rtc-sh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664
  1. /*
  2. * SuperH On-Chip RTC Support
  3. *
  4. * Copyright (C) 2006, 2007 Paul Mundt
  5. * Copyright (C) 2006 Jamie Lenehan
  6. *
  7. * Based on the old arch/sh/kernel/cpu/rtc.c by:
  8. *
  9. * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
  10. * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
  11. *
  12. * This file is subject to the terms and conditions of the GNU General Public
  13. * License. See the file "COPYING" in the main directory of this archive
  14. * for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/bcd.h>
  19. #include <linux/rtc.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/io.h>
  26. #include <asm/rtc.h>
  27. #define DRV_NAME "sh-rtc"
  28. #define DRV_VERSION "0.1.3"
  29. #ifdef CONFIG_CPU_SH3
  30. #define rtc_reg_size sizeof(u16)
  31. #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */
  32. #define RTC_DEF_CAPABILITIES 0UL
  33. #elif defined(CONFIG_CPU_SH4)
  34. #define rtc_reg_size sizeof(u32)
  35. #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */
  36. #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
  37. #endif
  38. #define RTC_REG(r) ((r) * rtc_reg_size)
  39. #define R64CNT RTC_REG(0)
  40. #define RSECCNT RTC_REG(1) /* RTC sec */
  41. #define RMINCNT RTC_REG(2) /* RTC min */
  42. #define RHRCNT RTC_REG(3) /* RTC hour */
  43. #define RWKCNT RTC_REG(4) /* RTC week */
  44. #define RDAYCNT RTC_REG(5) /* RTC day */
  45. #define RMONCNT RTC_REG(6) /* RTC month */
  46. #define RYRCNT RTC_REG(7) /* RTC year */
  47. #define RSECAR RTC_REG(8) /* ALARM sec */
  48. #define RMINAR RTC_REG(9) /* ALARM min */
  49. #define RHRAR RTC_REG(10) /* ALARM hour */
  50. #define RWKAR RTC_REG(11) /* ALARM week */
  51. #define RDAYAR RTC_REG(12) /* ALARM day */
  52. #define RMONAR RTC_REG(13) /* ALARM month */
  53. #define RCR1 RTC_REG(14) /* Control */
  54. #define RCR2 RTC_REG(15) /* Control */
  55. /* ALARM Bits - or with BCD encoded value */
  56. #define AR_ENB 0x80 /* Enable for alarm cmp */
  57. /* RCR1 Bits */
  58. #define RCR1_CF 0x80 /* Carry Flag */
  59. #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
  60. #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
  61. #define RCR1_AF 0x01 /* Alarm Flag */
  62. /* RCR2 Bits */
  63. #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
  64. #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
  65. #define RCR2_RTCEN 0x08 /* ENable RTC */
  66. #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
  67. #define RCR2_RESET 0x02 /* Reset bit */
  68. #define RCR2_START 0x01 /* Start bit */
  69. struct sh_rtc {
  70. void __iomem *regbase;
  71. unsigned long regsize;
  72. struct resource *res;
  73. unsigned int alarm_irq, periodic_irq, carry_irq;
  74. struct rtc_device *rtc_dev;
  75. spinlock_t lock;
  76. int rearm_aie;
  77. unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */
  78. };
  79. static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
  80. {
  81. struct platform_device *pdev = to_platform_device(dev_id);
  82. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  83. unsigned int tmp, events = 0;
  84. spin_lock(&rtc->lock);
  85. tmp = readb(rtc->regbase + RCR1);
  86. tmp &= ~RCR1_CF;
  87. if (rtc->rearm_aie) {
  88. if (tmp & RCR1_AF)
  89. tmp &= ~RCR1_AF; /* try to clear AF again */
  90. else {
  91. tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
  92. rtc->rearm_aie = 0;
  93. }
  94. }
  95. writeb(tmp, rtc->regbase + RCR1);
  96. rtc_update_irq(rtc->rtc_dev, 1, events);
  97. spin_unlock(&rtc->lock);
  98. return IRQ_HANDLED;
  99. }
  100. static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
  101. {
  102. struct platform_device *pdev = to_platform_device(dev_id);
  103. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  104. unsigned int tmp, events = 0;
  105. spin_lock(&rtc->lock);
  106. tmp = readb(rtc->regbase + RCR1);
  107. /*
  108. * If AF is set then the alarm has triggered. If we clear AF while
  109. * the alarm time still matches the RTC time then AF will
  110. * immediately be set again, and if AIE is enabled then the alarm
  111. * interrupt will immediately be retrigger. So we clear AIE here
  112. * and use rtc->rearm_aie so that the carry interrupt will keep
  113. * trying to clear AF and once it stays cleared it'll re-enable
  114. * AIE.
