_cpumask_var(rd->online);
  5637. free_span:
  5638. free_cpumask_var(rd->span);
  5639. out:
  5640. return -ENOMEM;
  5641. }
  5642. static void init_defrootdomain(void)
  5643. {
  5644. init_rootdomain(&def_root_domain);
  5645. atomic_set(&def_root_domain.refcount, 1);
  5646. }
  5647. static struct root_domain *alloc_rootdomain(void)
  5648. {
  5649. struct root_domain *rd;
  5650. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5651. if (!rd)
  5652. return NULL;
  5653. if (init_rootdomain(rd) != 0) {
  5654. kfree(rd);
  5655. return NULL;
  5656. }
  5657. return rd;
  5658. }
  5659. /*
  5660. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5661. * hold the hotplug lock.
  5662. */
  5663. static void
  5664. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5665. {
  5666. struct rq *rq = cpu_rq(cpu);
  5667. struct sched_domain *tmp;
  5668. for (tmp = sd; tmp; tmp = tmp->parent)
  5669. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5670. /* Remove the sched domains which do not contribute to scheduling. */
  5671. for (tmp = sd; tmp; ) {
  5672. struct sched_domain *parent = tmp->parent;
  5673. if (!parent)
  5674. break;
  5675. if (sd_parent_degenerate(tmp, parent)) {
  5676. tmp->parent = parent->parent;
  5677. if (parent->parent)
  5678. parent->parent->child = tmp;
  5679. } else
  5680. tmp = tmp->parent;
  5681. }
  5682. if (sd && sd_degenerate(sd)) {
  5683. sd = sd->parent;
  5684. if (sd)
  5685. sd->child = NULL;
  5686. }
  5687. sched_domain_debug(sd, cpu);
  5688. rq_attach_root(rq, rd);
  5689. rcu_assign_pointer(rq->sd, sd);
  5690. }
  5691. /* cpus with isolated domains */
  5692. static cpumask_var_t cpu_isolated_map;
  5693. /* Setup the mask of cpus configured for isolated domains */
  5694. static int __init isolated_cpu_setup(char *str)
  5695. {
  5696. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5697. cpulist_parse(str, cpu_isolated_map);
  5698. return 1;
  5699. }
  5700. __setup("isolcpus=", isolated_cpu_setup);
  5701. /*
  5702. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5703. * to a function which identifies what group(along with sched group) a CPU
  5704. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5705. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5706. *
  5707. * init_sched_build_groups will build a circular linked list of the groups
  5708. * covered by the given span, and will set each group's ->cpumask correctly,
  5709. * and ->cpu_power to 0.
  5710. */
  5711. static void
  5712. init_sched_build_groups(const struct cpumask *span,
  5713. const struct cpumask *cpu_map,
  5714. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5715. struct sched_group **sg,
  5716. struct cpumask *tmpmask),
  5717. struct cpumask *covered, struct cpumask *tmpmask)
  5718. {
  5719. struct sched_group *first = NULL, *last = NULL;
  5720. int i;
  5721. cpumask_clear(covered);
  5722. for_each_cpu(i, span) {
  5723. struct sched_group *sg;
  5724. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5725. int j;
  5726. if (cpumask_test_cpu(i, covered))
  5727. continue;
  5728. cpumask_clear(sched_group_cpus(sg));
  5729. sg->cpu_power = 0;
  5730. for_each_cpu(j, span) {
  5731. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5732. continue;
  5733. cpumask_set_cpu(j, covered);
  5734. cpumask_set_cpu(j, sched_group_cpus(sg));
  5735. }
  5736. if (!first)
  5737. first = sg;
  5738. if (last)
  5739. last->next = sg;
  5740. last = sg;
  5741. }
  5742. last->next = first;
  5743. }
  5744. #define SD_NODES_PER_DOMAIN 16
  5745. #ifdef CONFIG_NUMA
  5746. /**
  5747. * find_next_best_node - find the next node to include in a sched_domain
  5748. * @node: node whose sched_domain we're building
  5749. * @used_nodes: nodes already in the sched_domain
  5750. *
  5751. * Find the next node to include in a given scheduling domain. Simply
  5752. * finds the closest node not already in the @used_nodes map.
  5753. *
  5754. * Should use nodemask_t.
  5755. */
  5756. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5757. {
  5758. int i, n, val, min_val, best_node = 0;
  5759. min_val = INT_MAX;
  5760. for (i = 0; i < nr_node_ids; i++) {
  5761. /* Start at @node */
  5762. n = (node + i) % nr_node_ids;
  5763. if (!nr_cpus_node(n))
  5764. continue;
  5765. /* Skip already used nodes */
  5766. if (node_isset(n, *used_nodes))
  5767. continue;
  5768. /* Simple min distance search */
  5769. val = node_distance(node, n);
  5770. if (val < min_val) {
  5771. min_val = val;
  5772. best_node = n;
  5773. }
  5774. }
  5775. node_set(best_node, *used_nodes);
  5776. return best_node;
  5777. }
  5778. /**
  5779. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5780. * @node: node whose cpumask we're constructing
  5781. * @span: resulting cpumask
  5782. *
  5783. * Given a node, construct a good cpumask for its sched_domain to span. It
  5784. * should be one that prevents unnecessary balancing, but also spreads tasks
  5785. * out optimally.
  5786. */
  5787. static void sched_domain_node_span(int node, struct cpumask *span)
  5788. {
  5789. nodemask_t used_nodes;
  5790. int i;
  5791. cpumask_clear(span);
  5792. nodes_clear(used_nodes);
  5793. cpumask_or(span, span, cpumask_of_node(node));
  5794. node_set(node, used_nodes);
  5795. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5796. int next_node = find_next_best_node(node, &used_nodes);
  5797. cpumask_or(span, span, cpumask_of_node(next_node));
  5798. }
  5799. }
  5800. #endif /* CONFIG_NUMA */
  5801. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5802. /*
  5803. * The cpus mask in sched_group and sched_domain hangs off the end.
  5804. *
  5805. * ( See the the comments in include/linux/sched.h:struct sched_group
  5806. * and struct sched_domain. )
  5807. */
  5808. struct static_sched_group {
  5809. struct sched_group sg;
  5810. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5811. };
  5812. struct static_sched_domain {
  5813. struct sched_domain sd;
  5814. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5815. };
  5816. struct s_data {
  5817. #ifdef CONFIG_NUMA
  5818. int sd_allnodes;
  5819. cpumask_var_t domainspan;
  5820. cpumask_var_t covered;
  5821. cpumask_var_t notcovered;
  5822. #endif
  5823. cpumask_var_t nodemask;
  5824. cpumask_var_t this_sibling_map;
  5825. cpumask_var_t this_core_map;
  5826. cpumask_var_t this_book_map;
  5827. cpumask_var_t send_covered;
  5828. cpumask_var_t tmpmask;
  5829. struct sched_group **sched_group_nodes;
  5830. struct root_domain *rd;
  5831. };
  5832. enum s_alloc {
  5833. sa_sched_groups = 0,
  5834. sa_rootdomain,
  5835. sa_tmpmask,
  5836. sa_send_covered,
  5837. sa_this_book_map,
  5838. sa_this_core_map,
  5839. sa_this_sibling_map,
  5840. sa_nodemask,
  5841. sa_sched_group_nodes,
  5842. #ifdef CONFIG_NUMA
  5843. sa_notcovered,
  5844. sa_covered,
  5845. sa_domainspan,
  5846. #endif
  5847. sa_none,
  5848. };
  5849. /*
  5850. * SMT sched-domains:
  5851. */
  5852. #ifdef CONFIG_SCHED_SMT
  5853. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5854. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5855. static int
  5856. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5857. struct sched_group **sg, struct cpumask *unused)
  5858. {
  5859. if (sg)
  5860. *sg = &per_cpu(sched_groups, cpu).sg;
  5861. return cpu;
  5862. }
  5863. #endif /* CONFIG_SCHED_SMT */
  5864. /*
  5865. * multi-core sched-domains:
  5866. */
  5867. #ifdef CONFIG_SCHED_MC
  5868. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5869. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5870. static int
  5871. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5872. struct sched_group **sg, struct cpumask *mask)
  5873. {
  5874. int group;
  5875. #ifdef CONFIG_SCHED_SMT
  5876. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5877. group = cpumask_first(mask);
  5878. #else
  5879. group = cpu;
  5880. #endif
  5881. if (sg)
  5882. *sg = &per_cpu(sched_group_core, group).sg;
  5883. return group;
  5884. }
  5885. #endif /* CONFIG_SCHED_MC */
  5886. /*
  5887. * book sched-domains:
  5888. */
  5889. #ifdef CONFIG_SCHED_BOOK
  5890. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5891. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5892. static int
  5893. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5894. struct sched_group **sg, struct cpumask *mask)
  5895. {
  5896. int group = cpu;
  5897. #ifdef CONFIG_SCHED_MC
  5898. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5899. group = cpumask_first(mask);
  5900. #elif defined(CONFIG_SCHED_SMT)
  5901. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5902. group = cpumask_first(mask);
  5903. #endif
  5904. if (sg)
  5905. *sg = &per_cpu(sched_group_book, group).sg;
  5906. return group;
  5907. }
  5908. #endif /* CONFIG_SCHED_BOOK */
  5909. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5910. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5911. static int
  5912. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5913. struct sched_group **sg, struct cpumask *mask)
  5914. {
  5915. int group;
  5916. #ifdef CONFIG_SCHED_BOOK
  5917. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5918. group = cpumask_first(mask);
  5919. #elif defined(CONFIG_SCHED_MC)
  5920. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5921. group = cpumask_first(mask);
  5922. #elif defined(CONFIG_SCHED_SMT)
  5923. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5924. group = cpumask_first(mask);
  5925. #else
  5926. group = cpu;
  5927. #endif
  5928. if (sg)
  5929. *sg = &per_cpu(sched_group_phys, group).sg;
  5930. return group;
  5931. }
  5932. #ifdef CONFIG_NUMA
  5933. /*
  5934. * The init_sched_build_groups can't handle what we want to do with node
  5935. * groups, so roll our own. Now each node has its own list of groups which
  5936. * gets dynamically allocated.
