intel_display.c 161 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include "drmP.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "drm_dp_helper.h"
  36. #include "drm_crtc_helper.h"
  37. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  38. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  39. static void intel_update_watermarks(struct drm_device *dev);
  40. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  41. typedef struct {
  42. /* given values */
  43. int n;
  44. int m1, m2;
  45. int p1, p2;
  46. /* derived values */
  47. int dot;
  48. int vco;
  49. int m;
  50. int p;
  51. } intel_clock_t;
  52. typedef struct {
  53. int min, max;
  54. } intel_range_t;
  55. typedef struct {
  56. int dot_limit;
  57. int p2_slow, p2_fast;
  58. } intel_p2_t;
  59. #define INTEL_P2_NUM 2
  60. typedef struct intel_limit intel_limit_t;
  61. struct intel_limit {
  62. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  63. intel_p2_t p2;
  64. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  65. int, int, intel_clock_t *);
  66. };
  67. #define I8XX_DOT_MIN 25000
  68. #define I8XX_DOT_MAX 350000
  69. #define I8XX_VCO_MIN 930000
  70. #define I8XX_VCO_MAX 1400000
  71. #define I8XX_N_MIN 3
  72. #define I8XX_N_MAX 16
  73. #define I8XX_M_MIN 96
  74. #define I8XX_M_MAX 140
  75. #define I8XX_M1_MIN 18
  76. #define I8XX_M1_MAX 26
  77. #define I8XX_M2_MIN 6
  78. #define I8XX_M2_MAX 16
  79. #define I8XX_P_MIN 4
  80. #define I8XX_P_MAX 128
  81. #define I8XX_P1_MIN 2
  82. #define I8XX_P1_MAX 33
  83. #define I8XX_P1_LVDS_MIN 1
  84. #define I8XX_P1_LVDS_MAX 6
  85. #define I8XX_P2_SLOW 4
  86. #define I8XX_P2_FAST 2
  87. #define I8XX_P2_LVDS_SLOW 14
  88. #define I8XX_P2_LVDS_FAST 7
  89. #define I8XX_P2_SLOW_LIMIT 165000
  90. #define I9XX_DOT_MIN 20000
  91. #define I9XX_DOT_MAX 400000
  92. #define I9XX_VCO_MIN 1400000
  93. #define I9XX_VCO_MAX 2800000
  94. #define PINEVIEW_VCO_MIN 1700000
  95. #define PINEVIEW_VCO_MAX 3500000
  96. #define I9XX_N_MIN 1
  97. #define I9XX_N_MAX 6
  98. /* Pineview's Ncounter is a ring counter */
  99. #define PINEVIEW_N_MIN 3
  100. #define PINEVIEW_N_MAX 6
  101. #define I9XX_M_MIN 70
  102. #define I9XX_M_MAX 120
  103. #define PINEVIEW_M_MIN 2
  104. #define PINEVIEW_M_MAX 256
  105. #define I9XX_M1_MIN 10
  106. #define I9XX_M1_MAX 22
  107. #define I9XX_M2_MIN 5
  108. #define I9XX_M2_MAX 9
  109. /* Pineview M1 is reserved, and must be 0 */
  110. #define PINEVIEW_M1_MIN 0
  111. #define PINEVIEW_M1_MAX 0
  112. #define PINEVIEW_M2_MIN 0
  113. #define PINEVIEW_M2_MAX 254
  114. #define I9XX_P_SDVO_DAC_MIN 5
  115. #define I9XX_P_SDVO_DAC_MAX 80
  116. #define I9XX_P_LVDS_MIN 7
  117. #define I9XX_P_LVDS_MAX 98
  118. #define PINEVIEW_P_LVDS_MIN 7
  119. #define PINEVIEW_P_LVDS_MAX 112
  120. #define I9XX_P1_MIN 1
  121. #define I9XX_P1_MAX 8
  122. #define I9XX_P2_SDVO_DAC_SLOW 10
  123. #define I9XX_P2_SDVO_DAC_FAST 5
  124. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  125. #define I9XX_P2_LVDS_SLOW 14
  126. #define I9XX_P2_LVDS_FAST 7
  127. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  128. /*The parameter is for SDVO on G4x platform*/
  129. #define G4X_DOT_SDVO_MIN 25000
  130. #define G4X_DOT_SDVO_MAX 270000
  131. #define G4X_VCO_MIN 1750000
  132. #define G4X_VCO_MAX 3500000
  133. #define G4X_N_SDVO_MIN 1
  134. #define G4X_N_SDVO_MAX 4
  135. #define G4X_M_SDVO_MIN 104
  136. #define G4X_M_SDVO_MAX 138
  137. #define G4X_M1_SDVO_MIN 17
  138. #define G4X_M1_SDVO_MAX 23
  139. #define G4X_M2_SDVO_MIN 5
  140. #define G4X_M2_SDVO_MAX 11
  141. #define G4X_P_SDVO_MIN 10
  142. #define G4X_P_SDVO_MAX 30
  143. #define G4X_P1_SDVO_MIN 1
  144. #define G4X_P1_SDVO_MAX 3
  145. #define G4X_P2_SDVO_SLOW 10
  146. #define G4X_P2_SDVO_FAST 10
  147. #define G4X_P2_SDVO_LIMIT 270000
  148. /*The parameter is for HDMI_DAC on G4x platform*/
  149. #define G4X_DOT_HDMI_DAC_MIN 22000
  150. #define G4X_DOT_HDMI_DAC_MAX 400000
  151. #define G4X_N_HDMI_DAC_MIN 1
  152. #define G4X_N_HDMI_DAC_MAX 4
  153. #define G4X_M_HDMI_DAC_MIN 104
  154. #define G4X_M_HDMI_DAC_MAX 138
  155. #define G4X_M1_HDMI_DAC_MIN 16
  156. #define G4X_M1_HDMI_DAC_MAX 23
  157. #define G4X_M2_HDMI_DAC_MIN 5
  158. #define G4X_M2_HDMI_DAC_MAX 11
  159. #define G4X_P_HDMI_DAC_MIN 5
  160. #define G4X_P_HDMI_DAC_MAX 80
  161. #define G4X_P1_HDMI_DAC_MIN 1
  162. #define G4X_P1_HDMI_DAC_MAX 8
  163. #define G4X_P2_HDMI_DAC_SLOW 10
  164. #define G4X_P2_HDMI_DAC_FAST 5
  165. #define G4X_P2_HDMI_DAC_LIMIT 165000
  166. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  167. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  168. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  169. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  170. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  171. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  172. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  173. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  174. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  175. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  176. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  177. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  178. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  179. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  180. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  181. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  183. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  184. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  185. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  186. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  187. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  188. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  189. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  190. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  191. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  192. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  193. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  194. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  195. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  196. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  197. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  198. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  199. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  201. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  202. /*The parameter is for DISPLAY PORT on G4x platform*/
  203. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  204. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  205. #define G4X_N_DISPLAY_PORT_MIN 1
  206. #define G4X_N_DISPLAY_PORT_MAX 2
  207. #define G4X_M_DISPLAY_PORT_MIN 97
  208. #define G4X_M_DISPLAY_PORT_MAX 108
  209. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  210. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  211. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  212. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  213. #define G4X_P_DISPLAY_PORT_MIN 10
  214. #define G4X_P_DISPLAY_PORT_MAX 20
  215. #define G4X_P1_DISPLAY_PORT_MIN 1
  216. #define G4X_P1_DISPLAY_PORT_MAX 2
  217. #define G4X_P2_DISPLAY_PORT_SLOW 10
  218. #define G4X_P2_DISPLAY_PORT_FAST 10
  219. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  220. /* Ironlake / Sandybridge */
