ring_buffer.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /*
  20. * A fast way to enable or disable all ring buffers is to
  21. * call tracing_on or tracing_off. Turning off the ring buffers
  22. * prevents all ring buffers from being recorded to.
  23. * Turning this switch on, makes it OK to write to the
  24. * ring buffer, if the ring buffer is enabled itself.
  25. *
  26. * There's three layers that must be on in order to write
  27. * to the ring buffer.
  28. *
  29. * 1) This global flag must be set.
  30. * 2) The ring buffer must be enabled for recording.
  31. * 3) The per cpu buffer must be enabled for recording.
  32. *
  33. * In case of an anomaly, this global flag has a bit set that
  34. * will permantly disable all ring buffers.
  35. */
  36. /*
  37. * Global flag to disable all recording to ring buffers
  38. * This has two bits: ON, DISABLED
  39. *
  40. * ON DISABLED
  41. * ---- ----------
  42. * 0 0 : ring buffers are off
  43. * 1 0 : ring buffers are on
  44. * X 1 : ring buffers are permanently disabled
  45. */
  46. enum {
  47. RB_BUFFERS_ON_BIT = 0,
  48. RB_BUFFERS_DISABLED_BIT = 1,
  49. };
  50. enum {
  51. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  52. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  53. };
  54. static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  55. /**
  56. * tracing_on - enable all tracing buffers
  57. *
  58. * This function enables all tracing buffers that may have been
  59. * disabled with tracing_off.
  60. */
  61. void tracing_on(void)
  62. {
  63. set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  64. }
  65. /**
  66. * tracing_off - turn off all tracing buffers
  67. *
  68. * This function stops all tracing buffers from recording data.
  69. * It does not disable any overhead the tracers themselves may
  70. * be causing. This function simply causes all recording to
  71. * the ring buffers to fail.
  72. */
  73. void tracing_off(void)
  74. {
  75. clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  76. }
  77. /**
  78. * tracing_off_permanent - permanently disable ring buffers
  79. *
  80. * This function, once called, will disable all ring buffers
  81. * permanenty.
  82. */
  83. void tracing_off_permanent(void)
  84. {
  85. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  86. }
  87. #include "trace.h"
  88. /* Up this if you want to test the TIME_EXTENTS and normalization */
  89. #define DEBUG_SHIFT 0
  90. /* FIXME!!! */
  91. u64 ring_buffer_time_stamp(int cpu)
  92. {
  93. u64 time;
  94. preempt_disable_notrace();
  95. /* shift to debug/test normalization and TIME_EXTENTS */
  96. time = sched_clock() << DEBUG_SHIFT;
  97. preempt_enable_no_resched_notrace();
  98. return time;
  99. }
  100. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  101. {
  102. /* Just stupid testing the normalize function and deltas */
  103. *ts >>= DEBUG_SHIFT;
  104. }
  105. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  106. #define RB_ALIGNMENT_SHIFT 2
  107. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  108. #define RB_MAX_SMALL_DATA 28
  109. enum {
  110. RB_LEN_TIME_EXTEND = 8,
  111. RB_LEN_TIME_STAMP = 16,
  112. };
  113. /* inline for ring buffer fast paths */
  114. static inline unsigned
  115. rb_event_length(struct ring_buffer_event *event)
  116. {
  117. unsigned length;
  118. switch (event->type) {
  119. case RINGBUF_TYPE_PADDING:
  120. /* undefined */
  121. return -1;
  122. case RINGBUF_TYPE_TIME_EXTEND:
  123. return RB_LEN_TIME_EXTEND;
  124. case RINGBUF_TYPE_TIME_STAMP:
  125. return RB_LEN_TIME_STAMP;
  126. case RINGBUF_TYPE_DATA:
  127. if (event->len)
  128. length = event->len << RB_ALIGNMENT_SHIFT;
  129. else
  130. length = event->array[0];
  131. return length + RB_EVNT_HDR_SIZE;
  132. default:
  133. BUG();
  134. }
  135. /* not hit */
  136. return 0;
  137. }
  138. /**
  139. * ring_buffer_event_length - return the length of the event
  140. * @event: the event to get the length of
  141. */
  142. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  143. {
  144. return rb_event_length(event);
  145. }
  146. /* inline for ring buffer fast paths */
  147. static inline void *
  148. rb_event_data(struct ring_buffer_event *event)
  149. {
  150. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  151. /* If length is in len field, then array[0] has the data */
  152. if (event->len)
  153. return (void *)&event->array[0];
  154. /* Otherwise length is in array[0] and array[1] has the data */
  155. return (void *)&event->array[1];
  156. }
  157. /**
  158. * ring_buffer_event_data - return the data of the event
  159. * @event: the event to get the data from
  160. */
  161. void *ring_buffer_event_data(struct ring_buffer_event *event)
  162. {
  163. return rb_event_data(event);
  164. }
  165. #define for_each_buffer_cpu(buffer, cpu) \
  166. for_each_cpu_mask(cpu, buffer->cpumask)
  167. #define TS_SHIFT 27
  168. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  169. #define TS_DELTA_TEST (~TS_MASK)
  170. struct buffer_data_page {
  171. u64 time_stamp; /* page time stamp */
  172. local_t commit; /* write commited index */
  173. unsigned char data[]; /* data of buffer page */
  174. };
  175. struct buffer_page {
  176. local_t write; /* index for next write */
  177. unsigned read; /* index for next read */
  178. struct list_head list; /* list of free pages */
  179. struct buffer_data_page *page; /* Actual data page */
  180. };
  181. static void rb_init_page(struct buffer_data_page *bpage)
  182. {
  183. local_set(&bpage->commit, 0);
  184. }
  185. /*
  186. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  187. * this issue out.
  188. */
  189. static inline void free_buffer_page(struct buffer_page *bpage)
  190. {
  191. if (bpage->page)
  192. free_page((unsigned long)bpage->page);
  193. kfree(bpage);
  194. }
  195. /*
  196. * We need to fit the time_stamp delta into 27 bits.
  197. */
  198. static inline int test_time_stamp(u64 delta)
  199. {
  200. if (delta & TS_DELTA_TEST)
  201. return 1;
  202. return 0;
  203. }
  204. #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
  205. /*
  206. * head_page == tail_page && head == tail then buffer is empty.
  207. */
  208. struct ring_buffer_per_cpu {
  209. int cpu;
  210. struct ring_buffer *buffer;
  211. spinlock_t reader_lock; /* serialize readers */
  212. raw_spinlock_t lock;
  213. struct lock_class_key lock_key;
  214. struct list_head pages;
  215. struct buffer_page *head_page; /* read from head */
  216. struct buffer_page *tail_page; /* write to tail */
  217. struct buffer_page *commit_page; /* commited pages */
  218. struct buffer_page *reader_page;
  219. unsigned long overrun;
  220. unsigned long entries;
  221. u64 write_stamp;
  222. u64 read_stamp;
  223. atomic_t record_disabled;
  224. };
  225. struct ring_buffer {
  226. unsigned pages;
  227. unsigned flags;
  228. int cpus;
  229. cpumask_t cpumask;
  230. atomic_t record_disabled;
  231. struct mutex mutex;
  232. struct ring_buffer_per_cpu **buffers;
  233. };
  234. struct ring_buffer_iter {
  235. struct ring_buffer_per_cpu *cpu_buffer;
  236. unsigned long head;
  237. struct buffer_page *head_page;
  238. u64 read_stamp;
  239. };
  240. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  241. #define RB_WARN_ON(buffer, cond) \
  242. ({ \
  243. int _____ret = unlikely(cond); \
  244. if (_____ret) { \
  245. atomic_inc(&buffer->record_disabled); \
  246. WARN_ON(1); \
  247. } \
  248. _____ret; \
  249. })
  250. /**
  251. * check_pages - integrity check of buffer pages
  252. * @cpu_buffer: CPU buffer with pages to test
  253. *
  254. * As a safty measure we check to make sure the data pages have not
  255. * been corrupted.
