skbuff.h 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <asm/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. /* Don't change this without changing skb_csum_unnecessary! */
  30. #define CHECKSUM_NONE 0
  31. #define CHECKSUM_UNNECESSARY 1
  32. #define CHECKSUM_COMPLETE 2
  33. #define CHECKSUM_PARTIAL 3
  34. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  35. ~(SMP_CACHE_BYTES - 1))
  36. #define SKB_WITH_OVERHEAD(X) \
  37. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  38. #define SKB_MAX_ORDER(X, ORDER) \
  39. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  40. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  41. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  42. /* A. Checksumming of received packets by device.
  43. *
  44. * NONE: device failed to checksum this packet.
  45. * skb->csum is undefined.
  46. *
  47. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  48. * skb->csum is undefined.
  49. * It is bad option, but, unfortunately, many of vendors do this.
  50. * Apparently with secret goal to sell you new device, when you
  51. * will add new protocol to your host. F.e. IPv6. 8)
  52. *
  53. * COMPLETE: the most generic way. Device supplied checksum of _all_
  54. * the packet as seen by netif_rx in skb->csum.
  55. * NOTE: Even if device supports only some protocols, but
  56. * is able to produce some skb->csum, it MUST use COMPLETE,
  57. * not UNNECESSARY.
  58. *
  59. * PARTIAL: identical to the case for output below. This may occur
  60. * on a packet received directly from another Linux OS, e.g.,
  61. * a virtualised Linux kernel on the same host. The packet can
  62. * be treated in the same way as UNNECESSARY except that on
  63. * output (i.e., forwarding) the checksum must be filled in
  64. * by the OS or the hardware.
  65. *
  66. * B. Checksumming on output.
  67. *
  68. * NONE: skb is checksummed by protocol or csum is not required.
  69. *
  70. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  71. * from skb->csum_start to the end and to record the checksum
  72. * at skb->csum_start + skb->csum_offset.
  73. *
  74. * Device must show its capabilities in dev->features, set
  75. * at device setup time.
  76. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  77. * everything.
  78. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  79. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  80. * TCP/UDP over IPv4. Sigh. Vendors like this
  81. * way by an unknown reason. Though, see comment above
  82. * about CHECKSUM_UNNECESSARY. 8)
  83. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  84. *
  85. * Any questions? No questions, good. --ANK
  86. */
  87. struct net_device;
  88. struct scatterlist;
  89. struct pipe_inode_info;
  90. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  91. struct nf_conntrack {
  92. atomic_t use;
  93. };
  94. #endif
  95. #ifdef CONFIG_BRIDGE_NETFILTER
  96. struct nf_bridge_info {
  97. atomic_t use;
  98. struct net_device *physindev;
  99. struct net_device *physoutdev;
  100. unsigned int mask;
  101. unsigned long data[32 / sizeof(unsigned long)];
  102. };
  103. #endif
  104. struct sk_buff_head {
  105. /* These two members must be first. */
  106. struct sk_buff *next;
  107. struct sk_buff *prev;
  108. __u32 qlen;
  109. spinlock_t lock;
  110. };
  111. struct sk_buff;
  112. /* To allow 64K frame to be packed as single skb without frag_list */
  113. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  114. typedef struct skb_frag_struct skb_frag_t;
  115. struct skb_frag_struct {
  116. struct page *page;
  117. __u32 page_offset;
  118. __u32 size;
  119. };
  120. #define HAVE_HW_TIME_STAMP
  121. /**
  122. * struct skb_shared_hwtstamps - hardware time stamps
  123. * @hwtstamp: hardware time stamp transformed into duration
  124. * since arbitrary point in time
  125. * @syststamp: hwtstamp transformed to system time base
  126. *
  127. * Software time stamps generated by ktime_get_real() are stored in
  128. * skb->tstamp. The relation between the different kinds of time
  129. * stamps is as follows:
  130. *
  131. * syststamp and tstamp can be compared against each other in
  132. * arbitrary combinations. The accuracy of a
  133. * syststamp/tstamp/"syststamp from other device" comparison is
  134. * limited by the accuracy of the transformation into system time
  135. * base. This depends on the device driver and its underlying
  136. * hardware.
  137. *
  138. * hwtstamps can only be compared against other hwtstamps from
  139. * the same device.
  140. *
  141. * This structure is attached to packets as part of the
  142. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  143. */
  144. struct skb_shared_hwtstamps {
  145. ktime_t hwtstamp;
  146. ktime_t syststamp;
  147. };
  148. /**
  149. * struct skb_shared_tx - instructions for time stamping of outgoing packets
  150. * @hardware: generate hardware time stamp
  151. * @software: generate software time stamp
  152. * @in_progress: device driver is going to provide
  153. * hardware time stamp
  154. * @flags: all shared_tx flags
  155. *
  156. * These flags are attached to packets as part of the
  157. * &skb_shared_info. Use skb_tx() to get a pointer.
  158. */
  159. union skb_shared_tx {
  160. struct {
  161. __u8 hardware:1,
  162. software:1,
  163. in_progress:1;
  164. };
  165. __u8 flags;
  166. };
  167. /* This data is invariant across clones and lives at
  168. * the end of the header data, ie. at skb->end.
  169. */
  170. struct skb_shared_info {
  171. atomic_t dataref;
  172. unsigned short nr_frags;
  173. unsigned short gso_size;
  174. #ifdef CONFIG_HAS_DMA
  175. dma_addr_t dma_head;
  176. #endif
  177. /* Warning: this field is not always filled in (UFO)! */
  178. unsigned short gso_segs;
  179. unsigned short gso_type;
  180. __be32 ip6_frag_id;
  181. union skb_shared_tx tx_flags;
  182. struct sk_buff *frag_list;
  183. struct skb_shared_hwtstamps hwtstamps;
  184. skb_frag_t frags[MAX_SKB_FRAGS];
  185. #ifdef CONFIG_HAS_DMA
  186. dma_addr_t dma_maps[MAX_SKB_FRAGS];
  187. #endif
  188. /* Intermediate layers must ensure that destructor_arg
  189. * remains valid until skb destructor */
  190. void * destructor_arg;
  191. };
  192. /* We divide dataref into two halves. The higher 16 bits hold references
  193. * to the payload part of skb->data. The lower 16 bits hold references to
  194. * the entire skb->data. A clone of a headerless skb holds the length of
  195. * the header in skb->hdr_len.
  196. *
  197. * All users must obey the rule that the skb->data reference count must be
  198. * greater than or equal to the payload reference count.
  199. *
  200. * Holding a reference to the payload part means that the user does not
  201. * care about modifications to the header part of skb->data.