  221. /* as we calculate clock using (register_value + 2) for
  222. N/M1/M2, so here the range value for them is (actual_value-2).
  223. */
  224. #define IRONLAKE_DOT_MIN 25000
  225. #define IRONLAKE_DOT_MAX 350000
  226. #define IRONLAKE_VCO_MIN 1760000
  227. #define IRONLAKE_VCO_MAX 3510000
  228. #define IRONLAKE_M1_MIN 12
  229. #define IRONLAKE_M1_MAX 22
  230. #define IRONLAKE_M2_MIN 5
  231. #define IRONLAKE_M2_MAX 9
  232. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  233. /* We have parameter ranges for different type of outputs. */
  234. /* DAC & HDMI Refclk 120Mhz */
  235. #define IRONLAKE_DAC_N_MIN 1
  236. #define IRONLAKE_DAC_N_MAX 5
  237. #define IRONLAKE_DAC_M_MIN 79
  238. #define IRONLAKE_DAC_M_MAX 127
  239. #define IRONLAKE_DAC_P_MIN 5
  240. #define IRONLAKE_DAC_P_MAX 80
  241. #define IRONLAKE_DAC_P1_MIN 1
  242. #define IRONLAKE_DAC_P1_MAX 8
  243. #define IRONLAKE_DAC_P2_SLOW 10
  244. #define IRONLAKE_DAC_P2_FAST 5
  245. /* LVDS single-channel 120Mhz refclk */
  246. #define IRONLAKE_LVDS_S_N_MIN 1
  247. #define IRONLAKE_LVDS_S_N_MAX 3
  248. #define IRONLAKE_LVDS_S_M_MIN 79
  249. #define IRONLAKE_LVDS_S_M_MAX 118
  250. #define IRONLAKE_LVDS_S_P_MIN 28
  251. #define IRONLAKE_LVDS_S_P_MAX 112
  252. #define IRONLAKE_LVDS_S_P1_MIN 2
  253. #define IRONLAKE_LVDS_S_P1_MAX 8
  254. #define IRONLAKE_LVDS_S_P2_SLOW 14
  255. #define IRONLAKE_LVDS_S_P2_FAST 14
  256. /* LVDS dual-channel 120Mhz refclk */
  257. #define IRONLAKE_LVDS_D_N_MIN 1
  258. #define IRONLAKE_LVDS_D_N_MAX 3
  259. #define IRONLAKE_LVDS_D_M_MIN 79
  260. #define IRONLAKE_LVDS_D_M_MAX 127
  261. #define IRONLAKE_LVDS_D_P_MIN 14
  262. #define IRONLAKE_LVDS_D_P_MAX 56
  263. #define IRONLAKE_LVDS_D_P1_MIN 2
  264. #define IRONLAKE_LVDS_D_P1_MAX 8
  265. #define IRONLAKE_LVDS_D_P2_SLOW 7
  266. #define IRONLAKE_LVDS_D_P2_FAST 7
  267. /* LVDS single-channel 100Mhz refclk */
  268. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  269. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  270. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  271. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  272. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  273. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  274. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  275. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  276. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  277. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  278. /* LVDS dual-channel 100Mhz refclk */
  279. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  280. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  281. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  282. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  283. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  284. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  285. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  286. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  287. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  288. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  289. /* DisplayPort */
  290. #define IRONLAKE_DP_N_MIN 1
  291. #define IRONLAKE_DP_N_MAX 2
  292. #define IRONLAKE_DP_M_MIN 81
  293. #define IRONLAKE_DP_M_MAX 90
  294. #define IRONLAKE_DP_P_MIN 10
  295. #define IRONLAKE_DP_P_MAX 20
  296. #define IRONLAKE_DP_P2_FAST 10
  297. #define IRONLAKE_DP_P2_SLOW 10
  298. #define IRONLAKE_DP_P2_LIMIT 0
  299. #define IRONLAKE_DP_P1_MIN 1
  300. #define IRONLAKE_DP_P1_MAX 2
  301. static bool
  302. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  303. int target, int refclk, intel_clock_t *best_clock);
  304. static bool
  305. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  306. int target, int refclk, intel_clock_t *best_clock);
  307. static bool
  308. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  309. int target, int refclk, intel_clock_t *best_clock);
  310. static bool
  311. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  312. int target, int refclk, intel_clock_t *best_clock);
  313. static const intel_limit_t intel_limits_i8xx_dvo = {
  314. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  315. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  316. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  317. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  318. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  319. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  320. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  321. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  322. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  323. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  324. .find_pll = intel_find_best_PLL,
  325. };
  326. static const intel_limit_t intel_limits_i8xx_lvds = {
  327. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  328. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  329. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  330. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  331. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  332. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  333. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  334. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  335. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  336. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  337. .find_pll = intel_find_best_PLL,
  338. };
  339. static const intel_limit_t intel_limits_i9xx_sdvo = {
  340. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  341. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  342. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  343. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  344. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  345. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  346. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  347. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  348. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  349. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  350. .find_pll = intel_find_best_PLL,
  351. };
  352. static const intel_limit_t intel_limits_i9xx_lvds = {
  353. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  354. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  355. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  356. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  357. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  358. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  359. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  360. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  361. /* The single-channel range is 25-112Mhz, and dual-channel
  362. * is 80-224Mhz. Prefer single channel as much as possible.
  363. */
  364. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  365. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  366. .find_pll = intel_find_best_PLL,
  367. };
  368. /* below parameter and function is for G4X Chipset Family*/
  369. static const intel_limit_t intel_limits_g4x_sdvo = {
  370. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  371. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  372. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  373. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  374. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  375. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  376. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  377. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  378. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  379. .p2_slow = G4X_P2_SDVO_SLOW,
  380. .p2_fast = G4X_P2_SDVO_FAST
  381. },
  382. .find_pll = intel_g4x_find_best_PLL,
  383. };
  384. static const intel_limit_t intel_limits_g4x_hdmi = {
  385. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  386. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  387. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  388. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  389. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  390. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  391. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  392. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  393. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  394. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  395. .p2_fast = G4X_P2_HDMI_DAC_FAST
  396. },
  397. .find_pll = intel_g4x_find_best_PLL,
  398. };
  399. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  400. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  401. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  402. .vco = { .min = G4X_VCO_MIN,
  403. .max = G4X_VCO_MAX },
  404. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  405. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  406. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  407. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  408. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  409. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  410. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  411. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  412. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  413. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  414. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  415. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  416. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  417. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  418. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  419. },
  420. .find_pll = intel_g4x_find_best_PLL,
  421. };
  422. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  423. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  424. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  425. .vco = { .min = G4X_VCO_MIN,
  426. .max = G4X_VCO_MAX },
  427. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  428. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  429. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  430. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  431. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  432. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  433. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  434. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  435. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  436. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  437. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  438. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  439. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  440. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  441. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  442. },
  443. .find_pll = intel_g4x_find_best_PLL,
  444. };
  445. static const intel_limit_t intel_limits_g4x_display_port = {
  446. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  447. .max = G4X_DOT_DISPLAY_PORT_MAX },
  448. .vco = { .min = G4X_VCO_MIN,
  449. .max = G4X_VCO_MAX},
  450. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  451. .max = G4X_N_DISPLAY_PORT_MAX },
  452. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  453. .max = G4X_M_DISPLAY_PORT_MAX },
  454. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  455. .max = G4X_M1_DISPLAY_PORT_MAX },
  456. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  457. .max = G4X_M2_DISPLAY_PORT_MAX },
  458. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  459. .max = G4X_P_DISPLAY_PORT_MAX },
  460. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  461. .max = G4X_P1_DISPLAY_PORT_MAX},
  462. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  463. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  464. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  465. .find_pll = intel_find_pll_g4x_dp,
  466. };
  467. static const intel_limit_t intel_limits_pineview_sdvo = {