  256. */
  257. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  258. {
  259. struct list_head *head = &cpu_buffer->pages;
  260. struct buffer_page *bpage, *tmp;
  261. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  262. return -1;
  263. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  264. return -1;
  265. list_for_each_entry_safe(bpage, tmp, head, list) {
  266. if (RB_WARN_ON(cpu_buffer,
  267. bpage->list.next->prev != &bpage->list))
  268. return -1;
  269. if (RB_WARN_ON(cpu_buffer,
  270. bpage->list.prev->next != &bpage->list))
  271. return -1;
  272. }
  273. return 0;
  274. }
  275. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  276. unsigned nr_pages)
  277. {
  278. struct list_head *head = &cpu_buffer->pages;
  279. struct buffer_page *bpage, *tmp;
  280. unsigned long addr;
  281. LIST_HEAD(pages);
  282. unsigned i;
  283. for (i = 0; i < nr_pages; i++) {
  284. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  285. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  286. if (!bpage)
  287. goto free_pages;
  288. list_add(&bpage->list, &pages);
  289. addr = __get_free_page(GFP_KERNEL);
  290. if (!addr)
  291. goto free_pages;
  292. bpage->page = (void *)addr;
  293. rb_init_page(bpage->page);
  294. }
  295. list_splice(&pages, head);
  296. rb_check_pages(cpu_buffer);
  297. return 0;
  298. free_pages:
  299. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  300. list_del_init(&bpage->list);
  301. free_buffer_page(bpage);
  302. }
  303. return -ENOMEM;
  304. }
  305. static struct ring_buffer_per_cpu *
  306. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  307. {
  308. struct ring_buffer_per_cpu *cpu_buffer;
  309. struct buffer_page *bpage;
  310. unsigned long addr;
  311. int ret;
  312. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  313. GFP_KERNEL, cpu_to_node(cpu));
  314. if (!cpu_buffer)
  315. return NULL;
  316. cpu_buffer->cpu = cpu;
  317. cpu_buffer->buffer = buffer;
  318. spin_lock_init(&cpu_buffer->reader_lock);
  319. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  320. INIT_LIST_HEAD(&cpu_buffer->pages);
  321. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  322. GFP_KERNEL, cpu_to_node(cpu));
  323. if (!bpage)
  324. goto fail_free_buffer;
  325. cpu_buffer->reader_page = bpage;
  326. addr = __get_free_page(GFP_KERNEL);
  327. if (!addr)
  328. goto fail_free_reader;
  329. bpage->page = (void *)addr;
  330. rb_init_page(bpage->page);
  331. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  332. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  333. if (ret < 0)
  334. goto fail_free_reader;
  335. cpu_buffer->head_page
  336. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  337. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  338. return cpu_buffer;
  339. fail_free_reader:
  340. free_buffer_page(cpu_buffer->reader_page);
  341. fail_free_buffer:
  342. kfree(cpu_buffer);
  343. return NULL;
  344. }
  345. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  346. {
  347. struct list_head *head = &cpu_buffer->pages;
  348. struct buffer_page *bpage, *tmp;
  349. list_del_init(&cpu_buffer->reader_page->list);
  350. free_buffer_page(cpu_buffer->reader_page);
  351. list_for_each_entry_safe(bpage, tmp, head, list) {
  352. list_del_init(&bpage->list);
  353. free_buffer_page(bpage);
  354. }
  355. kfree(cpu_buffer);
  356. }
  357. /*
  358. * Causes compile errors if the struct buffer_page gets bigger
  359. * than the struct page.
  360. */
  361. extern int ring_buffer_page_too_big(void);
  362. /**
  363. * ring_buffer_alloc - allocate a new ring_buffer
  364. * @size: the size in bytes that is needed.
  365. * @flags: attributes to set for the ring buffer.
  366. *
  367. * Currently the only flag that is available is the RB_FL_OVERWRITE
  368. * flag. This flag means that the buffer will overwrite old data
  369. * when the buffer wraps. If this flag is not set, the buffer will
  370. * drop data when the tail hits the head.
  371. */
  372. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  373. {
  374. struct ring_buffer *buffer;
  375. int bsize;
  376. int cpu;
  377. /* Paranoid! Optimizes out when all is well */
  378. if (sizeof(struct buffer_page) > sizeof(struct page))
  379. ring_buffer_page_too_big();
  380. /* keep it in its own cache line */
  381. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  382. GFP_KERNEL);
  383. if (!buffer)
  384. return NULL;
  385. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  386. buffer->flags = flags;
  387. /* need at least two pages */
  388. if (buffer->pages == 1)
  389. buffer->pages++;
  390. buffer->cpumask = cpu_possible_map;
  391. buffer->cpus = nr_cpu_ids;
  392. bsize = sizeof(void *) * nr_cpu_ids;
  393. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  394. GFP_KERNEL);
  395. if (!buffer->buffers)
  396. goto fail_free_buffer;
  397. for_each_buffer_cpu(buffer, cpu) {
  398. buffer->buffers[cpu] =
  399. rb_allocate_cpu_buffer(buffer, cpu);
  400. if (!buffer->buffers[cpu])
  401. goto fail_free_buffers;
  402. }
  403. mutex_init(&buffer->mutex);
  404. return buffer;
  405. fail_free_buffers:
  406. for_each_buffer_cpu(buffer, cpu) {
  407. if (buffer->buffers[cpu])
  408. rb_free_cpu_buffer(buffer->buffers[cpu]);
  409. }
  410. kfree(buffer->buffers);
  411. fail_free_buffer:
  412. kfree(buffer);
  413. return NULL;
  414. }
  415. /**
  416. * ring_buffer_free - free a ring buffer.
  417. * @buffer: the buffer to free.
  418. */
  419. void
  420. ring_buffer_free(struct ring_buffer *buffer)
  421. {
  422. int cpu;
  423. for_each_buffer_cpu(buffer, cpu)
  424. rb_free_cpu_buffer(buffer->buffers[cpu]);
  425. kfree(buffer);
  426. }
  427. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  428. static void
  429. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  430. {
  431. struct buffer_page *bpage;
  432. struct list_head *p;
  433. unsigned i;
  434. atomic_inc(&cpu_buffer->record_disabled);
  435. synchronize_sched();
  436. for (i = 0; i < nr_pages; i++) {
  437. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  438. return;
  439. p = cpu_buffer->pages.next;
  440. bpage = list_entry(p, struct buffer_page, list);
  441. list_del_init(&bpage->list);
  442. free_buffer_page(bpage);
  443. }
  444. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  445. return;
  446. rb_reset_cpu(cpu_buffer);
  447. rb_check_pages(cpu_buffer);
  448. atomic_dec(&cpu_buffer->record_disabled);
  449. }
  450. static void
  451. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  452. struct list_head *pages, unsigned nr_pages)
  453. {
  454. struct buffer_page *bpage;
  455. struct list_head *p;
  456. unsigned i;
  457. atomic_inc(&cpu_buffer->record_disabled);
  458. synchronize_sched();
  459. for (i = 0; i < nr_pages; i++) {
  460. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  461. return;
  462. p = pages->next;
  463. bpage = list_entry(p, struct buffer_page, list);
  464. list_del_init(&bpage->list);
  465. list_add_tail(&bpage->list, &cpu_buffer->pages);
  466. }
  467. rb_reset_cpu(cpu_buffer);
  468. rb_check_pages(cpu_buffer);
  469. atomic_dec(&cpu_buffer->record_disabled);
  470. }
  471. /**
  472. * ring_buffer_resize - resize the ring buffer
  473. * @buffer: the buffer to resize.
  474. * @size: the new size.
  475. *
  476. * The tracer is responsible for making sure that the buffer is
  477. * not being used while changing the size.
  478. * Note: We may be able to change the above requirement by using
  479. * RCU synchronizations.
  480. *
  481. * Minimum size is 2 * BUF_PAGE_SIZE.
  482. *
  483. * Returns -1 on failure.