  202. */
  203. #define SKB_DATAREF_SHIFT 16
  204. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  205. enum {
  206. SKB_FCLONE_UNAVAILABLE,
  207. SKB_FCLONE_ORIG,
  208. SKB_FCLONE_CLONE,
  209. };
  210. enum {
  211. SKB_GSO_TCPV4 = 1 << 0,
  212. SKB_GSO_UDP = 1 << 1,
  213. /* This indicates the skb is from an untrusted source. */
  214. SKB_GSO_DODGY = 1 << 2,
  215. /* This indicates the tcp segment has CWR set. */
  216. SKB_GSO_TCP_ECN = 1 << 3,
  217. SKB_GSO_TCPV6 = 1 << 4,
  218. SKB_GSO_FCOE = 1 << 5,
  219. };
  220. #if BITS_PER_LONG > 32
  221. #define NET_SKBUFF_DATA_USES_OFFSET 1
  222. #endif
  223. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  224. typedef unsigned int sk_buff_data_t;
  225. #else
  226. typedef unsigned char *sk_buff_data_t;
  227. #endif
  228. /**
  229. * struct sk_buff - socket buffer
  230. * @next: Next buffer in list
  231. * @prev: Previous buffer in list
  232. * @sk: Socket we are owned by
  233. * @tstamp: Time we arrived
  234. * @dev: Device we arrived on/are leaving by
  235. * @transport_header: Transport layer header
  236. * @network_header: Network layer header
  237. * @mac_header: Link layer header
  238. * @_skb_dst: destination entry
  239. * @sp: the security path, used for xfrm
  240. * @cb: Control buffer. Free for use by every layer. Put private vars here
  241. * @len: Length of actual data
  242. * @data_len: Data length
  243. * @mac_len: Length of link layer header
  244. * @hdr_len: writable header length of cloned skb
  245. * @csum: Checksum (must include start/offset pair)
  246. * @csum_start: Offset from skb->head where checksumming should start
  247. * @csum_offset: Offset from csum_start where checksum should be stored
  248. * @local_df: allow local fragmentation
  249. * @cloned: Head may be cloned (check refcnt to be sure)
  250. * @nohdr: Payload reference only, must not modify header
  251. * @pkt_type: Packet class
  252. * @fclone: skbuff clone status
  253. * @ip_summed: Driver fed us an IP checksum
  254. * @priority: Packet queueing priority
  255. * @users: User count - see {datagram,tcp}.c
  256. * @protocol: Packet protocol from driver
  257. * @truesize: Buffer size
  258. * @head: Head of buffer
  259. * @data: Data head pointer
  260. * @tail: Tail pointer
  261. * @end: End pointer
  262. * @destructor: Destruct function
  263. * @mark: Generic packet mark
  264. * @nfct: Associated connection, if any
  265. * @ipvs_property: skbuff is owned by ipvs
  266. * @peeked: this packet has been seen already, so stats have been
  267. * done for it, don't do them again
  268. * @nf_trace: netfilter packet trace flag
  269. * @nfctinfo: Relationship of this skb to the connection
  270. * @nfct_reasm: netfilter conntrack re-assembly pointer
  271. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  272. * @iif: ifindex of device we arrived on
  273. * @queue_mapping: Queue mapping for multiqueue devices
  274. * @tc_index: Traffic control index
  275. * @tc_verd: traffic control verdict
  276. * @ndisc_nodetype: router type (from link layer)
  277. * @dma_cookie: a cookie to one of several possible DMA operations
  278. * done by skb DMA functions
  279. * @secmark: security marking
  280. * @vlan_tci: vlan tag control information
  281. */
  282. struct sk_buff {
  283. /* These two members must be first. */
  284. struct sk_buff *next;
  285. struct sk_buff *prev;
  286. struct sock *sk;
  287. ktime_t tstamp;
  288. struct net_device *dev;
  289. unsigned long _skb_dst;
  290. #ifdef CONFIG_XFRM
  291. struct sec_path *sp;
  292. #endif
  293. /*
  294. * This is the control buffer. It is free to use for every
  295. * layer. Please put your private variables there. If you
  296. * want to keep them across layers you have to do a skb_clone()
  297. * first. This is owned by whoever has the skb queued ATM.
  298. */
  299. char cb[48];
  300. unsigned int len,
  301. data_len;
  302. __u16 mac_len,
  303. hdr_len;
  304. union {
  305. __wsum csum;
  306. struct {
  307. __u16 csum_start;
  308. __u16 csum_offset;
  309. };
  310. };
  311. __u32 priority;
  312. kmemcheck_bitfield_begin(flags1);
  313. __u8 local_df:1,
  314. cloned:1,
  315. ip_summed:2,
  316. nohdr:1,
  317. nfctinfo:3;
  318. __u8 pkt_type:3,
  319. fclone:2,
  320. ipvs_property:1,
  321. peeked:1,
  322. nf_trace:1;
  323. __be16 protocol:16;
  324. kmemcheck_bitfield_end(flags1);
  325. void (*destructor)(struct sk_buff *skb);
  326. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  327. struct nf_conntrack *nfct;
  328. struct sk_buff *nfct_reasm;
  329. #endif
  330. #ifdef CONFIG_BRIDGE_NETFILTER
  331. struct nf_bridge_info *nf_bridge;
  332. #endif
  333. int iif;
  334. #ifdef CONFIG_NET_SCHED
  335. __u16 tc_index; /* traffic control index */
  336. #ifdef CONFIG_NET_CLS_ACT
  337. __u16 tc_verd; /* traffic control verdict */
  338. #endif
  339. #endif
  340. kmemcheck_bitfield_begin(flags2);
  341. __u16 queue_mapping:16;
  342. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  343. __u8 ndisc_nodetype:2;
  344. #endif
  345. kmemcheck_bitfield_end(flags2);
  346. /* 0/14 bit hole */
  347. #ifdef CONFIG_NET_DMA
  348. dma_cookie_t dma_cookie;
  349. #endif
  350. #ifdef CONFIG_NETWORK_SECMARK
  351. __u32 secmark;
  352. #endif
  353. __u32 mark;
  354. __u16 vlan_tci;
  355. sk_buff_data_t transport_header;
  356. sk_buff_data_t network_header;
  357. sk_buff_data_t mac_header;
  358. /* These elements must be at the end, see alloc_skb() for details. */
  359. sk_buff_data_t tail;
  360. sk_buff_data_t end;
  361. unsigned char *head,
  362. *data;
  363. unsigned int truesize;
  364. atomic_t users;
  365. };
  366. #ifdef __KERNEL__
  367. /*
  368. * Handling routines are only of interest to the kernel
  369. */
  370. #include <linux/slab.h>
  371. #include <asm/system.h>
  372. #ifdef CONFIG_HAS_DMA
  373. #include <linux/dma-mapping.h>
  374. extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
  375. enum dma_data_direction dir);
  376. extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
  377. enum dma_data_direction dir);
  378. #endif
  379. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  380. {
  381. return (struct dst_entry *)skb->_skb_dst;
  382. }
  383. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  384. {
  385. skb->_skb_dst = (unsigned long)dst;
  386. }
  387. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  388. {
  389. return (struct rtable *)skb_dst(skb);
  390. }
  391. extern void kfree_skb(struct sk_buff *skb);
  392. extern void consume_skb(struct sk_buff *skb);
  393. extern void __kfree_skb(struct sk_buff *skb);
  394. extern struct sk_buff *__alloc_skb(unsigned int size,
  395. gfp_t priority, int fclone, int node);
  396. static inline struct sk_buff *alloc_skb(unsigned int size,
  397. gfp_t priority)
  398. {
  399. return __alloc_skb(size, priority, 0, -1);
  400. }
  401. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  402. gfp_t priority)
  403. {
  404. return __alloc_skb(size, priority, 1, -1);
  405. }
  406. extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
  407. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  408. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  409. gfp_t priority);
  410. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  411. gfp_t priority);
  412. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  413. gfp_t gfp_mask);
  414. extern int pskb_expand_head(struct sk_buff *skb,
  415. int nhead, int ntail,
  416. gfp_t gfp_mask);
  417. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  418. unsigned int headroom);
  419. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  420. int newheadroom, int newtailroom,
  421. gfp_t priority);
  422. extern int skb_to_sgvec(struct sk_buff *skb,
  423. struct scatterlist *sg, int offset,
  424. int len);
  425. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  426. struct sk_buff **trailer);
  427. extern int skb_pad(struct sk_buff *skb, int pad);
  428. #define dev_kfree_skb(a) consume_skb(a)
  429. #define dev_consume_skb(a) kfree_skb_clean(a)
  430. extern void skb_over_panic(struct sk_buff *skb, int len,
  431. void *here);
  432. extern void skb_under_panic(struct sk_buff *skb, int len,
  433. void *here);
  434. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  435. int getfrag(void *from, char *to, int offset,
  436. int len,int odd, struct sk_buff *skb),
  437. void *from, int length);
  438. struct skb_seq_state
  439. {
  440. __u32 lower_offset;
  441. __u32 upper_offset;
  442. __u32 frag_idx;
  443. __u32 stepped_offset;
  444. struct sk_buff *root_skb;
  445. struct sk_buff *cur_skb;
  446. __u8 *frag_data;
  447. };
  448. extern void skb_prepare_seq_read(struct sk_buff *skb,
  449. unsigned int from, unsigned int to,
  450. struct skb_seq_state *st);
  451. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  452. struct skb_seq_state *st);
  453. extern void skb_abort_seq_read(struct skb_seq_state *st);
  454. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  455. unsigned int to, struct ts_config *config,
  456. struct ts_state *state);
  457. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  458. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  459. {
  460. return skb->head + skb->end;
  461. }
  462. #else
  463. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  464. {
  465. return skb->end;
  466. }
  467. #endif
  468. /* Internal */
  469. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  470. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  471. {
  472. return &skb_shinfo(skb)->hwtstamps;
  473. }
  474. static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
  475. {
  476. return &skb_shinfo(skb)->tx_flags;
  477. }
  478. /**
  479. * skb_queue_empty - check if a queue is empty
  480. * @list: queue head
  481. *
  482. * Returns true if the queue is empty, false otherwise.