  5937. */
  5938. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5939. static struct sched_group ***sched_group_nodes_bycpu;
  5940. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5941. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5942. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5943. struct sched_group **sg,
  5944. struct cpumask *nodemask)
  5945. {
  5946. int group;
  5947. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5948. group = cpumask_first(nodemask);
  5949. if (sg)
  5950. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5951. return group;
  5952. }
  5953. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5954. {
  5955. struct sched_group *sg = group_head;
  5956. int j;
  5957. if (!sg)
  5958. return;
  5959. do {
  5960. for_each_cpu(j, sched_group_cpus(sg)) {
  5961. struct sched_domain *sd;
  5962. sd = &per_cpu(phys_domains, j).sd;
  5963. if (j != group_first_cpu(sd->groups)) {
  5964. /*
  5965. * Only add "power" once for each
  5966. * physical package.
  5967. */
  5968. continue;
  5969. }
  5970. sg->cpu_power += sd->groups->cpu_power;
  5971. }
  5972. sg = sg->next;
  5973. } while (sg != group_head);
  5974. }
  5975. static int build_numa_sched_groups(struct s_data *d,
  5976. const struct cpumask *cpu_map, int num)
  5977. {
  5978. struct sched_domain *sd;
  5979. struct sched_group *sg, *prev;
  5980. int n, j;
  5981. cpumask_clear(d->covered);
  5982. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5983. if (cpumask_empty(d->nodemask)) {
  5984. d->sched_group_nodes[num] = NULL;
  5985. goto out;
  5986. }
  5987. sched_domain_node_span(num, d->domainspan);
  5988. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5989. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5990. GFP_KERNEL, num);
  5991. if (!sg) {
  5992. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5993. num);
  5994. return -ENOMEM;
  5995. }
  5996. d->sched_group_nodes[num] = sg;
  5997. for_each_cpu(j, d->nodemask) {
  5998. sd = &per_cpu(node_domains, j).sd;
  5999. sd->groups = sg;
  6000. }
  6001. sg->cpu_power = 0;
  6002. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6003. sg->next = sg;
  6004. cpumask_or(d->covered, d->covered, d->nodemask);
  6005. prev = sg;
  6006. for (j = 0; j < nr_node_ids; j++) {
  6007. n = (num + j) % nr_node_ids;
  6008. cpumask_complement(d->notcovered, d->covered);
  6009. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6010. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6011. if (cpumask_empty(d->tmpmask))
  6012. break;
  6013. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6014. if (cpumask_empty(d->tmpmask))
  6015. continue;
  6016. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6017. GFP_KERNEL, num);
  6018. if (!sg) {
  6019. printk(KERN_WARNING
  6020. "Can not alloc domain group for node %d\n", j);
  6021. return -ENOMEM;
  6022. }
  6023. sg->cpu_power = 0;
  6024. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6025. sg->next = prev->next;
  6026. cpumask_or(d->covered, d->covered, d->tmpmask);
  6027. prev->next = sg;
  6028. prev = sg;
  6029. }
  6030. out:
  6031. return 0;
  6032. }
  6033. #endif /* CONFIG_NUMA */
  6034. #ifdef CONFIG_NUMA
  6035. /* Free memory allocated for various sched_group structures */
  6036. static void free_sched_groups(const struct cpumask *cpu_map,
  6037. struct cpumask *nodemask)
  6038. {
  6039. int cpu, i;
  6040. for_each_cpu(cpu, cpu_map) {
  6041. struct sched_group **sched_group_nodes
  6042. = sched_group_nodes_bycpu[cpu];
  6043. if (!sched_group_nodes)
  6044. continue;
  6045. for (i = 0; i < nr_node_ids; i++) {
  6046. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6047. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6048. if (cpumask_empty(nodemask))
  6049. continue;
  6050. if (sg == NULL)
  6051. continue;
  6052. sg = sg->next;
  6053. next_sg:
  6054. oldsg = sg;
  6055. sg = sg->next;
  6056. kfree(oldsg);
  6057. if (oldsg != sched_group_nodes[i])
  6058. goto next_sg;
  6059. }
  6060. kfree(sched_group_nodes);
  6061. sched_group_nodes_bycpu[cpu] = NULL;
  6062. }
  6063. }
  6064. #else /* !CONFIG_NUMA */
  6065. static void free_sched_groups(const struct cpumask *cpu_map,
  6066. struct cpumask *nodemask)
  6067. {
  6068. }
  6069. #endif /* CONFIG_NUMA */
  6070. /*
  6071. * Initialize sched groups cpu_power.
  6072. *
  6073. * cpu_power indicates the capacity of sched group, which is used while
  6074. * distributing the load between different sched groups in a sched domain.
  6075. * Typically cpu_power for all the groups in a sched domain will be same unless
  6076. * there are asymmetries in the topology. If there are asymmetries, group
  6077. * having more cpu_power will pickup more load compared to the group having
  6078. * less cpu_power.
  6079. */
  6080. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6081. {
  6082. struct sched_domain *child;
  6083. struct sched_group *group;
  6084. long power;
  6085. int weight;
  6086. WARN_ON(!sd || !sd->groups);
  6087. if (cpu != group_first_cpu(sd->groups))
  6088. return;
  6089. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6090. child = sd->child;
  6091. sd->groups->cpu_power = 0;
  6092. if (!child) {
  6093. power = SCHED_LOAD_SCALE;
  6094. weight = cpumask_weight(sched_domain_span(sd));
  6095. /*
  6096. * SMT siblings share the power of a single core.
  6097. * Usually multiple threads get a better yield out of
  6098. * that one core than a single thread would have,
  6099. * reflect that in sd->smt_gain.
  6100. */
  6101. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6102. power *= sd->smt_gain;
  6103. power /= weight;
  6104. power >>= SCHED_LOAD_SHIFT;
  6105. }
  6106. sd->groups->cpu_power += power;
  6107. return;
  6108. }
  6109. /*
  6110. * Add cpu_power of each child group to this groups cpu_power.
  6111. */
  6112. group = child->groups;
  6113. do {
  6114. sd->groups->cpu_power += group->cpu_power;
  6115. group = group->next;
  6116. } while (group != child->groups);
  6117. }
  6118. /*
  6119. * Initializers for schedule domains
  6120. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6121. */
  6122. #ifdef CONFIG_SCHED_DEBUG
  6123. # define SD_INIT_NAME(sd, type) sd->name = #type
  6124. #else
  6125. # define SD_INIT_NAME(sd, type) do { } while (0)
  6126. #endif
  6127. #define SD_INIT(sd, type) sd_init_##type(sd)
  6128. #define SD_INIT_FUNC(type) \
  6129. static noinline void sd_init_##type(struct sched_domain *sd) \
  6130. { \
  6131. memset(sd, 0, sizeof(*sd)); \
  6132. *sd = SD_##type##_INIT; \
  6133. sd->level = SD_LV_##type; \
  6134. SD_INIT_NAME(sd, type); \
  6135. }
  6136. SD_INIT_FUNC(CPU)
  6137. #ifdef CONFIG_NUMA
  6138. SD_INIT_FUNC(ALLNODES)
  6139. SD_INIT_FUNC(NODE)
  6140. #endif
  6141. #ifdef CONFIG_SCHED_SMT
  6142. SD_INIT_FUNC(SIBLING)
  6143. #endif
  6144. #ifdef CONFIG_SCHED_MC
  6145. SD_INIT_FUNC(MC)
  6146. #endif
  6147. #ifdef CONFIG_SCHED_BOOK
  6148. SD_INIT_FUNC(BOOK)
  6149. #endif
  6150. static int default_relax_domain_level = -1;
  6151. static int __init setup_relax_domain_level(char *str)
  6152. {
  6153. unsigned long val;
  6154. val = simple_strtoul(str, NULL, 0);
  6155. if (val < SD_LV_MAX)
  6156. default_relax_domain_level = val;
  6157. return 1;
  6158. }
  6159. __setup("relax_domain_level=", setup_relax_domain_level);
  6160. static void set_domain_attribute(struct sched_domain *sd,
  6161. struct sched_domain_attr *attr)
  6162. {
  6163. int request;
  6164. if (!attr || attr->relax_domain_level < 0) {
  6165. if (default_relax_domain_level < 0)
  6166. return;
  6167. else
  6168. request = default_relax_domain_level;
  6169. } else
  6170. request = attr->relax_domain_level;
  6171. if (request < sd->level) {
  6172. /* turn off idle balance on this domain */
  6173. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6174. } else {
  6175. /* turn on idle balance on this domain */
  6176. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6177. }
  6178. }
  6179. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6180. const struct cpumask *cpu_map)
  6181. {
  6182. switch (what) {
  6183. case sa_sched_groups:
  6184. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6185. d->sched_group_nodes = NULL;
  6186. case sa_rootdomain:
  6187. free_rootdomain(d->rd); /* fall through */
  6188. case sa_tmpmask:
  6189. free_cpumask_var(d->tmpmask); /* fall through */
  6190. case sa_send_covered:
  6191. free_cpumask_var(d->send_covered); /* fall through */
  6192. case sa_this_book_map:
  6193. free_cpumask_var(d->this_book_map); /* fall through */
  6194. case sa_this_core_map:
  6195. free_cpumask_var(d->this_core_map); /* fall through */
  6196. case sa_this_sibling_map:
  6197. free_cpumask_var(d->this_sibling_map); /* fall through */
  6198. case sa_nodemask:
  6199. free_cpumask_var(d->nodemask); /* fall through */
  6200. case sa_sched_group_nodes:
  6201. #ifdef CONFIG_NUMA
  6202. kfree(d->sched_group_nodes); /* fall through */
  6203. case sa_notcovered:
  6204. free_cpumask_var(d->notcovered); /* fall through */
  6205. case sa_covered:
  6206. free_cpumask_var(d->covered); /* fall through */
  6207. case sa_domainspan:
  6208. free_cpumask_var(d->domainspan); /* fall through */
  6209. #endif
  6210. case sa_none:
  6211. break;
  6212. }
  6213. }
  6214. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6215. const struct cpumask *cpu_map)
  6216. {
  6217. #ifdef CONFIG_NUMA
  6218. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6219. return sa_none;
  6220. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6221. return sa_domainspan;
  6222. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6223. return sa_covered;
  6224. /* Allocate the per-node list of sched groups */
  6225. d->sched_group_nodes = kcalloc(nr_node_ids,
  6226. sizeof(struct sched_group *), GFP_KERNEL);
  6227. if (!d->sched_group_nodes) {
  6228. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6229. return sa_notcovered;
  6230. }
  6231. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6232. #endif
  6233. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6234. return sa_sched_group_nodes;
  6235. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6236. return sa_nodemask;
  6237. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6238. return sa_this_sibling_map;
  6239. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6240. return sa_this_core_map;
