sb_edac.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896
  1. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  2. *
  3. * This driver supports the memory controllers found on the Intel
  4. * processor family Sandy Bridge.
  5. *
  6. * This file may be distributed under the terms of the
  7. * GNU General Public License version 2 only.
  8. *
  9. * Copyright (c) 2011 by:
  10. * Mauro Carvalho Chehab <mchehab@redhat.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/pci_ids.h>
  16. #include <linux/slab.h>
  17. #include <linux/delay.h>
  18. #include <linux/edac.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/smp.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/math64.h>
  23. #include <asm/processor.h>
  24. #include <asm/mce.h>
  25. #include "edac_core.h"
  26. /* Static vars */
  27. static LIST_HEAD(sbridge_edac_list);
  28. static DEFINE_MUTEX(sbridge_edac_lock);
  29. static int probed;
  30. /*
  31. * Alter this version for the module when modifications are made
  32. */
  33. #define SBRIDGE_REVISION " Ver: 1.0.0 "
  34. #define EDAC_MOD_STR "sbridge_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define sbridge_printk(level, fmt, arg...) \
  39. edac_printk(level, "sbridge", fmt, ##arg)
  40. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
  47. /*
  48. * sbridge Memory Controller Registers
  49. */
  50. /*
  51. * FIXME: For now, let's order by device function, as it makes
  52. * easier for driver's development proccess. This table should be
  53. * moved to pci_id.h when submitted upstream
  54. */
  55. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
  56. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
  57. #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
  58. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
  59. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
  60. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
  61. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
  62. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
  63. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
  64. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
  65. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
  66. /*
  67. * Currently, unused, but will be needed in the future
  68. * implementations, as they hold the error counters
  69. */
  70. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
  71. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
  72. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
  73. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
  74. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  75. static const u32 dram_rule[] = {
  76. 0x80, 0x88, 0x90, 0x98, 0xa0,
  77. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  78. };
  79. #define MAX_SAD ARRAY_SIZE(dram_rule)
  80. #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
  81. #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
  82. #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
  83. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  84. static char *get_dram_attr(u32 reg)
  85. {
  86. switch(DRAM_ATTR(reg)) {
  87. case 0:
  88. return "DRAM";
  89. case 1:
  90. return "MMCFG";
  91. case 2:
  92. return "NXM";
  93. default:
  94. return "unknown";
  95. }
  96. }
  97. static const u32 interleave_list[] = {
  98. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  99. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  100. };
  101. #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
  102. #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
  103. #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
  104. #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
  105. #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
  106. #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
  107. #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
  108. #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
  109. #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
  110. static inline int sad_pkg(u32 reg, int interleave)
  111. {
  112. switch (interleave) {
  113. case 0:
  114. return SAD_PKG0(reg);
  115. case 1:
  116. return SAD_PKG1(reg);
  117. case 2:
  118. return SAD_PKG2(reg);
  119. case 3:
  120. return SAD_PKG3(reg);
  121. case 4:
  122. return SAD_PKG4(reg);
  123. case 5:
  124. return SAD_PKG5(reg);
  125. case 6:
  126. return SAD_PKG6(reg);
  127. case 7:
  128. return SAD_PKG7(reg);
  129. default:
  130. return -EINVAL;
  131. }
  132. }
  133. /* Devices 12 Function 7 */
  134. #define TOLM 0x80
  135. #define TOHM 0x84
  136. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  137. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  138. /* Device 13 Function 6 */
  139. #define SAD_TARGET 0xf0
  140. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  141. #define SAD_CONTROL 0xf4
  142. #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
  143. /* Device 14 function 0 */
  144. static const u32 tad_dram_rule[] = {
  145. 0x40, 0x44, 0x48, 0x4c,
  146. 0x50, 0x54, 0x58, 0x5c,
  147. 0x60, 0x64, 0x68, 0x6c,
  148. };
  149. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  150. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  151. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  152. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  153. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  154. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  155. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  156. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  157. /* Device 15, function 0 */
  158. #define MCMTR 0x7c
  159. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  160. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  161. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  162. /* Device 15, function 1 */
  163. #define RASENABLES 0xac
  164. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  165. /* Device 15, functions 2-5 */
  166. static const int mtr_regs[] = {
  167. 0x80, 0x84, 0x88,
  168. };
  169. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  170. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  171. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  172. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  173. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  174. static const u32 tad_ch_nilv_offset[] = {
  175. 0x90, 0x94, 0x98, 0x9c,
  176. 0xa0, 0xa4, 0xa8, 0xac,
  177. 0xb0, 0xb4, 0xb8, 0xbc,
  178. };
  179. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  180. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  181. static const u32 rir_way_limit[] = {
  182. 0x108, 0x10c, 0x110, 0x114, 0x118,
  183. };
  184. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  185. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  186. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  187. #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
  188. #define MAX_RIR_WAY 8