  483. */
  484. static inline int skb_queue_empty(const struct sk_buff_head *list)
  485. {
  486. return list->next == (struct sk_buff *)list;
  487. }
  488. /**
  489. * skb_queue_is_last - check if skb is the last entry in the queue
  490. * @list: queue head
  491. * @skb: buffer
  492. *
  493. * Returns true if @skb is the last buffer on the list.
  494. */
  495. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  496. const struct sk_buff *skb)
  497. {
  498. return (skb->next == (struct sk_buff *) list);
  499. }
  500. /**
  501. * skb_queue_is_first - check if skb is the first entry in the queue
  502. * @list: queue head
  503. * @skb: buffer
  504. *
  505. * Returns true if @skb is the first buffer on the list.
  506. */
  507. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  508. const struct sk_buff *skb)
  509. {
  510. return (skb->prev == (struct sk_buff *) list);
  511. }
  512. /**
  513. * skb_queue_next - return the next packet in the queue
  514. * @list: queue head
  515. * @skb: current buffer
  516. *
  517. * Return the next packet in @list after @skb. It is only valid to
  518. * call this if skb_queue_is_last() evaluates to false.
  519. */
  520. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  521. const struct sk_buff *skb)
  522. {
  523. /* This BUG_ON may seem severe, but if we just return then we
  524. * are going to dereference garbage.
  525. */
  526. BUG_ON(skb_queue_is_last(list, skb));
  527. return skb->next;
  528. }
  529. /**
  530. * skb_queue_prev - return the prev packet in the queue
  531. * @list: queue head
  532. * @skb: current buffer
  533. *
  534. * Return the prev packet in @list before @skb. It is only valid to
  535. * call this if skb_queue_is_first() evaluates to false.
  536. */
  537. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  538. const struct sk_buff *skb)
  539. {
  540. /* This BUG_ON may seem severe, but if we just return then we
  541. * are going to dereference garbage.
  542. */
  543. BUG_ON(skb_queue_is_first(list, skb));
  544. return skb->prev;
  545. }
  546. /**
  547. * skb_get - reference buffer
  548. * @skb: buffer to reference
  549. *
  550. * Makes another reference to a socket buffer and returns a pointer
  551. * to the buffer.
  552. */
  553. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  554. {
  555. atomic_inc(&skb->users);
  556. return skb;
  557. }
  558. /*
  559. * If users == 1, we are the only owner and are can avoid redundant
  560. * atomic change.
  561. */
  562. /**
  563. * skb_cloned - is the buffer a clone
  564. * @skb: buffer to check
  565. *
  566. * Returns true if the buffer was generated with skb_clone() and is
  567. * one of multiple shared copies of the buffer. Cloned buffers are
  568. * shared data so must not be written to under normal circumstances.
  569. */
  570. static inline int skb_cloned(const struct sk_buff *skb)
  571. {
  572. return skb->cloned &&
  573. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  574. }
  575. /**
  576. * skb_header_cloned - is the header a clone
  577. * @skb: buffer to check
  578. *
  579. * Returns true if modifying the header part of the buffer requires
  580. * the data to be copied.
  581. */
  582. static inline int skb_header_cloned(const struct sk_buff *skb)
  583. {
  584. int dataref;
  585. if (!skb->cloned)
  586. return 0;
  587. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  588. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  589. return dataref != 1;
  590. }
  591. /**
  592. * skb_header_release - release reference to header
  593. * @skb: buffer to operate on
  594. *
  595. * Drop a reference to the header part of the buffer. This is done
  596. * by acquiring a payload reference. You must not read from the header
  597. * part of skb->data after this.
  598. */
  599. static inline void skb_header_release(struct sk_buff *skb)
  600. {
  601. BUG_ON(skb->nohdr);
  602. skb->nohdr = 1;
  603. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  604. }
  605. /**
  606. * skb_shared - is the buffer shared
  607. * @skb: buffer to check
  608. *
  609. * Returns true if more than one person has a reference to this
  610. * buffer.
  611. */
  612. static inline int skb_shared(const struct sk_buff *skb)
  613. {
  614. return atomic_read(&skb->users) != 1;
  615. }
  616. /**
  617. * skb_share_check - check if buffer is shared and if so clone it
  618. * @skb: buffer to check
  619. * @pri: priority for memory allocation
  620. *
  621. * If the buffer is shared the buffer is cloned and the old copy
  622. * drops a reference. A new clone with a single reference is returned.
  623. * If the buffer is not shared the original buffer is returned. When
  624. * being called from interrupt status or with spinlocks held pri must
  625. * be GFP_ATOMIC.
  626. *
  627. * NULL is returned on a memory allocation failure.
  628. */
  629. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  630. gfp_t pri)
  631. {
  632. might_sleep_if(pri & __GFP_WAIT);
  633. if (skb_shared(skb)) {
  634. struct sk_buff *nskb = skb_clone(skb, pri);
  635. kfree_skb(skb);
  636. skb = nskb;
  637. }
  638. return skb;
  639. }
  640. /*
  641. * Copy shared buffers into a new sk_buff. We effectively do COW on
  642. * packets to handle cases where we have a local reader and forward
  643. * and a couple of other messy ones. The normal one is tcpdumping
  644. * a packet thats being forwarded.