  115. */
  116. if (tmp & RCR1_AF) {
  117. events |= RTC_AF | RTC_IRQF;
  118. tmp &= ~(RCR1_AF|RCR1_AIE);
  119. writeb(tmp, rtc->regbase + RCR1);
  120. rtc->rearm_aie = 1;
  121. rtc_update_irq(rtc->rtc_dev, 1, events);
  122. }
  123. spin_unlock(&rtc->lock);
  124. return IRQ_HANDLED;
  125. }
  126. static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
  127. {
  128. struct platform_device *pdev = to_platform_device(dev_id);
  129. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  130. spin_lock(&rtc->lock);
  131. rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
  132. spin_unlock(&rtc->lock);
  133. return IRQ_HANDLED;
  134. }
  135. static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
  136. {
  137. struct sh_rtc *rtc = dev_get_drvdata(dev);
  138. unsigned int tmp;
  139. spin_lock_irq(&rtc->lock);
  140. tmp = readb(rtc->regbase + RCR2);
  141. if (enable) {
  142. tmp &= ~RCR2_PESMASK;
  143. tmp |= RCR2_PEF | (2 << 4);
  144. } else
  145. tmp &= ~(RCR2_PESMASK | RCR2_PEF);
  146. writeb(tmp, rtc->regbase + RCR2);
  147. spin_unlock_irq(&rtc->lock);
  148. }
  149. static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
  150. {
  151. struct sh_rtc *rtc = dev_get_drvdata(dev);
  152. unsigned int tmp;
  153. spin_lock_irq(&rtc->lock);
  154. tmp = readb(rtc->regbase + RCR1);
  155. if (!enable) {
  156. tmp &= ~RCR1_AIE;
  157. rtc->rearm_aie = 0;
  158. } else if (rtc->rearm_aie == 0)
  159. tmp |= RCR1_AIE;
  160. writeb(tmp, rtc->regbase + RCR1);
  161. spin_unlock_irq(&rtc->lock);
  162. }
  163. static int sh_rtc_open(struct device *dev)
  164. {
  165. struct sh_rtc *rtc = dev_get_drvdata(dev);
  166. unsigned int tmp;
  167. int ret;
  168. tmp = readb(rtc->regbase + RCR1);
  169. tmp &= ~RCR1_CF;
  170. tmp |= RCR1_CIE;
  171. writeb(tmp, rtc->regbase + RCR1);
  172. ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
  173. "sh-rtc period", dev);
  174. if (unlikely(ret)) {
  175. dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
  176. ret, rtc->periodic_irq);
  177. return ret;
  178. }
  179. ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
  180. "sh-rtc carry", dev);
  181. if (unlikely(ret)) {
  182. dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
  183. ret, rtc->carry_irq);
  184. free_irq(rtc->periodic_irq, dev);
  185. goto err_bad_carry;
  186. }
  187. ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
  188. "sh-rtc alarm", dev);
  189. if (unlikely(ret)) {
  190. dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
  191. ret, rtc->alarm_irq);
  192. goto err_bad_alarm;
  193. }
  194. return 0;
  195. err_bad_alarm:
  196. free_irq(rtc->carry_irq, dev);
  197. err_bad_carry:
  198. free_irq(rtc->periodic_irq, dev);
  199. return ret;
  200. }
  201. static void sh_rtc_release(struct device *dev)
  202. {
  203. struct sh_rtc *rtc = dev_get_drvdata(dev);
  204. sh_rtc_setpie(dev, 0);
  205. sh_rtc_setaie(dev, 0);
  206. free_irq(rtc->periodic_irq, dev);
  207. free_irq(rtc->carry_irq, dev);
  208. free_irq(rtc->alarm_irq, dev);
  209. }
  210. static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
  211. {
  212. struct sh_rtc *rtc = dev_get_drvdata(dev);
  213. unsigned int tmp;
  214. tmp = readb(rtc->regbase + RCR1);
  215. seq_printf(seq, "carry_IRQ\t: %s\n",
  216. (tmp & RCR1_CIE) ? "yes" : "no");
  217. tmp = readb(rtc->regbase + RCR2);
  218. seq_printf(seq, "periodic_IRQ\t: %s\n",
  219. (tmp & RCR2_PEF) ? "yes" : "no");
  220. return 0;
  221. }
  222. static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  223. {
  224. unsigned int ret = -ENOIOCTLCMD;
  225. switch (cmd) {