  189. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  190. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  191. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  192. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  193. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  194. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  195. };
  196. #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
  197. #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
  198. /* Device 16, functions 2-7 */
  199. /*
  200. * FIXME: Implement the error count reads directly
  201. */
  202. static const u32 correrrcnt[] = {
  203. 0x104, 0x108, 0x10c, 0x110,
  204. };
  205. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  206. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  207. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  208. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  209. static const u32 correrrthrsld[] = {
  210. 0x11c, 0x120, 0x124, 0x128,
  211. };
  212. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  213. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  214. /* Device 17, function 0 */
  215. #define RANK_CFG_A 0x0328
  216. #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
  217. /*
  218. * sbridge structs
  219. */
  220. #define NUM_CHANNELS 4
  221. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  222. struct sbridge_info {
  223. u32 mcmtr;
  224. };
  225. struct sbridge_channel {
  226. u32 ranks;
  227. u32 dimms;
  228. };
  229. struct pci_id_descr {
  230. int dev;
  231. int func;
  232. int dev_id;
  233. int optional;
  234. };
  235. struct pci_id_table {
  236. const struct pci_id_descr *descr;
  237. int n_devs;
  238. };
  239. struct sbridge_dev {
  240. struct list_head list;
  241. u8 bus, mc;
  242. u8 node_id, source_id;
  243. struct pci_dev **pdev;
  244. int n_devs;
  245. struct mem_ctl_info *mci;
  246. };
  247. struct sbridge_pvt {
  248. struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
  249. struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
  250. struct pci_dev *pci_br;
  251. struct pci_dev *pci_tad[NUM_CHANNELS];
  252. struct sbridge_dev *sbridge_dev;
  253. struct sbridge_info info;
  254. struct sbridge_channel channel[NUM_CHANNELS];
  255. int csrow_map[NUM_CHANNELS][MAX_DIMMS];
  256. /* Memory type detection */
  257. bool is_mirrored, is_lockstep, is_close_pg;
  258. /* Fifo double buffers */
  259. struct mce mce_entry[MCE_LOG_LEN];
  260. struct mce mce_outentry[MCE_LOG_LEN];
  261. /* Fifo in/out counters */
  262. unsigned mce_in, mce_out;
  263. /* Count indicator to show errors not got */
  264. unsigned mce_overrun;
  265. /* Memory description */
  266. u64 tolm, tohm;
  267. };
  268. #define PCI_DESCR(device, function, device_id) \
  269. .dev = (device), \
  270. .func = (function), \
  271. .dev_id = (device_id)
  272. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  273. /* Processor Home Agent */
  274. { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
  275. /* Memory controller */
  276. { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
  277. { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
  278. { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
  279. { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
  280. { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
  281. { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
  282. { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
  283. /* System Address Decoder */
  284. { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
  285. { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
  286. /* Broadcast Registers */
  287. { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
  288. };
  289. #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
  290. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  291. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
  292. {0,} /* 0 terminated list. */
  293. };
  294. /*
  295. * pci_device_id table for which devices we are looking for
  296. */
  297. static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
  298. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
  299. {0,} /* 0 terminated list. */
  300. };
  301. /****************************************************************************
  302. Anciliary status routines
  303. ****************************************************************************/
  304. static inline int numrank(u32 mtr)
  305. {
  306. int ranks = (1 << RANK_CNT_BITS(mtr));
  307. if (ranks > 4) {
  308. debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
  309. ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  310. return -EINVAL;
  311. }
  312. return ranks;
  313. }
  314. static inline int numrow(u32 mtr)
  315. {
  316. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  317. if (rows < 13 || rows > 18) {
  318. debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
  319. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  320. return -EINVAL;
  321. }
  322. return 1 << rows;
  323. }
  324. static inline int numcol(u32 mtr)
  325. {
  326. int cols = (COL_WIDTH_BITS(mtr) + 10);
  327. if (cols > 12) {
  328. debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
  329. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  330. return -EINVAL;
  331. }
  332. return 1 << cols;
  333. }
  334. static struct sbridge_dev *get_sbridge_dev(u8 bus)
  335. {
  336. struct sbridge_dev *sbridge_dev;
  337. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  338. if (sbridge_dev->bus == bus)
  339. return sbridge_dev;
  340. }
  341. return NULL;
  342. }
  343. static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
  344. const struct pci_id_table *table)
  345. {
  346. struct sbridge_dev *sbridge_dev;
  347. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  348. if (!sbridge_dev)
  349. return NULL;
  350. sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
  351. GFP_KERNEL);
  352. if (!sbridge_dev->pdev) {
  353. kfree(sbridge_dev);
  354. return NULL;
  355. }
  356. sbridge_dev->bus = bus;
  357. sbridge_dev->n_devs = table->n_devs;
  358. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  359. return sbridge_dev;
  360. }
  361. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  362. {
  363. list_del(&sbridge_dev->list);
  364. kfree(sbridge_dev->pdev);
  365. kfree(sbridge_dev);
  366. }
  367. /****************************************************************************
  368. Memory check routines
  369. ****************************************************************************/
  370. static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
  371. unsigned func)
  372. {
  373. struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
  374. int i;
  375. if (!sbridge_dev)
  376. return NULL;
  377. for (i = 0; i < sbridge_dev->n_devs; i++) {
  378. if (!sbridge_dev->pdev[i])
  379. continue;
  380. if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
  381. PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
  382. debugf1("Associated %02x.%02x.%d with %p\n",
  383. bus, slot, func, sbridge_dev->pdev[i]);
  384. return sbridge_dev->pdev[i];
  385. }