  645. */
  646. /**
  647. * skb_unshare - make a copy of a shared buffer
  648. * @skb: buffer to check
  649. * @pri: priority for memory allocation
  650. *
  651. * If the socket buffer is a clone then this function creates a new
  652. * copy of the data, drops a reference count on the old copy and returns
  653. * the new copy with the reference count at 1. If the buffer is not a clone
  654. * the original buffer is returned. When called with a spinlock held or
  655. * from interrupt state @pri must be %GFP_ATOMIC
  656. *
  657. * %NULL is returned on a memory allocation failure.
  658. */
  659. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  660. gfp_t pri)
  661. {
  662. might_sleep_if(pri & __GFP_WAIT);
  663. if (skb_cloned(skb)) {
  664. struct sk_buff *nskb = skb_copy(skb, pri);
  665. kfree_skb(skb); /* Free our shared copy */
  666. skb = nskb;
  667. }
  668. return skb;
  669. }
  670. /**
  671. * skb_peek
  672. * @list_: list to peek at
  673. *
  674. * Peek an &sk_buff. Unlike most other operations you _MUST_
  675. * be careful with this one. A peek leaves the buffer on the
  676. * list and someone else may run off with it. You must hold
  677. * the appropriate locks or have a private queue to do this.
  678. *
  679. * Returns %NULL for an empty list or a pointer to the head element.
  680. * The reference count is not incremented and the reference is therefore
  681. * volatile. Use with caution.
  682. */
  683. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  684. {
  685. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  686. if (list == (struct sk_buff *)list_)
  687. list = NULL;
  688. return list;
  689. }
  690. /**
  691. * skb_peek_tail
  692. * @list_: list to peek at
  693. *
  694. * Peek an &sk_buff. Unlike most other operations you _MUST_
  695. * be careful with this one. A peek leaves the buffer on the
  696. * list and someone else may run off with it. You must hold
  697. * the appropriate locks or have a private queue to do this.
  698. *
  699. * Returns %NULL for an empty list or a pointer to the tail element.
  700. * The reference count is not incremented and the reference is therefore
  701. * volatile. Use with caution.
  702. */
  703. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  704. {
  705. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  706. if (list == (struct sk_buff *)list_)
  707. list = NULL;
  708. return list;
  709. }
  710. /**
  711. * skb_queue_len - get queue length
  712. * @list_: list to measure
  713. *
  714. * Return the length of an &sk_buff queue.
  715. */
  716. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  717. {
  718. return list_->qlen;
  719. }
  720. /**
  721. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  722. * @list: queue to initialize
  723. *
  724. * This initializes only the list and queue length aspects of
  725. * an sk_buff_head object. This allows to initialize the list
  726. * aspects of an sk_buff_head without reinitializing things like
  727. * the spinlock. It can also be used for on-stack sk_buff_head
  728. * objects where the spinlock is known to not be used.
  729. */
  730. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  731. {
  732. list->prev = list->next = (struct sk_buff *)list;
  733. list->qlen = 0;
  734. }
  735. /*
  736. * This function creates a split out lock class for each invocation;
  737. * this is needed for now since a whole lot of users of the skb-queue
  738. * infrastructure in drivers have different locking usage (in hardirq)
  739. * than the networking core (in softirq only). In the long run either the
  740. * network layer or drivers should need annotation to consolidate the
  741. * main types of usage into 3 classes.
  742. */
  743. static inline void skb_queue_head_init(struct sk_buff_head *list)
  744. {
  745. spin_lock_init(&list->lock);
  746. __skb_queue_head_init(list);
  747. }
  748. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  749. struct lock_class_key *class)
  750. {
  751. skb_queue_head_init(list);
  752. lockdep_set_class(&list->lock, class);
  753. }
  754. /*
  755. * Insert an sk_buff on a list.
  756. *
  757. * The "__skb_xxxx()" functions are the non-atomic ones that
  758. * can only be called with interrupts disabled.
  759. */
  760. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  761. static inline void __skb_insert(struct sk_buff *newsk,
  762. struct sk_buff *prev, struct sk_buff *next,
  763. struct sk_buff_head *list)
  764. {
  765. newsk->next = next;
  766. newsk->prev = prev;
  767. next->prev = prev->next = newsk;
  768. list->qlen++;
  769. }
  770. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  771. struct sk_buff *prev,
  772. struct sk_buff *next)
  773. {
  774. struct sk_buff *first = list->next;
  775. struct sk_buff *last = list->prev;
  776. first->prev = prev;
  777. prev->next = first;
  778. last->next = next;
  779. next->prev = last;
  780. }
  781. /**
  782. * skb_queue_splice - join two skb lists, this is designed for stacks
  783. * @list: the new list to add
  784. * @head: the place to add it in the first list
  785. */
  786. static inline void skb_queue_splice(const struct sk_buff_head *list,
  787. struct sk_buff_head *head)
  788. {
  789. if (!skb_queue_empty(list)) {
  790. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  791. head->qlen += list->qlen;
  792. }
  793. }
  794. /**
  795. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  796. * @list: the new list to add
  797. * @head: the place to add it in the first list
  798. *
  799. * The list at @list is reinitialised
  800. */
  801. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  802. struct sk_buff_head *head)
  803. {
  804. if (!skb_queue_empty(list)) {
  805. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  806. head->qlen += list->qlen;
  807. __skb_queue_head_init(list);
  808. }
  809. }
  810. /**
  811. * skb_queue_splice_tail - join two skb lists, each list being a queue
  812. * @list: the new list to add
  813. * @head: the place to add it in the first list
  814. */
  815. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  816. struct sk_buff_head *head)
  817. {
  818. if (!skb_queue_empty(list)) {
  819. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  820. head->qlen += list->qlen;
  821. }
  822. }
  823. /**
  824. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  825. * @list: the new list to add
  826. * @head: the place to add it in the first list
  827. *
  828. * Each of the lists is a queue.
  829. * The list at @list is reinitialised
  830. */
  831. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  832. struct sk_buff_head *head)
  833. {
  834. if (!skb_queue_empty(list)) {
  835. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  836. head->qlen += list->qlen;
  837. __skb_queue_head_init(list);
  838. }
  839. }
  840. /**
  841. * __skb_queue_after - queue a buffer at the list head
  842. * @list: list to use
  843. * @prev: place after this buffer
  844. * @newsk: buffer to queue
  845. *
  846. * Queue a buffer int the middle of a list. This function takes no locks
  847. * and you must therefore hold required locks before calling it.
  848. *
  849. * A buffer cannot be placed on two lists at the same time.
  850. */
  851. static inline void __skb_queue_after(struct sk_buff_head *list,
  852. struct sk_buff *prev,
  853. struct sk_buff *newsk)
  854. {
  855. __skb_insert(newsk, prev, prev->next, list);
  856. }
  857. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  858. struct sk_buff_head *list);
  859. static inline void __skb_queue_before(struct sk_buff_head *list,
  860. struct sk_buff *next,
  861. struct sk_buff *newsk)
  862. {
  863. __skb_insert(newsk, next->prev, next, list);
  864. }
  865. /**
  866. * __skb_queue_head - queue a buffer at the list head
  867. * @list: list to use
  868. * @newsk: buffer to queue
  869. *
  870. * Queue a buffer at the start of a list. This function takes no locks
  871. * and you must therefore hold required locks before calling it.
  872. *
  873. * A buffer cannot be placed on two lists at the same time.