  484. */
  485. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  486. {
  487. struct ring_buffer_per_cpu *cpu_buffer;
  488. unsigned nr_pages, rm_pages, new_pages;
  489. struct buffer_page *bpage, *tmp;
  490. unsigned long buffer_size;
  491. unsigned long addr;
  492. LIST_HEAD(pages);
  493. int i, cpu;
  494. /*
  495. * Always succeed at resizing a non-existent buffer:
  496. */
  497. if (!buffer)
  498. return size;
  499. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  500. size *= BUF_PAGE_SIZE;
  501. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  502. /* we need a minimum of two pages */
  503. if (size < BUF_PAGE_SIZE * 2)
  504. size = BUF_PAGE_SIZE * 2;
  505. if (size == buffer_size)
  506. return size;
  507. mutex_lock(&buffer->mutex);
  508. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  509. if (size < buffer_size) {
  510. /* easy case, just free pages */
  511. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  512. mutex_unlock(&buffer->mutex);
  513. return -1;
  514. }
  515. rm_pages = buffer->pages - nr_pages;
  516. for_each_buffer_cpu(buffer, cpu) {
  517. cpu_buffer = buffer->buffers[cpu];
  518. rb_remove_pages(cpu_buffer, rm_pages);
  519. }
  520. goto out;
  521. }
  522. /*
  523. * This is a bit more difficult. We only want to add pages
  524. * when we can allocate enough for all CPUs. We do this
  525. * by allocating all the pages and storing them on a local
  526. * link list. If we succeed in our allocation, then we
  527. * add these pages to the cpu_buffers. Otherwise we just free
  528. * them all and return -ENOMEM;
  529. */
  530. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  531. mutex_unlock(&buffer->mutex);
  532. return -1;
  533. }
  534. new_pages = nr_pages - buffer->pages;
  535. for_each_buffer_cpu(buffer, cpu) {
  536. for (i = 0; i < new_pages; i++) {
  537. bpage = kzalloc_node(ALIGN(sizeof(*bpage),
  538. cache_line_size()),
  539. GFP_KERNEL, cpu_to_node(cpu));
  540. if (!bpage)
  541. goto free_pages;
  542. list_add(&bpage->list, &pages);
  543. addr = __get_free_page(GFP_KERNEL);
  544. if (!addr)
  545. goto free_pages;
  546. bpage->page = (void *)addr;
  547. rb_init_page(bpage->page);
  548. }
  549. }
  550. for_each_buffer_cpu(buffer, cpu) {
  551. cpu_buffer = buffer->buffers[cpu];
  552. rb_insert_pages(cpu_buffer, &pages, new_pages);
  553. }
  554. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  555. mutex_unlock(&buffer->mutex);
  556. return -1;
  557. }
  558. out:
  559. buffer->pages = nr_pages;
  560. mutex_unlock(&buffer->mutex);
  561. return size;
  562. free_pages:
  563. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  564. list_del_init(&bpage->list);
  565. free_buffer_page(bpage);
  566. }
  567. mutex_unlock(&buffer->mutex);
  568. return -ENOMEM;
  569. }
  570. static inline int rb_null_event(struct ring_buffer_event *event)
  571. {
  572. return event->type == RINGBUF_TYPE_PADDING;
  573. }
  574. static inline void *
  575. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  576. {
  577. return bpage->data + index;
  578. }
  579. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  580. {
  581. return bpage->page->data + index;
  582. }
  583. static inline struct ring_buffer_event *
  584. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  585. {
  586. return __rb_page_index(cpu_buffer->reader_page,
  587. cpu_buffer->reader_page->read);
  588. }
  589. static inline struct ring_buffer_event *
  590. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  591. {
  592. return __rb_page_index(cpu_buffer->head_page,
  593. cpu_buffer->head_page->read);
  594. }
  595. static inline struct ring_buffer_event *
  596. rb_iter_head_event(struct ring_buffer_iter *iter)
  597. {
  598. return __rb_page_index(iter->head_page, iter->head);
  599. }
  600. static inline unsigned rb_page_write(struct buffer_page *bpage)
  601. {
  602. return local_read(&bpage->write);
  603. }
  604. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  605. {
  606. return local_read(&bpage->page->commit);
  607. }
  608. /* Size is determined by what has been commited */
  609. static inline unsigned rb_page_size(struct buffer_page *bpage)
  610. {
  611. return rb_page_commit(bpage);
  612. }
  613. static inline unsigned
  614. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  615. {
  616. return rb_page_commit(cpu_buffer->commit_page);
  617. }
  618. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  619. {
  620. return rb_page_commit(cpu_buffer->head_page);
  621. }
  622. /*
  623. * When the tail hits the head and the buffer is in overwrite mode,
  624. * the head jumps to the next page and all content on the previous
  625. * page is discarded. But before doing so, we update the overrun
  626. * variable of the buffer.
  627. */
  628. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  629. {
  630. struct ring_buffer_event *event;
  631. unsigned long head;
  632. for (head = 0; head < rb_head_size(cpu_buffer);
  633. head += rb_event_length(event)) {
  634. event = __rb_page_index(cpu_buffer->head_page, head);
  635. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  636. return;
  637. /* Only count data entries */
  638. if (event->type != RINGBUF_TYPE_DATA)
  639. continue;
  640. cpu_buffer->overrun++;
  641. cpu_buffer->entries--;
  642. }
  643. }
  644. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  645. struct buffer_page **bpage)
  646. {
  647. struct list_head *p = (*bpage)->list.next;
  648. if (p == &cpu_buffer->pages)
  649. p = p->next;
  650. *bpage = list_entry(p, struct buffer_page, list);
  651. }
  652. static inline unsigned
  653. rb_event_index(struct ring_buffer_event *event)
  654. {
  655. unsigned long addr = (unsigned long)event;
  656. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  657. }
  658. static inline int
  659. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  660. struct ring_buffer_event *event)
  661. {
  662. unsigned long addr = (unsigned long)event;
  663. unsigned long index;
  664. index = rb_event_index(event);
  665. addr &= PAGE_MASK;
  666. return cpu_buffer->commit_page->page == (void *)addr &&
  667. rb_commit_index(cpu_buffer) == index;
  668. }
  669. static inline void
  670. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  671. struct ring_buffer_event *event)
  672. {
  673. unsigned long addr = (unsigned long)event;
  674. unsigned long index;
  675. index = rb_event_index(event);
  676. addr &= PAGE_MASK;
  677. while (cpu_buffer->commit_page->page != (void *)addr) {
  678. if (RB_WARN_ON(cpu_buffer,
  679. cpu_buffer->commit_page == cpu_buffer->tail_page))
  680. return;
  681. cpu_buffer->commit_page->page->commit =
  682. cpu_buffer->commit_page->write;
  683. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  684. cpu_buffer->write_stamp =
  685. cpu_buffer->commit_page->page->time_stamp;
  686. }
  687. /* Now set the commit to the event's index */
  688. local_set(&cpu_buffer->commit_page->page->commit, index);
  689. }
  690. static inline void
  691. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  692. {
  693. /*
  694. * We only race with interrupts and NMIs on this CPU.
  695. * If we own the commit event, then we can commit
  696. * all others that interrupted us, since the interruptions
  697. * are in stack format (they finish before they come
  698. * back to us). This allows us to do a simple loop to
  699. * assign the commit to the tail.
  700. */
  701. again:
  702. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  703. cpu_buffer->commit_page->page->commit =
  704. cpu_buffer->commit_page->write;
  705. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  706. cpu_buffer->write_stamp =
  707. cpu_buffer->commit_page->page->time_stamp;
  708. /* add barrier to keep gcc from optimizing too much */
  709. barrier();
  710. }
  711. while (rb_commit_index(cpu_buffer) !=
  712. rb_page_write(cpu_buffer->commit_page)) {
  713. cpu_buffer->commit_page->page->commit =
  714. cpu_buffer->commit_page->write;
  715. barrier();
  716. }
  717. /* again, keep gcc from optimizing */
  718. barrier();
  719. /*
  720. * If an interrupt came in just after the first while loop
  721. * and pushed the tail page forward, we will be left with
  722. * a dangling commit that will never go forward.
  723. */
  724. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  725. goto again;
  726. }
  727. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  728. {
  729. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  730. cpu_buffer->reader_page->read = 0;
  731. }
  732. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  733. {
  734. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  735. /*
  736. * The iterator could be on the reader page (it starts there).
  737. * But the head could have moved, since the reader was
  738. * found. Check for this case and assign the iterator
  739. * to the head page instead of next.
  740. */
  741. if (iter->head_page == cpu_buffer->reader_page)
  742. iter->head_page = cpu_buffer->head_page;
  743. else
  744. rb_inc_page(cpu_buffer, &iter->head_page);
  745. iter->read_stamp = iter->head_page->page->time_stamp;
  746. iter->head = 0;
  747. }
  748. /**
  749. * ring_buffer_update_event - update event type and data
  750. * @event: the even to update
  751. * @type: the type of event
  752. * @length: the size of the event field in the ring buffer
  753. *
  754. * Update the type and data fields of the event. The length
  755. * is the actual size that is written to the ring buffer,
  756. * and with this, we can determine what to place into the
  757. * data field.
  758. */
  759. static inline void
  760. rb_update_event(struct ring_buffer_event *event,
  761. unsigned type, unsigned length)
  762. {
  763. event->type = type;
  764. switch (type) {
  765. case RINGBUF_TYPE_PADDING:
  766. break;
  767. case RINGBUF_TYPE_TIME_EXTEND:
  768. event->len =
  769. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  770. >> RB_ALIGNMENT_SHIFT;
  771. break;
  772. case RINGBUF_TYPE_TIME_STAMP:
  773. event->len =
  774. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  775. >> RB_ALIGNMENT_SHIFT;
  776. break;
  777. case RINGBUF_TYPE_DATA:
  778. length -= RB_EVNT_HDR_SIZE;
  779. if (length > RB_MAX_SMALL_DATA) {
  780. event->len = 0;
  781. event->array[0] = length;
  782. } else
  783. event->len =
  784. (length + (RB_ALIGNMENT-1))
  785. >> RB_ALIGNMENT_SHIFT;
  786. break;
  787. default:
  788. BUG();
  789. }
  790. }
  791. static inline unsigned rb_calculate_event_length(unsigned length)
  792. {
  793. struct ring_buffer_event event; /* Used only for sizeof array */
  794. /* zero length can cause confusions */
  795. if (!length)
  796. length = 1;
  797. if (length > RB_MAX_SMALL_DATA)
  798. length += sizeof(event.array[0]);
  799. length += RB_EVNT_HDR_SIZE;
  800. length = ALIGN(length, RB_ALIGNMENT);
  801. return length;
  802. }
  803. static struct ring_buffer_event *
  804. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  805. unsigned type, unsigned long length, u64 *ts)
  806. {
  807. struct buffer_page *tail_page, *head_page, *reader_page;
  808. unsigned long tail, write;
  809. struct ring_buffer *buffer = cpu_buffer->buffer;
  810. struct ring_buffer_event *event;
  811. unsigned long flags;
  812. tail_page = cpu_buffer->tail_page;
  813. write = local_add_return(length, &tail_page->write);
  814. tail = write - length;
  815. /* See if we shot pass the end of this buffer page */
  816. if (write > BUF_PAGE_SIZE) {
  817. struct buffer_page *next_page = tail_page;
  818. local_irq_save(flags);
  819. __raw_spin_lock(&cpu_buffer->lock);
  820. rb_inc_page(cpu_buffer, &next_page);
  821. head_page = cpu_buffer->head_page;
  822. reader_page = cpu_buffer->reader_page;
  823. /* we grabbed the lock before incrementing */
  824. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  825. goto out_unlock;
  826. /*
  827. * If for some reason, we had an interrupt storm that made
  828. * it all the way around the buffer, bail, and warn
  829. * about it.