  468. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  469. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  470. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  471. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  472. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  473. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  474. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  475. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  476. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  477. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  478. .find_pll = intel_find_best_PLL,
  479. };
  480. static const intel_limit_t intel_limits_pineview_lvds = {
  481. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  482. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  483. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  484. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  485. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  486. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  487. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  488. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  489. /* Pineview only supports single-channel mode. */
  490. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  491. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  492. .find_pll = intel_find_best_PLL,
  493. };
  494. static const intel_limit_t intel_limits_ironlake_dac = {
  495. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  496. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  497. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  498. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  499. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  500. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  501. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  502. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  503. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  504. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  505. .p2_fast = IRONLAKE_DAC_P2_FAST },
  506. .find_pll = intel_g4x_find_best_PLL,
  507. };
  508. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  509. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  510. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  511. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  512. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  513. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  514. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  515. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  516. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  517. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  518. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  519. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  520. .find_pll = intel_g4x_find_best_PLL,
  521. };
  522. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  523. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  524. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  525. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  526. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  527. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  528. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  529. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  530. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  531. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  532. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  533. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  534. .find_pll = intel_g4x_find_best_PLL,
  535. };
  536. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  537. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  538. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  539. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  540. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  541. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  542. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  543. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  544. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  545. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  546. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  547. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  548. .find_pll = intel_g4x_find_best_PLL,
  549. };
  550. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  551. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  552. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  553. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  554. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  555. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  556. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  557. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  558. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  559. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  560. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  561. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  562. .find_pll = intel_g4x_find_best_PLL,
  563. };
  564. static const intel_limit_t intel_limits_ironlake_display_port = {
  565. .dot = { .min = IRONLAKE_DOT_MIN,
  566. .max = IRONLAKE_DOT_MAX },
  567. .vco = { .min = IRONLAKE_VCO_MIN,
  568. .max = IRONLAKE_VCO_MAX},
  569. .n = { .min = IRONLAKE_DP_N_MIN,
  570. .max = IRONLAKE_DP_N_MAX },
  571. .m = { .min = IRONLAKE_DP_M_MIN,
  572. .max = IRONLAKE_DP_M_MAX },
  573. .m1 = { .min = IRONLAKE_M1_MIN,
  574. .max = IRONLAKE_M1_MAX },
  575. .m2 = { .min = IRONLAKE_M2_MIN,
  576. .max = IRONLAKE_M2_MAX },
  577. .p = { .min = IRONLAKE_DP_P_MIN,
  578. .max = IRONLAKE_DP_P_MAX },
  579. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  580. .max = IRONLAKE_DP_P1_MAX},
  581. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  582. .p2_slow = IRONLAKE_DP_P2_SLOW,
  583. .p2_fast = IRONLAKE_DP_P2_FAST },
  584. .find_pll = intel_find_pll_ironlake_dp,
  585. };
  586. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  587. {
  588. struct drm_device *dev = crtc->dev;
  589. struct drm_i915_private *dev_priv = dev->dev_private;
  590. const intel_limit_t *limit;
  591. int refclk = 120;
  592. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  593. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  594. refclk = 100;
  595. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  596. LVDS_CLKB_POWER_UP) {
  597. /* LVDS dual channel */
  598. if (refclk == 100)
  599. limit = &intel_limits_ironlake_dual_lvds_100m;
  600. else
  601. limit = &intel_limits_ironlake_dual_lvds;
  602. } else {
  603. if (refclk == 100)
  604. limit = &intel_limits_ironlake_single_lvds_100m;
  605. else
  606. limit = &intel_limits_ironlake_single_lvds;
  607. }
  608. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  609. HAS_eDP)
  610. limit = &intel_limits_ironlake_display_port;
  611. else
  612. limit = &intel_limits_ironlake_dac;
  613. return limit;
  614. }
  615. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  616. {
  617. struct drm_device *dev = crtc->dev;
  618. struct drm_i915_private *dev_priv = dev->dev_private;
  619. const intel_limit_t *limit;
  620. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  621. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  622. LVDS_CLKB_POWER_UP)
  623. /* LVDS with dual channel */
  624. limit = &intel_limits_g4x_dual_channel_lvds;
  625. else
  626. /* LVDS with dual channel */
  627. limit = &intel_limits_g4x_single_channel_lvds;
  628. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  629. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  630. limit = &intel_limits_g4x_hdmi;
  631. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  632. limit = &intel_limits_g4x_sdvo;
  633. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  634. limit = &intel_limits_g4x_display_port;
  635. } else /* The option is for other outputs */
  636. limit = &intel_limits_i9xx_sdvo;
  637. return limit;
  638. }
  639. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  640. {
  641. struct drm_device *dev = crtc->dev;
  642. const intel_limit_t *limit;
  643. if (HAS_PCH_SPLIT(dev))
  644. limit = intel_ironlake_limit(crtc);
  645. else if (IS_G4X(dev)) {
  646. limit = intel_g4x_limit(crtc);
  647. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  648. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  649. limit = &intel_limits_i9xx_lvds;
  650. else
  651. limit = &intel_limits_i9xx_sdvo;
  652. } else if (IS_PINEVIEW(dev)) {
  653. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  654. limit = &intel_limits_pineview_lvds;
  655. else
  656. limit = &intel_limits_pineview_sdvo;
  657. } else {
  658. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  659. limit = &intel_limits_i8xx_lvds;
  660. else
  661. limit = &intel_limits_i8xx_dvo;
  662. }
  663. return limit;
  664. }
  665. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  666. static void pineview_clock(int refclk, intel_clock_t *clock)
  667. {
  668. clock->m = clock->m2 + 2;
  669. clock->p = clock->p1 * clock->p2;
  670. clock->vco = refclk * clock->m / clock->n;
  671. clock->dot = clock->vco / clock->p;
  672. }
  673. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  674. {
  675. if (IS_PINEVIEW(dev)) {
  676. pineview_clock(refclk, clock);
  677. return;
  678. }
  679. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  680. clock->p = clock->p1 * clock->p2;
  681. clock->vco = refclk * clock->m / (clock->n + 2);
  682. clock->dot = clock->vco / clock->p;
  683. }
  684. /**
  685. * Returns whether any output on the specified pipe is of the specified type
  686. */
  687. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  688. {
  689. struct drm_device *dev = crtc->dev;
  690. struct drm_mode_config *mode_config = &dev->mode_config;
  691. struct drm_encoder *l_entry;
  692. list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
  693. if (l_entry && l_entry->crtc == crtc) {
  694. struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
  695. if (intel_encoder->type == type)
  696. return true;
  697. }
  698. }
  699. return false;
  700. }
  701. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  702. /**
  703. * Returns whether the given set of divisors are valid for a given refclk with
  704. * the given connectors.
  705. */
  706. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  707. {
  708. const intel_limit_t *limit = intel_limit (crtc);
  709. struct drm_device *dev = crtc->dev;
  710. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  711. INTELPllInvalid ("p1 out of range\n");
  712. if (clock->p < limit->p.min || limit->p.max < clock->p)
  713. INTELPllInvalid ("p out of range\n");
  714. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  715. INTELPllInvalid ("m2 out of range\n");
  716. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  717. INTELPllInvalid ("m1 out of range\n");
  718. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  719. INTELPllInvalid ("m1 <= m2\n");
  720. if (clock->m < limit->m.min || limit->m.max < clock->m)
  721. INTELPllInvalid ("m out of range\n");
  722. if (clock->n < limit->n.min || limit->n.max < clock->n)
  723. INTELPllInvalid ("n out of range\n");
  724. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  725. INTELPllInvalid ("vco out of range\n");
  726. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  727. * connector, etc., rather than just a single range.
  728. */
  729. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  730. INTELPllInvalid ("dot out of range\n");
  731. return true;
  732. }
  733. static bool
  734. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  735. int target, int refclk, intel_clock_t *best_clock)
  736. {
  737. struct drm_device *dev = crtc->dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. intel_clock_t clock;
  740. int err = target;
  741. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  742. (I915_READ(LVDS)) != 0) {