  874. */
  875. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  876. static inline void __skb_queue_head(struct sk_buff_head *list,
  877. struct sk_buff *newsk)
  878. {
  879. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  880. }
  881. /**
  882. * __skb_queue_tail - queue a buffer at the list tail
  883. * @list: list to use
  884. * @newsk: buffer to queue
  885. *
  886. * Queue a buffer at the end of a list. This function takes no locks
  887. * and you must therefore hold required locks before calling it.
  888. *
  889. * A buffer cannot be placed on two lists at the same time.
  890. */
  891. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  892. static inline void __skb_queue_tail(struct sk_buff_head *list,
  893. struct sk_buff *newsk)
  894. {
  895. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  896. }
  897. /*
  898. * remove sk_buff from list. _Must_ be called atomically, and with
  899. * the list known..
  900. */
  901. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  902. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  903. {
  904. struct sk_buff *next, *prev;
  905. list->qlen--;
  906. next = skb->next;
  907. prev = skb->prev;
  908. skb->next = skb->prev = NULL;
  909. next->prev = prev;
  910. prev->next = next;
  911. }
  912. /**
  913. * __skb_dequeue - remove from the head of the queue
  914. * @list: list to dequeue from
  915. *
  916. * Remove the head of the list. This function does not take any locks
  917. * so must be used with appropriate locks held only. The head item is
  918. * returned or %NULL if the list is empty.
  919. */
  920. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  921. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  922. {
  923. struct sk_buff *skb = skb_peek(list);
  924. if (skb)
  925. __skb_unlink(skb, list);
  926. return skb;
  927. }
  928. /**
  929. * __skb_dequeue_tail - remove from the tail of the queue
  930. * @list: list to dequeue from
  931. *
  932. * Remove the tail of the list. This function does not take any locks
  933. * so must be used with appropriate locks held only. The tail item is
  934. * returned or %NULL if the list is empty.
  935. */
  936. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  937. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  938. {
  939. struct sk_buff *skb = skb_peek_tail(list);
  940. if (skb)
  941. __skb_unlink(skb, list);
  942. return skb;
  943. }
  944. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  945. {
  946. return skb->data_len;
  947. }
  948. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  949. {
  950. return skb->len - skb->data_len;
  951. }
  952. static inline int skb_pagelen(const struct sk_buff *skb)
  953. {
  954. int i, len = 0;
  955. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  956. len += skb_shinfo(skb)->frags[i].size;
  957. return len + skb_headlen(skb);
  958. }
  959. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  960. struct page *page, int off, int size)
  961. {
  962. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  963. frag->page = page;
  964. frag->page_offset = off;
  965. frag->size = size;
  966. skb_shinfo(skb)->nr_frags = i + 1;
  967. }
  968. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  969. int off, int size);
  970. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  971. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
  972. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  973. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  974. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  975. {
  976. return skb->head + skb->tail;
  977. }
  978. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  979. {
  980. skb->tail = skb->data - skb->head;
  981. }
  982. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  983. {
  984. skb_reset_tail_pointer(skb);
  985. skb->tail += offset;
  986. }
  987. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  988. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  989. {
  990. return skb->tail;
  991. }
  992. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  993. {
  994. skb->tail = skb->data;
  995. }
  996. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  997. {
  998. skb->tail = skb->data + offset;
  999. }
  1000. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1001. /*
  1002. * Add data to an sk_buff
  1003. */
  1004. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1005. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1006. {
  1007. unsigned char *tmp = skb_tail_pointer(skb);
  1008. SKB_LINEAR_ASSERT(skb);
  1009. skb->tail += len;
  1010. skb->len += len;
  1011. return tmp;
  1012. }
  1013. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1014. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1015. {
  1016. skb->data -= len;
  1017. skb->len += len;
  1018. return skb->data;
  1019. }
  1020. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1021. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1022. {
  1023. skb->len -= len;
  1024. BUG_ON(skb->len < skb->data_len);
  1025. return skb->data += len;
  1026. }
  1027. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1028. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1029. {
  1030. if (len > skb_headlen(skb) &&
  1031. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1032. return NULL;
  1033. skb->len -= len;
  1034. return skb->data += len;
  1035. }
  1036. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1037. {
  1038. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1039. }
  1040. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1041. {
  1042. if (likely(len <= skb_headlen(skb)))
  1043. return 1;
  1044. if (unlikely(len > skb->len))
  1045. return 0;
  1046. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1047. }
  1048. /**
  1049. * skb_headroom - bytes at buffer head
  1050. * @skb: buffer to check
  1051. *
  1052. * Return the number of bytes of free space at the head of an &sk_buff.
  1053. */
  1054. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1055. {
  1056. return skb->data - skb->head;
  1057. }
  1058. /**
  1059. * skb_tailroom - bytes at buffer end
  1060. * @skb: buffer to check
  1061. *
  1062. * Return the number of bytes of free space at the tail of an sk_buff
  1063. */
  1064. static inline int skb_tailroom(const struct sk_buff *skb)
  1065. {
  1066. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1067. }
  1068. /**
  1069. * skb_reserve - adjust headroom
  1070. * @skb: buffer to alter
  1071. * @len: bytes to move
  1072. *
  1073. * Increase the headroom of an empty &sk_buff by reducing the tail
  1074. * room. This is only allowed for an empty buffer.
  1075. */
  1076. static inline void skb_reserve(struct sk_buff *skb, int len)
  1077. {
  1078. skb->data += len;
  1079. skb->tail += len;
  1080. }
  1081. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1082. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1083. {
  1084. return skb->head + skb->transport_header;
  1085. }
  1086. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1087. {
  1088. skb->transport_header = skb->data - skb->head;
  1089. }
  1090. static inline void skb_set_transport_header(struct sk_buff *skb,
  1091. const int offset)
  1092. {
  1093. skb_reset_transport_header(skb);
  1094. skb->transport_header += offset;
  1095. }
  1096. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1097. {
  1098. return skb->head + skb->network_header;
  1099. }
  1100. static inline void skb_reset_network_header(struct sk_buff *skb)
  1101. {
  1102. skb->network_header = skb->data - skb->head;
  1103. }
  1104. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1105. {
  1106. skb_reset_network_header(skb);
  1107. skb->network_header += offset;
  1108. }
  1109. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1110. {
  1111. return skb->head + skb->mac_header;
  1112. }
  1113. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1114. {
  1115. return skb->mac_header != ~0U;
  1116. }
  1117. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1118. {
  1119. skb->mac_header = skb->data - skb->head;
  1120. }
  1121. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1122. {
  1123. skb_reset_mac_header(skb);
  1124. skb->mac_header += offset;
  1125. }
  1126. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1127. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1128. {
  1129. return skb->transport_header;
  1130. }
  1131. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1132. {
  1133. skb->transport_header = skb->data;
  1134. }
  1135. static inline void skb_set_transport_header(struct sk_buff *skb,
  1136. const int offset)
  1137. {
  1138. skb->transport_header = skb->data + offset;
  1139. }
  1140. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1141. {
  1142. return skb->network_header;
  1143. }
  1144. static inline void skb_reset_network_header(struct sk_buff *skb)
  1145. {
  1146. skb->network_header = skb->data;
  1147. }
  1148. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1149. {
  1150. skb->network_header = skb->data + offset;
  1151. }
  1152. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1153. {
  1154. return skb->mac_header;
  1155. }
  1156. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1157. {
  1158. return skb->mac_header != NULL;
  1159. }
  1160. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1161. {
  1162. skb->mac_header = skb->data;
  1163. }
  1164. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1165. {
  1166. skb->mac_header = skb->data + offset;
  1167. }
  1168. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1169. static inline int skb_transport_offset(const struct sk_buff *skb)
  1170. {
  1171. return skb_transport_header(skb) - skb->data;
  1172. }
  1173. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1174. {
  1175. return skb->transport_header - skb->network_header;
  1176. }
  1177. static inline int skb_network_offset(const struct sk_buff *skb)
  1178. {
  1179. return skb_network_header(skb) - skb->data;
  1180. }
  1181. /*
  1182. * CPUs often take a performance hit when accessing unaligned memory
  1183. * locations. The actual performance hit varies, it can be small if the
  1184. * hardware handles it or large if we have to take an exception and fix it
  1185. * in software.