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * sbridge_get_active_channels() - gets the number of channels and csrows
  391. * bus: Device bus
  392. * @channels: Number of channels that will be returned
  393. * @csrows: Number of csrows found
  394. *
  395. * Since EDAC core needs to know in advance the number of available channels
  396. * and csrows, in order to allocate memory for csrows/channels, it is needed
  397. * to run two similar steps. At the first step, implemented on this function,
  398. * it checks the number of csrows/channels present at one socket, identified
  399. * by the associated PCI bus.
  400. * this is used in order to properly allocate the size of mci components.
  401. * Note: one csrow is one dimm.
  402. */
  403. static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
  404. unsigned *csrows)
  405. {
  406. struct pci_dev *pdev = NULL;
  407. int i, j;
  408. u32 mcmtr;
  409. *channels = 0;
  410. *csrows = 0;
  411. pdev = get_pdev_slot_func(bus, 15, 0);
  412. if (!pdev) {
  413. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  414. "%2x.%02d.%d!!!\n",
  415. bus, 15, 0);
  416. return -ENODEV;
  417. }
  418. pci_read_config_dword(pdev, MCMTR, &mcmtr);
  419. if (!IS_ECC_ENABLED(mcmtr)) {
  420. sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
  421. return -ENODEV;
  422. }
  423. for (i = 0; i < NUM_CHANNELS; i++) {
  424. u32 mtr;
  425. /* Device 15 functions 2 - 5 */
  426. pdev = get_pdev_slot_func(bus, 15, 2 + i);
  427. if (!pdev) {
  428. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  429. "%2x.%02d.%d!!!\n",
  430. bus, 15, 2 + i);
  431. return -ENODEV;
  432. }
  433. (*channels)++;
  434. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  435. pci_read_config_dword(pdev, mtr_regs[j], &mtr);
  436. debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus, i, j, mtr);
  437. if (IS_DIMM_PRESENT(mtr))
  438. (*csrows)++;
  439. }
  440. }
  441. debugf0("Number of active channels: %d, number of active dimms: %d\n",
  442. *channels, *csrows);
  443. return 0;
  444. }
  445. static int get_dimm_config(struct mem_ctl_info *mci)
  446. {
  447. struct sbridge_pvt *pvt = mci->pvt_info;
  448. struct csrow_info *csr;
  449. int i, j, banks, ranks, rows, cols, size, npages;
  450. int csrow = 0;
  451. unsigned long last_page = 0;
  452. u32 reg;
  453. enum edac_type mode;
  454. enum mem_type mtype;
  455. pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
  456. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  457. pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
  458. pvt->sbridge_dev->node_id = NODE_ID(reg);
  459. debugf0("mc#%d: Node ID: %d, source ID: %d\n",
  460. pvt->sbridge_dev->mc,
  461. pvt->sbridge_dev->node_id,
  462. pvt->sbridge_dev->source_id);
  463. pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
  464. if (IS_MIRROR_ENABLED(reg)) {
  465. debugf0("Memory mirror is enabled\n");
  466. pvt->is_mirrored = true;
  467. } else {
  468. debugf0("Memory mirror is disabled\n");
  469. pvt->is_mirrored = false;
  470. }
  471. pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
  472. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  473. debugf0("Lockstep is enabled\n");
  474. mode = EDAC_S8ECD8ED;
  475. pvt->is_lockstep = true;
  476. } else {
  477. debugf0("Lockstep is disabled\n");
  478. mode = EDAC_S4ECD4ED;
  479. pvt->is_lockstep = false;
  480. }
  481. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  482. debugf0("address map is on closed page mode\n");
  483. pvt->is_close_pg = true;
  484. } else {
  485. debugf0("address map is on open page mode\n");
  486. pvt->is_close_pg = false;
  487. }
  488. pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
  489. if (IS_RDIMM_ENABLED(reg)) {
  490. /* FIXME: Can also be LRDIMM */
  491. debugf0("Memory is registered\n");
  492. mtype = MEM_RDDR3;
  493. } else {
  494. debugf0("Memory is unregistered\n");
  495. mtype = MEM_DDR3;
  496. }
  497. /* On all supported DDR3 DIMM types, there are 8 banks available */
  498. banks = 8;
  499. for (i = 0; i < NUM_CHANNELS; i++) {
  500. u32 mtr;
  501. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  502. struct dimm_info *dimm = &mci->dimms[j];
  503. pci_read_config_dword(pvt->pci_tad[i],
  504. mtr_regs[j], &mtr);
  505. debugf4("Channel #%d MTR%d = %x\n", i, j, mtr);
  506. if (IS_DIMM_PRESENT(mtr)) {
  507. pvt->channel[i].dimms++;
  508. ranks = numrank(mtr);
  509. rows = numrow(mtr);
  510. cols = numcol(mtr);
  511. /* DDR3 has 8 I/O banks */
  512. size = (rows * cols * banks * ranks) >> (20 - 3);
  513. npages = MiB_TO_PAGES(size);
  514. debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  515. pvt->sbridge_dev->mc, i, j,
  516. size, npages,
  517. banks, ranks, rows, cols);
  518. /*
  519. * Fake stuff. This controller doesn't see
  520. * csrows.
  521. */
  522. csr = &mci->csrows[csrow];
  523. pvt->csrow_map[i][j] = csrow;
  524. last_page += npages;
  525. csrow++;
  526. csr->channels[0].dimm = dimm;
  527. dimm->nr_pages = npages;
  528. dimm->grain = 32;
  529. dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
  530. dimm->mtype = mtype;
  531. dimm->edac_mode = mode;
  532. snprintf(dimm->label, sizeof(dimm->label),
  533. "CPU_SrcID#%u_Channel#%u_DIMM#%u",
  534. pvt->sbridge_dev->source_id, i, j);
  535. }
  536. }
  537. }
  538. return 0;
  539. }
  540. static void get_memory_layout(const struct mem_ctl_info *mci)
  541. {
  542. struct sbridge_pvt *pvt = mci->pvt_info;
  543. int i, j, k, n_sads, n_tads, sad_interl;
  544. u32 reg;
  545. u64 limit, prv = 0;
  546. u64 tmp_mb;
  547. u32 mb, kb;
  548. u32 rir_way;
  549. /*
  550. * Step 1) Get TOLM/TOHM ranges
  551. */
  552. /* Address range is 32:28 */
  553. pci_read_config_dword(pvt->pci_sad1, TOLM,
  554. &reg);
  555. pvt->tolm = GET_TOLM(reg);
  556. tmp_mb = (1 + pvt->tolm) >> 20;
  557. mb = div_u64_rem(tmp_mb, 1000, &kb);
  558. debugf0("TOLM: %u.%03u GB (0x%016Lx)\n",
  559. mb, kb, (u64)pvt->tolm);
  560. /* Address range is already 45:25 */
  561. pci_read_config_dword(pvt->pci_sad1, TOHM,
  562. &reg);
  563. pvt->tohm = GET_TOHM(reg);
  564. tmp_mb = (1 + pvt->tohm) >> 20;
  565. mb = div_u64_rem(tmp_mb, 1000, &kb);
  566. debugf0("TOHM: %u.%03u GB (0x%016Lx)",
  567. mb, kb, (u64)pvt->tohm);
  568. /*
  569. * Step 2) Get SAD range and SAD Interleave list
  570. * TAD registers contain the interleave wayness. However, it
  571. * seems simpler to just discover it indirectly, with the
  572. * algorithm bellow.
  573. */
  574. prv = 0;
  575. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  576. /* SAD_LIMIT Address range is 45:26 */
  577. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  578. &reg);
  579. limit = SAD_LIMIT(reg);
  580. if (!DRAM_RULE_ENABLE(reg))
  581. continue;
  582. if (limit <= prv)
  583. break;
  584. tmp_mb = (limit + 1) >> 20;
  585. mb = div_u64_rem(tmp_mb, 1000, &kb);
  586. debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n",
  587. n_sads,
  588. get_dram_attr(reg),
  589. mb, kb,
  590. ((u64)tmp_mb) << 20L,