  6241. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6242. return sa_this_book_map;
  6243. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6244. return sa_send_covered;
  6245. d->rd = alloc_rootdomain();
  6246. if (!d->rd) {
  6247. printk(KERN_WARNING "Cannot alloc root domain\n");
  6248. return sa_tmpmask;
  6249. }
  6250. return sa_rootdomain;
  6251. }
  6252. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6253. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6254. {
  6255. struct sched_domain *sd = NULL;
  6256. #ifdef CONFIG_NUMA
  6257. struct sched_domain *parent;
  6258. d->sd_allnodes = 0;
  6259. if (cpumask_weight(cpu_map) >
  6260. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6261. sd = &per_cpu(allnodes_domains, i).sd;
  6262. SD_INIT(sd, ALLNODES);
  6263. set_domain_attribute(sd, attr);
  6264. cpumask_copy(sched_domain_span(sd), cpu_map);
  6265. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6266. d->sd_allnodes = 1;
  6267. }
  6268. parent = sd;
  6269. sd = &per_cpu(node_domains, i).sd;
  6270. SD_INIT(sd, NODE);
  6271. set_domain_attribute(sd, attr);
  6272. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6273. sd->parent = parent;
  6274. if (parent)
  6275. parent->child = sd;
  6276. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6277. #endif
  6278. return sd;
  6279. }
  6280. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6281. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6282. struct sched_domain *parent, int i)
  6283. {
  6284. struct sched_domain *sd;
  6285. sd = &per_cpu(phys_domains, i).sd;
  6286. SD_INIT(sd, CPU);
  6287. set_domain_attribute(sd, attr);
  6288. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6289. sd->parent = parent;
  6290. if (parent)
  6291. parent->child = sd;
  6292. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6293. return sd;
  6294. }
  6295. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6296. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6297. struct sched_domain *parent, int i)
  6298. {
  6299. struct sched_domain *sd = parent;
  6300. #ifdef CONFIG_SCHED_BOOK
  6301. sd = &per_cpu(book_domains, i).sd;
  6302. SD_INIT(sd, BOOK);
  6303. set_domain_attribute(sd, attr);
  6304. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6305. sd->parent = parent;
  6306. parent->child = sd;
  6307. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6308. #endif
  6309. return sd;
  6310. }
  6311. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6312. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6313. struct sched_domain *parent, int i)
  6314. {
  6315. struct sched_domain *sd = parent;
  6316. #ifdef CONFIG_SCHED_MC
  6317. sd = &per_cpu(core_domains, i).sd;
  6318. SD_INIT(sd, MC);
  6319. set_domain_attribute(sd, attr);
  6320. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6321. sd->parent = parent;
  6322. parent->child = sd;
  6323. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6324. #endif
  6325. return sd;
  6326. }
  6327. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6328. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6329. struct sched_domain *parent, int i)
  6330. {
  6331. struct sched_domain *sd = parent;
  6332. #ifdef CONFIG_SCHED_SMT
  6333. sd = &per_cpu(cpu_domains, i).sd;
  6334. SD_INIT(sd, SIBLING);
  6335. set_domain_attribute(sd, attr);
  6336. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6337. sd->parent = parent;
  6338. parent->child = sd;
  6339. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6340. #endif
  6341. return sd;
  6342. }
  6343. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6344. const struct cpumask *cpu_map, int cpu)
  6345. {
  6346. switch (l) {
  6347. #ifdef CONFIG_SCHED_SMT
  6348. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6349. cpumask_and(d->this_sibling_map, cpu_map,
  6350. topology_thread_cpumask(cpu));
  6351. if (cpu == cpumask_first(d->this_sibling_map))
  6352. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6353. &cpu_to_cpu_group,
  6354. d->send_covered, d->tmpmask);
  6355. break;
  6356. #endif
  6357. #ifdef CONFIG_SCHED_MC
  6358. case SD_LV_MC: /* set up multi-core groups */
  6359. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6360. if (cpu == cpumask_first(d->this_core_map))
  6361. init_sched_build_groups(d->this_core_map, cpu_map,
  6362. &cpu_to_core_group,
  6363. d->send_covered, d->tmpmask);
  6364. break;
  6365. #endif
  6366. #ifdef CONFIG_SCHED_BOOK
  6367. case SD_LV_BOOK: /* set up book groups */
  6368. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6369. if (cpu == cpumask_first(d->this_book_map))
  6370. init_sched_build_groups(d->this_book_map, cpu_map,
  6371. &cpu_to_book_group,
  6372. d->send_covered, d->tmpmask);
  6373. break;
  6374. #endif
  6375. case SD_LV_CPU: /* set up physical groups */
  6376. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6377. if (!cpumask_empty(d->nodemask))
  6378. init_sched_build_groups(d->nodemask, cpu_map,
  6379. &cpu_to_phys_group,
  6380. d->send_covered, d->tmpmask);
  6381. break;
  6382. #ifdef CONFIG_NUMA
  6383. case SD_LV_ALLNODES:
  6384. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6385. d->send_covered, d->tmpmask);
  6386. break;
  6387. #endif
  6388. default:
  6389. break;
  6390. }
  6391. }
  6392. /*
  6393. * Build sched domains for a given set of cpus and attach the sched domains
  6394. * to the individual cpus
  6395. */
  6396. static int __build_sched_domains(const struct cpumask *cpu_map,
  6397. struct sched_domain_attr *attr)
  6398. {
  6399. enum s_alloc alloc_state = sa_none;
  6400. struct s_data d;
  6401. struct sched_domain *sd;
  6402. int i;
  6403. #ifdef CONFIG_NUMA
  6404. d.sd_allnodes = 0;
  6405. #endif
  6406. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6407. if (alloc_state != sa_rootdomain)
  6408. goto error;
  6409. alloc_state = sa_sched_groups;
  6410. /*
  6411. * Set up domains for cpus specified by the cpu_map.
  6412. */
  6413. for_each_cpu(i, cpu_map) {
  6414. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6415. cpu_map);
  6416. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6417. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6418. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6419. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6420. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6421. }
  6422. for_each_cpu(i, cpu_map) {
  6423. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6424. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6425. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6426. }
  6427. /* Set up physical groups */
  6428. for (i = 0; i < nr_node_ids; i++)
  6429. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6430. #ifdef CONFIG_NUMA
  6431. /* Set up node groups */
  6432. if (d.sd_allnodes)
  6433. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6434. for (i = 0; i < nr_node_ids; i++)
  6435. if (build_numa_sched_groups(&d, cpu_map, i))
  6436. goto error;
  6437. #endif
  6438. /* Calculate CPU power for physical packages and nodes */
  6439. #ifdef CONFIG_SCHED_SMT
  6440. for_each_cpu(i, cpu_map) {
  6441. sd = &per_cpu(cpu_domains, i).sd;
  6442. init_sched_groups_power(i, sd);
  6443. }
  6444. #endif
  6445. #ifdef CONFIG_SCHED_MC
  6446. for_each_cpu(i, cpu_map) {
  6447. sd = &per_cpu(core_domains, i).sd;
  6448. init_sched_groups_power(i, sd);
  6449. }
  6450. #endif
  6451. #ifdef CONFIG_SCHED_BOOK
  6452. for_each_cpu(i, cpu_map) {
  6453. sd = &per_cpu(book_domains, i).sd;
  6454. init_sched_groups_power(i, sd);
  6455. }
  6456. #endif
  6457. for_each_cpu(i, cpu_map) {
  6458. sd = &per_cpu(phys_domains, i).sd;
  6459. init_sched_groups_power(i, sd);
  6460. }
  6461. #ifdef CONFIG_NUMA
  6462. for (i = 0; i < nr_node_ids; i++)
  6463. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6464. if (d.sd_allnodes) {
  6465. struct sched_group *sg;
  6466. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6467. d.tmpmask);
  6468. init_numa_sched_groups_power(sg);
  6469. }
  6470. #endif
  6471. /* Attach the domains */
  6472. for_each_cpu(i, cpu_map) {
  6473. #ifdef CONFIG_SCHED_SMT
  6474. sd = &per_cpu(cpu_domains, i).sd;
  6475. #elif defined(CONFIG_SCHED_MC)
  6476. sd = &per_cpu(core_domains, i).sd;
  6477. #elif defined(CONFIG_SCHED_BOOK)
  6478. sd = &per_cpu(book_domains, i).sd;
  6479. #else
  6480. sd = &per_cpu(phys_domains, i).sd;
  6481. #endif
  6482. cpu_attach_domain(sd, d.rd, i);
  6483. }
  6484. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6485. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6486. return 0;
  6487. error:
  6488. __free_domain_allocs(&d, alloc_state, cpu_map);
  6489. return -ENOMEM;
  6490. }
  6491. static int build_sched_domains(const struct cpumask *cpu_map)
  6492. {
  6493. return __build_sched_domains(cpu_map, NULL);
  6494. }
  6495. static cpumask_var_t *doms_cur; /* current sched domains */
  6496. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6497. static struct sched_domain_attr *dattr_cur;
  6498. /* attribues of custom domains in 'doms_cur' */
  6499. /*
  6500. * Special case: If a kmalloc of a doms_cur partition (array of
  6501. * cpumask) fails, then fallback to a single sched domain,
  6502. * as determined by the single cpumask fallback_doms.
  6503. */
  6504. static cpumask_var_t fallback_doms;
  6505. /*
  6506. * arch_update_cpu_topology lets virtualized architectures update the
  6507. * cpu core maps. It is supposed to return 1 if the topology changed
  6508. * or 0 if it stayed the same.
  6509. */
  6510. int __attribute__((weak)) arch_update_cpu_topology(void)
  6511. {
  6512. return 0;
  6513. }
  6514. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6515. {
  6516. int i;
  6517. cpumask_var_t *doms;
  6518. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6519. if (!doms)
  6520. return NULL;
  6521. for (i = 0; i < ndoms; i++) {
  6522. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6523. free_sched_domains(doms, i);
  6524. return NULL;
  6525. }
  6526. }
  6527. return doms;
  6528. }
  6529. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6530. {
  6531. unsigned int i;
  6532. for (i = 0; i < ndoms; i++)
  6533. free_cpumask_var(doms[i]);
  6534. kfree(doms);
  6535. }
  6536. /*
  6537. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6538. * For now this just excludes isolated cpus, but could be used to
  6539. * exclude other special cases in the future.