  226. case RTC_PIE_OFF:
  227. case RTC_PIE_ON:
  228. sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
  229. ret = 0;
  230. break;
  231. case RTC_AIE_OFF:
  232. case RTC_AIE_ON:
  233. sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
  234. ret = 0;
  235. break;
  236. }
  237. return ret;
  238. }
  239. static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
  240. {
  241. struct platform_device *pdev = to_platform_device(dev);
  242. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  243. unsigned int sec128, sec2, yr, yr100, cf_bit;
  244. do {
  245. unsigned int tmp;
  246. spin_lock_irq(&rtc->lock);
  247. tmp = readb(rtc->regbase + RCR1);
  248. tmp &= ~RCR1_CF; /* Clear CF-bit */
  249. tmp |= RCR1_CIE;
  250. writeb(tmp, rtc->regbase + RCR1);
  251. sec128 = readb(rtc->regbase + R64CNT);
  252. tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
  253. tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
  254. tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
  255. tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
  256. tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
  257. tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
  258. if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
  259. yr = readw(rtc->regbase + RYRCNT);
  260. yr100 = BCD2BIN(yr >> 8);
  261. yr &= 0xff;
  262. } else {
  263. yr = readb(rtc->regbase + RYRCNT);
  264. yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
  265. }
  266. tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
  267. sec2 = readb(rtc->regbase + R64CNT);
  268. cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
  269. spin_unlock_irq(&rtc->lock);
  270. } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
  271. #if RTC_BIT_INVERTED != 0
  272. if ((sec128 & RTC_BIT_INVERTED))
  273. tm->tm_sec--;
  274. #endif
  275. dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
  276. "mday=%d, mon=%d, year=%d, wday=%d\n",
  277. __FUNCTION__,
  278. tm->tm_sec, tm->tm_min, tm->tm_hour,
  279. tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
  280. if (rtc_valid_tm(tm) < 0) {
  281. dev_err(dev, "invalid date\n");
  282. rtc_time_to_tm(0, tm);
  283. }
  284. return 0;
  285. }
  286. static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
  287. {
  288. struct platform_device *pdev = to_platform_device(dev);
  289. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  290. unsigned int tmp;
  291. int year;
  292. spin_lock_irq(&rtc->lock);
  293. /* Reset pre-scaler & stop RTC */
  294. tmp = readb(rtc->regbase + RCR2);
  295. tmp |= RCR2_RESET;
  296. tmp &= ~RCR2_START;
  297. writeb(tmp, rtc->regbase + RCR2);
  298. writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
  299. writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
  300. writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
  301. writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
  302. writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
  303. writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
  304. if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
  305. year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
  306. BIN2BCD(tm->tm_year % 100);
  307. writew(year, rtc->regbase + RYRCNT);
  308. } else {
  309. year = tm->tm_year % 100;
  310. writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
  311. }
  312. /* Start RTC */
  313. tmp = readb(rtc->regbase + RCR2);
  314. tmp &= ~RCR2_RESET;
  315. tmp |= RCR2_RTCEN | RCR2_START;
  316. writeb(tmp, rtc->regbase + RCR2);
  317. spin_unlock_irq(&rtc->lock);
  318. return 0;
  319. }