  743. /*
  744. * For LVDS, if the panel is on, just rely on its current
  745. * settings for dual-channel. We haven't figured out how to
  746. * reliably set up different single/dual channel state, if we
  747. * even can.
  748. */
  749. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  750. LVDS_CLKB_POWER_UP)
  751. clock.p2 = limit->p2.p2_fast;
  752. else
  753. clock.p2 = limit->p2.p2_slow;
  754. } else {
  755. if (target < limit->p2.dot_limit)
  756. clock.p2 = limit->p2.p2_slow;
  757. else
  758. clock.p2 = limit->p2.p2_fast;
  759. }
  760. memset (best_clock, 0, sizeof (*best_clock));
  761. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  762. clock.m1++) {
  763. for (clock.m2 = limit->m2.min;
  764. clock.m2 <= limit->m2.max; clock.m2++) {
  765. /* m1 is always 0 in Pineview */
  766. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  767. break;
  768. for (clock.n = limit->n.min;
  769. clock.n <= limit->n.max; clock.n++) {
  770. for (clock.p1 = limit->p1.min;
  771. clock.p1 <= limit->p1.max; clock.p1++) {
  772. int this_err;
  773. intel_clock(dev, refclk, &clock);
  774. if (!intel_PLL_is_valid(crtc, &clock))
  775. continue;
  776. this_err = abs(clock.dot - target);
  777. if (this_err < err) {
  778. *best_clock = clock;
  779. err = this_err;
  780. }
  781. }
  782. }
  783. }
  784. }
  785. return (err != target);
  786. }
  787. static bool
  788. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  789. int target, int refclk, intel_clock_t *best_clock)
  790. {
  791. struct drm_device *dev = crtc->dev;
  792. struct drm_i915_private *dev_priv = dev->dev_private;
  793. intel_clock_t clock;
  794. int max_n;
  795. bool found;
  796. /* approximately equals target * 0.00488 */
  797. int err_most = (target >> 8) + (target >> 10);
  798. found = false;
  799. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  800. int lvds_reg;
  801. if (HAS_PCH_SPLIT(dev))
  802. lvds_reg = PCH_LVDS;
  803. else
  804. lvds_reg = LVDS;
  805. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  806. LVDS_CLKB_POWER_UP)
  807. clock.p2 = limit->p2.p2_fast;
  808. else
  809. clock.p2 = limit->p2.p2_slow;
  810. } else {
  811. if (target < limit->p2.dot_limit)
  812. clock.p2 = limit->p2.p2_slow;
  813. else
  814. clock.p2 = limit->p2.p2_fast;
  815. }
  816. memset(best_clock, 0, sizeof(*best_clock));
  817. max_n = limit->n.max;
  818. /* based on hardware requirement, prefer smaller n to precision */
  819. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  820. /* based on hardware requirement, prefere larger m1,m2 */
  821. for (clock.m1 = limit->m1.max;
  822. clock.m1 >= limit->m1.min; clock.m1--) {
  823. for (clock.m2 = limit->m2.max;
  824. clock.m2 >= limit->m2.min; clock.m2--) {
  825. for (clock.p1 = limit->p1.max;
  826. clock.p1 >= limit->p1.min; clock.p1--) {
  827. int this_err;
  828. intel_clock(dev, refclk, &clock);
  829. if (!intel_PLL_is_valid(crtc, &clock))
  830. continue;
  831. this_err = abs(clock.dot - target) ;
  832. if (this_err < err_most) {
  833. *best_clock = clock;
  834. err_most = this_err;
  835. max_n = clock.n;
  836. found = true;
  837. }
  838. }
  839. }
  840. }
  841. }
  842. return found;
  843. }
  844. static bool
  845. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  846. int target, int refclk, intel_clock_t *best_clock)
  847. {
  848. struct drm_device *dev = crtc->dev;
  849. intel_clock_t clock;
  850. /* return directly when it is eDP */
  851. if (HAS_eDP)
  852. return true;
  853. if (target < 200000) {
  854. clock.n = 1;
  855. clock.p1 = 2;
  856. clock.p2 = 10;
  857. clock.m1 = 12;
  858. clock.m2 = 9;
  859. } else {
  860. clock.n = 2;
  861. clock.p1 = 1;
  862. clock.p2 = 10;
  863. clock.m1 = 14;
  864. clock.m2 = 8;
  865. }
  866. intel_clock(dev, refclk, &clock);
  867. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  868. return true;
  869. }
  870. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  871. static bool
  872. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  873. int target, int refclk, intel_clock_t *best_clock)
  874. {
  875. intel_clock_t clock;
  876. if (target < 200000) {
  877. clock.p1 = 2;
  878. clock.p2 = 10;
  879. clock.n = 2;
  880. clock.m1 = 23;
  881. clock.m2 = 8;
  882. } else {
  883. clock.p1 = 1;
  884. clock.p2 = 10;
  885. clock.n = 1;
  886. clock.m1 = 14;
  887. clock.m2 = 2;
  888. }
  889. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  890. clock.p = (clock.p1 * clock.p2);
  891. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  892. clock.vco = 0;
  893. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  894. return true;
  895. }
  896. void
  897. intel_wait_for_vblank(struct drm_device *dev)
  898. {
  899. /* Wait for 20ms, i.e. one cycle at 50hz. */
  900. msleep(20);
  901. }
  902. /* Parameters have changed, update FBC info */
  903. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  904. {
  905. struct drm_device *dev = crtc->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. struct drm_framebuffer *fb = crtc->fb;
  908. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  909. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  910. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  911. int plane, i;
  912. u32 fbc_ctl, fbc_ctl2;
  913. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  914. if (fb->pitch < dev_priv->cfb_pitch)
  915. dev_priv->cfb_pitch = fb->pitch;
  916. /* FBC_CTL wants 64B units */
  917. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  918. dev_priv->cfb_fence = obj_priv->fence_reg;
  919. dev_priv->cfb_plane = intel_crtc->plane;
  920. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  921. /* Clear old tags */
  922. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  923. I915_WRITE(FBC_TAG + (i * 4), 0);
  924. /* Set it up... */
  925. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  926. if (obj_priv->tiling_mode != I915_TILING_NONE)
  927. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  928. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  929. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  930. /* enable it... */
  931. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  932. if (IS_I945GM(dev))
  933. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  934. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  935. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  936. if (obj_priv->tiling_mode != I915_TILING_NONE)
  937. fbc_ctl |= dev_priv->cfb_fence;
  938. I915_WRITE(FBC_CONTROL, fbc_ctl);
  939. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  940. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  941. }
  942. void i8xx_disable_fbc(struct drm_device *dev)
  943. {
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. unsigned long timeout = jiffies + msecs_to_jiffies(1);
  946. u32 fbc_ctl;
  947. if (!I915_HAS_FBC(dev))
  948. return;
  949. if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
  950. return; /* Already off, just return */
  951. /* Disable compression */
  952. fbc_ctl = I915_READ(FBC_CONTROL);
  953. fbc_ctl &= ~FBC_CTL_EN;
  954. I915_WRITE(FBC_CONTROL, fbc_ctl);
  955. /* Wait for compressing bit to clear */
  956. while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
  957. if (time_after(jiffies, timeout)) {
  958. DRM_DEBUG_DRIVER("FBC idle timed out\n");
  959. break;
  960. }
  961. ; /* do nothing */
  962. }
  963. intel_wait_for_vblank(dev);
  964. DRM_DEBUG_KMS("disabled FBC\n");
  965. }
  966. static bool i8xx_fbc_enabled(struct drm_device *dev)
  967. {
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  970. }
  971. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  972. {
  973. struct drm_device *dev = crtc->dev;
  974. struct drm_i915_private *dev_priv = dev->dev_private;
  975. struct drm_framebuffer *fb = crtc->fb;
  976. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  977. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  978. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  979. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  980. DPFC_CTL_PLANEB);
  981. unsigned long stall_watermark = 200;
  982. u32 dpfc_ctl;
  983. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  984. dev_priv->cfb_fence = obj_priv->fence_reg;
  985. dev_priv->cfb_plane = intel_crtc->plane;
  986. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  987. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  988. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  989. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  990. } else {
  991. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  992. }
  993. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  994. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  995. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  996. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  997. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  998. /* enable it... */
  999. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1000. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1001. }
  1002. void g4x_disable_fbc(struct drm_device *dev)
  1003. {
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. u32 dpfc_ctl;
  1006. /* Disable compression */
  1007. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1008. dpfc_ctl &= ~DPFC_CTL_EN;
  1009. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1010. intel_wait_for_vblank(dev);
  1011. DRM_DEBUG_KMS("disabled FBC\n");
  1012. }
  1013. static bool g4x_fbc_enabled(struct drm_device *dev)
  1014. {
  1015. struct drm_i915_private *dev_priv = dev->dev_private;
  1016. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1017. }
  1018. bool intel_fbc_enabled(struct drm_device *dev)
  1019. {
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. if (!dev_priv->display.fbc_enabled)
  1022. return false;
  1023. return dev_priv->display.fbc_enabled(dev);
  1024. }
  1025. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1026. {
  1027. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1028. if (!dev_priv->display.enable_fbc)
  1029. return;
  1030. dev_priv->display.enable_fbc(crtc, interval);
  1031. }
  1032. void intel_disable_fbc(struct drm_device *dev)
  1033. {
  1034. struct drm_i915_private *dev_priv = dev->dev_private;
  1035. if (!dev_priv->display.disable_fbc)
  1036. return;
  1037. dev_priv->display.disable_fbc(dev);
  1038. }
  1039. /**
  1040. * intel_update_fbc - enable/disable FBC as needed
  1041. * @crtc: CRTC to point the compressor at
  1042. * @mode: mode in use
  1043. *
  1044. * Set up the framebuffer compression hardware at mode set time. We
  1045. * enable it if possible:
  1046. * - plane A only (on pre-965)
  1047. * - no pixel mulitply/line duplication
  1048. * - no alpha buffer discard
  1049. * - no dual wide
  1050. * - framebuffer <= 2048 in width, 1536 in height
  1051. *
  1052. * We can't assume that any compression will take place (worst case),
  1053. * so the compressed buffer has to be the same size as the uncompressed
  1054. * one. It also must reside (along with the line length buffer) in
  1055. * stolen memory.
  1056. *
  1057. * We need to enable/disable FBC on a global basis.
  1058. */
  1059. static void intel_update_fbc(struct drm_crtc *crtc,
  1060. struct drm_display_mode *mode)
  1061. {
  1062. struct drm_device *dev = crtc->dev;
  1063. struct drm_i915_private *dev_priv = dev->dev_private;
  1064. struct drm_framebuffer *fb = crtc->fb;
  1065. struct intel_framebuffer *intel_fb;
  1066. struct drm_i915_gem_object *obj_priv;
  1067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1068. int plane = intel_crtc->plane;
  1069. if (!i915_powersave)
  1070. return;
  1071. if (!I915_HAS_FBC(dev))
  1072. return;
  1073. if (!crtc->fb)
  1074. return;
  1075. intel_fb = to_intel_framebuffer(fb);
  1076. obj_priv = to_intel_bo(intel_fb->obj);
  1077. /*
  1078. * If FBC is already on, we just have to verify that we can
  1079. * keep it that way...