  1186. *
  1187. * Since an ethernet header is 14 bytes network drivers often end up with
  1188. * the IP header at an unaligned offset. The IP header can be aligned by
  1189. * shifting the start of the packet by 2 bytes. Drivers should do this
  1190. * with:
  1191. *
  1192. * skb_reserve(skb, NET_IP_ALIGN);
  1193. *
  1194. * The downside to this alignment of the IP header is that the DMA is now
  1195. * unaligned. On some architectures the cost of an unaligned DMA is high
  1196. * and this cost outweighs the gains made by aligning the IP header.
  1197. *
  1198. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1199. * to be overridden.
  1200. */
  1201. #ifndef NET_IP_ALIGN
  1202. #define NET_IP_ALIGN 2
  1203. #endif
  1204. /*
  1205. * The networking layer reserves some headroom in skb data (via
  1206. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1207. * the header has to grow. In the default case, if the header has to grow
  1208. * 32 bytes or less we avoid the reallocation.
  1209. *
  1210. * Unfortunately this headroom changes the DMA alignment of the resulting
  1211. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1212. * on some architectures. An architecture can override this value,
  1213. * perhaps setting it to a cacheline in size (since that will maintain
  1214. * cacheline alignment of the DMA). It must be a power of 2.
  1215. *
  1216. * Various parts of the networking layer expect at least 32 bytes of
  1217. * headroom, you should not reduce this.
  1218. */
  1219. #ifndef NET_SKB_PAD
  1220. #define NET_SKB_PAD 32
  1221. #endif
  1222. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1223. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1224. {
  1225. if (unlikely(skb->data_len)) {
  1226. WARN_ON(1);
  1227. return;
  1228. }
  1229. skb->len = len;
  1230. skb_set_tail_pointer(skb, len);
  1231. }
  1232. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1233. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1234. {
  1235. if (skb->data_len)
  1236. return ___pskb_trim(skb, len);
  1237. __skb_trim(skb, len);
  1238. return 0;
  1239. }
  1240. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1241. {
  1242. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1243. }
  1244. /**
  1245. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1246. * @skb: buffer to alter
  1247. * @len: new length
  1248. *
  1249. * This is identical to pskb_trim except that the caller knows that
  1250. * the skb is not cloned so we should never get an error due to out-
  1251. * of-memory.
  1252. */
  1253. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1254. {
  1255. int err = pskb_trim(skb, len);
  1256. BUG_ON(err);
  1257. }
  1258. /**
  1259. * skb_orphan - orphan a buffer
  1260. * @skb: buffer to orphan
  1261. *
  1262. * If a buffer currently has an owner then we call the owner's
  1263. * destructor function and make the @skb unowned. The buffer continues
  1264. * to exist but is no longer charged to its former owner.
  1265. */
  1266. static inline void skb_orphan(struct sk_buff *skb)
  1267. {
  1268. if (skb->destructor)
  1269. skb->destructor(skb);
  1270. skb->destructor = NULL;
  1271. skb->sk = NULL;
  1272. }
  1273. /**
  1274. * __skb_queue_purge - empty a list
  1275. * @list: list to empty
  1276. *
  1277. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1278. * the list and one reference dropped. This function does not take the
  1279. * list lock and the caller must hold the relevant locks to use it.
  1280. */
  1281. extern void skb_queue_purge(struct sk_buff_head *list);
  1282. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1283. {
  1284. struct sk_buff *skb;
  1285. while ((skb = __skb_dequeue(list)) != NULL)
  1286. kfree_skb(skb);
  1287. }
  1288. /**
  1289. * __dev_alloc_skb - allocate an skbuff for receiving
  1290. * @length: length to allocate
  1291. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1292. *
  1293. * Allocate a new &sk_buff and assign it a usage count of one. The
  1294. * buffer has unspecified headroom built in. Users should allocate
  1295. * the headroom they think they need without accounting for the
  1296. * built in space. The built in space is used for optimisations.
  1297. *
  1298. * %NULL is returned if there is no free memory.
  1299. */
  1300. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1301. gfp_t gfp_mask)
  1302. {
  1303. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1304. if (likely(skb))
  1305. skb_reserve(skb, NET_SKB_PAD);
  1306. return skb;
  1307. }
  1308. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1309. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1310. unsigned int length, gfp_t gfp_mask);
  1311. /**
  1312. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1313. * @dev: network device to receive on
  1314. * @length: length to allocate
  1315. *
  1316. * Allocate a new &sk_buff and assign it a usage count of one. The
  1317. * buffer has unspecified headroom built in. Users should allocate
  1318. * the headroom they think they need without accounting for the
  1319. * built in space. The built in space is used for optimisations.
  1320. *
  1321. * %NULL is returned if there is no free memory. Although this function
  1322. * allocates memory it can be called from an interrupt.
  1323. */
  1324. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1325. unsigned int length)
  1326. {
  1327. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1328. }
  1329. extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
  1330. /**
  1331. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1332. * @dev: network device to receive on
  1333. *
  1334. * Allocate a new page node local to the specified device.
  1335. *
  1336. * %NULL is returned if there is no free memory.
  1337. */
  1338. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1339. {
  1340. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1341. }
  1342. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1343. {
  1344. __free_page(page);
  1345. }
  1346. /**
  1347. * skb_clone_writable - is the header of a clone writable
  1348. * @skb: buffer to check
  1349. * @len: length up to which to write
  1350. *
  1351. * Returns true if modifying the header part of the cloned buffer
  1352. * does not requires the data to be copied.
  1353. */
  1354. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1355. {
  1356. return !skb_header_cloned(skb) &&
  1357. skb_headroom(skb) + len <= skb->hdr_len;
  1358. }
  1359. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1360. int cloned)
  1361. {
  1362. int delta = 0;
  1363. if (headroom < NET_SKB_PAD)
  1364. headroom = NET_SKB_PAD;
  1365. if (headroom > skb_headroom(skb))
  1366. delta = headroom - skb_headroom(skb);
  1367. if (delta || cloned)
  1368. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1369. GFP_ATOMIC);
  1370. return 0;
  1371. }
  1372. /**
  1373. * skb_cow - copy header of skb when it is required
  1374. * @skb: buffer to cow
  1375. * @headroom: needed headroom
  1376. *
  1377. * If the skb passed lacks sufficient headroom or its data part
  1378. * is shared, data is reallocated. If reallocation fails, an error
  1379. * is returned and original skb is not changed.