  320. static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
  321. {
  322. unsigned int byte;
  323. int value = 0xff; /* return 0xff for ignored values */
  324. byte = readb(rtc->regbase + reg_off);
  325. if (byte & AR_ENB) {
  326. byte &= ~AR_ENB; /* strip the enable bit */
  327. value = BCD2BIN(byte);
  328. }
  329. return value;
  330. }
  331. static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  332. {
  333. struct platform_device *pdev = to_platform_device(dev);
  334. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  335. struct rtc_time* tm = &wkalrm->time;
  336. spin_lock_irq(&rtc->lock);
  337. tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
  338. tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
  339. tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
  340. tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
  341. tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
  342. tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
  343. if (tm->tm_mon > 0)
  344. tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
  345. tm->tm_year = 0xffff;
  346. wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
  347. spin_unlock_irq(&rtc->lock);
  348. return 0;
  349. }
  350. static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
  351. int value, int reg_off)
  352. {
  353. /* < 0 for a value that is ignored */
  354. if (value < 0)
  355. writeb(0, rtc->regbase + reg_off);
  356. else
  357. writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
  358. }
  359. static int sh_rtc_check_alarm(struct rtc_time* tm)
  360. {
  361. /*
  362. * The original rtc says anything > 0xc0 is "don't care" or "match
  363. * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
  364. * The original rtc doesn't support years - some things use -1 and
  365. * some 0xffff. We use -1 to make out tests easier.
  366. */
  367. if (tm->tm_year == 0xffff)
  368. tm->tm_year = -1;
  369. if (tm->tm_mon >= 0xff)
  370. tm->tm_mon = -1;
  371. if (tm->tm_mday >= 0xff)
  372. tm->tm_mday = -1;
  373. if (tm->tm_wday >= 0xff)
  374. tm->tm_wday = -1;
  375. if (tm->tm_hour >= 0xff)
  376. tm->tm_hour = -1;
  377. if (tm->tm_min >= 0xff)
  378. tm->tm_min = -1;
  379. if (tm->tm_sec >= 0xff)
  380. tm->tm_sec = -1;
  381. if (tm->tm_year > 9999 ||
  382. tm->tm_mon >= 12 ||
  383. tm->tm_mday == 0 || tm->tm_mday >= 32 ||
  384. tm->tm_wday >= 7 ||
  385. tm->tm_hour >= 24 ||
  386. tm->tm_min >= 60 ||
  387. tm->tm_sec >= 60)
  388. return -EINVAL;
  389. return 0;
  390. }
  391. static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  392. {
  393. struct platform_device *pdev = to_platform_device(dev);
  394. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  395. unsigned int rcr1;
  396. struct rtc_time *tm = &wkalrm->time;
  397. int mon, err;
  398. err = sh_rtc_check_alarm(tm);
  399. if (unlikely(err < 0))
  400. return err;
  401. spin_lock_irq(&rtc->lock);
  402. /* disable alarm interrupt and clear the alarm flag */
  403. rcr1 = readb(rtc->regbase + RCR1);
  404. rcr1 &= ~(RCR1_AF|RCR1_AIE);
  405. writeb(rcr1, rtc->regbase + RCR1);
  406. rtc->rearm_aie = 0;
  407. /* set alarm time */
  408. sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
  409. sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
  410. sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
  411. sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
  412. sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
  413. mon = tm->tm_mon;
  414. if (mon >= 0)
  415. mon += 1;
  416. sh_rtc_write_alarm_value(rtc, mon, RMONAR);
  417. if (wkalrm->enabled) {
  418. rcr1 |= RCR1_AIE;