  1080. * Need to disable if:
  1081. * - changing FBC params (stride, fence, mode)
  1082. * - new fb is too large to fit in compressed buffer
  1083. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1084. */
  1085. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1086. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1087. "compression\n");
  1088. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1089. goto out_disable;
  1090. }
  1091. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1092. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1093. DRM_DEBUG_KMS("mode incompatible with compression, "
  1094. "disabling\n");
  1095. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1096. goto out_disable;
  1097. }
  1098. if ((mode->hdisplay > 2048) ||
  1099. (mode->vdisplay > 1536)) {
  1100. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1101. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1102. goto out_disable;
  1103. }
  1104. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1105. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1106. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1107. goto out_disable;
  1108. }
  1109. if (obj_priv->tiling_mode != I915_TILING_X) {
  1110. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1111. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1112. goto out_disable;
  1113. }
  1114. if (intel_fbc_enabled(dev)) {
  1115. /* We can re-enable it in this case, but need to update pitch */
  1116. if ((fb->pitch > dev_priv->cfb_pitch) ||
  1117. (obj_priv->fence_reg != dev_priv->cfb_fence) ||
  1118. (plane != dev_priv->cfb_plane))
  1119. intel_disable_fbc(dev);
  1120. }
  1121. /* Now try to turn it back on if possible */
  1122. if (!intel_fbc_enabled(dev))
  1123. intel_enable_fbc(crtc, 500);
  1124. return;
  1125. out_disable:
  1126. /* Multiple disables should be harmless */
  1127. if (intel_fbc_enabled(dev)) {
  1128. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1129. intel_disable_fbc(dev);
  1130. }
  1131. }
  1132. static int
  1133. intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
  1134. {
  1135. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1136. u32 alignment;
  1137. int ret;
  1138. switch (obj_priv->tiling_mode) {
  1139. case I915_TILING_NONE:
  1140. alignment = 64 * 1024;
  1141. break;
  1142. case I915_TILING_X:
  1143. /* pin() will align the object as required by fence */
  1144. alignment = 0;
  1145. break;
  1146. case I915_TILING_Y:
  1147. /* FIXME: Is this true? */
  1148. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1149. return -EINVAL;
  1150. default:
  1151. BUG();
  1152. }
  1153. ret = i915_gem_object_pin(obj, alignment);
  1154. if (ret != 0)
  1155. return ret;
  1156. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1157. * fence, whereas 965+ only requires a fence if using
  1158. * framebuffer compression. For simplicity, we always install
  1159. * a fence as the cost is not that onerous.
  1160. */
  1161. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1162. obj_priv->tiling_mode != I915_TILING_NONE) {
  1163. ret = i915_gem_object_get_fence_reg(obj);
  1164. if (ret != 0) {
  1165. i915_gem_object_unpin(obj);
  1166. return ret;
  1167. }
  1168. }
  1169. return 0;
  1170. }
  1171. static int
  1172. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1173. struct drm_framebuffer *old_fb)
  1174. {
  1175. struct drm_device *dev = crtc->dev;
  1176. struct drm_i915_private *dev_priv = dev->dev_private;
  1177. struct drm_i915_master_private *master_priv;
  1178. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1179. struct intel_framebuffer *intel_fb;
  1180. struct drm_i915_gem_object *obj_priv;
  1181. struct drm_gem_object *obj;
  1182. int pipe = intel_crtc->pipe;
  1183. int plane = intel_crtc->plane;
  1184. unsigned long Start, Offset;
  1185. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1186. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1187. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1188. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1189. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1190. u32 dspcntr;
  1191. int ret;
  1192. /* no fb bound */
  1193. if (!crtc->fb) {
  1194. DRM_DEBUG_KMS("No FB bound\n");
  1195. return 0;
  1196. }
  1197. switch (plane) {
  1198. case 0:
  1199. case 1:
  1200. break;
  1201. default:
  1202. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1203. return -EINVAL;
  1204. }
  1205. intel_fb = to_intel_framebuffer(crtc->fb);
  1206. obj = intel_fb->obj;
  1207. obj_priv = to_intel_bo(obj);
  1208. mutex_lock(&dev->struct_mutex);
  1209. ret = intel_pin_and_fence_fb_obj(dev, obj);
  1210. if (ret != 0) {
  1211. mutex_unlock(&dev->struct_mutex);
  1212. return ret;
  1213. }
  1214. ret = i915_gem_object_set_to_display_plane(obj);
  1215. if (ret != 0) {
  1216. i915_gem_object_unpin(obj);
  1217. mutex_unlock(&dev->struct_mutex);
  1218. return ret;
  1219. }
  1220. dspcntr = I915_READ(dspcntr_reg);
  1221. /* Mask out pixel format bits in case we change it */
  1222. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1223. switch (crtc->fb->bits_per_pixel) {
  1224. case 8:
  1225. dspcntr |= DISPPLANE_8BPP;
  1226. break;
  1227. case 16:
  1228. if (crtc->fb->depth == 15)
  1229. dspcntr |= DISPPLANE_15_16BPP;
  1230. else
  1231. dspcntr |= DISPPLANE_16BPP;
  1232. break;
  1233. case 24:
  1234. case 32:
  1235. if (crtc->fb->depth == 30)
  1236. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1237. else
  1238. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1239. break;
  1240. default:
  1241. DRM_ERROR("Unknown color depth\n");
  1242. i915_gem_object_unpin(obj);
  1243. mutex_unlock(&dev->struct_mutex);
  1244. return -EINVAL;
  1245. }
  1246. if (IS_I965G(dev)) {
  1247. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1248. dspcntr |= DISPPLANE_TILED;
  1249. else
  1250. dspcntr &= ~DISPPLANE_TILED;
  1251. }
  1252. if (HAS_PCH_SPLIT(dev))
  1253. /* must disable */
  1254. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1255. I915_WRITE(dspcntr_reg, dspcntr);
  1256. Start = obj_priv->gtt_offset;
  1257. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  1258. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1259. Start, Offset, x, y, crtc->fb->pitch);
  1260. I915_WRITE(dspstride, crtc->fb->pitch);
  1261. if (IS_I965G(dev)) {
  1262. I915_WRITE(dspbase, Offset);
  1263. I915_READ(dspbase);
  1264. I915_WRITE(dspsurf, Start);
  1265. I915_READ(dspsurf);
  1266. I915_WRITE(dsptileoff, (y << 16) | x);
  1267. } else {
  1268. I915_WRITE(dspbase, Start + Offset);
  1269. I915_READ(dspbase);
  1270. }
  1271. if ((IS_I965G(dev) || plane == 0))
  1272. intel_update_fbc(crtc, &crtc->mode);
  1273. intel_wait_for_vblank(dev);
  1274. if (old_fb) {
  1275. intel_fb = to_intel_framebuffer(old_fb);
  1276. obj_priv = to_intel_bo(intel_fb->obj);
  1277. i915_gem_object_unpin(intel_fb->obj);
  1278. }
  1279. intel_increase_pllclock(crtc, true);
  1280. mutex_unlock(&dev->struct_mutex);
  1281. if (!dev->primary->master)
  1282. return 0;
  1283. master_priv = dev->primary->master->driver_priv;
  1284. if (!master_priv->sarea_priv)
  1285. return 0;
  1286. if (pipe) {
  1287. master_priv->sarea_priv->pipeB_x = x;
  1288. master_priv->sarea_priv->pipeB_y = y;
  1289. } else {
  1290. master_priv->sarea_priv->pipeA_x = x;
  1291. master_priv->sarea_priv->pipeA_y = y;
  1292. }
  1293. return 0;
  1294. }
  1295. /* Disable the VGA plane that we never use */
  1296. static void i915_disable_vga (struct drm_device *dev)
  1297. {
  1298. struct drm_i915_private *dev_priv = dev->dev_private;
  1299. u8 sr1;
  1300. u32 vga_reg;
  1301. if (HAS_PCH_SPLIT(dev))
  1302. vga_reg = CPU_VGACNTRL;
  1303. else
  1304. vga_reg = VGACNTRL;
  1305. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1306. return;
  1307. I915_WRITE8(VGA_SR_INDEX, 1);
  1308. sr1 = I915_READ8(VGA_SR_DATA);
  1309. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1310. udelay(100);
  1311. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1312. }
  1313. static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
  1314. {
  1315. struct drm_device *dev = crtc->dev;
  1316. struct drm_i915_private *dev_priv = dev->dev_private;
  1317. u32 dpa_ctl;
  1318. DRM_DEBUG_KMS("\n");
  1319. dpa_ctl = I915_READ(DP_A);
  1320. dpa_ctl &= ~DP_PLL_ENABLE;
  1321. I915_WRITE(DP_A, dpa_ctl);
  1322. }
  1323. static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
  1324. {
  1325. struct drm_device *dev = crtc->dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. u32 dpa_ctl;
  1328. dpa_ctl = I915_READ(DP_A);
  1329. dpa_ctl |= DP_PLL_ENABLE;
  1330. I915_WRITE(DP_A, dpa_ctl);
  1331. udelay(200);
  1332. }
  1333. static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
  1334. {
  1335. struct drm_device *dev = crtc->dev;
  1336. struct drm_i915_private *dev_priv = dev->dev_private;
  1337. u32 dpa_ctl;
  1338. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1339. dpa_ctl = I915_READ(DP_A);
  1340. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1341. if (clock < 200000) {
  1342. u32 temp;
  1343. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1344. /* workaround for 160Mhz:
  1345. 1) program 0x4600c bits 15:0 = 0x8124
  1346. 2) program 0x46010 bit 0 = 1
  1347. 3) program 0x46034 bit 24 = 1
  1348. 4) program 0x64000 bit 14 = 1
  1349. */
  1350. temp = I915_READ(0x4600c);
  1351. temp &= 0xffff0000;
  1352. I915_WRITE(0x4600c, temp | 0x8124);
  1353. temp = I915_READ(0x46010);
  1354. I915_WRITE(0x46010, temp | 1);
  1355. temp = I915_READ(0x46034);
  1356. I915_WRITE(0x46034, temp | (1 << 24));