  591. INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
  592. reg);
  593. prv = limit;
  594. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  595. &reg);
  596. sad_interl = sad_pkg(reg, 0);
  597. for (j = 0; j < 8; j++) {
  598. if (j > 0 && sad_interl == sad_pkg(reg, j))
  599. break;
  600. debugf0("SAD#%d, interleave #%d: %d\n",
  601. n_sads, j, sad_pkg(reg, j));
  602. }
  603. }
  604. /*
  605. * Step 3) Get TAD range
  606. */
  607. prv = 0;
  608. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  609. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  610. &reg);
  611. limit = TAD_LIMIT(reg);
  612. if (limit <= prv)
  613. break;
  614. tmp_mb = (limit + 1) >> 20;
  615. mb = div_u64_rem(tmp_mb, 1000, &kb);
  616. debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  617. n_tads, mb, kb,
  618. ((u64)tmp_mb) << 20L,
  619. (u32)TAD_SOCK(reg),
  620. (u32)TAD_CH(reg),
  621. (u32)TAD_TGT0(reg),
  622. (u32)TAD_TGT1(reg),
  623. (u32)TAD_TGT2(reg),
  624. (u32)TAD_TGT3(reg),
  625. reg);
  626. prv = limit;
  627. }
  628. /*
  629. * Step 4) Get TAD offsets, per each channel
  630. */
  631. for (i = 0; i < NUM_CHANNELS; i++) {
  632. if (!pvt->channel[i].dimms)
  633. continue;
  634. for (j = 0; j < n_tads; j++) {
  635. pci_read_config_dword(pvt->pci_tad[i],
  636. tad_ch_nilv_offset[j],
  637. &reg);
  638. tmp_mb = TAD_OFFSET(reg) >> 20;
  639. mb = div_u64_rem(tmp_mb, 1000, &kb);
  640. debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  641. i, j,
  642. mb, kb,
  643. ((u64)tmp_mb) << 20L,
  644. reg);
  645. }
  646. }
  647. /*
  648. * Step 6) Get RIR Wayness/Limit, per each channel
  649. */
  650. for (i = 0; i < NUM_CHANNELS; i++) {
  651. if (!pvt->channel[i].dimms)
  652. continue;
  653. for (j = 0; j < MAX_RIR_RANGES; j++) {
  654. pci_read_config_dword(pvt->pci_tad[i],
  655. rir_way_limit[j],
  656. &reg);
  657. if (!IS_RIR_VALID(reg))
  658. continue;
  659. tmp_mb = RIR_LIMIT(reg) >> 20;
  660. rir_way = 1 << RIR_WAY(reg);
  661. mb = div_u64_rem(tmp_mb, 1000, &kb);
  662. debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  663. i, j,
  664. mb, kb,
  665. ((u64)tmp_mb) << 20L,
  666. rir_way,
  667. reg);
  668. for (k = 0; k < rir_way; k++) {
  669. pci_read_config_dword(pvt->pci_tad[i],
  670. rir_offset[j][k],
  671. &reg);
  672. tmp_mb = RIR_OFFSET(reg) << 6;
  673. mb = div_u64_rem(tmp_mb, 1000, &kb);
  674. debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  675. i, j, k,
  676. mb, kb,
  677. ((u64)tmp_mb) << 20L,
  678. (u32)RIR_RNK_TGT(reg),
  679. reg);
  680. }
  681. }
  682. }
  683. }
  684. struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
  685. {
  686. struct sbridge_dev *sbridge_dev;
  687. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  688. if (sbridge_dev->node_id == node_id)
  689. return sbridge_dev->mci;
  690. }
  691. return NULL;
  692. }
  693. static int get_memory_error_data(struct mem_ctl_info *mci,
  694. u64 addr,
  695. u8 *socket,
  696. long *channel_mask,
  697. u8 *rank,
  698. char *area_type)
  699. {
  700. struct mem_ctl_info *new_mci;
  701. struct sbridge_pvt *pvt = mci->pvt_info;
  702. char msg[256];
  703. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  704. int sad_interl, idx, base_ch;
  705. int interleave_mode;
  706. unsigned sad_interleave[MAX_INTERLEAVE];
  707. u32 reg;
  708. u8 ch_way,sck_way;
  709. u32 tad_offset;
  710. u32 rir_way;
  711. u32 mb, kb;
  712. u64 ch_addr, offset, limit, prv = 0;
  713. /*
  714. * Step 0) Check if the address is at special memory ranges
  715. * The check bellow is probably enough to fill all cases where
  716. * the error is not inside a memory, except for the legacy
  717. * range (e. g. VGA addresses). It is unlikely, however, that the
  718. * memory controller would generate an error on that range.
  719. */
  720. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  721. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  722. edac_mc_handle_ce_no_info(mci, msg);
  723. return -EINVAL;
  724. }
  725. if (addr >= (u64)pvt->tohm) {
  726. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  727. edac_mc_handle_ce_no_info(mci, msg);
  728. return -EINVAL;
  729. }
  730. /*
  731. * Step 1) Get socket
  732. */
  733. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  734. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  735. &reg);
  736. if (!DRAM_RULE_ENABLE(reg))
  737. continue;
  738. limit = SAD_LIMIT(reg);
  739. if (limit <= prv) {
  740. sprintf(msg, "Can't discover the memory socket");
  741. edac_mc_handle_ce_no_info(mci, msg);
  742. return -EINVAL;
  743. }
  744. if (addr <= limit)
  745. break;
  746. prv = limit;
  747. }
  748. if (n_sads == MAX_SAD) {
  749. sprintf(msg, "Can't discover the memory socket");
  750. edac_mc_handle_ce_no_info(mci, msg);
  751. return -EINVAL;
  752. }
  753. area_type = get_dram_attr(reg);
  754. interleave_mode = INTERLEAVE_MODE(reg);
  755. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  756. &reg);
  757. sad_interl = sad_pkg(reg, 0);
  758. for (sad_way = 0; sad_way < 8; sad_way++) {
  759. if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
  760. break;
  761. sad_interleave[sad_way] = sad_pkg(reg, sad_way);
  762. debugf0("SAD interleave #%d: %d\n",
  763. sad_way, sad_interleave[sad_way]);
  764. }
  765. debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  766. pvt->sbridge_dev->mc,
  767. n_sads,
  768. addr,
  769. limit,
  770. sad_way + 7,
  771. interleave_mode ? "" : "XOR[18:16]");
  772. if (interleave_mode)
  773. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  774. else
  775. idx = (addr >> 6) & 7;
  776. switch (sad_way) {
  777. case 1:
  778. idx = 0;
  779. break;
  780. case 2:
  781. idx = idx & 1;
  782. break;
  783. case 4:
  784. idx = idx & 3;
  785. break;
  786. case 8:
  787. break;
  788. default:
  789. sprintf(msg, "Can't discover socket interleave");
  790. edac_mc_handle_ce_no_info(mci, msg);
  791. return -EINVAL;
  792. }
  793. *socket = sad_interleave[idx];
  794. debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  795. idx, sad_way, *socket);
  796. /*
  797. * Move to the proper node structure, in order to access the
  798. * right PCI registers
  799. */
  800. new_mci = get_mci_for_node_id(*socket);
  801. if (!new_mci) {
  802. sprintf(msg, "Struct for socket #%u wasn't initialized",
  803. *socket);
  804. edac_mc_handle_ce_no_info(mci, msg);
  805. return -EINVAL;
  806. }
  807. mci = new_mci;
  808. pvt = mci->pvt_info;
  809. /*
  810. * Step 2) Get memory channel
  811. */
  812. prv = 0;
  813. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  814. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  815. &reg);
  816. limit = TAD_LIMIT(reg);
  817. if (limit <= prv) {
  818. sprintf(msg, "Can't discover the memory channel");
  819. edac_mc_handle_ce_no_info(mci, msg);
  820. return -EINVAL;
  821. }
  822. if (addr <= limit)
  823. break;
  824. prv = limit;
  825. }
  826. ch_way = TAD_CH(reg) + 1;
  827. sck_way = TAD_SOCK(reg) + 1;
  828. /*
  829. * FIXME: Is it right to always use channel 0 for offsets?