  6540. */
  6541. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6542. {
  6543. int err;
  6544. arch_update_cpu_topology();
  6545. ndoms_cur = 1;
  6546. doms_cur = alloc_sched_domains(ndoms_cur);
  6547. if (!doms_cur)
  6548. doms_cur = &fallback_doms;
  6549. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6550. dattr_cur = NULL;
  6551. err = build_sched_domains(doms_cur[0]);
  6552. register_sched_domain_sysctl();
  6553. return err;
  6554. }
  6555. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6556. struct cpumask *tmpmask)
  6557. {
  6558. free_sched_groups(cpu_map, tmpmask);
  6559. }
  6560. /*
  6561. * Detach sched domains from a group of cpus specified in cpu_map
  6562. * These cpus will now be attached to the NULL domain
  6563. */
  6564. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6565. {
  6566. /* Save because hotplug lock held. */
  6567. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6568. int i;
  6569. for_each_cpu(i, cpu_map)
  6570. cpu_attach_domain(NULL, &def_root_domain, i);
  6571. synchronize_sched();
  6572. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6573. }
  6574. /* handle null as "default" */
  6575. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6576. struct sched_domain_attr *new, int idx_new)
  6577. {
  6578. struct sched_domain_attr tmp;
  6579. /* fast path */
  6580. if (!new && !cur)
  6581. return 1;
  6582. tmp = SD_ATTR_INIT;
  6583. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6584. new ? (new + idx_new) : &tmp,
  6585. sizeof(struct sched_domain_attr));
  6586. }
  6587. /*
  6588. * Partition sched domains as specified by the 'ndoms_new'
  6589. * cpumasks in the array doms_new[] of cpumasks. This compares
  6590. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6591. * It destroys each deleted domain and builds each new domain.
  6592. *
  6593. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6594. * The masks don't intersect (don't overlap.) We should setup one
  6595. * sched domain for each mask. CPUs not in any of the cpumasks will
  6596. * not be load balanced. If the same cpumask appears both in the
  6597. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6598. * it as it is.
  6599. *
  6600. * The passed in 'doms_new' should be allocated using
  6601. * alloc_sched_domains. This routine takes ownership of it and will
  6602. * free_sched_domains it when done with it. If the caller failed the
  6603. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6604. * and partition_sched_domains() will fallback to the single partition
  6605. * 'fallback_doms', it also forces the domains to be rebuilt.
  6606. *
  6607. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6608. * ndoms_new == 0 is a special case for destroying existing domains,
  6609. * and it will not create the default domain.
  6610. *
  6611. * Call with hotplug lock held
  6612. */
  6613. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6614. struct sched_domain_attr *dattr_new)
  6615. {
  6616. int i, j, n;
  6617. int new_topology;
  6618. mutex_lock(&sched_domains_mutex);
  6619. /* always unregister in case we don't destroy any domains */
  6620. unregister_sched_domain_sysctl();
  6621. /* Let architecture update cpu core mappings. */
  6622. new_topology = arch_update_cpu_topology();
  6623. n = doms_new ? ndoms_new : 0;
  6624. /* Destroy deleted domains */
  6625. for (i = 0; i < ndoms_cur; i++) {
  6626. for (j = 0; j < n && !new_topology; j++) {
  6627. if (cpumask_equal(doms_cur[i], doms_new[j])
  6628. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6629. goto match1;
  6630. }
  6631. /* no match - a current sched domain not in new doms_new[] */
  6632. detach_destroy_domains(doms_cur[i]);
  6633. match1:
  6634. ;
  6635. }
  6636. if (doms_new == NULL) {
  6637. ndoms_cur = 0;
  6638. doms_new = &fallback_doms;
  6639. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6640. WARN_ON_ONCE(dattr_new);
  6641. }
  6642. /* Build new domains */
  6643. for (i = 0; i < ndoms_new; i++) {
  6644. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6645. if (cpumask_equal(doms_new[i], doms_cur[j])
  6646. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6647. goto match2;
  6648. }
  6649. /* no match - add a new doms_new */
  6650. __build_sched_domains(doms_new[i],
  6651. dattr_new ? dattr_new + i : NULL);
  6652. match2:
  6653. ;
  6654. }
  6655. /* Remember the new sched domains */
  6656. if (doms_cur != &fallback_doms)
  6657. free_sched_domains(doms_cur, ndoms_cur);
  6658. kfree(dattr_cur); /* kfree(NULL) is safe */
  6659. doms_cur = doms_new;
  6660. dattr_cur = dattr_new;
  6661. ndoms_cur = ndoms_new;
  6662. register_sched_domain_sysctl();
  6663. mutex_unlock(&sched_domains_mutex);
  6664. }
  6665. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6666. static void arch_reinit_sched_domains(void)
  6667. {
  6668. get_online_cpus();
  6669. /* Destroy domains first to force the rebuild */
  6670. partition_sched_domains(0, NULL, NULL);
  6671. rebuild_sched_domains();
  6672. put_online_cpus();
  6673. }
  6674. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6675. {
  6676. unsigned int level = 0;
  6677. if (sscanf(buf, "%u", &level) != 1)
  6678. return -EINVAL;
  6679. /*
  6680. * level is always be positive so don't check for
  6681. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6682. * What happens on 0 or 1 byte write,
  6683. * need to check for count as well?
  6684. */
  6685. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6686. return -EINVAL;
  6687. if (smt)
  6688. sched_smt_power_savings = level;
  6689. else
  6690. sched_mc_power_savings = level;
  6691. arch_reinit_sched_domains();
  6692. return count;
  6693. }
  6694. #ifdef CONFIG_SCHED_MC
  6695. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6696. struct sysdev_class_attribute *attr,
  6697. char *page)
  6698. {
  6699. return sprintf(page, "%u\n", sched_mc_power_savings);
  6700. }
  6701. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6702. struct sysdev_class_attribute *attr,
  6703. const char *buf, size_t count)
  6704. {
  6705. return sched_power_savings_store(buf, count, 0);
  6706. }
  6707. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6708. sched_mc_power_savings_show,
  6709. sched_mc_power_savings_store);
  6710. #endif
  6711. #ifdef CONFIG_SCHED_SMT
  6712. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6713. struct sysdev_class_attribute *attr,
  6714. char *page)
  6715. {
  6716. return sprintf(page, "%u\n", sched_smt_power_savings);
  6717. }
  6718. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6719. struct sysdev_class_attribute *attr,
  6720. const char *buf, size_t count)
  6721. {
  6722. return sched_power_savings_store(buf, count, 1);
  6723. }
  6724. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6725. sched_smt_power_savings_show,
  6726. sched_smt_power_savings_store);
  6727. #endif
  6728. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6729. {
  6730. int err = 0;
  6731. #ifdef CONFIG_SCHED_SMT
  6732. if (smt_capable())
  6733. err = sysfs_create_file(&cls->kset.kobj,
  6734. &attr_sched_smt_power_savings.attr);
  6735. #endif
  6736. #ifdef CONFIG_SCHED_MC
  6737. if (!err && mc_capable())
  6738. err = sysfs_create_file(&cls->kset.kobj,
  6739. &attr_sched_mc_power_savings.attr);
  6740. #endif
  6741. return err;
  6742. }
  6743. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6744. /*
  6745. * Update cpusets according to cpu_active mask. If cpusets are
  6746. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6747. * around partition_sched_domains().