  1380. *
  1381. * The result is skb with writable area skb->head...skb->tail
  1382. * and at least @headroom of space at head.
  1383. */
  1384. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1385. {
  1386. return __skb_cow(skb, headroom, skb_cloned(skb));
  1387. }
  1388. /**
  1389. * skb_cow_head - skb_cow but only making the head writable
  1390. * @skb: buffer to cow
  1391. * @headroom: needed headroom
  1392. *
  1393. * This function is identical to skb_cow except that we replace the
  1394. * skb_cloned check by skb_header_cloned. It should be used when
  1395. * you only need to push on some header and do not need to modify
  1396. * the data.
  1397. */
  1398. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1399. {
  1400. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1401. }
  1402. /**
  1403. * skb_padto - pad an skbuff up to a minimal size
  1404. * @skb: buffer to pad
  1405. * @len: minimal length
  1406. *
  1407. * Pads up a buffer to ensure the trailing bytes exist and are
  1408. * blanked. If the buffer already contains sufficient data it
  1409. * is untouched. Otherwise it is extended. Returns zero on
  1410. * success. The skb is freed on error.
  1411. */
  1412. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1413. {
  1414. unsigned int size = skb->len;
  1415. if (likely(size >= len))
  1416. return 0;
  1417. return skb_pad(skb, len - size);
  1418. }
  1419. static inline int skb_add_data(struct sk_buff *skb,
  1420. char __user *from, int copy)
  1421. {
  1422. const int off = skb->len;
  1423. if (skb->ip_summed == CHECKSUM_NONE) {
  1424. int err = 0;
  1425. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1426. copy, 0, &err);
  1427. if (!err) {
  1428. skb->csum = csum_block_add(skb->csum, csum, off);
  1429. return 0;
  1430. }
  1431. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1432. return 0;
  1433. __skb_trim(skb, off);
  1434. return -EFAULT;
  1435. }
  1436. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1437. struct page *page, int off)
  1438. {
  1439. if (i) {
  1440. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1441. return page == frag->page &&
  1442. off == frag->page_offset + frag->size;
  1443. }
  1444. return 0;
  1445. }
  1446. static inline int __skb_linearize(struct sk_buff *skb)
  1447. {
  1448. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1449. }
  1450. /**
  1451. * skb_linearize - convert paged skb to linear one
  1452. * @skb: buffer to linarize
  1453. *
  1454. * If there is no free memory -ENOMEM is returned, otherwise zero
  1455. * is returned and the old skb data released.
  1456. */
  1457. static inline int skb_linearize(struct sk_buff *skb)
  1458. {
  1459. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1460. }
  1461. /**
  1462. * skb_linearize_cow - make sure skb is linear and writable
  1463. * @skb: buffer to process
  1464. *
  1465. * If there is no free memory -ENOMEM is returned, otherwise zero
  1466. * is returned and the old skb data released.
  1467. */
  1468. static inline int skb_linearize_cow(struct sk_buff *skb)
  1469. {
  1470. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1471. __skb_linearize(skb) : 0;
  1472. }
  1473. /**
  1474. * skb_postpull_rcsum - update checksum for received skb after pull
  1475. * @skb: buffer to update
  1476. * @start: start of data before pull
  1477. * @len: length of data pulled
  1478. *
  1479. * After doing a pull on a received packet, you need to call this to
  1480. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1481. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1482. */
  1483. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1484. const void *start, unsigned int len)
  1485. {
  1486. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1487. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1488. }
  1489. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1490. /**
  1491. * pskb_trim_rcsum - trim received skb and update checksum
  1492. * @skb: buffer to trim
  1493. * @len: new length
  1494. *
  1495. * This is exactly the same as pskb_trim except that it ensures the
  1496. * checksum of received packets are still valid after the operation.
  1497. */
  1498. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1499. {
  1500. if (likely(len >= skb->len))
  1501. return 0;
  1502. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1503. skb->ip_summed = CHECKSUM_NONE;
  1504. return __pskb_trim(skb, len);
  1505. }
  1506. #define skb_queue_walk(queue, skb) \
  1507. for (skb = (queue)->next; \
  1508. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1509. skb = skb->next)
  1510. #define skb_queue_walk_safe(queue, skb, tmp) \
  1511. for (skb = (queue)->next, tmp = skb->next; \
  1512. skb != (struct sk_buff *)(queue); \
  1513. skb = tmp, tmp = skb->next)
  1514. #define skb_queue_walk_from(queue, skb) \
  1515. for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1516. skb = skb->next)
  1517. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1518. for (tmp = skb->next; \
  1519. skb != (struct sk_buff *)(queue); \
  1520. skb = tmp, tmp = skb->next)
  1521. #define skb_queue_reverse_walk(queue, skb) \
  1522. for (skb = (queue)->prev; \
  1523. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1524. skb = skb->prev)
  1525. static inline bool skb_has_frags(const struct sk_buff *skb)
  1526. {
  1527. return skb_shinfo(skb)->frag_list != NULL;
  1528. }
  1529. static inline void skb_frag_list_init(struct sk_buff *skb)
  1530. {
  1531. skb_shinfo(skb)->frag_list = NULL;
  1532. }
  1533. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1534. {
  1535. frag->next = skb_shinfo(skb)->frag_list;
  1536. skb_shinfo(skb)->frag_list = frag;
  1537. }
  1538. #define skb_walk_frags(skb, iter) \
  1539. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1540. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1541. int *peeked, int *err);
  1542. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1543. int noblock, int *err);
  1544. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1545. struct poll_table_struct *wait);
  1546. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1547. int offset, struct iovec *to,
  1548. int size);
  1549. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1550. int hlen,
  1551. struct iovec *iov);
  1552. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1553. int offset,
  1554. const struct iovec *from,
  1555. int from_offset,
  1556. int len);
  1557. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1558. int offset,
  1559. const struct iovec *to,
  1560. int to_offset,
  1561. int size);
  1562. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1563. extern void skb_free_datagram_locked(struct sock *sk,
  1564. struct sk_buff *skb);
  1565. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1566. unsigned int flags);
  1567. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1568. int len, __wsum csum);
  1569. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1570. void *to, int len);
  1571. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1572. const void *from, int len);
  1573. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1574. int offset, u8 *to, int len,
  1575. __wsum csum);
  1576. extern int skb_splice_bits(struct sk_buff *skb,
  1577. unsigned int offset,
  1578. struct pipe_inode_info *pipe,
  1579. unsigned int len,
  1580. unsigned int flags);
  1581. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1582. extern void skb_split(struct sk_buff *skb,
  1583. struct sk_buff *skb1, const u32 len);
  1584. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1585. int shiftlen);
  1586. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1587. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1588. int len, void *buffer)
  1589. {
  1590. int hlen = skb_headlen(skb);
  1591. if (hlen - offset >= len)
  1592. return skb->data + offset;
  1593. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1594. return NULL;
  1595. return buffer;
  1596. }
  1597. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1598. void *to,
  1599. const unsigned int len)
  1600. {
  1601. memcpy(to, skb->data, len);
  1602. }
  1603. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1604. const int offset, void *to,
  1605. const unsigned int len)
  1606. {
  1607. memcpy(to, skb->data + offset, len);
  1608. }
  1609. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1610. const void *from,
  1611. const unsigned int len)
  1612. {
  1613. memcpy(skb->data, from, len);
  1614. }
  1615. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1616. const int offset,
  1617. const void *from,
  1618. const unsigned int len)
  1619. {
  1620. memcpy(skb->data + offset, from, len);
  1621. }
  1622. extern void skb_init(void);
  1623. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1624. {
  1625. return skb->tstamp;
  1626. }
  1627. /**
  1628. * skb_get_timestamp - get timestamp from a skb
  1629. * @skb: skb to get stamp from
  1630. * @stamp: pointer to struct timeval to store stamp in
  1631. *
  1632. * Timestamps are stored in the skb as offsets to a base timestamp.