  830. */
  831. pci_read_config_dword(pvt->pci_tad[0],
  832. tad_ch_nilv_offset[n_tads],
  833. &tad_offset);
  834. if (ch_way == 3)
  835. idx = addr >> 6;
  836. else
  837. idx = addr >> (6 + sck_way);
  838. idx = idx % ch_way;
  839. /*
  840. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  841. */
  842. switch (idx) {
  843. case 0:
  844. base_ch = TAD_TGT0(reg);
  845. break;
  846. case 1:
  847. base_ch = TAD_TGT1(reg);
  848. break;
  849. case 2:
  850. base_ch = TAD_TGT2(reg);
  851. break;
  852. case 3:
  853. base_ch = TAD_TGT3(reg);
  854. break;
  855. default:
  856. sprintf(msg, "Can't discover the TAD target");
  857. edac_mc_handle_ce_no_info(mci, msg);
  858. return -EINVAL;
  859. }
  860. *channel_mask = 1 << base_ch;
  861. if (pvt->is_mirrored) {
  862. *channel_mask |= 1 << ((base_ch + 2) % 4);
  863. switch(ch_way) {
  864. case 2:
  865. case 4:
  866. sck_xch = 1 << sck_way * (ch_way >> 1);
  867. break;
  868. default:
  869. sprintf(msg, "Invalid mirror set. Can't decode addr");
  870. edac_mc_handle_ce_no_info(mci, msg);
  871. return -EINVAL;
  872. }
  873. } else
  874. sck_xch = (1 << sck_way) * ch_way;
  875. if (pvt->is_lockstep)
  876. *channel_mask |= 1 << ((base_ch + 1) % 4);
  877. offset = TAD_OFFSET(tad_offset);
  878. debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  879. n_tads,
  880. addr,
  881. limit,
  882. (u32)TAD_SOCK(reg),
  883. ch_way,
  884. offset,
  885. idx,
  886. base_ch,
  887. *channel_mask);
  888. /* Calculate channel address */
  889. /* Remove the TAD offset */
  890. if (offset > addr) {
  891. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  892. offset, addr);
  893. edac_mc_handle_ce_no_info(mci, msg);
  894. return -EINVAL;
  895. }
  896. addr -= offset;
  897. /* Store the low bits [0:6] of the addr */
  898. ch_addr = addr & 0x7f;
  899. /* Remove socket wayness and remove 6 bits */
  900. addr >>= 6;
  901. addr = div_u64(addr, sck_xch);
  902. #if 0
  903. /* Divide by channel way */
  904. addr = addr / ch_way;
  905. #endif
  906. /* Recover the last 6 bits */
  907. ch_addr |= addr << 6;
  908. /*
  909. * Step 3) Decode rank
  910. */
  911. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  912. pci_read_config_dword(pvt->pci_tad[base_ch],
  913. rir_way_limit[n_rir],
  914. &reg);
  915. if (!IS_RIR_VALID(reg))
  916. continue;
  917. limit = RIR_LIMIT(reg);
  918. mb = div_u64_rem(limit >> 20, 1000, &kb);
  919. debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  920. n_rir,
  921. mb, kb,
  922. limit,
  923. 1 << RIR_WAY(reg));
  924. if (ch_addr <= limit)
  925. break;
  926. }
  927. if (n_rir == MAX_RIR_RANGES) {
  928. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  929. ch_addr);
  930. edac_mc_handle_ce_no_info(mci, msg);
  931. return -EINVAL;
  932. }
  933. rir_way = RIR_WAY(reg);
  934. if (pvt->is_close_pg)
  935. idx = (ch_addr >> 6);
  936. else
  937. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  938. idx %= 1 << rir_way;
  939. pci_read_config_dword(pvt->pci_tad[base_ch],
  940. rir_offset[n_rir][idx],
  941. &reg);
  942. *rank = RIR_RNK_TGT(reg);
  943. debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  944. n_rir,
  945. ch_addr,
  946. limit,
  947. rir_way,
  948. idx);
  949. return 0;
  950. }
  951. /****************************************************************************
  952. Device initialization routines: put/get, init/exit
  953. ****************************************************************************/
  954. /*
  955. * sbridge_put_all_devices 'put' all the devices that we have
  956. * reserved via 'get'
  957. */
  958. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  959. {
  960. int i;
  961. debugf0(__FILE__ ": %s()\n", __func__);
  962. for (i = 0; i < sbridge_dev->n_devs; i++) {
  963. struct pci_dev *pdev = sbridge_dev->pdev[i];
  964. if (!pdev)
  965. continue;
  966. debugf0("Removing dev %02x:%02x.%d\n",
  967. pdev->bus->number,
  968. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  969. pci_dev_put(pdev);
  970. }
  971. }
  972. static void sbridge_put_all_devices(void)
  973. {
  974. struct sbridge_dev *sbridge_dev, *tmp;
  975. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  976. sbridge_put_devices(sbridge_dev);
  977. free_sbridge_dev(sbridge_dev);
  978. }
  979. }
  980. /*
  981. * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
  982. * device/functions we want to reference for this driver
  983. *
  984. * Need to 'get' device 16 func 1 and func 2
  985. */
  986. static int sbridge_get_onedevice(struct pci_dev **prev,
  987. u8 *num_mc,
  988. const struct pci_id_table *table,
  989. const unsigned devno)
  990. {
  991. struct sbridge_dev *sbridge_dev;
  992. const struct pci_id_descr *dev_descr = &table->descr[devno];
  993. struct pci_dev *pdev = NULL;
  994. u8 bus = 0;
  995. sbridge_printk(KERN_INFO,
  996. "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
  997. dev_descr->dev, dev_descr->func,
  998. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  999. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  1000. dev_descr->dev_id, *prev);
  1001. if (!pdev) {
  1002. if (*prev) {
  1003. *prev = pdev;
  1004. return 0;
  1005. }
  1006. if (dev_descr->optional)
  1007. return 0;
  1008. if (devno == 0)
  1009. return -ENODEV;
  1010. sbridge_printk(KERN_INFO,
  1011. "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
  1012. dev_descr->dev, dev_descr->func,
  1013. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1014. /* End of list, leave */
  1015. return -ENODEV;
  1016. }
  1017. bus = pdev->bus->number;
  1018. sbridge_dev = get_sbridge_dev(bus);
  1019. if (!sbridge_dev) {
  1020. sbridge_dev = alloc_sbridge_dev(bus, table);
  1021. if (!sbridge_dev) {
  1022. pci_dev_put(pdev);
  1023. return -ENOMEM;
  1024. }
  1025. (*num_mc)++;
  1026. }
  1027. if (sbridge_dev->pdev[devno]) {
  1028. sbridge_printk(KERN_ERR,
  1029. "Duplicated device for "
  1030. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  1031. bus, dev_descr->dev, dev_descr->func,
  1032. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1033. pci_dev_put(pdev);
  1034. return -ENODEV;
  1035. }
  1036. sbridge_dev->pdev[devno] = pdev;
  1037. /* Sanity check */
  1038. if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
  1039. PCI_FUNC(pdev->devfn) != dev_descr->func)) {
  1040. sbridge_printk(KERN_ERR,
  1041. "Device PCI ID %04x:%04x "
  1042. "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
  1043. PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
  1044. bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1045. bus, dev_descr->dev, dev_descr->func);
  1046. return -ENODEV;
  1047. }
  1048. /* Be sure that the device is enabled */
  1049. if (unlikely(pci_enable_device(pdev) < 0)) {
  1050. sbridge_printk(KERN_ERR,
  1051. "Couldn't enable "