  6748. */
  6749. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6750. void *hcpu)
  6751. {
  6752. switch (action & ~CPU_TASKS_FROZEN) {
  6753. case CPU_ONLINE:
  6754. case CPU_DOWN_FAILED:
  6755. cpuset_update_active_cpus();
  6756. return NOTIFY_OK;
  6757. default:
  6758. return NOTIFY_DONE;
  6759. }
  6760. }
  6761. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6762. void *hcpu)
  6763. {
  6764. switch (action & ~CPU_TASKS_FROZEN) {
  6765. case CPU_DOWN_PREPARE:
  6766. cpuset_update_active_cpus();
  6767. return NOTIFY_OK;
  6768. default:
  6769. return NOTIFY_DONE;
  6770. }
  6771. }
  6772. static int update_runtime(struct notifier_block *nfb,
  6773. unsigned long action, void *hcpu)
  6774. {
  6775. int cpu = (int)(long)hcpu;
  6776. switch (action) {
  6777. case CPU_DOWN_PREPARE:
  6778. case CPU_DOWN_PREPARE_FROZEN:
  6779. disable_runtime(cpu_rq(cpu));
  6780. return NOTIFY_OK;
  6781. case CPU_DOWN_FAILED:
  6782. case CPU_DOWN_FAILED_FROZEN:
  6783. case CPU_ONLINE:
  6784. case CPU_ONLINE_FROZEN:
  6785. enable_runtime(cpu_rq(cpu));
  6786. return NOTIFY_OK;
  6787. default:
  6788. return NOTIFY_DONE;
  6789. }
  6790. }
  6791. void __init sched_init_smp(void)
  6792. {
  6793. cpumask_var_t non_isolated_cpus;
  6794. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6795. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6796. #if defined(CONFIG_NUMA)
  6797. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6798. GFP_KERNEL);
  6799. BUG_ON(sched_group_nodes_bycpu == NULL);
  6800. #endif
  6801. get_online_cpus();
  6802. mutex_lock(&sched_domains_mutex);
  6803. arch_init_sched_domains(cpu_active_mask);
  6804. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6805. if (cpumask_empty(non_isolated_cpus))
  6806. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6807. mutex_unlock(&sched_domains_mutex);
  6808. put_online_cpus();
  6809. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6810. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6811. /* RT runtime code needs to handle some hotplug events */
  6812. hotcpu_notifier(update_runtime, 0);
  6813. init_hrtick();
  6814. /* Move init over to a non-isolated CPU */
  6815. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6816. BUG();
  6817. sched_init_granularity();
  6818. free_cpumask_var(non_isolated_cpus);
  6819. init_sched_rt_class();
  6820. }
  6821. #else
  6822. void __init sched_init_smp(void)
  6823. {
  6824. sched_init_granularity();
  6825. }
  6826. #endif /* CONFIG_SMP */
  6827. const_debug unsigned int sysctl_timer_migration = 1;
  6828. int in_sched_functions(unsigned long addr)
  6829. {
  6830. return in_lock_functions(addr) ||
  6831. (addr >= (unsigned long)__sched_text_start
  6832. && addr < (unsigned long)__sched_text_end);
  6833. }
  6834. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6835. {
  6836. cfs_rq->tasks_timeline = RB_ROOT;
  6837. INIT_LIST_HEAD(&cfs_rq->tasks);
  6838. #ifdef CONFIG_FAIR_GROUP_SCHED
  6839. cfs_rq->rq = rq;
  6840. /* allow initial update_cfs_load() to truncate */
  6841. #ifdef CONFIG_SMP
  6842. cfs_rq->load_stamp = 1;
  6843. #endif
  6844. #endif
  6845. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6846. }
  6847. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6848. {
  6849. struct rt_prio_array *array;
  6850. int i;
  6851. array = &rt_rq->active;
  6852. for (i = 0; i < MAX_RT_PRIO; i++) {
  6853. INIT_LIST_HEAD(array->queue + i);
  6854. __clear_bit(i, array->bitmap);
  6855. }
  6856. /* delimiter for bitsearch: */
  6857. __set_bit(MAX_RT_PRIO, array->bitmap);
  6858. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6859. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6860. #ifdef CONFIG_SMP
  6861. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6862. #endif
  6863. #endif
  6864. #ifdef CONFIG_SMP
  6865. rt_rq->rt_nr_migratory = 0;
  6866. rt_rq->overloaded = 0;
  6867. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6868. #endif
  6869. rt_rq->rt_time = 0;
  6870. rt_rq->rt_throttled = 0;
  6871. rt_rq->rt_runtime = 0;
  6872. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6873. #ifdef CONFIG_RT_GROUP_SCHED
  6874. rt_rq->rt_nr_boosted = 0;
  6875. rt_rq->rq = rq;
  6876. #endif
  6877. }
  6878. #ifdef CONFIG_FAIR_GROUP_SCHED
  6879. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6880. struct sched_entity *se, int cpu,
  6881. struct sched_entity *parent)
  6882. {
  6883. struct rq *rq = cpu_rq(cpu);
  6884. tg->cfs_rq[cpu] = cfs_rq;
  6885. init_cfs_rq(cfs_rq, rq);
  6886. cfs_rq->tg = tg;
  6887. tg->se[cpu] = se;
  6888. /* se could be NULL for root_task_group */
  6889. if (!se)
  6890. return;
  6891. if (!parent)
  6892. se->cfs_rq = &rq->cfs;
  6893. else
  6894. se->cfs_rq = parent->my_q;
  6895. se->my_q = cfs_rq;
  6896. update_load_set(&se->load, 0);
  6897. se->parent = parent;
  6898. }
  6899. #endif
  6900. #ifdef CONFIG_RT_GROUP_SCHED
  6901. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6902. struct sched_rt_entity *rt_se, int cpu,
  6903. struct sched_rt_entity *parent)
  6904. {
  6905. struct rq *rq = cpu_rq(cpu);
  6906. tg->rt_rq[cpu] = rt_rq;
  6907. init_rt_rq(rt_rq, rq);
  6908. rt_rq->tg = tg;
  6909. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6910. tg->rt_se[cpu] = rt_se;
  6911. if (!rt_se)
  6912. return;
  6913. if (!parent)
  6914. rt_se->rt_rq = &rq->rt;
  6915. else
  6916. rt_se->rt_rq = parent->my_q;
  6917. rt_se->my_q = rt_rq;
  6918. rt_se->parent = parent;
  6919. INIT_LIST_HEAD(&rt_se->run_list);
  6920. }
  6921. #endif
  6922. void __init sched_init(void)
  6923. {
  6924. int i, j;
  6925. unsigned long alloc_size = 0, ptr;
  6926. #ifdef CONFIG_FAIR_GROUP_SCHED
  6927. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6928. #endif
  6929. #ifdef CONFIG_RT_GROUP_SCHED
  6930. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6931. #endif
  6932. #ifdef CONFIG_CPUMASK_OFFSTACK
  6933. alloc_size += num_possible_cpus() * cpumask_size();
  6934. #endif
  6935. if (alloc_size) {
  6936. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6937. #ifdef CONFIG_FAIR_GROUP_SCHED
  6938. root_task_group.se = (struct sched_entity **)ptr;
  6939. ptr += nr_cpu_ids * sizeof(void **);
  6940. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6941. ptr += nr_cpu_ids * sizeof(void **);
  6942. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6943. #ifdef CONFIG_RT_GROUP_SCHED
  6944. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6945. ptr += nr_cpu_ids * sizeof(void **);
  6946. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6947. ptr += nr_cpu_ids * sizeof(void **);
  6948. #endif /* CONFIG_RT_GROUP_SCHED */
  6949. #ifdef CONFIG_CPUMASK_OFFSTACK
  6950. for_each_possible_cpu(i) {
  6951. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6952. ptr += cpumask_size();
  6953. }
  6954. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6955. }
  6956. #ifdef CONFIG_SMP
  6957. init_defrootdomain();
  6958. #endif
  6959. init_rt_bandwidth(&def_rt_bandwidth,
  6960. global_rt_period(), global_rt_runtime());
  6961. #ifdef CONFIG_RT_GROUP_SCHED
  6962. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6963. global_rt_period(), global_rt_runtime());
  6964. #endif /* CONFIG_RT_GROUP_SCHED */
  6965. #ifdef CONFIG_CGROUP_SCHED
  6966. list_add(&root_task_group.list, &task_groups);
  6967. INIT_LIST_HEAD(&root_task_group.children);
  6968. autogroup_init(&init_task);
  6969. #endif /* CONFIG_CGROUP_SCHED */
  6970. for_each_possible_cpu(i) {
  6971. struct rq *rq;
  6972. rq = cpu_rq(i);
  6973. raw_spin_lock_init(&rq->lock);
  6974. rq->nr_running = 0;
  6975. rq->calc_load_active = 0;
  6976. rq->calc_load_update = jiffies + LOAD_FREQ;
  6977. init_cfs_rq(&rq->cfs, rq);
  6978. init_rt_rq(&rq->rt, rq);
  6979. #ifdef CONFIG_FAIR_GROUP_SCHED
  6980. root_task_group.shares = root_task_group_load;
  6981. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6982. /*
  6983. * How much cpu bandwidth does root_task_group get?
  6984. *
  6985. * In case of task-groups formed thr' the cgroup filesystem, it
  6986. * gets 100% of the cpu resources in the system. This overall
  6987. * system cpu resource is divided among the tasks of
  6988. * root_task_group and its child task-groups in a fair manner,
  6989. * based on each entity's (task or task-group's) weight
  6990. * (se->load.weight).
  6991. *
  6992. * In other words, if root_task_group has 10 tasks of weight
  6993. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6994. * then A0's share of the cpu resource is:
  6995. *
  6996. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6997. *
  6998. * We achieve this by letting root_task_group's tasks sit
  6999. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7000. */
  7001. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7002. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7003. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7004. #ifdef CONFIG_RT_GROUP_SCHED
  7005. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7006. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7007. #endif
  7008. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7009. rq->cpu_load[j] = 0;
  7010. rq->last_load_update_tick = jiffies;
  7011. #ifdef CONFIG_SMP
  7012. rq->sd = NULL;
  7013. rq->rd = NULL;
  7014. rq->cpu_power = SCHED_LOAD_SCALE;
  7015. rq->post_schedule = 0;
  7016. rq->active_balance = 0;
  7017. rq->next_balance = jiffies;
  7018. rq->push_cpu = 0;
  7019. rq->cpu = i;
  7020. rq->online = 0;
  7021. rq->idle_stamp = 0;
  7022. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7023. rq_attach_root(rq, &def_root_domain);
  7024. #ifdef CONFIG_NO_HZ
  7025. rq->nohz_balance_kick = 0;
  7026. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7027. #endif
  7028. #endif
  7029. init_rq_hrtick(rq);
  7030. atomic_set(&rq->nr_iowait, 0);
  7031. }
  7032. set_load_weight(&init_task);
  7033. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7034. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7035. #endif
  7036. #ifdef CONFIG_SMP
  7037. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7038. #endif
  7039. #ifdef CONFIG_RT_MUTEXES
  7040. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7041. #endif
  7042. /*
  7043. * The boot idle thread does lazy MMU switching as well:
  7044. */
  7045. atomic_inc(&init_mm.mm_count);
  7046. enter_lazy_tlb(&init_mm, current);
  7047. /*
  7048. * Make us the idle thread. Technically, schedule() should not be
  7049. * called from this thread, however somewhere below it might be,
  7050. * but because we are the idle thread, we just pick up running again
  7051. * when this runqueue becomes "idle".