  1357. } else {
  1358. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1359. }
  1360. I915_WRITE(DP_A, dpa_ctl);
  1361. udelay(500);
  1362. }
  1363. /* The FDI link training functions for ILK/Ibexpeak. */
  1364. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1365. {
  1366. struct drm_device *dev = crtc->dev;
  1367. struct drm_i915_private *dev_priv = dev->dev_private;
  1368. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1369. int pipe = intel_crtc->pipe;
  1370. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1371. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1372. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1373. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1374. u32 temp, tries = 0;
  1375. /* enable CPU FDI TX and PCH FDI RX */
  1376. temp = I915_READ(fdi_tx_reg);
  1377. temp |= FDI_TX_ENABLE;
  1378. temp &= ~(7 << 19);
  1379. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1380. temp &= ~FDI_LINK_TRAIN_NONE;
  1381. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1382. I915_WRITE(fdi_tx_reg, temp);
  1383. I915_READ(fdi_tx_reg);
  1384. temp = I915_READ(fdi_rx_reg);
  1385. temp &= ~FDI_LINK_TRAIN_NONE;
  1386. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1387. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1388. I915_READ(fdi_rx_reg);
  1389. udelay(150);
  1390. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1391. for train result */
  1392. temp = I915_READ(fdi_rx_imr_reg);
  1393. temp &= ~FDI_RX_SYMBOL_LOCK;
  1394. temp &= ~FDI_RX_BIT_LOCK;
  1395. I915_WRITE(fdi_rx_imr_reg, temp);
  1396. I915_READ(fdi_rx_imr_reg);
  1397. udelay(150);
  1398. for (;;) {
  1399. temp = I915_READ(fdi_rx_iir_reg);
  1400. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1401. if ((temp & FDI_RX_BIT_LOCK)) {
  1402. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1403. I915_WRITE(fdi_rx_iir_reg,
  1404. temp | FDI_RX_BIT_LOCK);
  1405. break;
  1406. }
  1407. tries++;
  1408. if (tries > 5) {
  1409. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1410. break;
  1411. }
  1412. }
  1413. /* Train 2 */
  1414. temp = I915_READ(fdi_tx_reg);
  1415. temp &= ~FDI_LINK_TRAIN_NONE;
  1416. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1417. I915_WRITE(fdi_tx_reg, temp);
  1418. temp = I915_READ(fdi_rx_reg);
  1419. temp &= ~FDI_LINK_TRAIN_NONE;
  1420. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1421. I915_WRITE(fdi_rx_reg, temp);
  1422. udelay(150);
  1423. tries = 0;
  1424. for (;;) {
  1425. temp = I915_READ(fdi_rx_iir_reg);
  1426. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1427. if (temp & FDI_RX_SYMBOL_LOCK) {
  1428. I915_WRITE(fdi_rx_iir_reg,
  1429. temp | FDI_RX_SYMBOL_LOCK);
  1430. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1431. break;
  1432. }
  1433. tries++;
  1434. if (tries > 5) {
  1435. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1436. break;
  1437. }
  1438. }
  1439. DRM_DEBUG_KMS("FDI train done\n");
  1440. }
  1441. static int snb_b_fdi_train_param [] = {
  1442. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1443. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1444. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1445. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1446. };
  1447. /* The FDI link training functions for SNB/Cougarpoint. */
  1448. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1449. {
  1450. struct drm_device *dev = crtc->dev;
  1451. struct drm_i915_private *dev_priv = dev->dev_private;
  1452. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1453. int pipe = intel_crtc->pipe;
  1454. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1455. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1456. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1457. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1458. u32 temp, i;
  1459. /* enable CPU FDI TX and PCH FDI RX */
  1460. temp = I915_READ(fdi_tx_reg);
  1461. temp |= FDI_TX_ENABLE;
  1462. temp &= ~(7 << 19);
  1463. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1464. temp &= ~FDI_LINK_TRAIN_NONE;
  1465. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1466. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1467. /* SNB-B */
  1468. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1469. I915_WRITE(fdi_tx_reg, temp);
  1470. I915_READ(fdi_tx_reg);
  1471. temp = I915_READ(fdi_rx_reg);
  1472. if (HAS_PCH_CPT(dev)) {
  1473. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1474. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1475. } else {
  1476. temp &= ~FDI_LINK_TRAIN_NONE;
  1477. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1478. }
  1479. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1480. I915_READ(fdi_rx_reg);
  1481. udelay(150);
  1482. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1483. for train result */
  1484. temp = I915_READ(fdi_rx_imr_reg);
  1485. temp &= ~FDI_RX_SYMBOL_LOCK;
  1486. temp &= ~FDI_RX_BIT_LOCK;
  1487. I915_WRITE(fdi_rx_imr_reg, temp);
  1488. I915_READ(fdi_rx_imr_reg);
  1489. udelay(150);
  1490. for (i = 0; i < 4; i++ ) {
  1491. temp = I915_READ(fdi_tx_reg);
  1492. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1493. temp |= snb_b_fdi_train_param[i];
  1494. I915_WRITE(fdi_tx_reg, temp);
  1495. udelay(500);
  1496. temp = I915_READ(fdi_rx_iir_reg);
  1497. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1498. if (temp & FDI_RX_BIT_LOCK) {
  1499. I915_WRITE(fdi_rx_iir_reg,
  1500. temp | FDI_RX_BIT_LOCK);
  1501. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1502. break;
  1503. }
  1504. }
  1505. if (i == 4)
  1506. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1507. /* Train 2 */
  1508. temp = I915_READ(fdi_tx_reg);
  1509. temp &= ~FDI_LINK_TRAIN_NONE;
  1510. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1511. if (IS_GEN6(dev)) {
  1512. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1513. /* SNB-B */
  1514. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1515. }
  1516. I915_WRITE(fdi_tx_reg, temp);
  1517. temp = I915_READ(fdi_rx_reg);
  1518. if (HAS_PCH_CPT(dev)) {
  1519. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1520. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1521. } else {
  1522. temp &= ~FDI_LINK_TRAIN_NONE;
  1523. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1524. }
  1525. I915_WRITE(fdi_rx_reg, temp);
  1526. udelay(150);
  1527. for (i = 0; i < 4; i++ ) {
  1528. temp = I915_READ(fdi_tx_reg);
  1529. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1530. temp |= snb_b_fdi_train_param[i];
  1531. I915_WRITE(fdi_tx_reg, temp);
  1532. udelay(500);
  1533. temp = I915_READ(fdi_rx_iir_reg);
  1534. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1535. if (temp & FDI_RX_SYMBOL_LOCK) {
  1536. I915_WRITE(fdi_rx_iir_reg,
  1537. temp | FDI_RX_SYMBOL_LOCK);
  1538. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1539. break;
  1540. }
  1541. }
  1542. if (i == 4)
  1543. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1544. DRM_DEBUG_KMS("FDI train done.\n");
  1545. }
  1546. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1547. {
  1548. struct drm_device *dev = crtc->dev;
  1549. struct drm_i915_private *dev_priv = dev->dev_private;
  1550. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1551. int pipe = intel_crtc->pipe;
  1552. int plane = intel_crtc->plane;
  1553. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1554. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1555. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1556. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1557. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1558. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1559. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1560. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1561. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1562. int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
  1563. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1564. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1565. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1566. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1567. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1568. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1569. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1570. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1571. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1572. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1573. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1574. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1575. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  1576. u32 temp;
  1577. int n;
  1578. u32 pipe_bpc;
  1579. temp = I915_READ(pipeconf_reg);
  1580. pipe_bpc = temp & PIPE_BPC_MASK;
  1581. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1582. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1583. */
  1584. switch (mode) {
  1585. case DRM_MODE_DPMS_ON:
  1586. case DRM_MODE_DPMS_STANDBY:
  1587. case DRM_MODE_DPMS_SUSPEND:
  1588. DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
  1589. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1590. temp = I915_READ(PCH_LVDS);
  1591. if ((temp & LVDS_PORT_EN) == 0) {
  1592. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1593. POSTING_READ(PCH_LVDS);
  1594. }
  1595. }
  1596. if (HAS_eDP) {
  1597. /* enable eDP PLL */
  1598. ironlake_enable_pll_edp(crtc);
  1599. } else {
  1600. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1601. temp = I915_READ(fdi_rx_reg);
  1602. /*
  1603. * make the BPC in FDI Rx be consistent with that in
  1604. * pipeconf reg.