  830. */
  831. if (unlikely(next_page == cpu_buffer->commit_page)) {
  832. WARN_ON_ONCE(1);
  833. goto out_unlock;
  834. }
  835. if (next_page == head_page) {
  836. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  837. /* reset write */
  838. if (tail <= BUF_PAGE_SIZE)
  839. local_set(&tail_page->write, tail);
  840. goto out_unlock;
  841. }
  842. /* tail_page has not moved yet? */
  843. if (tail_page == cpu_buffer->tail_page) {
  844. /* count overflows */
  845. rb_update_overflow(cpu_buffer);
  846. rb_inc_page(cpu_buffer, &head_page);
  847. cpu_buffer->head_page = head_page;
  848. cpu_buffer->head_page->read = 0;
  849. }
  850. }
  851. /*
  852. * If the tail page is still the same as what we think
  853. * it is, then it is up to us to update the tail
  854. * pointer.
  855. */
  856. if (tail_page == cpu_buffer->tail_page) {
  857. local_set(&next_page->write, 0);
  858. local_set(&next_page->page->commit, 0);
  859. cpu_buffer->tail_page = next_page;
  860. /* reread the time stamp */
  861. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  862. cpu_buffer->tail_page->page->time_stamp = *ts;
  863. }
  864. /*
  865. * The actual tail page has moved forward.
  866. */
  867. if (tail < BUF_PAGE_SIZE) {
  868. /* Mark the rest of the page with padding */
  869. event = __rb_page_index(tail_page, tail);
  870. event->type = RINGBUF_TYPE_PADDING;
  871. }
  872. if (tail <= BUF_PAGE_SIZE)
  873. /* Set the write back to the previous setting */
  874. local_set(&tail_page->write, tail);
  875. /*
  876. * If this was a commit entry that failed,
  877. * increment that too
  878. */
  879. if (tail_page == cpu_buffer->commit_page &&
  880. tail == rb_commit_index(cpu_buffer)) {
  881. rb_set_commit_to_write(cpu_buffer);
  882. }
  883. __raw_spin_unlock(&cpu_buffer->lock);
  884. local_irq_restore(flags);
  885. /* fail and let the caller try again */
  886. return ERR_PTR(-EAGAIN);
  887. }
  888. /* We reserved something on the buffer */
  889. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  890. return NULL;
  891. event = __rb_page_index(tail_page, tail);
  892. rb_update_event(event, type, length);
  893. /*
  894. * If this is a commit and the tail is zero, then update
  895. * this page's time stamp.
  896. */
  897. if (!tail && rb_is_commit(cpu_buffer, event))
  898. cpu_buffer->commit_page->page->time_stamp = *ts;
  899. return event;
  900. out_unlock:
  901. __raw_spin_unlock(&cpu_buffer->lock);
  902. local_irq_restore(flags);
  903. return NULL;
  904. }
  905. static int
  906. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  907. u64 *ts, u64 *delta)
  908. {
  909. struct ring_buffer_event *event;
  910. static int once;
  911. int ret;
  912. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  913. printk(KERN_WARNING "Delta way too big! %llu"
  914. " ts=%llu write stamp = %llu\n",
  915. (unsigned long long)*delta,
  916. (unsigned long long)*ts,
  917. (unsigned long long)cpu_buffer->write_stamp);
  918. WARN_ON(1);
  919. }
  920. /*
  921. * The delta is too big, we to add a
  922. * new timestamp.
  923. */
  924. event = __rb_reserve_next(cpu_buffer,
  925. RINGBUF_TYPE_TIME_EXTEND,
  926. RB_LEN_TIME_EXTEND,
  927. ts);
  928. if (!event)
  929. return -EBUSY;
  930. if (PTR_ERR(event) == -EAGAIN)
  931. return -EAGAIN;
  932. /* Only a commited time event can update the write stamp */
  933. if (rb_is_commit(cpu_buffer, event)) {
  934. /*
  935. * If this is the first on the page, then we need to
  936. * update the page itself, and just put in a zero.
  937. */
  938. if (rb_event_index(event)) {
  939. event->time_delta = *delta & TS_MASK;
  940. event->array[0] = *delta >> TS_SHIFT;
  941. } else {
  942. cpu_buffer->commit_page->page->time_stamp = *ts;
  943. event->time_delta = 0;
  944. event->array[0] = 0;
  945. }
  946. cpu_buffer->write_stamp = *ts;
  947. /* let the caller know this was the commit */
  948. ret = 1;
  949. } else {
  950. /* Darn, this is just wasted space */
  951. event->time_delta = 0;
  952. event->array[0] = 0;
  953. ret = 0;
  954. }
  955. *delta = 0;
  956. return ret;
  957. }
  958. static struct ring_buffer_event *
  959. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  960. unsigned type, unsigned long length)
  961. {
  962. struct ring_buffer_event *event;
  963. u64 ts, delta;
  964. int commit = 0;
  965. int nr_loops = 0;
  966. again:
  967. /*
  968. * We allow for interrupts to reenter here and do a trace.
  969. * If one does, it will cause this original code to loop
  970. * back here. Even with heavy interrupts happening, this
  971. * should only happen a few times in a row. If this happens
  972. * 1000 times in a row, there must be either an interrupt
  973. * storm or we have something buggy.
  974. * Bail!
  975. */
  976. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  977. return NULL;
  978. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  979. /*
  980. * Only the first commit can update the timestamp.
  981. * Yes there is a race here. If an interrupt comes in
  982. * just after the conditional and it traces too, then it
  983. * will also check the deltas. More than one timestamp may
  984. * also be made. But only the entry that did the actual
  985. * commit will be something other than zero.
  986. */
  987. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  988. rb_page_write(cpu_buffer->tail_page) ==
  989. rb_commit_index(cpu_buffer)) {
  990. delta = ts - cpu_buffer->write_stamp;
  991. /* make sure this delta is calculated here */
  992. barrier();
  993. /* Did the write stamp get updated already? */
  994. if (unlikely(ts < cpu_buffer->write_stamp))
  995. delta = 0;
  996. if (test_time_stamp(delta)) {
  997. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  998. if (commit == -EBUSY)
  999. return NULL;
  1000. if (commit == -EAGAIN)
  1001. goto again;
  1002. RB_WARN_ON(cpu_buffer, commit < 0);
  1003. }
  1004. } else
  1005. /* Non commits have zero deltas */
  1006. delta = 0;
  1007. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  1008. if (PTR_ERR(event) == -EAGAIN)
  1009. goto again;
  1010. if (!event) {
  1011. if (unlikely(commit))
  1012. /*
  1013. * Ouch! We needed a timestamp and it was commited. But
  1014. * we didn't get our event reserved.
  1015. */
  1016. rb_set_commit_to_write(cpu_buffer);
  1017. return NULL;
  1018. }
  1019. /*
  1020. * If the timestamp was commited, make the commit our entry
  1021. * now so that we will update it when needed.
  1022. */
  1023. if (commit)
  1024. rb_set_commit_event(cpu_buffer, event);
  1025. else if (!rb_is_commit(cpu_buffer, event))
  1026. delta = 0;
  1027. event->time_delta = delta;
  1028. return event;
  1029. }
  1030. static DEFINE_PER_CPU(int, rb_need_resched);
  1031. /**
  1032. * ring_buffer_lock_reserve - reserve a part of the buffer
  1033. * @buffer: the ring buffer to reserve from
  1034. * @length: the length of the data to reserve (excluding event header)
  1035. * @flags: a pointer to save the interrupt flags
  1036. *
  1037. * Returns a reseverd event on the ring buffer to copy directly to.
  1038. * The user of this interface will need to get the body to write into
  1039. * and can use the ring_buffer_event_data() interface.
  1040. *
  1041. * The length is the length of the data needed, not the event length
  1042. * which also includes the event header.
  1043. *
  1044. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  1045. * If NULL is returned, then nothing has been allocated or locked.
  1046. */
  1047. struct ring_buffer_event *
  1048. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  1049. unsigned long length,
  1050. unsigned long *flags)
  1051. {
  1052. struct ring_buffer_per_cpu *cpu_buffer;
  1053. struct ring_buffer_event *event;
  1054. int cpu, resched;
  1055. if (ring_buffer_flags != RB_BUFFERS_ON)
  1056. return NULL;
  1057. if (atomic_read(&buffer->record_disabled))
  1058. return NULL;
  1059. /* If we are tracing schedule, we don't want to recurse */
  1060. resched = ftrace_preempt_disable();
  1061. cpu = raw_smp_processor_id();
  1062. if (!cpu_isset(cpu, buffer->cpumask))
  1063. goto out;
  1064. cpu_buffer = buffer->buffers[cpu];
  1065. if (atomic_read(&cpu_buffer->record_disabled))
  1066. goto out;
  1067. length = rb_calculate_event_length(length);
  1068. if (length > BUF_PAGE_SIZE)
  1069. goto out;
  1070. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  1071. if (!event)
  1072. goto out;
  1073. /*
  1074. * Need to store resched state on this cpu.