  7052. */
  7053. init_idle(current, smp_processor_id());
  7054. calc_load_update = jiffies + LOAD_FREQ;
  7055. /*
  7056. * During early bootup we pretend to be a normal task:
  7057. */
  7058. current->sched_class = &fair_sched_class;
  7059. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7060. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7061. #ifdef CONFIG_SMP
  7062. #ifdef CONFIG_NO_HZ
  7063. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7064. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7065. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7066. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7067. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7068. #endif
  7069. /* May be allocated at isolcpus cmdline parse time */
  7070. if (cpu_isolated_map == NULL)
  7071. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7072. #endif /* SMP */
  7073. scheduler_running = 1;
  7074. }
  7075. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7076. static inline int preempt_count_equals(int preempt_offset)
  7077. {
  7078. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7079. return (nested == preempt_offset);
  7080. }
  7081. void __might_sleep(const char *file, int line, int preempt_offset)
  7082. {
  7083. #ifdef in_atomic
  7084. static unsigned long prev_jiffy; /* ratelimiting */
  7085. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7086. system_state != SYSTEM_RUNNING || oops_in_progress)
  7087. return;
  7088. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7089. return;
  7090. prev_jiffy = jiffies;
  7091. printk(KERN_ERR
  7092. "BUG: sleeping function called from invalid context at %s:%d\n",
  7093. file, line);
  7094. printk(KERN_ERR
  7095. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7096. in_atomic(), irqs_disabled(),
  7097. current->pid, current->comm);
  7098. debug_show_held_locks(current);
  7099. if (irqs_disabled())
  7100. print_irqtrace_events(current);
  7101. dump_stack();
  7102. #endif
  7103. }
  7104. EXPORT_SYMBOL(__might_sleep);
  7105. #endif
  7106. #ifdef CONFIG_MAGIC_SYSRQ
  7107. static void normalize_task(struct rq *rq, struct task_struct *p)
  7108. {
  7109. const struct sched_class *prev_class = p->sched_class;
  7110. int old_prio = p->prio;
  7111. int on_rq;
  7112. on_rq = p->on_rq;
  7113. if (on_rq)
  7114. deactivate_task(rq, p, 0);
  7115. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7116. if (on_rq) {
  7117. activate_task(rq, p, 0);
  7118. resched_task(rq->curr);
  7119. }
  7120. check_class_changed(rq, p, prev_class, old_prio);
  7121. }
  7122. void normalize_rt_tasks(void)
  7123. {
  7124. struct task_struct *g, *p;
  7125. unsigned long flags;
  7126. struct rq *rq;
  7127. read_lock_irqsave(&tasklist_lock, flags);
  7128. do_each_thread(g, p) {
  7129. /*
  7130. * Only normalize user tasks:
  7131. */
  7132. if (!p->mm)
  7133. continue;
  7134. p->se.exec_start = 0;
  7135. #ifdef CONFIG_SCHEDSTATS
  7136. p->se.statistics.wait_start = 0;
  7137. p->se.statistics.sleep_start = 0;
  7138. p->se.statistics.block_start = 0;
  7139. #endif
  7140. if (!rt_task(p)) {
  7141. /*
  7142. * Renice negative nice level userspace
  7143. * tasks back to 0:
  7144. */
  7145. if (TASK_NICE(p) < 0 && p->mm)
  7146. set_user_nice(p, 0);
  7147. continue;
  7148. }
  7149. raw_spin_lock(&p->pi_lock);
  7150. rq = __task_rq_lock(p);
  7151. normalize_task(rq, p);
  7152. __task_rq_unlock(rq);
  7153. raw_spin_unlock(&p->pi_lock);
  7154. } while_each_thread(g, p);
  7155. read_unlock_irqrestore(&tasklist_lock, flags);
  7156. }
  7157. #endif /* CONFIG_MAGIC_SYSRQ */
  7158. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7159. /*
  7160. * These functions are only useful for the IA64 MCA handling, or kdb.
  7161. *
  7162. * They can only be called when the whole system has been
  7163. * stopped - every CPU needs to be quiescent, and no scheduling
  7164. * activity can take place. Using them for anything else would
  7165. * be a serious bug, and as a result, they aren't even visible
  7166. * under any other configuration.
  7167. */
  7168. /**
  7169. * curr_task - return the current task for a given cpu.
  7170. * @cpu: the processor in question.
  7171. *
  7172. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7173. */
  7174. struct task_struct *curr_task(int cpu)
  7175. {
  7176. return cpu_curr(cpu);
  7177. }
  7178. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7179. #ifdef CONFIG_IA64
  7180. /**
  7181. * set_curr_task - set the current task for a given cpu.
  7182. * @cpu: the processor in question.
  7183. * @p: the task pointer to set.
  7184. *
  7185. * Description: This function must only be used when non-maskable interrupts
  7186. * are serviced on a separate stack. It allows the architecture to switch the
  7187. * notion of the current task on a cpu in a non-blocking manner. This function
  7188. * must be called with all CPU's synchronized, and interrupts disabled, the
  7189. * and caller must save the original value of the current task (see
  7190. * curr_task() above) and restore that value before reenabling interrupts and
  7191. * re-starting the system.
  7192. *
  7193. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7194. */
  7195. void set_curr_task(int cpu, struct task_struct *p)
  7196. {
  7197. cpu_curr(cpu) = p;
  7198. }
  7199. #endif
  7200. #ifdef CONFIG_FAIR_GROUP_SCHED
  7201. static void free_fair_sched_group(struct task_group *tg)
  7202. {
  7203. int i;
  7204. for_each_possible_cpu(i) {
  7205. if (tg->cfs_rq)
  7206. kfree(tg->cfs_rq[i]);
  7207. if (tg->se)
  7208. kfree(tg->se[i]);
  7209. }
  7210. kfree(tg->cfs_rq);
  7211. kfree(tg->se);
  7212. }
  7213. static
  7214. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7215. {
  7216. struct cfs_rq *cfs_rq;
  7217. struct sched_entity *se;
  7218. int i;
  7219. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7220. if (!tg->cfs_rq)
  7221. goto err;
  7222. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7223. if (!tg->se)
  7224. goto err;
  7225. tg->shares = NICE_0_LOAD;
  7226. for_each_possible_cpu(i) {
  7227. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7228. GFP_KERNEL, cpu_to_node(i));
  7229. if (!cfs_rq)
  7230. goto err;
  7231. se = kzalloc_node(sizeof(struct sched_entity),
  7232. GFP_KERNEL, cpu_to_node(i));
  7233. if (!se)
  7234. goto err_free_rq;
  7235. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7236. }
  7237. return 1;
  7238. err_free_rq:
  7239. kfree(cfs_rq);
  7240. err:
  7241. return 0;
  7242. }
  7243. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7244. {
  7245. struct rq *rq = cpu_rq(cpu);
  7246. unsigned long flags;
  7247. /*
  7248. * Only empty task groups can be destroyed; so we can speculatively
  7249. * check on_list without danger of it being re-added.
  7250. */
  7251. if (!tg->cfs_rq[cpu]->on_list)
  7252. return;
  7253. raw_spin_lock_irqsave(&rq->lock, flags);
  7254. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7255. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7256. }
  7257. #else /* !CONFG_FAIR_GROUP_SCHED */
  7258. static inline void free_fair_sched_group(struct task_group *tg)
  7259. {
  7260. }
  7261. static inline
  7262. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7263. {
  7264. return 1;
  7265. }
  7266. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7267. {
  7268. }
  7269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7270. #ifdef CONFIG_RT_GROUP_SCHED
  7271. static void free_rt_sched_group(struct task_group *tg)
  7272. {
  7273. int i;
  7274. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7275. for_each_possible_cpu(i) {
  7276. if (tg->rt_rq)
  7277. kfree(tg->rt_rq[i]);
  7278. if (tg->rt_se)
  7279. kfree(tg->rt_se[i]);
  7280. }
  7281. kfree(tg->rt_rq);
  7282. kfree(tg->rt_se);
  7283. }
  7284. static
  7285. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7286. {
  7287. struct rt_rq *rt_rq;
  7288. struct sched_rt_entity *rt_se;
  7289. struct rq *rq;
  7290. int i;
  7291. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7292. if (!tg->rt_rq)
  7293. goto err;
  7294. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7295. if (!tg->rt_se)
  7296. goto err;
  7297. init_rt_bandwidth(&tg->rt_bandwidth,
  7298. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7299. for_each_possible_cpu(i) {
  7300. rq = cpu_rq(i);
  7301. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7302. GFP_KERNEL, cpu_to_node(i));
  7303. if (!rt_rq)
  7304. goto err;
  7305. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7306. GFP_KERNEL, cpu_to_node(i));
  7307. if (!rt_se)
  7308. goto err_free_rq;
  7309. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7310. }
  7311. return 1;
  7312. err_free_rq:
  7313. kfree(rt_rq);
  7314. err:
  7315. return 0;
  7316. }
  7317. #else /* !CONFIG_RT_GROUP_SCHED */
  7318. static inline void free_rt_sched_group(struct task_group *tg)
  7319. {
  7320. }
  7321. static inline
  7322. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7323. {
  7324. return 1;
  7325. }
  7326. #endif /* CONFIG_RT_GROUP_SCHED */
  7327. #ifdef CONFIG_CGROUP_SCHED
  7328. static void free_sched_group(struct task_group *tg)
  7329. {
  7330. free_fair_sched_group(tg);
  7331. free_rt_sched_group(tg);
  7332. autogroup_free(tg);
  7333. kfree(tg);
  7334. }
  7335. /* allocate runqueue etc for a new task group */
  7336. struct task_group *sched_create_group(struct task_group *parent)
  7337. {
  7338. struct task_group *tg;
  7339. unsigned long flags;
  7340. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7341. if (!tg)
  7342. return ERR_PTR(-ENOMEM);
  7343. if (!alloc_fair_sched_group(tg, parent))
  7344. goto err;
  7345. if (!alloc_rt_sched_group(tg, parent))
  7346. goto err;
  7347. spin_lock_irqsave(&task_group_lock, flags);
  7348. list_add_rcu(&tg->list, &task_groups);
  7349. WARN_ON(!parent); /* root should already exist */
  7350. tg->parent = parent;
  7351. INIT_LIST_HEAD(&tg->children);
  7352. list_add_rcu(&tg->siblings, &parent->children);
  7353. spin_unlock_irqrestore(&task_group_lock, flags);
  7354. return tg;
  7355. err:
  7356. free_sched_group(tg);
  7357. return ERR_PTR(-ENOMEM);
  7358. }
  7359. /* rcu callback to free various structures associated with a task group */
  7360. static void free_sched_group_rcu(struct rcu_head *rhp)
  7361. {
  7362. /* now it should be safe to free those cfs_rqs */
  7363. free_sched_group(container_of(rhp, struct task_group, rcu));
  7364. }
  7365. /* Destroy runqueue etc associated with a task group */
  7366. void sched_destroy_group(struct task_group *tg)
  7367. {
  7368. unsigned long flags;
  7369. int i;
  7370. /* end participation in shares distribution */
  7371. for_each_possible_cpu(i)
  7372. unregister_fair_sched_group(tg, i);
  7373. spin_lock_irqsave(&task_group_lock, flags);
  7374. list_del_rcu(&tg->list);
  7375. list_del_rcu(&tg->siblings);
  7376. spin_unlock_irqrestore(&task_group_lock, flags);
  7377. /* wait for possible concurrent references to cfs_rqs complete */
  7378. call_rcu(&tg->rcu, free_sched_group_rcu);
  7379. }
  7380. /* change task's runqueue when it moves between groups.
  7381. * The caller of this function should have put the task in its new group
  7382. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7383. * reflect its new group.