  1052. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  1053. bus, dev_descr->dev, dev_descr->func,
  1054. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1055. return -ENODEV;
  1056. }
  1057. debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
  1058. bus, dev_descr->dev,
  1059. dev_descr->func,
  1060. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1061. /*
  1062. * As stated on drivers/pci/search.c, the reference count for
  1063. * @from is always decremented if it is not %NULL. So, as we need
  1064. * to get all devices up to null, we need to do a get for the device
  1065. */
  1066. pci_dev_get(pdev);
  1067. *prev = pdev;
  1068. return 0;
  1069. }
  1070. static int sbridge_get_all_devices(u8 *num_mc)
  1071. {
  1072. int i, rc;
  1073. struct pci_dev *pdev = NULL;
  1074. const struct pci_id_table *table = pci_dev_descr_sbridge_table;
  1075. while (table && table->descr) {
  1076. for (i = 0; i < table->n_devs; i++) {
  1077. pdev = NULL;
  1078. do {
  1079. rc = sbridge_get_onedevice(&pdev, num_mc,
  1080. table, i);
  1081. if (rc < 0) {
  1082. if (i == 0) {
  1083. i = table->n_devs;
  1084. break;
  1085. }
  1086. sbridge_put_all_devices();
  1087. return -ENODEV;
  1088. }
  1089. } while (pdev);
  1090. }
  1091. table++;
  1092. }
  1093. return 0;
  1094. }
  1095. static int mci_bind_devs(struct mem_ctl_info *mci,
  1096. struct sbridge_dev *sbridge_dev)
  1097. {
  1098. struct sbridge_pvt *pvt = mci->pvt_info;
  1099. struct pci_dev *pdev;
  1100. int i, func, slot;
  1101. for (i = 0; i < sbridge_dev->n_devs; i++) {
  1102. pdev = sbridge_dev->pdev[i];
  1103. if (!pdev)
  1104. continue;
  1105. slot = PCI_SLOT(pdev->devfn);
  1106. func = PCI_FUNC(pdev->devfn);
  1107. switch (slot) {
  1108. case 12:
  1109. switch (func) {
  1110. case 6:
  1111. pvt->pci_sad0 = pdev;
  1112. break;
  1113. case 7:
  1114. pvt->pci_sad1 = pdev;
  1115. break;
  1116. default:
  1117. goto error;
  1118. }
  1119. break;
  1120. case 13:
  1121. switch (func) {
  1122. case 6:
  1123. pvt->pci_br = pdev;
  1124. break;
  1125. default:
  1126. goto error;
  1127. }
  1128. break;
  1129. case 14:
  1130. switch (func) {
  1131. case 0:
  1132. pvt->pci_ha0 = pdev;
  1133. break;
  1134. default:
  1135. goto error;
  1136. }
  1137. break;
  1138. case 15:
  1139. switch (func) {
  1140. case 0:
  1141. pvt->pci_ta = pdev;
  1142. break;
  1143. case 1:
  1144. pvt->pci_ras = pdev;
  1145. break;
  1146. case 2:
  1147. case 3:
  1148. case 4:
  1149. case 5:
  1150. pvt->pci_tad[func - 2] = pdev;
  1151. break;
  1152. default:
  1153. goto error;
  1154. }
  1155. break;
  1156. case 17:
  1157. switch (func) {
  1158. case 0:
  1159. pvt->pci_ddrio = pdev;
  1160. break;
  1161. default:
  1162. goto error;
  1163. }
  1164. break;
  1165. default:
  1166. goto error;
  1167. }
  1168. debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
  1169. sbridge_dev->bus,
  1170. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1171. pdev);
  1172. }
  1173. /* Check if everything were registered */
  1174. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
  1175. !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
  1176. !pvt->pci_ddrio)
  1177. goto enodev;
  1178. for (i = 0; i < NUM_CHANNELS; i++) {
  1179. if (!pvt->pci_tad[i])
  1180. goto enodev;
  1181. }
  1182. return 0;
  1183. enodev:
  1184. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  1185. return -ENODEV;
  1186. error:
  1187. sbridge_printk(KERN_ERR, "Device %d, function %d "
  1188. "is out of the expected range\n",
  1189. slot, func);
  1190. return -EINVAL;
  1191. }
  1192. /****************************************************************************
  1193. Error check routines
  1194. ****************************************************************************/
  1195. /*
  1196. * While Sandy Bridge has error count registers, SMI BIOS read values from
  1197. * and resets the counters. So, they are not reliable for the OS to read
  1198. * from them. So, we have no option but to just trust on whatever MCE is
  1199. * telling us about the errors.
  1200. */
  1201. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  1202. const struct mce *m)
  1203. {
  1204. struct mem_ctl_info *new_mci;
  1205. struct sbridge_pvt *pvt = mci->pvt_info;
  1206. char *type, *optype, *msg, *recoverable_msg;
  1207. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  1208. bool overflow = GET_BITFIELD(m->status, 62, 62);
  1209. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  1210. bool recoverable = GET_BITFIELD(m->status, 56, 56);
  1211. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  1212. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  1213. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  1214. u32 channel = GET_BITFIELD(m->status, 0, 3);
  1215. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  1216. long channel_mask, first_channel;
  1217. u8 rank, socket;
  1218. int csrow, rc, dimm;
  1219. char *area_type = "Unknown";
  1220. if (ripv)
  1221. type = "NON_FATAL";
  1222. else
  1223. type = "FATAL";
  1224. /*
  1225. * According with Table 15-9 of the Intel Archictecture spec vol 3A,
  1226. * memory errors should fit in this mask:
  1227. * 000f 0000 1mmm cccc (binary)
  1228. * where:
  1229. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1230. * won't be shown
  1231. * mmm = error type
  1232. * cccc = channel
  1233. * If the mask doesn't match, report an error to the parsing logic
  1234. */
  1235. if (! ((errcode & 0xef80) == 0x80)) {
  1236. optype = "Can't parse: it is not a mem";
  1237. } else {
  1238. switch (optypenum) {
  1239. case 0:
  1240. optype = "generic undef request";
  1241. break;
  1242. case 1:
  1243. optype = "memory read";
  1244. break;
  1245. case 2:
  1246. optype = "memory write";
  1247. break;
  1248. case 3:
  1249. optype = "addr/cmd";
  1250. break;
  1251. case 4:
  1252. optype = "memory scrubbing";
  1253. break;
  1254. default:
  1255. optype = "reserved";
  1256. break;
  1257. }
  1258. }
  1259. rc = get_memory_error_data(mci, m->addr, &socket,
  1260. &channel_mask, &rank, area_type);
  1261. if (rc < 0)
  1262. return;
  1263. new_mci = get_mci_for_node_id(socket);
  1264. if (!new_mci) {
  1265. edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
  1266. return;
  1267. }
  1268. mci = new_mci;
  1269. pvt = mci->pvt_info;
  1270. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  1271. if (rank < 4)
  1272. dimm = 0;
  1273. else if (rank < 8)
  1274. dimm = 1;
  1275. else
  1276. dimm = 2;
  1277. csrow = pvt->csrow_map[first_channel][dimm];
  1278. if (uncorrected_error && recoverable)
  1279. recoverable_msg = " recoverable";
  1280. else
  1281. recoverable_msg = "";
  1282. /*
  1283. * FIXME: What should we do with "channel" information on mcelog?