  1075. * Only the first needs to.
  1076. */
  1077. if (preempt_count() == 1)
  1078. per_cpu(rb_need_resched, cpu) = resched;
  1079. return event;
  1080. out:
  1081. ftrace_preempt_enable(resched);
  1082. return NULL;
  1083. }
  1084. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1085. struct ring_buffer_event *event)
  1086. {
  1087. cpu_buffer->entries++;
  1088. /* Only process further if we own the commit */
  1089. if (!rb_is_commit(cpu_buffer, event))
  1090. return;
  1091. cpu_buffer->write_stamp += event->time_delta;
  1092. rb_set_commit_to_write(cpu_buffer);
  1093. }
  1094. /**
  1095. * ring_buffer_unlock_commit - commit a reserved
  1096. * @buffer: The buffer to commit to
  1097. * @event: The event pointer to commit.
  1098. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  1099. *
  1100. * This commits the data to the ring buffer, and releases any locks held.
  1101. *
  1102. * Must be paired with ring_buffer_lock_reserve.
  1103. */
  1104. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1105. struct ring_buffer_event *event,
  1106. unsigned long flags)
  1107. {
  1108. struct ring_buffer_per_cpu *cpu_buffer;
  1109. int cpu = raw_smp_processor_id();
  1110. cpu_buffer = buffer->buffers[cpu];
  1111. rb_commit(cpu_buffer, event);
  1112. /*
  1113. * Only the last preempt count needs to restore preemption.
  1114. */
  1115. if (preempt_count() == 1)
  1116. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1117. else
  1118. preempt_enable_no_resched_notrace();
  1119. return 0;
  1120. }
  1121. /**
  1122. * ring_buffer_write - write data to the buffer without reserving
  1123. * @buffer: The ring buffer to write to.
  1124. * @length: The length of the data being written (excluding the event header)
  1125. * @data: The data to write to the buffer.
  1126. *
  1127. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1128. * one function. If you already have the data to write to the buffer, it
  1129. * may be easier to simply call this function.
  1130. *
  1131. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1132. * and not the length of the event which would hold the header.
  1133. */
  1134. int ring_buffer_write(struct ring_buffer *buffer,
  1135. unsigned long length,
  1136. void *data)
  1137. {
  1138. struct ring_buffer_per_cpu *cpu_buffer;
  1139. struct ring_buffer_event *event;
  1140. unsigned long event_length;
  1141. void *body;
  1142. int ret = -EBUSY;
  1143. int cpu, resched;
  1144. if (ring_buffer_flags != RB_BUFFERS_ON)
  1145. return -EBUSY;
  1146. if (atomic_read(&buffer->record_disabled))
  1147. return -EBUSY;
  1148. resched = ftrace_preempt_disable();
  1149. cpu = raw_smp_processor_id();
  1150. if (!cpu_isset(cpu, buffer->cpumask))
  1151. goto out;
  1152. cpu_buffer = buffer->buffers[cpu];
  1153. if (atomic_read(&cpu_buffer->record_disabled))
  1154. goto out;
  1155. event_length = rb_calculate_event_length(length);
  1156. event = rb_reserve_next_event(cpu_buffer,
  1157. RINGBUF_TYPE_DATA, event_length);
  1158. if (!event)
  1159. goto out;
  1160. body = rb_event_data(event);
  1161. memcpy(body, data, length);
  1162. rb_commit(cpu_buffer, event);
  1163. ret = 0;
  1164. out:
  1165. ftrace_preempt_enable(resched);
  1166. return ret;
  1167. }
  1168. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1169. {
  1170. struct buffer_page *reader = cpu_buffer->reader_page;
  1171. struct buffer_page *head = cpu_buffer->head_page;
  1172. struct buffer_page *commit = cpu_buffer->commit_page;
  1173. return reader->read == rb_page_commit(reader) &&
  1174. (commit == reader ||
  1175. (commit == head &&
  1176. head->read == rb_page_commit(commit)));
  1177. }
  1178. /**
  1179. * ring_buffer_record_disable - stop all writes into the buffer
  1180. * @buffer: The ring buffer to stop writes to.
  1181. *
  1182. * This prevents all writes to the buffer. Any attempt to write
  1183. * to the buffer after this will fail and return NULL.
  1184. *
  1185. * The caller should call synchronize_sched() after this.
  1186. */
  1187. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1188. {
  1189. atomic_inc(&buffer->record_disabled);
  1190. }
  1191. /**
  1192. * ring_buffer_record_enable - enable writes to the buffer
  1193. * @buffer: The ring buffer to enable writes
  1194. *
  1195. * Note, multiple disables will need the same number of enables
  1196. * to truely enable the writing (much like preempt_disable).
  1197. */
  1198. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1199. {
  1200. atomic_dec(&buffer->record_disabled);
  1201. }
  1202. /**
  1203. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1204. * @buffer: The ring buffer to stop writes to.
  1205. * @cpu: The CPU buffer to stop
  1206. *
  1207. * This prevents all writes to the buffer. Any attempt to write
  1208. * to the buffer after this will fail and return NULL.
  1209. *
  1210. * The caller should call synchronize_sched() after this.
  1211. */
  1212. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1213. {
  1214. struct ring_buffer_per_cpu *cpu_buffer;
  1215. if (!cpu_isset(cpu, buffer->cpumask))
  1216. return;
  1217. cpu_buffer = buffer->buffers[cpu];
  1218. atomic_inc(&cpu_buffer->record_disabled);
  1219. }
  1220. /**
  1221. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1222. * @buffer: The ring buffer to enable writes
  1223. * @cpu: The CPU to enable.
  1224. *
  1225. * Note, multiple disables will need the same number of enables
  1226. * to truely enable the writing (much like preempt_disable).
  1227. */
  1228. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1229. {
  1230. struct ring_buffer_per_cpu *cpu_buffer;
  1231. if (!cpu_isset(cpu, buffer->cpumask))
  1232. return;
  1233. cpu_buffer = buffer->buffers[cpu];
  1234. atomic_dec(&cpu_buffer->record_disabled);
  1235. }
  1236. /**
  1237. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1238. * @buffer: The ring buffer
  1239. * @cpu: The per CPU buffer to get the entries from.
  1240. */
  1241. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1242. {
  1243. struct ring_buffer_per_cpu *cpu_buffer;
  1244. if (!cpu_isset(cpu, buffer->cpumask))
  1245. return 0;
  1246. cpu_buffer = buffer->buffers[cpu];
  1247. return cpu_buffer->entries;
  1248. }
  1249. /**
  1250. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1251. * @buffer: The ring buffer
  1252. * @cpu: The per CPU buffer to get the number of overruns from
  1253. */
  1254. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1255. {
  1256. struct ring_buffer_per_cpu *cpu_buffer;
  1257. if (!cpu_isset(cpu, buffer->cpumask))
  1258. return 0;
  1259. cpu_buffer = buffer->buffers[cpu];
  1260. return cpu_buffer->overrun;
  1261. }
  1262. /**
  1263. * ring_buffer_entries - get the number of entries in a buffer
  1264. * @buffer: The ring buffer
  1265. *
  1266. * Returns the total number of entries in the ring buffer
  1267. * (all CPU entries)
  1268. */
  1269. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1270. {
  1271. struct ring_buffer_per_cpu *cpu_buffer;
  1272. unsigned long entries = 0;
  1273. int cpu;
  1274. /* if you care about this being correct, lock the buffer */
  1275. for_each_buffer_cpu(buffer, cpu) {
  1276. cpu_buffer = buffer->buffers[cpu];
  1277. entries += cpu_buffer->entries;
  1278. }
  1279. return entries;
  1280. }
  1281. /**
  1282. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1283. * @buffer: The ring buffer
  1284. *
  1285. * Returns the total number of overruns in the ring buffer
  1286. * (all CPU entries)
  1287. */
  1288. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1289. {
  1290. struct ring_buffer_per_cpu *cpu_buffer;
  1291. unsigned long overruns = 0;
  1292. int cpu;
  1293. /* if you care about this being correct, lock the buffer */
  1294. for_each_buffer_cpu(buffer, cpu) {
  1295. cpu_buffer = buffer->buffers[cpu];
  1296. overruns += cpu_buffer->overrun;
  1297. }
  1298. return overruns;
  1299. }
  1300. static void rb_iter_reset(struct ring_buffer_iter *iter)
  1301. {
  1302. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1303. /* Iterator usage is expected to have record disabled */
  1304. if (list_empty(&cpu_buffer->reader_page->list)) {
  1305. iter->head_page = cpu_buffer->head_page;
  1306. iter->head = cpu_buffer->head_page->read;
  1307. } else {
  1308. iter->head_page = cpu_buffer->reader_page;
  1309. iter->head = cpu_buffer->reader_page->read;
  1310. }
  1311. if (iter->head)
  1312. iter->read_stamp = cpu_buffer->read_stamp;
  1313. else
  1314. iter->read_stamp = iter->head_page->page->time_stamp;
  1315. }
  1316. /**
  1317. * ring_buffer_iter_reset - reset an iterator
  1318. * @iter: The iterator to reset
  1319. *
  1320. * Resets the iterator, so that it will start from the beginning
  1321. * again.