  419. writeb(rcr1, rtc->regbase + RCR1);
  420. }
  421. spin_unlock_irq(&rtc->lock);
  422. return 0;
  423. }
  424. static struct rtc_class_ops sh_rtc_ops = {
  425. .open = sh_rtc_open,
  426. .release = sh_rtc_release,
  427. .ioctl = sh_rtc_ioctl,
  428. .read_time = sh_rtc_read_time,
  429. .set_time = sh_rtc_set_time,
  430. .read_alarm = sh_rtc_read_alarm,
  431. .set_alarm = sh_rtc_set_alarm,
  432. .proc = sh_rtc_proc,
  433. };
  434. static int __devinit sh_rtc_probe(struct platform_device *pdev)
  435. {
  436. struct sh_rtc *rtc;
  437. struct resource *res;
  438. int ret = -ENOENT;
  439. rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
  440. if (unlikely(!rtc))
  441. return -ENOMEM;
  442. spin_lock_init(&rtc->lock);
  443. rtc->periodic_irq = platform_get_irq(pdev, 0);
  444. if (unlikely(rtc->periodic_irq < 0)) {
  445. dev_err(&pdev->dev, "No IRQ for period\n");
  446. goto err_badres;
  447. }
  448. rtc->carry_irq = platform_get_irq(pdev, 1);
  449. if (unlikely(rtc->carry_irq < 0)) {
  450. dev_err(&pdev->dev, "No IRQ for carry\n");
  451. goto err_badres;
  452. }
  453. rtc->alarm_irq = platform_get_irq(pdev, 2);
  454. if (unlikely(rtc->alarm_irq < 0)) {
  455. dev_err(&pdev->dev, "No IRQ for alarm\n");
  456. goto err_badres;
  457. }
  458. res = platform_get_resource(pdev, IORESOURCE_IO, 0);
  459. if (unlikely(res == NULL)) {
  460. dev_err(&pdev->dev, "No IO resource\n");
  461. goto err_badres;
  462. }
  463. rtc->regsize = res->end - res->start + 1;
  464. rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
  465. if (unlikely(!rtc->res)) {
  466. ret = -EBUSY;
  467. goto err_badres;
  468. }
  469. rtc->regbase = (void __iomem *)rtc->res->start;
  470. if (unlikely(!rtc->regbase)) {
  471. ret = -EINVAL;
  472. goto err_badmap;
  473. }
  474. rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
  475. &sh_rtc_ops, THIS_MODULE);
  476. if (IS_ERR(rtc->rtc_dev)) {
  477. ret = PTR_ERR(rtc->rtc_dev);
  478. goto err_badmap;
  479. }
  480. rtc->capabilities = RTC_DEF_CAPABILITIES;
  481. if (pdev->dev.platform_data) {
  482. struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
  483. /*
  484. * Some CPUs have special capabilities in addition to the
  485. * default set. Add those in here.
  486. */
  487. rtc->capabilities |= pinfo->capabilities;
  488. }
  489. platform_set_drvdata(pdev, rtc);
  490. return 0;
  491. err_badmap:
  492. release_resource(rtc->res);
  493. err_badres:
  494. kfree(rtc);
  495. return ret;
  496. }
  497. static int __devexit sh_rtc_remove(struct platform_device *pdev)
  498. {
  499. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  500. if (likely(rtc->rtc_dev))
  501. rtc_device_unregister(rtc->rtc_dev);
  502. sh_rtc_setpie(&pdev->dev, 0);
  503. sh_rtc_setaie(&pdev->dev, 0);
  504. release_resource(rtc->res);
  505. platform_set_drvdata(pdev, NULL);
  506. kfree(rtc);
  507. return 0;
  508. }
  509. static struct platform_driver sh_rtc_platform_driver = {
  510. .driver = {
  511. .name = DRV_NAME,
  512. .owner = THIS_MODULE,
  513. },
  514. .probe = sh_rtc_probe,
  515. .remove = __devexit_p(sh_rtc_remove),
  516. };
  517. static int __init sh_rtc_init(void)
  518. {
  519. return platform_driver_register(&sh_rtc_platform_driver);
  520. }
  521. static void __exit sh_rtc_exit(void)
  522. {
  523. platform_driver_unregister(&sh_rtc_platform_driver);
  524. }
  525. module_init(sh_rtc_init);
  526. module_exit(sh_rtc_exit);
  527. MODULE_DESCRIPTION("SuperH on-chip RTC driver");
  528. MODULE_VERSION(DRV_VERSION);
  529. MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
  530. MODULE_LICENSE("GPL");