  1284. * Probably, we can just discard it, as the channel information
  1285. * comes from the get_memory_error_data() address decoding
  1286. */
  1287. msg = kasprintf(GFP_ATOMIC,
  1288. "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
  1289. "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
  1290. core_err_cnt,
  1291. area_type,
  1292. optype,
  1293. type,
  1294. recoverable_msg,
  1295. overflow ? "OVERFLOW" : "",
  1296. m->cpu,
  1297. mscod, errcode,
  1298. channel, /* 1111b means not specified */
  1299. (long long) m->addr,
  1300. socket,
  1301. first_channel, /* This is the real channel on SB */
  1302. channel_mask,
  1303. rank);
  1304. debugf0("%s", msg);
  1305. /* Call the helper to output message */
  1306. if (uncorrected_error)
  1307. edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
  1308. else
  1309. edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
  1310. kfree(msg);
  1311. }
  1312. /*
  1313. * sbridge_check_error Retrieve and process errors reported by the
  1314. * hardware. Called by the Core module.
  1315. */
  1316. static void sbridge_check_error(struct mem_ctl_info *mci)
  1317. {
  1318. struct sbridge_pvt *pvt = mci->pvt_info;
  1319. int i;
  1320. unsigned count = 0;
  1321. struct mce *m;
  1322. /*
  1323. * MCE first step: Copy all mce errors into a temporary buffer
  1324. * We use a double buffering here, to reduce the risk of
  1325. * loosing an error.
  1326. */
  1327. smp_rmb();
  1328. count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
  1329. % MCE_LOG_LEN;
  1330. if (!count)
  1331. return;
  1332. m = pvt->mce_outentry;
  1333. if (pvt->mce_in + count > MCE_LOG_LEN) {
  1334. unsigned l = MCE_LOG_LEN - pvt->mce_in;
  1335. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
  1336. smp_wmb();
  1337. pvt->mce_in = 0;
  1338. count -= l;
  1339. m += l;
  1340. }
  1341. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
  1342. smp_wmb();
  1343. pvt->mce_in += count;
  1344. smp_rmb();
  1345. if (pvt->mce_overrun) {
  1346. sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
  1347. pvt->mce_overrun);
  1348. smp_wmb();
  1349. pvt->mce_overrun = 0;
  1350. }
  1351. /*
  1352. * MCE second step: parse errors and display
  1353. */
  1354. for (i = 0; i < count; i++)
  1355. sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
  1356. }
  1357. /*
  1358. * sbridge_mce_check_error Replicates mcelog routine to get errors
  1359. * This routine simply queues mcelog errors, and
  1360. * return. The error itself should be handled later
  1361. * by sbridge_check_error.
  1362. * WARNING: As this routine should be called at NMI time, extra care should
  1363. * be taken to avoid deadlocks, and to be as fast as possible.
  1364. */
  1365. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  1366. void *data)
  1367. {
  1368. struct mce *mce = (struct mce *)data;
  1369. struct mem_ctl_info *mci;
  1370. struct sbridge_pvt *pvt;
  1371. mci = get_mci_for_node_id(mce->socketid);
  1372. if (!mci)
  1373. return NOTIFY_BAD;
  1374. pvt = mci->pvt_info;
  1375. /*
  1376. * Just let mcelog handle it if the error is
  1377. * outside the memory controller. A memory error
  1378. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1379. * bit 12 has an special meaning.
  1380. */
  1381. if ((mce->status & 0xefff) >> 7 != 1)
  1382. return NOTIFY_DONE;
  1383. printk("sbridge: HANDLING MCE MEMORY ERROR\n");
  1384. printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
  1385. mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
  1386. printk("TSC %llx ", mce->tsc);
  1387. printk("ADDR %llx ", mce->addr);
  1388. printk("MISC %llx ", mce->misc);
  1389. printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1390. mce->cpuvendor, mce->cpuid, mce->time,
  1391. mce->socketid, mce->apicid);
  1392. /* Only handle if it is the right mc controller */
  1393. if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
  1394. return NOTIFY_DONE;
  1395. smp_rmb();
  1396. if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
  1397. smp_wmb();
  1398. pvt->mce_overrun++;
  1399. return NOTIFY_DONE;
  1400. }
  1401. /* Copy memory error at the ringbuffer */
  1402. memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
  1403. smp_wmb();
  1404. pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
  1405. /* Handle fatal errors immediately */
  1406. if (mce->mcgstatus & 1)
  1407. sbridge_check_error(mci);
  1408. /* Advice mcelog that the error were handled */
  1409. return NOTIFY_STOP;
  1410. }
  1411. static struct notifier_block sbridge_mce_dec = {
  1412. .notifier_call = sbridge_mce_check_error,
  1413. };
  1414. /****************************************************************************
  1415. EDAC register/unregister logic
  1416. ****************************************************************************/
  1417. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  1418. {
  1419. struct mem_ctl_info *mci = sbridge_dev->mci;
  1420. struct sbridge_pvt *pvt;
  1421. if (unlikely(!mci || !mci->pvt_info)) {
  1422. debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
  1423. __func__, &sbridge_dev->pdev[0]->dev);
  1424. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  1425. return;
  1426. }
  1427. pvt = mci->pvt_info;
  1428. debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
  1429. __func__, mci, &sbridge_dev->pdev[0]->dev);
  1430. mce_unregister_decode_chain(&sbridge_mce_dec);
  1431. /* Remove MC sysfs nodes */
  1432. edac_mc_del_mc(mci->dev);
  1433. debugf1("%s: free mci struct\n", mci->ctl_name);
  1434. kfree(mci->ctl_name);
  1435. edac_mc_free(mci);
  1436. sbridge_dev->mci = NULL;
  1437. }
  1438. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
  1439. {
  1440. struct mem_ctl_info *mci;
  1441. struct sbridge_pvt *pvt;
  1442. int rc, channels, csrows;
  1443. /* Check the number of active and not disabled channels */