  1322. */
  1323. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1324. {
  1325. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1326. unsigned long flags;
  1327. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1328. rb_iter_reset(iter);
  1329. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1330. }
  1331. /**
  1332. * ring_buffer_iter_empty - check if an iterator has no more to read
  1333. * @iter: The iterator to check
  1334. */
  1335. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1336. {
  1337. struct ring_buffer_per_cpu *cpu_buffer;
  1338. cpu_buffer = iter->cpu_buffer;
  1339. return iter->head_page == cpu_buffer->commit_page &&
  1340. iter->head == rb_commit_index(cpu_buffer);
  1341. }
  1342. static void
  1343. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1344. struct ring_buffer_event *event)
  1345. {
  1346. u64 delta;
  1347. switch (event->type) {
  1348. case RINGBUF_TYPE_PADDING:
  1349. return;
  1350. case RINGBUF_TYPE_TIME_EXTEND:
  1351. delta = event->array[0];
  1352. delta <<= TS_SHIFT;
  1353. delta += event->time_delta;
  1354. cpu_buffer->read_stamp += delta;
  1355. return;
  1356. case RINGBUF_TYPE_TIME_STAMP:
  1357. /* FIXME: not implemented */
  1358. return;
  1359. case RINGBUF_TYPE_DATA:
  1360. cpu_buffer->read_stamp += event->time_delta;
  1361. return;
  1362. default:
  1363. BUG();
  1364. }
  1365. return;
  1366. }
  1367. static void
  1368. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1369. struct ring_buffer_event *event)
  1370. {
  1371. u64 delta;
  1372. switch (event->type) {
  1373. case RINGBUF_TYPE_PADDING:
  1374. return;
  1375. case RINGBUF_TYPE_TIME_EXTEND:
  1376. delta = event->array[0];
  1377. delta <<= TS_SHIFT;
  1378. delta += event->time_delta;
  1379. iter->read_stamp += delta;
  1380. return;
  1381. case RINGBUF_TYPE_TIME_STAMP:
  1382. /* FIXME: not implemented */
  1383. return;
  1384. case RINGBUF_TYPE_DATA:
  1385. iter->read_stamp += event->time_delta;
  1386. return;
  1387. default:
  1388. BUG();
  1389. }
  1390. return;
  1391. }
  1392. static struct buffer_page *
  1393. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1394. {
  1395. struct buffer_page *reader = NULL;
  1396. unsigned long flags;
  1397. int nr_loops = 0;
  1398. local_irq_save(flags);
  1399. __raw_spin_lock(&cpu_buffer->lock);
  1400. again:
  1401. /*
  1402. * This should normally only loop twice. But because the
  1403. * start of the reader inserts an empty page, it causes
  1404. * a case where we will loop three times. There should be no
  1405. * reason to loop four times (that I know of).
  1406. */
  1407. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1408. reader = NULL;
  1409. goto out;
  1410. }
  1411. reader = cpu_buffer->reader_page;
  1412. /* If there's more to read, return this page */
  1413. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1414. goto out;
  1415. /* Never should we have an index greater than the size */
  1416. if (RB_WARN_ON(cpu_buffer,
  1417. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1418. goto out;
  1419. /* check if we caught up to the tail */
  1420. reader = NULL;
  1421. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1422. goto out;
  1423. /*
  1424. * Splice the empty reader page into the list around the head.
  1425. * Reset the reader page to size zero.
  1426. */
  1427. reader = cpu_buffer->head_page;
  1428. cpu_buffer->reader_page->list.next = reader->list.next;
  1429. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1430. local_set(&cpu_buffer->reader_page->write, 0);
  1431. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1432. /* Make the reader page now replace the head */
  1433. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1434. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1435. /*
  1436. * If the tail is on the reader, then we must set the head
  1437. * to the inserted page, otherwise we set it one before.
  1438. */
  1439. cpu_buffer->head_page = cpu_buffer->reader_page;
  1440. if (cpu_buffer->commit_page != reader)
  1441. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1442. /* Finally update the reader page to the new head */
  1443. cpu_buffer->reader_page = reader;
  1444. rb_reset_reader_page(cpu_buffer);
  1445. goto again;
  1446. out:
  1447. __raw_spin_unlock(&cpu_buffer->lock);
  1448. local_irq_restore(flags);
  1449. return reader;
  1450. }
  1451. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1452. {
  1453. struct ring_buffer_event *event;
  1454. struct buffer_page *reader;
  1455. unsigned length;
  1456. reader = rb_get_reader_page(cpu_buffer);
  1457. /* This function should not be called when buffer is empty */
  1458. if (RB_WARN_ON(cpu_buffer, !reader))
  1459. return;
  1460. event = rb_reader_event(cpu_buffer);
  1461. if (event->type == RINGBUF_TYPE_DATA)
  1462. cpu_buffer->entries--;
  1463. rb_update_read_stamp(cpu_buffer, event);
  1464. length = rb_event_length(event);
  1465. cpu_buffer->reader_page->read += length;
  1466. }
  1467. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1468. {
  1469. struct ring_buffer *buffer;
  1470. struct ring_buffer_per_cpu *cpu_buffer;
  1471. struct ring_buffer_event *event;
  1472. unsigned length;
  1473. cpu_buffer = iter->cpu_buffer;
  1474. buffer = cpu_buffer->buffer;
  1475. /*
  1476. * Check if we are at the end of the buffer.
  1477. */
  1478. if (iter->head >= rb_page_size(iter->head_page)) {
  1479. if (RB_WARN_ON(buffer,
  1480. iter->head_page == cpu_buffer->commit_page))
  1481. return;
  1482. rb_inc_iter(iter);
  1483. return;
  1484. }
  1485. event = rb_iter_head_event(iter);
  1486. length = rb_event_length(event);
  1487. /*
  1488. * This should not be called to advance the header if we are
  1489. * at the tail of the buffer.
  1490. */
  1491. if (RB_WARN_ON(cpu_buffer,
  1492. (iter->head_page == cpu_buffer->commit_page) &&
  1493. (iter->head + length > rb_commit_index(cpu_buffer))))
  1494. return;
  1495. rb_update_iter_read_stamp(iter, event);
  1496. iter->head += length;
  1497. /* check for end of page padding */
  1498. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1499. (iter->head_page != cpu_buffer->commit_page))
  1500. rb_advance_iter(iter);
  1501. }
  1502. static struct ring_buffer_event *
  1503. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1504. {
  1505. struct ring_buffer_per_cpu *cpu_buffer;
  1506. struct ring_buffer_event *event;
  1507. struct buffer_page *reader;
  1508. int nr_loops = 0;
  1509. if (!cpu_isset(cpu, buffer->cpumask))
  1510. return NULL;
  1511. cpu_buffer = buffer->buffers[cpu];
  1512. again:
  1513. /*
  1514. * We repeat when a timestamp is encountered. It is possible
  1515. * to get multiple timestamps from an interrupt entering just
  1516. * as one timestamp is about to be written. The max times
  1517. * that this can happen is the number of nested interrupts we
  1518. * can have. Nesting 10 deep of interrupts is clearly
  1519. * an anomaly.
  1520. */
  1521. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1522. return NULL;
  1523. reader = rb_get_reader_page(cpu_buffer);
  1524. if (!reader)
  1525. return NULL;
  1526. event = rb_reader_event(cpu_buffer);
  1527. switch (event->type) {
  1528. case RINGBUF_TYPE_PADDING:
  1529. RB_WARN_ON(cpu_buffer, 1);
  1530. rb_advance_reader(cpu_buffer);
  1531. return NULL;
  1532. case RINGBUF_TYPE_TIME_EXTEND:
  1533. /* Internal data, OK to advance */
  1534. rb_advance_reader(cpu_buffer);
  1535. goto again;
  1536. case RINGBUF_TYPE_TIME_STAMP:
  1537. /* FIXME: not implemented */
  1538. rb_advance_reader(cpu_buffer);
  1539. goto again;
  1540. case RINGBUF_TYPE_DATA:
  1541. if (ts) {
  1542. *ts = cpu_buffer->read_stamp + event->time_delta;
  1543. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1544. }
  1545. return event;
  1546. default:
  1547. BUG();
  1548. }
  1549. return NULL;
  1550. }
  1551. static struct ring_buffer_event *
  1552. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1553. {
  1554. struct ring_buffer *buffer;
  1555. struct ring_buffer_per_cpu *cpu_buffer;
  1556. struct ring_buffer_event *event;
  1557. int nr_loops = 0;
  1558. if (ring_buffer_iter_empty(iter))
  1559. return NULL;
  1560. cpu_buffer = iter->cpu_buffer;
  1561. buffer = cpu_buffer->buffer;
  1562. again:
  1563. /*
  1564. * We repeat when a timestamp is encountered. It is possible
  1565. * to get multiple timestamps from an interrupt entering just
  1566. * as one timestamp is about to be written. The max times
  1567. * that this can happen is the number of nested interrupts we
  1568. * can have. Nesting 10 deep of interrupts is clearly
  1569. * an anomaly.