  7384. */
  7385. void sched_move_task(struct task_struct *tsk)
  7386. {
  7387. int on_rq, running;
  7388. unsigned long flags;
  7389. struct rq *rq;
  7390. rq = task_rq_lock(tsk, &flags);
  7391. running = task_current(rq, tsk);
  7392. on_rq = tsk->on_rq;
  7393. if (on_rq)
  7394. dequeue_task(rq, tsk, 0);
  7395. if (unlikely(running))
  7396. tsk->sched_class->put_prev_task(rq, tsk);
  7397. #ifdef CONFIG_FAIR_GROUP_SCHED
  7398. if (tsk->sched_class->task_move_group)
  7399. tsk->sched_class->task_move_group(tsk, on_rq);
  7400. else
  7401. #endif
  7402. set_task_rq(tsk, task_cpu(tsk));
  7403. if (unlikely(running))
  7404. tsk->sched_class->set_curr_task(rq);
  7405. if (on_rq)
  7406. enqueue_task(rq, tsk, 0);
  7407. task_rq_unlock(rq, &flags);
  7408. }
  7409. #endif /* CONFIG_CGROUP_SCHED */
  7410. #ifdef CONFIG_FAIR_GROUP_SCHED
  7411. static DEFINE_MUTEX(shares_mutex);
  7412. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7413. {
  7414. int i;
  7415. unsigned long flags;
  7416. /*
  7417. * We can't change the weight of the root cgroup.
  7418. */
  7419. if (!tg->se[0])
  7420. return -EINVAL;
  7421. if (shares < MIN_SHARES)
  7422. shares = MIN_SHARES;
  7423. else if (shares > MAX_SHARES)
  7424. shares = MAX_SHARES;
  7425. mutex_lock(&shares_mutex);
  7426. if (tg->shares == shares)
  7427. goto done;
  7428. tg->shares = shares;
  7429. for_each_possible_cpu(i) {
  7430. struct rq *rq = cpu_rq(i);
  7431. struct sched_entity *se;
  7432. se = tg->se[i];
  7433. /* Propagate contribution to hierarchy */
  7434. raw_spin_lock_irqsave(&rq->lock, flags);
  7435. for_each_sched_entity(se)
  7436. update_cfs_shares(group_cfs_rq(se));
  7437. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7438. }
  7439. done:
  7440. mutex_unlock(&shares_mutex);
  7441. return 0;
  7442. }
  7443. unsigned long sched_group_shares(struct task_group *tg)
  7444. {
  7445. return tg->shares;
  7446. }
  7447. #endif
  7448. #ifdef CONFIG_RT_GROUP_SCHED
  7449. /*
  7450. * Ensure that the real time constraints are schedulable.
  7451. */
  7452. static DEFINE_MUTEX(rt_constraints_mutex);
  7453. static unsigned long to_ratio(u64 period, u64 runtime)
  7454. {
  7455. if (runtime == RUNTIME_INF)
  7456. return 1ULL << 20;
  7457. return div64_u64(runtime << 20, period);
  7458. }
  7459. /* Must be called with tasklist_lock held */
  7460. static inline int tg_has_rt_tasks(struct task_group *tg)
  7461. {
  7462. struct task_struct *g, *p;
  7463. do_each_thread(g, p) {
  7464. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7465. return 1;
  7466. } while_each_thread(g, p);
  7467. return 0;
  7468. }
  7469. struct rt_schedulable_data {
  7470. struct task_group *tg;
  7471. u64 rt_period;
  7472. u64 rt_runtime;
  7473. };
  7474. static int tg_schedulable(struct task_group *tg, void *data)
  7475. {
  7476. struct rt_schedulable_data *d = data;
  7477. struct task_group *child;
  7478. unsigned long total, sum = 0;
  7479. u64 period, runtime;
  7480. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7481. runtime = tg->rt_bandwidth.rt_runtime;
  7482. if (tg == d->tg) {
  7483. period = d->rt_period;
  7484. runtime = d->rt_runtime;
  7485. }
  7486. /*
  7487. * Cannot have more runtime than the period.
  7488. */
  7489. if (runtime > period && runtime != RUNTIME_INF)
  7490. return -EINVAL;
  7491. /*
  7492. * Ensure we don't starve existing RT tasks.
  7493. */
  7494. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7495. return -EBUSY;
  7496. total = to_ratio(period, runtime);
  7497. /*
  7498. * Nobody can have more than the global setting allows.
  7499. */
  7500. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7501. return -EINVAL;
  7502. /*
  7503. * The sum of our children's runtime should not exceed our own.
  7504. */
  7505. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7506. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7507. runtime = child->rt_bandwidth.rt_runtime;
  7508. if (child == d->tg) {
  7509. period = d->rt_period;
  7510. runtime = d->rt_runtime;
  7511. }
  7512. sum += to_ratio(period, runtime);
  7513. }
  7514. if (sum > total)
  7515. return -EINVAL;
  7516. return 0;
  7517. }
  7518. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7519. {
  7520. struct rt_schedulable_data data = {
  7521. .tg = tg,
  7522. .rt_period = period,
  7523. .rt_runtime = runtime,
  7524. };
  7525. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7526. }
  7527. static int tg_set_bandwidth(struct task_group *tg,
  7528. u64 rt_period, u64 rt_runtime)
  7529. {
  7530. int i, err = 0;
  7531. mutex_lock(&rt_constraints_mutex);
  7532. read_lock(&tasklist_lock);
  7533. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7534. if (err)
  7535. goto unlock;
  7536. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7537. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7538. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7539. for_each_possible_cpu(i) {
  7540. struct rt_rq *rt_rq = tg->rt_rq[i];
  7541. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7542. rt_rq->rt_runtime = rt_runtime;
  7543. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7544. }
  7545. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7546. unlock:
  7547. read_unlock(&tasklist_lock);
  7548. mutex_unlock(&rt_constraints_mutex);
  7549. return err;
  7550. }
  7551. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7552. {
  7553. u64 rt_runtime, rt_period;
  7554. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7555. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7556. if (rt_runtime_us < 0)
  7557. rt_runtime = RUNTIME_INF;
  7558. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7559. }
  7560. long sched_group_rt_runtime(struct task_group *tg)
  7561. {
  7562. u64 rt_runtime_us;
  7563. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7564. return -1;
  7565. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7566. do_div(rt_runtime_us, NSEC_PER_USEC);
  7567. return rt_runtime_us;
  7568. }
  7569. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7570. {
  7571. u64 rt_runtime, rt_period;
  7572. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7573. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7574. if (rt_period == 0)
  7575. return -EINVAL;
  7576. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7577. }
  7578. long sched_group_rt_period(struct task_group *tg)
  7579. {
  7580. u64 rt_period_us;
  7581. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7582. do_div(rt_period_us, NSEC_PER_USEC);
  7583. return rt_period_us;
  7584. }
  7585. static int sched_rt_global_constraints(void)
  7586. {
  7587. u64 runtime, period;
  7588. int ret = 0;
  7589. if (sysctl_sched_rt_period <= 0)
  7590. return -EINVAL;
  7591. runtime = global_rt_runtime();
  7592. period = global_rt_period();
  7593. /*
  7594. * Sanity check on the sysctl variables.
  7595. */
  7596. if (runtime > period && runtime != RUNTIME_INF)
  7597. return -EINVAL;
  7598. mutex_lock(&rt_constraints_mutex);
  7599. read_lock(&tasklist_lock);
  7600. ret = __rt_schedulable(NULL, 0, 0);
  7601. read_unlock(&tasklist_lock);
  7602. mutex_unlock(&rt_constraints_mutex);
  7603. return ret;
  7604. }
  7605. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7606. {
  7607. /* Don't accept realtime tasks when there is no way for them to run */
  7608. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7609. return 0;
  7610. return 1;
  7611. }
  7612. #else /* !CONFIG_RT_GROUP_SCHED */
  7613. static int sched_rt_global_constraints(void)
  7614. {
  7615. unsigned long flags;
  7616. int i;
  7617. if (sysctl_sched_rt_period <= 0)
  7618. return -EINVAL;
  7619. /*
  7620. * There's always some RT tasks in the root group
  7621. * -- migration, kstopmachine etc..
  7622. */
  7623. if (sysctl_sched_rt_runtime == 0)
  7624. return -EBUSY;
  7625. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7626. for_each_possible_cpu(i) {
  7627. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7628. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7629. rt_rq->rt_runtime = global_rt_runtime();
  7630. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7631. }
  7632. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7633. return 0;
  7634. }
  7635. #endif /* CONFIG_RT_GROUP_SCHED */
  7636. int sched_rt_handler(struct ctl_table *table, int write,
  7637. void __user *buffer, size_t *lenp,
  7638. loff_t *ppos)
  7639. {
  7640. int ret;
  7641. int old_period, old_runtime;
  7642. static DEFINE_MUTEX(mutex);
  7643. mutex_lock(&mutex);
  7644. old_period = sysctl_sched_rt_period;
  7645. old_runtime = sysctl_sched_rt_runtime;
  7646. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7647. if (!ret && write) {
  7648. ret = sched_rt_global_constraints();
  7649. if (ret) {
  7650. sysctl_sched_rt_period = old_period;
  7651. sysctl_sched_rt_runtime = old_runtime;
  7652. } else {
  7653. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7654. def_rt_bandwidth.rt_period =
  7655. ns_to_ktime(global_rt_period());
  7656. }
  7657. }
  7658. mutex_unlock(&mutex);
  7659. return ret;
  7660. }
  7661. #ifdef CONFIG_CGROUP_SCHED
  7662. /* return corresponding task_group object of a cgroup */
  7663. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7664. {
  7665. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7666. struct task_group, css);
  7667. }
  7668. static struct cgroup_subsys_state *
  7669. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7670. {
  7671. struct task_group *tg, *parent;
  7672. if (!cgrp->parent) {
  7673. /* This is early initialization for the top cgroup */
  7674. return &root_task_group.css;
  7675. }
  7676. parent = cgroup_tg(cgrp->parent);
  7677. tg = sched_create_group(parent);
  7678. if (IS_ERR(tg))
  7679. return ERR_PTR(-ENOMEM);
  7680. return &tg->css;
  7681. }
  7682. static void
  7683. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7684. {
  7685. struct task_group *tg = cgroup_tg(cgrp);
  7686. sched_destroy_group(tg);
  7687. }
  7688. static int
  7689. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7690. {
  7691. #ifdef CONFIG_RT_GROUP_SCHED
  7692. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7693. return -EINVAL;
  7694. #else
  7695. /* We don't support RT-tasks being in separate groups */
  7696. if (tsk->sched_class != &fair_sched_class)
  7697. return -EINVAL;
  7698. #endif
  7699. return 0;
  7700. }
  7701. static int
  7702. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7703. struct task_struct *tsk, bool threadgroup)
  7704. {
  7705. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7706. if (retval)
  7707. return retval;
  7708. if (threadgroup) {
  7709. struct task_struct *c;
  7710. rcu_read_lock();
  7711. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7712. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7713. if (retval) {
  7714. rcu_read_unlock();
  7715. return retval;
  7716. }
  7717. }
  7718. rcu_read_unlock();
  7719. }
  7720. return 0;
  7721. }
  7722. static void
  7723. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7724. struct cgroup *old_cont, struct task_struct *tsk,
  7725. bool threadgroup)
  7726. {
  7727. sched_move_task(tsk);
  7728. if (threadgroup) {
  7729. struct task_struct *c;
  7730. rcu_read_lock();
  7731. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7732. sched_move_task(c);
  7733. }
  7734. rcu_read_unlock();
  7735. }
  7736. }
  7737. static void
  7738. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7739. struct cgroup *old_cgrp, struct task_struct *task)
  7740. {
  7741. /*
  7742. * cgroup_exit() is called in the copy_process() failure path.