  1605. */
  1606. temp &= ~(0x7 << 16);
  1607. temp |= (pipe_bpc << 11);
  1608. temp &= ~(7 << 19);
  1609. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1610. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  1611. I915_READ(fdi_rx_reg);
  1612. udelay(200);
  1613. /* Switch from Rawclk to PCDclk */
  1614. temp = I915_READ(fdi_rx_reg);
  1615. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  1616. I915_READ(fdi_rx_reg);
  1617. udelay(200);
  1618. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1619. temp = I915_READ(fdi_tx_reg);
  1620. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1621. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1622. I915_READ(fdi_tx_reg);
  1623. udelay(100);
  1624. }
  1625. }
  1626. /* Enable panel fitting for LVDS */
  1627. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1628. temp = I915_READ(pf_ctl_reg);
  1629. I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
  1630. /* currently full aspect */
  1631. I915_WRITE(pf_win_pos, 0);
  1632. I915_WRITE(pf_win_size,
  1633. (dev_priv->panel_fixed_mode->hdisplay << 16) |
  1634. (dev_priv->panel_fixed_mode->vdisplay));
  1635. }
  1636. /* Enable CPU pipe */
  1637. temp = I915_READ(pipeconf_reg);
  1638. if ((temp & PIPEACONF_ENABLE) == 0) {
  1639. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1640. I915_READ(pipeconf_reg);
  1641. udelay(100);
  1642. }
  1643. /* configure and enable CPU plane */
  1644. temp = I915_READ(dspcntr_reg);
  1645. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1646. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1647. /* Flush the plane changes */
  1648. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1649. }
  1650. if (!HAS_eDP) {
  1651. /* For PCH output, training FDI link */
  1652. if (IS_GEN6(dev))
  1653. gen6_fdi_link_train(crtc);
  1654. else
  1655. ironlake_fdi_link_train(crtc);
  1656. /* enable PCH DPLL */
  1657. temp = I915_READ(pch_dpll_reg);
  1658. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1659. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1660. I915_READ(pch_dpll_reg);
  1661. }
  1662. udelay(200);
  1663. if (HAS_PCH_CPT(dev)) {
  1664. /* Be sure PCH DPLL SEL is set */
  1665. temp = I915_READ(PCH_DPLL_SEL);
  1666. if (trans_dpll_sel == 0 &&
  1667. (temp & TRANSA_DPLL_ENABLE) == 0)
  1668. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1669. else if (trans_dpll_sel == 1 &&
  1670. (temp & TRANSB_DPLL_ENABLE) == 0)
  1671. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1672. I915_WRITE(PCH_DPLL_SEL, temp);
  1673. I915_READ(PCH_DPLL_SEL);
  1674. }
  1675. /* set transcoder timing */
  1676. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1677. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1678. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1679. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1680. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1681. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1682. /* enable normal train */
  1683. temp = I915_READ(fdi_tx_reg);
  1684. temp &= ~FDI_LINK_TRAIN_NONE;
  1685. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1686. FDI_TX_ENHANCE_FRAME_ENABLE);
  1687. I915_READ(fdi_tx_reg);
  1688. temp = I915_READ(fdi_rx_reg);
  1689. if (HAS_PCH_CPT(dev)) {
  1690. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1691. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1692. } else {
  1693. temp &= ~FDI_LINK_TRAIN_NONE;
  1694. temp |= FDI_LINK_TRAIN_NONE;
  1695. }
  1696. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1697. I915_READ(fdi_rx_reg);
  1698. /* wait one idle pattern time */
  1699. udelay(100);
  1700. /* For PCH DP, enable TRANS_DP_CTL */
  1701. if (HAS_PCH_CPT(dev) &&
  1702. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1703. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1704. int reg;
  1705. reg = I915_READ(trans_dp_ctl);
  1706. reg &= ~TRANS_DP_PORT_SEL_MASK;
  1707. reg = TRANS_DP_OUTPUT_ENABLE |
  1708. TRANS_DP_ENH_FRAMING |
  1709. TRANS_DP_VSYNC_ACTIVE_HIGH |
  1710. TRANS_DP_HSYNC_ACTIVE_HIGH;
  1711. switch (intel_trans_dp_port_sel(crtc)) {
  1712. case PCH_DP_B:
  1713. reg |= TRANS_DP_PORT_SEL_B;
  1714. break;
  1715. case PCH_DP_C:
  1716. reg |= TRANS_DP_PORT_SEL_C;
  1717. break;
  1718. case PCH_DP_D:
  1719. reg |= TRANS_DP_PORT_SEL_D;
  1720. break;
  1721. default:
  1722. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1723. reg |= TRANS_DP_PORT_SEL_B;
  1724. break;
  1725. }
  1726. I915_WRITE(trans_dp_ctl, reg);
  1727. POSTING_READ(trans_dp_ctl);
  1728. }
  1729. /* enable PCH transcoder */
  1730. temp = I915_READ(transconf_reg);
  1731. /*
  1732. * make the BPC in transcoder be consistent with
  1733. * that in pipeconf reg.
  1734. */
  1735. temp &= ~PIPE_BPC_MASK;
  1736. temp |= pipe_bpc;
  1737. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1738. I915_READ(transconf_reg);
  1739. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1740. ;
  1741. }
  1742. intel_crtc_load_lut(crtc);
  1743. break;
  1744. case DRM_MODE_DPMS_OFF:
  1745. DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
  1746. drm_vblank_off(dev, pipe);
  1747. /* Disable display plane */
  1748. temp = I915_READ(dspcntr_reg);
  1749. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1750. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1751. /* Flush the plane changes */
  1752. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1753. I915_READ(dspbase_reg);
  1754. }
  1755. i915_disable_vga(dev);
  1756. /* disable cpu pipe, disable after all planes disabled */
  1757. temp = I915_READ(pipeconf_reg);
  1758. if ((temp & PIPEACONF_ENABLE) != 0) {
  1759. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1760. I915_READ(pipeconf_reg);
  1761. n = 0;
  1762. /* wait for cpu pipe off, pipe state */
  1763. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1764. n++;
  1765. if (n < 60) {
  1766. udelay(500);
  1767. continue;
  1768. } else {
  1769. DRM_DEBUG_KMS("pipe %d off delay\n",
  1770. pipe);
  1771. break;
  1772. }
  1773. }
  1774. } else
  1775. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1776. udelay(100);
  1777. /* Disable PF */
  1778. temp = I915_READ(pf_ctl_reg);
  1779. if ((temp & PF_ENABLE) != 0) {
  1780. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1781. I915_READ(pf_ctl_reg);
  1782. }
  1783. I915_WRITE(pf_win_size, 0);
  1784. POSTING_READ(pf_win_size);
  1785. /* disable CPU FDI tx and PCH FDI rx */
  1786. temp = I915_READ(fdi_tx_reg);
  1787. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1788. I915_READ(fdi_tx_reg);
  1789. temp = I915_READ(fdi_rx_reg);
  1790. /* BPC in FDI rx is consistent with that in pipeconf */
  1791. temp &= ~(0x07 << 16);
  1792. temp |= (pipe_bpc << 11);
  1793. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1794. I915_READ(fdi_rx_reg);
  1795. udelay(100);
  1796. /* still set train pattern 1 */
  1797. temp = I915_READ(fdi_tx_reg);
  1798. temp &= ~FDI_LINK_TRAIN_NONE;
  1799. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1800. I915_WRITE(fdi_tx_reg, temp);
  1801. POSTING_READ(fdi_tx_reg);
  1802. temp = I915_READ(fdi_rx_reg);
  1803. if (HAS_PCH_CPT(dev)) {
  1804. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1805. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1806. } else {
  1807. temp &= ~FDI_LINK_TRAIN_NONE;
  1808. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1809. }
  1810. I915_WRITE(fdi_rx_reg, temp);
  1811. POSTING_READ(fdi_rx_reg);
  1812. udelay(100);
  1813. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1814. temp = I915_READ(PCH_LVDS);
  1815. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1816. I915_READ(PCH_LVDS);
  1817. udelay(100);
  1818. }
  1819. /* disable PCH transcoder */
  1820. temp = I915_READ(transconf_reg);
  1821. if ((temp & TRANS_ENABLE) != 0) {
  1822. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1823. I915_READ(transconf_reg);
  1824. n = 0;
  1825. /* wait for PCH transcoder off, transcoder state */
  1826. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1827. n++;
  1828. if (n < 60) {
  1829. udelay(500);
  1830. continue;
  1831. } else {
  1832. DRM_DEBUG_KMS("transcoder %d off "
  1833. "delay\n", pipe);
  1834. break;
  1835. }
  1836. }
  1837. }
  1838. temp = I915_READ(transconf_reg);
  1839. /* BPC in transcoder is consistent with that in pipeconf */
  1840. temp &= ~PIPE_BPC_MASK;
  1841. temp |= pipe_bpc;
  1842. I915_WRITE(transconf_reg, temp);
  1843. I915_READ(transconf_reg);
  1844. udelay(100);
  1845. if (HAS_PCH_CPT(dev)) {
  1846. /* disable TRANS_DP_CTL */
  1847. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1848. int reg;
  1849. reg = I915_READ(trans_dp_ctl);
  1850. reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1851. I915_WRITE(trans_dp_ctl, reg);
  1852. POSTING_READ(trans_dp_ctl);
  1853. /* disable DPLL_SEL */
  1854. temp = I915_READ(PCH_DPLL_SEL);
  1855. if (trans_dpll_sel == 0)
  1856. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1857. else
  1858. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1859. I915_WRITE(PCH_DPLL_SEL, temp);
  1860. I915_READ(PCH_DPLL_SEL);
  1861. }