  1570. */
  1571. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1572. return NULL;
  1573. if (rb_per_cpu_empty(cpu_buffer))
  1574. return NULL;
  1575. event = rb_iter_head_event(iter);
  1576. switch (event->type) {
  1577. case RINGBUF_TYPE_PADDING:
  1578. rb_inc_iter(iter);
  1579. goto again;
  1580. case RINGBUF_TYPE_TIME_EXTEND:
  1581. /* Internal data, OK to advance */
  1582. rb_advance_iter(iter);
  1583. goto again;
  1584. case RINGBUF_TYPE_TIME_STAMP:
  1585. /* FIXME: not implemented */
  1586. rb_advance_iter(iter);
  1587. goto again;
  1588. case RINGBUF_TYPE_DATA:
  1589. if (ts) {
  1590. *ts = iter->read_stamp + event->time_delta;
  1591. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1592. }
  1593. return event;
  1594. default:
  1595. BUG();
  1596. }
  1597. return NULL;
  1598. }
  1599. /**
  1600. * ring_buffer_peek - peek at the next event to be read
  1601. * @buffer: The ring buffer to read
  1602. * @cpu: The cpu to peak at
  1603. * @ts: The timestamp counter of this event.
  1604. *
  1605. * This will return the event that will be read next, but does
  1606. * not consume the data.
  1607. */
  1608. struct ring_buffer_event *
  1609. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1610. {
  1611. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1612. struct ring_buffer_event *event;
  1613. unsigned long flags;
  1614. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1615. event = rb_buffer_peek(buffer, cpu, ts);
  1616. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1617. return event;
  1618. }
  1619. /**
  1620. * ring_buffer_iter_peek - peek at the next event to be read
  1621. * @iter: The ring buffer iterator
  1622. * @ts: The timestamp counter of this event.
  1623. *
  1624. * This will return the event that will be read next, but does
  1625. * not increment the iterator.
  1626. */
  1627. struct ring_buffer_event *
  1628. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1629. {
  1630. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1631. struct ring_buffer_event *event;
  1632. unsigned long flags;
  1633. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1634. event = rb_iter_peek(iter, ts);
  1635. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1636. return event;
  1637. }
  1638. /**
  1639. * ring_buffer_consume - return an event and consume it
  1640. * @buffer: The ring buffer to get the next event from
  1641. *
  1642. * Returns the next event in the ring buffer, and that event is consumed.
  1643. * Meaning, that sequential reads will keep returning a different event,
  1644. * and eventually empty the ring buffer if the producer is slower.
  1645. */
  1646. struct ring_buffer_event *
  1647. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1648. {
  1649. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1650. struct ring_buffer_event *event;
  1651. unsigned long flags;
  1652. if (!cpu_isset(cpu, buffer->cpumask))
  1653. return NULL;
  1654. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1655. event = rb_buffer_peek(buffer, cpu, ts);
  1656. if (!event)
  1657. goto out;
  1658. rb_advance_reader(cpu_buffer);
  1659. out:
  1660. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1661. return event;
  1662. }
  1663. /**
  1664. * ring_buffer_read_start - start a non consuming read of the buffer
  1665. * @buffer: The ring buffer to read from
  1666. * @cpu: The cpu buffer to iterate over
  1667. *
  1668. * This starts up an iteration through the buffer. It also disables
  1669. * the recording to the buffer until the reading is finished.
  1670. * This prevents the reading from being corrupted. This is not
  1671. * a consuming read, so a producer is not expected.
  1672. *
  1673. * Must be paired with ring_buffer_finish.
  1674. */
  1675. struct ring_buffer_iter *
  1676. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1677. {
  1678. struct ring_buffer_per_cpu *cpu_buffer;
  1679. struct ring_buffer_iter *iter;
  1680. unsigned long flags;
  1681. if (!cpu_isset(cpu, buffer->cpumask))
  1682. return NULL;
  1683. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1684. if (!iter)
  1685. return NULL;
  1686. cpu_buffer = buffer->buffers[cpu];
  1687. iter->cpu_buffer = cpu_buffer;
  1688. atomic_inc(&cpu_buffer->record_disabled);
  1689. synchronize_sched();
  1690. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1691. __raw_spin_lock(&cpu_buffer->lock);
  1692. rb_iter_reset(iter);
  1693. __raw_spin_unlock(&cpu_buffer->lock);
  1694. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1695. return iter;
  1696. }
  1697. /**
  1698. * ring_buffer_finish - finish reading the iterator of the buffer
  1699. * @iter: The iterator retrieved by ring_buffer_start
  1700. *
  1701. * This re-enables the recording to the buffer, and frees the
  1702. * iterator.
  1703. */
  1704. void
  1705. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1706. {
  1707. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1708. atomic_dec(&cpu_buffer->record_disabled);
  1709. kfree(iter);
  1710. }
  1711. /**
  1712. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1713. * @iter: The ring buffer iterator
  1714. * @ts: The time stamp of the event read.
  1715. *
  1716. * This reads the next event in the ring buffer and increments the iterator.
  1717. */
  1718. struct ring_buffer_event *
  1719. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1720. {
  1721. struct ring_buffer_event *event;
  1722. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1723. unsigned long flags;
  1724. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1725. event = rb_iter_peek(iter, ts);
  1726. if (!event)
  1727. goto out;
  1728. rb_advance_iter(iter);
  1729. out:
  1730. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1731. return event;
  1732. }
  1733. /**
  1734. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1735. * @buffer: The ring buffer.
  1736. */
  1737. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1738. {
  1739. return BUF_PAGE_SIZE * buffer->pages;
  1740. }
  1741. static void
  1742. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1743. {
  1744. cpu_buffer->head_page
  1745. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1746. local_set(&cpu_buffer->head_page->write, 0);
  1747. local_set(&cpu_buffer->head_page->page->commit, 0);
  1748. cpu_buffer->head_page->read = 0;
  1749. cpu_buffer->tail_page = cpu_buffer->head_page;
  1750. cpu_buffer->commit_page = cpu_buffer->head_page;
  1751. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1752. local_set(&cpu_buffer->reader_page->write, 0);
  1753. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1754. cpu_buffer->reader_page->read = 0;
  1755. cpu_buffer->overrun = 0;
  1756. cpu_buffer->entries = 0;
  1757. }
  1758. /**
  1759. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1760. * @buffer: The ring buffer to reset a per cpu buffer of
  1761. * @cpu: The CPU buffer to be reset
  1762. */
  1763. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1764. {
  1765. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1766. unsigned long flags;
  1767. if (!cpu_isset(cpu, buffer->cpumask))
  1768. return;
  1769. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1770. __raw_spin_lock(&cpu_buffer->lock);
  1771. rb_reset_cpu(cpu_buffer);
  1772. __raw_spin_unlock(&cpu_buffer->lock);
  1773. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1774. }
  1775. /**
  1776. * ring_buffer_reset - reset a ring buffer
  1777. * @buffer: The ring buffer to reset all cpu buffers
  1778. */
  1779. void ring_buffer_reset(struct ring_buffer *buffer)
  1780. {
  1781. int cpu;
  1782. for_each_buffer_cpu(buffer, cpu)
  1783. ring_buffer_reset_cpu(buffer, cpu);
  1784. }
  1785. /**
  1786. * rind_buffer_empty - is the ring buffer empty?
  1787. * @buffer: The ring buffer to test
  1788. */
  1789. int ring_buffer_empty(struct ring_buffer *buffer)
  1790. {
  1791. struct ring_buffer_per_cpu *cpu_buffer;
  1792. int cpu;
  1793. /* yes this is racy, but if you don't like the race, lock the buffer */
  1794. for_each_buffer_cpu(buffer, cpu) {
  1795. cpu_buffer = buffer->buffers[cpu];
  1796. if (!rb_per_cpu_empty(cpu_buffer))
  1797. return 0;
  1798. }
  1799. return 1;
  1800. }
  1801. /**
  1802. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1803. * @buffer: The ring buffer
  1804. * @cpu: The CPU buffer to test
  1805. */
  1806. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1807. {
  1808. struct ring_buffer_per_cpu *cpu_buffer;
  1809. if (!cpu_isset(cpu, buffer->cpumask))
  1810. return 1;
  1811. cpu_buffer = buffer->buffers[cpu];
  1812. return rb_per_cpu_empty(cpu_buffer);
  1813. }
  1814. /**
  1815. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1816. * @buffer_a: One buffer to swap with
  1817. * @buffer_b: The other buffer to swap with
  1818. *
  1819. * This function is useful for tracers that want to take a "snapshot"
  1820. * of a CPU buffer and has another back up buffer lying around.