  7743. * Ignore this case since the task hasn't ran yet, this avoids
  7744. * trying to poke a half freed task state from generic code.
  7745. */
  7746. if (!(task->flags & PF_EXITING))
  7747. return;
  7748. sched_move_task(task);
  7749. }
  7750. #ifdef CONFIG_FAIR_GROUP_SCHED
  7751. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7752. u64 shareval)
  7753. {
  7754. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7755. }
  7756. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7757. {
  7758. struct task_group *tg = cgroup_tg(cgrp);
  7759. return (u64) tg->shares;
  7760. }
  7761. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7762. #ifdef CONFIG_RT_GROUP_SCHED
  7763. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7764. s64 val)
  7765. {
  7766. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7767. }
  7768. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7769. {
  7770. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7771. }
  7772. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7773. u64 rt_period_us)
  7774. {
  7775. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7776. }
  7777. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7778. {
  7779. return sched_group_rt_period(cgroup_tg(cgrp));
  7780. }
  7781. #endif /* CONFIG_RT_GROUP_SCHED */
  7782. static struct cftype cpu_files[] = {
  7783. #ifdef CONFIG_FAIR_GROUP_SCHED
  7784. {
  7785. .name = "shares",
  7786. .read_u64 = cpu_shares_read_u64,
  7787. .write_u64 = cpu_shares_write_u64,
  7788. },
  7789. #endif
  7790. #ifdef CONFIG_RT_GROUP_SCHED
  7791. {
  7792. .name = "rt_runtime_us",
  7793. .read_s64 = cpu_rt_runtime_read,
  7794. .write_s64 = cpu_rt_runtime_write,
  7795. },
  7796. {
  7797. .name = "rt_period_us",
  7798. .read_u64 = cpu_rt_period_read_uint,
  7799. .write_u64 = cpu_rt_period_write_uint,
  7800. },
  7801. #endif
  7802. };
  7803. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7804. {
  7805. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7806. }
  7807. struct cgroup_subsys cpu_cgroup_subsys = {
  7808. .name = "cpu",
  7809. .create = cpu_cgroup_create,
  7810. .destroy = cpu_cgroup_destroy,
  7811. .can_attach = cpu_cgroup_can_attach,
  7812. .attach = cpu_cgroup_attach,
  7813. .exit = cpu_cgroup_exit,
  7814. .populate = cpu_cgroup_populate,
  7815. .subsys_id = cpu_cgroup_subsys_id,
  7816. .early_init = 1,
  7817. };
  7818. #endif /* CONFIG_CGROUP_SCHED */
  7819. #ifdef CONFIG_CGROUP_CPUACCT
  7820. /*
  7821. * CPU accounting code for task groups.
  7822. *
  7823. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7824. * (balbir@in.ibm.com).
  7825. */
  7826. /* track cpu usage of a group of tasks and its child groups */
  7827. struct cpuacct {
  7828. struct cgroup_subsys_state css;
  7829. /* cpuusage holds pointer to a u64-type object on every cpu */
  7830. u64 __percpu *cpuusage;
  7831. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7832. struct cpuacct *parent;
  7833. };
  7834. struct cgroup_subsys cpuacct_subsys;
  7835. /* return cpu accounting group corresponding to this container */
  7836. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7837. {
  7838. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7839. struct cpuacct, css);
  7840. }
  7841. /* return cpu accounting group to which this task belongs */
  7842. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7843. {
  7844. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7845. struct cpuacct, css);
  7846. }
  7847. /* create a new cpu accounting group */
  7848. static struct cgroup_subsys_state *cpuacct_create(
  7849. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7850. {
  7851. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7852. int i;
  7853. if (!ca)
  7854. goto out;
  7855. ca->cpuusage = alloc_percpu(u64);
  7856. if (!ca->cpuusage)
  7857. goto out_free_ca;
  7858. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7859. if (percpu_counter_init(&ca->cpustat[i], 0))
  7860. goto out_free_counters;
  7861. if (cgrp->parent)
  7862. ca->parent = cgroup_ca(cgrp->parent);
  7863. return &ca->css;
  7864. out_free_counters:
  7865. while (--i >= 0)
  7866. percpu_counter_destroy(&ca->cpustat[i]);
  7867. free_percpu(ca->cpuusage);
  7868. out_free_ca:
  7869. kfree(ca);
  7870. out:
  7871. return ERR_PTR(-ENOMEM);
  7872. }
  7873. /* destroy an existing cpu accounting group */
  7874. static void
  7875. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7876. {
  7877. struct cpuacct *ca = cgroup_ca(cgrp);
  7878. int i;
  7879. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7880. percpu_counter_destroy(&ca->cpustat[i]);
  7881. free_percpu(ca->cpuusage);
  7882. kfree(ca);
  7883. }
  7884. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7885. {
  7886. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7887. u64 data;
  7888. #ifndef CONFIG_64BIT
  7889. /*
  7890. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7891. */
  7892. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7893. data = *cpuusage;
  7894. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7895. #else
  7896. data = *cpuusage;
  7897. #endif
  7898. return data;
  7899. }
  7900. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7901. {
  7902. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7903. #ifndef CONFIG_64BIT
  7904. /*
  7905. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7906. */
  7907. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7908. *cpuusage = val;
  7909. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7910. #else
  7911. *cpuusage = val;
  7912. #endif
  7913. }
  7914. /* return total cpu usage (in nanoseconds) of a group */
  7915. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7916. {
  7917. struct cpuacct *ca = cgroup_ca(cgrp);
  7918. u64 totalcpuusage = 0;
  7919. int i;
  7920. for_each_present_cpu(i)
  7921. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7922. return totalcpuusage;
  7923. }
  7924. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7925. u64 reset)
  7926. {
  7927. struct cpuacct *ca = cgroup_ca(cgrp);
  7928. int err = 0;
  7929. int i;
  7930. if (reset) {
  7931. err = -EINVAL;
  7932. goto out;
  7933. }
  7934. for_each_present_cpu(i)
  7935. cpuacct_cpuusage_write(ca, i, 0);
  7936. out:
  7937. return err;
  7938. }
  7939. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7940. struct seq_file *m)
  7941. {
  7942. struct cpuacct *ca = cgroup_ca(cgroup);
  7943. u64 percpu;
  7944. int i;
  7945. for_each_present_cpu(i) {
  7946. percpu = cpuacct_cpuusage_read(ca, i);
  7947. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7948. }
  7949. seq_printf(m, "\n");
  7950. return 0;
  7951. }
  7952. static const char *cpuacct_stat_desc[] = {
  7953. [CPUACCT_STAT_USER] = "user",
  7954. [CPUACCT_STAT_SYSTEM] = "system",
  7955. };
  7956. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7957. struct cgroup_map_cb *cb)
  7958. {
  7959. struct cpuacct *ca = cgroup_ca(cgrp);
  7960. int i;
  7961. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7962. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7963. val = cputime64_to_clock_t(val);
  7964. cb->fill(cb, cpuacct_stat_desc[i], val);
  7965. }
  7966. return 0;
  7967. }
  7968. static struct cftype files[] = {
  7969. {
  7970. .name = "usage",
  7971. .read_u64 = cpuusage_read,
  7972. .write_u64 = cpuusage_write,
  7973. },
  7974. {
  7975. .name = "usage_percpu",
  7976. .read_seq_string = cpuacct_percpu_seq_read,
  7977. },
  7978. {
  7979. .name = "stat",
  7980. .read_map = cpuacct_stats_show,
  7981. },
  7982. };
  7983. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7984. {
  7985. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7986. }
  7987. /*
  7988. * charge this task's execution time to its accounting group.
  7989. *
  7990. * called with rq->lock held.
  7991. */
  7992. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7993. {
  7994. struct cpuacct *ca;
  7995. int cpu;
  7996. if (unlikely(!cpuacct_subsys.active))
  7997. return;
  7998. cpu = task_cpu(tsk);
  7999. rcu_read_lock();
  8000. ca = task_ca(tsk);
  8001. for (; ca; ca = ca->parent) {
  8002. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8003. *cpuusage += cputime;
  8004. }
  8005. rcu_read_unlock();
  8006. }
  8007. /*
  8008. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8009. * in cputime_t units. As a result, cpuacct_update_stats calls
  8010. * percpu_counter_add with values large enough to always overflow the
  8011. * per cpu batch limit causing bad SMP scalability.
  8012. *
  8013. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8014. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8015. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8016. */
  8017. #ifdef CONFIG_SMP
  8018. #define CPUACCT_BATCH \
  8019. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8020. #else
  8021. #define CPUACCT_BATCH 0
  8022. #endif
  8023. /*
  8024. * Charge the system/user time to the task's accounting group.
  8025. */
  8026. static void cpuacct_update_stats(struct task_struct *tsk,
  8027. enum cpuacct_stat_index idx, cputime_t val)
  8028. {
  8029. struct cpuacct *ca;
  8030. int batch = CPUACCT_BATCH;
  8031. if (unlikely(!cpuacct_subsys.active))
  8032. return;
  8033. rcu_read_lock();
  8034. ca = task_ca(tsk);
  8035. do {
  8036. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8037. ca = ca->parent;
  8038. } while (ca);
  8039. rcu_read_unlock();
  8040. }
  8041. struct cgroup_subsys cpuacct_subsys = {
  8042. .name = "cpuacct",
  8043. .create = cpuacct_create,
  8044. .destroy = cpuacct_destroy,
  8045. .populate = cpuacct_populate,
  8046. .subsys_id = cpuacct_subsys_id,
  8047. };
  8048. #endif /* CONFIG_CGROUP_CPUACCT */