  1633. * This function converts the offset back to a struct timeval and stores
  1634. * it in stamp.
  1635. */
  1636. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1637. struct timeval *stamp)
  1638. {
  1639. *stamp = ktime_to_timeval(skb->tstamp);
  1640. }
  1641. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1642. struct timespec *stamp)
  1643. {
  1644. *stamp = ktime_to_timespec(skb->tstamp);
  1645. }
  1646. static inline void __net_timestamp(struct sk_buff *skb)
  1647. {
  1648. skb->tstamp = ktime_get_real();
  1649. }
  1650. static inline ktime_t net_timedelta(ktime_t t)
  1651. {
  1652. return ktime_sub(ktime_get_real(), t);
  1653. }
  1654. static inline ktime_t net_invalid_timestamp(void)
  1655. {
  1656. return ktime_set(0, 0);
  1657. }
  1658. /**
  1659. * skb_tstamp_tx - queue clone of skb with send time stamps
  1660. * @orig_skb: the original outgoing packet
  1661. * @hwtstamps: hardware time stamps, may be NULL if not available
  1662. *
  1663. * If the skb has a socket associated, then this function clones the
  1664. * skb (thus sharing the actual data and optional structures), stores
  1665. * the optional hardware time stamping information (if non NULL) or
  1666. * generates a software time stamp (otherwise), then queues the clone
  1667. * to the error queue of the socket. Errors are silently ignored.
  1668. */
  1669. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1670. struct skb_shared_hwtstamps *hwtstamps);
  1671. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1672. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1673. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1674. {
  1675. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1676. }
  1677. /**
  1678. * skb_checksum_complete - Calculate checksum of an entire packet
  1679. * @skb: packet to process
  1680. *
  1681. * This function calculates the checksum over the entire packet plus
  1682. * the value of skb->csum. The latter can be used to supply the
  1683. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1684. * checksum.
  1685. *
  1686. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1687. * this function can be used to verify that checksum on received
  1688. * packets. In that case the function should return zero if the
  1689. * checksum is correct. In particular, this function will return zero
  1690. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1691. * hardware has already verified the correctness of the checksum.
  1692. */
  1693. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1694. {
  1695. return skb_csum_unnecessary(skb) ?
  1696. 0 : __skb_checksum_complete(skb);
  1697. }
  1698. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1699. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1700. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1701. {
  1702. if (nfct && atomic_dec_and_test(&nfct->use))
  1703. nf_conntrack_destroy(nfct);
  1704. }
  1705. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1706. {
  1707. if (nfct)
  1708. atomic_inc(&nfct->use);
  1709. }
  1710. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1711. {
  1712. if (skb)
  1713. atomic_inc(&skb->users);
  1714. }
  1715. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1716. {
  1717. if (skb)
  1718. kfree_skb(skb);
  1719. }
  1720. #endif
  1721. #ifdef CONFIG_BRIDGE_NETFILTER
  1722. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1723. {
  1724. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1725. kfree(nf_bridge);
  1726. }
  1727. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1728. {
  1729. if (nf_bridge)
  1730. atomic_inc(&nf_bridge->use);
  1731. }
  1732. #endif /* CONFIG_BRIDGE_NETFILTER */
  1733. static inline void nf_reset(struct sk_buff *skb)
  1734. {
  1735. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1736. nf_conntrack_put(skb->nfct);
  1737. skb->nfct = NULL;
  1738. nf_conntrack_put_reasm(skb->nfct_reasm);
  1739. skb->nfct_reasm = NULL;
  1740. #endif
  1741. #ifdef CONFIG_BRIDGE_NETFILTER
  1742. nf_bridge_put(skb->nf_bridge);
  1743. skb->nf_bridge = NULL;
  1744. #endif
  1745. }
  1746. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1747. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1748. {
  1749. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1750. dst->nfct = src->nfct;
  1751. nf_conntrack_get(src->nfct);
  1752. dst->nfctinfo = src->nfctinfo;
  1753. dst->nfct_reasm = src->nfct_reasm;
  1754. nf_conntrack_get_reasm(src->nfct_reasm);
  1755. #endif
  1756. #ifdef CONFIG_BRIDGE_NETFILTER
  1757. dst->nf_bridge = src->nf_bridge;
  1758. nf_bridge_get(src->nf_bridge);
  1759. #endif
  1760. }
  1761. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1762. {
  1763. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1764. nf_conntrack_put(dst->nfct);
  1765. nf_conntrack_put_reasm(dst->nfct_reasm);
  1766. #endif
  1767. #ifdef CONFIG_BRIDGE_NETFILTER
  1768. nf_bridge_put(dst->nf_bridge);
  1769. #endif
  1770. __nf_copy(dst, src);
  1771. }
  1772. #ifdef CONFIG_NETWORK_SECMARK
  1773. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1774. {
  1775. to->secmark = from->secmark;
  1776. }
  1777. static inline void skb_init_secmark(struct sk_buff *skb)
  1778. {
  1779. skb->secmark = 0;
  1780. }
  1781. #else
  1782. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1783. { }
  1784. static inline void skb_init_secmark(struct sk_buff *skb)
  1785. { }
  1786. #endif
  1787. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1788. {
  1789. skb->queue_mapping = queue_mapping;
  1790. }
  1791. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  1792. {
  1793. return skb->queue_mapping;
  1794. }
  1795. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1796. {
  1797. to->queue_mapping = from->queue_mapping;
  1798. }
  1799. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  1800. {
  1801. skb->queue_mapping = rx_queue + 1;
  1802. }
  1803. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  1804. {
  1805. return skb->queue_mapping - 1;
  1806. }
  1807. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  1808. {
  1809. return (skb->queue_mapping != 0);
  1810. }
  1811. extern u16 skb_tx_hash(const struct net_device *dev,
  1812. const struct sk_buff *skb);
  1813. #ifdef CONFIG_XFRM
  1814. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1815. {
  1816. return skb->sp;
  1817. }
  1818. #else
  1819. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1820. {
  1821. return NULL;
  1822. }
  1823. #endif
  1824. static inline int skb_is_gso(const struct sk_buff *skb)
  1825. {
  1826. return skb_shinfo(skb)->gso_size;
  1827. }
  1828. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1829. {
  1830. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1831. }
  1832. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1833. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1834. {
  1835. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1836. * wanted then gso_type will be set. */
  1837. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1838. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1839. __skb_warn_lro_forwarding(skb);
  1840. return true;
  1841. }
  1842. return false;
  1843. }
  1844. static inline void skb_forward_csum(struct sk_buff *skb)
  1845. {
  1846. /* Unfortunately we don't support this one. Any brave souls? */
  1847. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1848. skb->ip_summed = CHECKSUM_NONE;
  1849. }
  1850. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1851. #endif /* __KERNEL__ */
  1852. #endif /* _LINUX_SKBUFF_H */