  1444. rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
  1445. if (unlikely(rc < 0))
  1446. return rc;
  1447. /* allocate a new MC control structure */
  1448. mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
  1449. if (unlikely(!mci))
  1450. return -ENOMEM;
  1451. debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
  1452. __func__, mci, &sbridge_dev->pdev[0]->dev);
  1453. pvt = mci->pvt_info;
  1454. memset(pvt, 0, sizeof(*pvt));
  1455. /* Associate sbridge_dev and mci for future usage */
  1456. pvt->sbridge_dev = sbridge_dev;
  1457. sbridge_dev->mci = mci;
  1458. mci->mtype_cap = MEM_FLAG_DDR3;
  1459. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1460. mci->edac_cap = EDAC_FLAG_NONE;
  1461. mci->mod_name = "sbridge_edac.c";
  1462. mci->mod_ver = SBRIDGE_REVISION;
  1463. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
  1464. mci->dev_name = pci_name(sbridge_dev->pdev[0]);
  1465. mci->ctl_page_to_phys = NULL;
  1466. /* Set the function pointer to an actual operation function */
  1467. mci->edac_check = sbridge_check_error;
  1468. /* Store pci devices at mci for faster access */
  1469. rc = mci_bind_devs(mci, sbridge_dev);
  1470. if (unlikely(rc < 0))
  1471. goto fail0;
  1472. /* Get dimm basic config and the memory layout */
  1473. get_dimm_config(mci);
  1474. get_memory_layout(mci);
  1475. /* record ptr to the generic device */
  1476. mci->dev = &sbridge_dev->pdev[0]->dev;
  1477. /* add this new MC control structure to EDAC's list of MCs */
  1478. if (unlikely(edac_mc_add_mc(mci))) {
  1479. debugf0("MC: " __FILE__
  1480. ": %s(): failed edac_mc_add_mc()\n", __func__);
  1481. rc = -EINVAL;
  1482. goto fail0;
  1483. }
  1484. mce_register_decode_chain(&sbridge_mce_dec);
  1485. return 0;
  1486. fail0:
  1487. kfree(mci->ctl_name);
  1488. edac_mc_free(mci);
  1489. sbridge_dev->mci = NULL;
  1490. return rc;
  1491. }
  1492. /*
  1493. * sbridge_probe Probe for ONE instance of device to see if it is
  1494. * present.
  1495. * return:
  1496. * 0 for FOUND a device
  1497. * < 0 for error code
  1498. */
  1499. static int __devinit sbridge_probe(struct pci_dev *pdev,
  1500. const struct pci_device_id *id)
  1501. {
  1502. int rc;
  1503. u8 mc, num_mc = 0;
  1504. struct sbridge_dev *sbridge_dev;
  1505. /* get the pci devices we want to reserve for our use */
  1506. mutex_lock(&sbridge_edac_lock);
  1507. /*
  1508. * All memory controllers are allocated at the first pass.
  1509. */
  1510. if (unlikely(probed >= 1)) {
  1511. mutex_unlock(&sbridge_edac_lock);
  1512. return -ENODEV;
  1513. }
  1514. probed++;
  1515. rc = sbridge_get_all_devices(&num_mc);
  1516. if (unlikely(rc < 0))
  1517. goto fail0;
  1518. mc = 0;
  1519. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1520. debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
  1521. sbridge_dev->mc = mc++;
  1522. rc = sbridge_register_mci(sbridge_dev);
  1523. if (unlikely(rc < 0))
  1524. goto fail1;
  1525. }
  1526. sbridge_printk(KERN_INFO, "Driver loaded.\n");
  1527. mutex_unlock(&sbridge_edac_lock);
  1528. return 0;
  1529. fail1:
  1530. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1531. sbridge_unregister_mci(sbridge_dev);
  1532. sbridge_put_all_devices();
  1533. fail0:
  1534. mutex_unlock(&sbridge_edac_lock);
  1535. return rc;
  1536. }
  1537. /*
  1538. * sbridge_remove destructor for one instance of device
  1539. *
  1540. */
  1541. static void __devexit sbridge_remove(struct pci_dev *pdev)
  1542. {
  1543. struct sbridge_dev *sbridge_dev;
  1544. debugf0(__FILE__ ": %s()\n", __func__);
  1545. /*
  1546. * we have a trouble here: pdev value for removal will be wrong, since
  1547. * it will point to the X58 register used to detect that the machine
  1548. * is a Nehalem or upper design. However, due to the way several PCI
  1549. * devices are grouped together to provide MC functionality, we need
  1550. * to use a different method for releasing the devices
  1551. */
  1552. mutex_lock(&sbridge_edac_lock);
  1553. if (unlikely(!probed)) {
  1554. mutex_unlock(&sbridge_edac_lock);
  1555. return;
  1556. }
  1557. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1558. sbridge_unregister_mci(sbridge_dev);
  1559. /* Release PCI resources */
  1560. sbridge_put_all_devices();
  1561. probed--;
  1562. mutex_unlock(&sbridge_edac_lock);
  1563. }
  1564. MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
  1565. /*
  1566. * sbridge_driver pci_driver structure for this module
  1567. *
  1568. */
  1569. static struct pci_driver sbridge_driver = {
  1570. .name = "sbridge_edac",
  1571. .probe = sbridge_probe,
  1572. .remove = __devexit_p(sbridge_remove),
  1573. .id_table = sbridge_pci_tbl,
  1574. };
  1575. /*
  1576. * sbridge_init Module entry function
  1577. * Try to initialize this module for its devices
  1578. */
  1579. static int __init sbridge_init(void)
  1580. {
  1581. int pci_rc;
  1582. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1583. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1584. opstate_init();
  1585. pci_rc = pci_register_driver(&sbridge_driver);
  1586. if (pci_rc >= 0)
  1587. return 0;
  1588. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  1589. pci_rc);
  1590. return pci_rc;
  1591. }
  1592. /*
  1593. * sbridge_exit() Module exit function
  1594. * Unregister the driver
  1595. */
  1596. static void __exit sbridge_exit(void)
  1597. {
  1598. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1599. pci_unregister_driver(&sbridge_driver);
  1600. }
  1601. module_init(sbridge_init);
  1602. module_exit(sbridge_exit);
  1603. module_param(edac_op_state, int, 0444);
  1604. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1605. MODULE_LICENSE("GPL");
  1606. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1607. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1608. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
  1609. SBRIDGE_REVISION);