  1821. * it is expected that the tracer handles the cpu buffer not being
  1822. * used at the moment.
  1823. */
  1824. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1825. struct ring_buffer *buffer_b, int cpu)
  1826. {
  1827. struct ring_buffer_per_cpu *cpu_buffer_a;
  1828. struct ring_buffer_per_cpu *cpu_buffer_b;
  1829. if (!cpu_isset(cpu, buffer_a->cpumask) ||
  1830. !cpu_isset(cpu, buffer_b->cpumask))
  1831. return -EINVAL;
  1832. /* At least make sure the two buffers are somewhat the same */
  1833. if (buffer_a->pages != buffer_b->pages)
  1834. return -EINVAL;
  1835. cpu_buffer_a = buffer_a->buffers[cpu];
  1836. cpu_buffer_b = buffer_b->buffers[cpu];
  1837. /*
  1838. * We can't do a synchronize_sched here because this
  1839. * function can be called in atomic context.
  1840. * Normally this will be called from the same CPU as cpu.
  1841. * If not it's up to the caller to protect this.
  1842. */
  1843. atomic_inc(&cpu_buffer_a->record_disabled);
  1844. atomic_inc(&cpu_buffer_b->record_disabled);
  1845. buffer_a->buffers[cpu] = cpu_buffer_b;
  1846. buffer_b->buffers[cpu] = cpu_buffer_a;
  1847. cpu_buffer_b->buffer = buffer_a;
  1848. cpu_buffer_a->buffer = buffer_b;
  1849. atomic_dec(&cpu_buffer_a->record_disabled);
  1850. atomic_dec(&cpu_buffer_b->record_disabled);
  1851. return 0;
  1852. }
  1853. static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
  1854. struct buffer_data_page *bpage)
  1855. {
  1856. struct ring_buffer_event *event;
  1857. unsigned long head;
  1858. __raw_spin_lock(&cpu_buffer->lock);
  1859. for (head = 0; head < local_read(&bpage->commit);
  1860. head += rb_event_length(event)) {
  1861. event = __rb_data_page_index(bpage, head);
  1862. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  1863. return;
  1864. /* Only count data entries */
  1865. if (event->type != RINGBUF_TYPE_DATA)
  1866. continue;
  1867. cpu_buffer->entries--;
  1868. }
  1869. __raw_spin_unlock(&cpu_buffer->lock);
  1870. }
  1871. /**
  1872. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  1873. * @buffer: the buffer to allocate for.
  1874. *
  1875. * This function is used in conjunction with ring_buffer_read_page.
  1876. * When reading a full page from the ring buffer, these functions
  1877. * can be used to speed up the process. The calling function should
  1878. * allocate a few pages first with this function. Then when it
  1879. * needs to get pages from the ring buffer, it passes the result
  1880. * of this function into ring_buffer_read_page, which will swap
  1881. * the page that was allocated, with the read page of the buffer.
  1882. *
  1883. * Returns:
  1884. * The page allocated, or NULL on error.
  1885. */
  1886. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
  1887. {
  1888. unsigned long addr;
  1889. struct buffer_data_page *bpage;
  1890. addr = __get_free_page(GFP_KERNEL);
  1891. if (!addr)
  1892. return NULL;
  1893. bpage = (void *)addr;
  1894. return bpage;
  1895. }
  1896. /**
  1897. * ring_buffer_free_read_page - free an allocated read page
  1898. * @buffer: the buffer the page was allocate for
  1899. * @data: the page to free
  1900. *
  1901. * Free a page allocated from ring_buffer_alloc_read_page.
  1902. */
  1903. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  1904. {
  1905. free_page((unsigned long)data);
  1906. }
  1907. /**
  1908. * ring_buffer_read_page - extract a page from the ring buffer
  1909. * @buffer: buffer to extract from
  1910. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  1911. * @cpu: the cpu of the buffer to extract
  1912. * @full: should the extraction only happen when the page is full.
  1913. *
  1914. * This function will pull out a page from the ring buffer and consume it.
  1915. * @data_page must be the address of the variable that was returned
  1916. * from ring_buffer_alloc_read_page. This is because the page might be used
  1917. * to swap with a page in the ring buffer.
  1918. *
  1919. * for example:
  1920. * rpage = ring_buffer_alloc_page(buffer);
  1921. * if (!rpage)
  1922. * return error;
  1923. * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
  1924. * if (ret)
  1925. * process_page(rpage);
  1926. *
  1927. * When @full is set, the function will not return true unless
  1928. * the writer is off the reader page.
  1929. *
  1930. * Note: it is up to the calling functions to handle sleeps and wakeups.
  1931. * The ring buffer can be used anywhere in the kernel and can not
  1932. * blindly call wake_up. The layer that uses the ring buffer must be
  1933. * responsible for that.
  1934. *
  1935. * Returns:
  1936. * 1 if data has been transferred
  1937. * 0 if no data has been transferred.
  1938. */
  1939. int ring_buffer_read_page(struct ring_buffer *buffer,
  1940. void **data_page, int cpu, int full)
  1941. {
  1942. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1943. struct ring_buffer_event *event;
  1944. struct buffer_data_page *bpage;
  1945. unsigned long flags;
  1946. int ret = 0;
  1947. if (!data_page)
  1948. return 0;
  1949. bpage = *data_page;
  1950. if (!bpage)
  1951. return 0;
  1952. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1953. /*
  1954. * rb_buffer_peek will get the next ring buffer if
  1955. * the current reader page is empty.
  1956. */
  1957. event = rb_buffer_peek(buffer, cpu, NULL);
  1958. if (!event)
  1959. goto out;
  1960. /* check for data */
  1961. if (!local_read(&cpu_buffer->reader_page->page->commit))
  1962. goto out;
  1963. /*
  1964. * If the writer is already off of the read page, then simply
  1965. * switch the read page with the given page. Otherwise
  1966. * we need to copy the data from the reader to the writer.
  1967. */
  1968. if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
  1969. unsigned int read = cpu_buffer->reader_page->read;
  1970. if (full)
  1971. goto out;
  1972. /* The writer is still on the reader page, we must copy */
  1973. bpage = cpu_buffer->reader_page->page;
  1974. memcpy(bpage->data,
  1975. cpu_buffer->reader_page->page->data + read,
  1976. local_read(&bpage->commit) - read);
  1977. /* consume what was read */
  1978. cpu_buffer->reader_page += read;
  1979. } else {
  1980. /* swap the pages */
  1981. rb_init_page(bpage);
  1982. bpage = cpu_buffer->reader_page->page;
  1983. cpu_buffer->reader_page->page = *data_page;
  1984. cpu_buffer->reader_page->read = 0;
  1985. *data_page = bpage;
  1986. }
  1987. ret = 1;
  1988. /* update the entry counter */
  1989. rb_remove_entries(cpu_buffer, bpage);
  1990. out:
  1991. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1992. return ret;
  1993. }
  1994. static ssize_t
  1995. rb_simple_read(struct file *filp, char __user *ubuf,
  1996. size_t cnt, loff_t *ppos)
  1997. {
  1998. long *p = filp->private_data;
  1999. char buf[64];
  2000. int r;
  2001. if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
  2002. r = sprintf(buf, "permanently disabled\n");
  2003. else
  2004. r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
  2005. return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  2006. }
  2007. static ssize_t
  2008. rb_simple_write(struct file *filp, const char __user *ubuf,
  2009. size_t cnt, loff_t *ppos)
  2010. {
  2011. long *p = filp->private_data;
  2012. char buf[64];
  2013. long val;
  2014. int ret;
  2015. if (cnt >= sizeof(buf))
  2016. return -EINVAL;
  2017. if (copy_from_user(&buf, ubuf, cnt))
  2018. return -EFAULT;
  2019. buf[cnt] = 0;
  2020. ret = strict_strtoul(buf, 10, &val);
  2021. if (ret < 0)
  2022. return ret;
  2023. if (val)
  2024. set_bit(RB_BUFFERS_ON_BIT, p);
  2025. else
  2026. clear_bit(RB_BUFFERS_ON_BIT, p);
  2027. (*ppos)++;
  2028. return cnt;
  2029. }
  2030. static struct file_operations rb_simple_fops = {
  2031. .open = tracing_open_generic,
  2032. .read = rb_simple_read,
  2033. .write = rb_simple_write,
  2034. };
  2035. static __init int rb_init_debugfs(void)
  2036. {
  2037. struct dentry *d_tracer;
  2038. struct dentry *entry;
  2039. d_tracer = tracing_init_dentry();
  2040. entry = debugfs_create_file("tracing_on", 0644, d_tracer,
  2041. &ring_buffer_flags, &rb_simple_fops);
  2042. if (!entry)
  2043. pr_warning("Could not create debugfs 'tracing_on' entry\n");
  2044. return 0;
  2045. }
  2046. fs_initcall(rb_init_debugfs);