  1862. /* disable PCH DPLL */
  1863. temp = I915_READ(pch_dpll_reg);
  1864. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1865. I915_READ(pch_dpll_reg);
  1866. if (HAS_eDP) {
  1867. ironlake_disable_pll_edp(crtc);
  1868. }
  1869. /* Switch from PCDclk to Rawclk */
  1870. temp = I915_READ(fdi_rx_reg);
  1871. temp &= ~FDI_SEL_PCDCLK;
  1872. I915_WRITE(fdi_rx_reg, temp);
  1873. I915_READ(fdi_rx_reg);
  1874. /* Disable CPU FDI TX PLL */
  1875. temp = I915_READ(fdi_tx_reg);
  1876. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1877. I915_READ(fdi_tx_reg);
  1878. udelay(100);
  1879. temp = I915_READ(fdi_rx_reg);
  1880. temp &= ~FDI_RX_PLL_ENABLE;
  1881. I915_WRITE(fdi_rx_reg, temp);
  1882. I915_READ(fdi_rx_reg);
  1883. /* Wait for the clocks to turn off. */
  1884. udelay(100);
  1885. break;
  1886. }
  1887. }
  1888. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1889. {
  1890. struct intel_overlay *overlay;
  1891. int ret;
  1892. if (!enable && intel_crtc->overlay) {
  1893. overlay = intel_crtc->overlay;
  1894. mutex_lock(&overlay->dev->struct_mutex);
  1895. for (;;) {
  1896. ret = intel_overlay_switch_off(overlay);
  1897. if (ret == 0)
  1898. break;
  1899. ret = intel_overlay_recover_from_interrupt(overlay, 0);
  1900. if (ret != 0) {
  1901. /* overlay doesn't react anymore. Usually
  1902. * results in a black screen and an unkillable
  1903. * X server. */
  1904. BUG();
  1905. overlay->hw_wedged = HW_WEDGED;
  1906. break;
  1907. }
  1908. }
  1909. mutex_unlock(&overlay->dev->struct_mutex);
  1910. }
  1911. /* Let userspace switch the overlay on again. In most cases userspace
  1912. * has to recompute where to put it anyway. */
  1913. return;
  1914. }
  1915. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1916. {
  1917. struct drm_device *dev = crtc->dev;
  1918. struct drm_i915_private *dev_priv = dev->dev_private;
  1919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1920. int pipe = intel_crtc->pipe;
  1921. int plane = intel_crtc->plane;
  1922. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1923. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1924. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1925. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1926. u32 temp;
  1927. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1928. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1929. */
  1930. switch (mode) {
  1931. case DRM_MODE_DPMS_ON:
  1932. case DRM_MODE_DPMS_STANDBY:
  1933. case DRM_MODE_DPMS_SUSPEND:
  1934. intel_update_watermarks(dev);
  1935. /* Enable the DPLL */
  1936. temp = I915_READ(dpll_reg);
  1937. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1938. I915_WRITE(dpll_reg, temp);
  1939. I915_READ(dpll_reg);
  1940. /* Wait for the clocks to stabilize. */
  1941. udelay(150);
  1942. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1943. I915_READ(dpll_reg);
  1944. /* Wait for the clocks to stabilize. */
  1945. udelay(150);
  1946. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1947. I915_READ(dpll_reg);
  1948. /* Wait for the clocks to stabilize. */
  1949. udelay(150);
  1950. }
  1951. /* Enable the pipe */
  1952. temp = I915_READ(pipeconf_reg);
  1953. if ((temp & PIPEACONF_ENABLE) == 0)
  1954. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1955. /* Enable the plane */
  1956. temp = I915_READ(dspcntr_reg);
  1957. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1958. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1959. /* Flush the plane changes */
  1960. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1961. }
  1962. intel_crtc_load_lut(crtc);
  1963. if ((IS_I965G(dev) || plane == 0))
  1964. intel_update_fbc(crtc, &crtc->mode);
  1965. /* Give the overlay scaler a chance to enable if it's on this pipe */
  1966. intel_crtc_dpms_overlay(intel_crtc, true);
  1967. break;
  1968. case DRM_MODE_DPMS_OFF:
  1969. intel_update_watermarks(dev);
  1970. /* Give the overlay scaler a chance to disable if it's on this pipe */
  1971. intel_crtc_dpms_overlay(intel_crtc, false);
  1972. drm_vblank_off(dev, pipe);
  1973. if (dev_priv->cfb_plane == plane &&
  1974. dev_priv->display.disable_fbc)
  1975. dev_priv->display.disable_fbc(dev);
  1976. /* Disable the VGA plane that we never use */
  1977. i915_disable_vga(dev);
  1978. /* Disable display plane */
  1979. temp = I915_READ(dspcntr_reg);
  1980. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1981. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1982. /* Flush the plane changes */
  1983. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1984. I915_READ(dspbase_reg);
  1985. }
  1986. if (!IS_I9XX(dev)) {
  1987. /* Wait for vblank for the disable to take effect */
  1988. intel_wait_for_vblank(dev);
  1989. }
  1990. /* Next, disable display pipes */
  1991. temp = I915_READ(pipeconf_reg);
  1992. if ((temp & PIPEACONF_ENABLE) != 0) {
  1993. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1994. I915_READ(pipeconf_reg);
  1995. }
  1996. /* Wait for vblank for the disable to take effect. */
  1997. intel_wait_for_vblank(dev);
  1998. temp = I915_READ(dpll_reg);
  1999. if ((temp & DPLL_VCO_ENABLE) != 0) {
  2000. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  2001. I915_READ(dpll_reg);
  2002. }
  2003. /* Wait for the clocks to turn off. */
  2004. udelay(150);
  2005. break;
  2006. }
  2007. }
  2008. /**
  2009. * Sets the power management mode of the pipe and plane.
  2010. *
  2011. * This code should probably grow support for turning the cursor off and back
  2012. * on appropriately at the same time as we're turning the pipe off/on.
  2013. */
  2014. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2015. {
  2016. struct drm_device *dev = crtc->dev;
  2017. struct drm_i915_private *dev_priv = dev->dev_private;
  2018. struct drm_i915_master_private *master_priv;
  2019. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2020. int pipe = intel_crtc->pipe;
  2021. bool enabled;
  2022. dev_priv->display.dpms(crtc, mode);
  2023. intel_crtc->dpms_mode = mode;
  2024. if (!dev->primary->master)
  2025. return;
  2026. master_priv = dev->primary->master->driver_priv;
  2027. if (!master_priv->sarea_priv)
  2028. return;
  2029. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2030. switch (pipe) {
  2031. case 0:
  2032. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2033. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2034. break;
  2035. case 1:
  2036. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2037. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2038. break;
  2039. default:
  2040. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2041. break;
  2042. }
  2043. }
  2044. static void intel_crtc_prepare (struct drm_crtc *crtc)
  2045. {
  2046. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2047. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2048. }
  2049. static void intel_crtc_commit (struct drm_crtc *crtc)
  2050. {
  2051. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2052. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2053. }
  2054. void intel_encoder_prepare (struct drm_encoder *encoder)
  2055. {
  2056. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2057. /* lvds has its own version of prepare see intel_lvds_prepare */
  2058. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2059. }
  2060. void intel_encoder_commit (struct drm_encoder *encoder)
  2061. {
  2062. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2063. /* lvds has its own version of commit see intel_lvds_commit */
  2064. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2065. }
  2066. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2067. struct drm_display_mode *mode,
  2068. struct drm_display_mode *adjusted_mode)
  2069. {
  2070. struct drm_device *dev = crtc->dev;
  2071. if (HAS_PCH_SPLIT(dev)) {
  2072. /* FDI link clock is fixed at 2.7G */
  2073. if (mode->clock * 3 > 27000 * 4)
  2074. return MODE_CLOCK_HIGH;
  2075. }
  2076. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2077. return true;
  2078. }
  2079. static int i945_get_display_clock_speed(struct drm_device *dev)
  2080. {
  2081. return 400000;
  2082. }
  2083. static int i915_get_display_clock_speed(struct drm_device *dev)
  2084. {
  2085. return 333000;
  2086. }
  2087. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2088. {
  2089. return 200000;
  2090. }
  2091. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2092. {
  2093. u16 gcfgc = 0;
  2094. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2095. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2096. return 133000;
  2097. else {
  2098. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2099. case GC_DISPLAY_CLOCK_333_MHZ:
  2100. return 333000;
  2101. default:
  2102. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2103. return 190000;
  2104. }
  2105. }
  2106. }
  2107. static int i865_get_display_clock_speed(struct drm_device *dev)
  2108. {
  2109. return 266000;
  2110. }
  2111. static int i855_get_display_clock_speed(struct drm_device *dev)
  2112. {
  2113. u16 hpllcc = 0;
  2114. /* Assume that the hardware is in the high speed state. This
  2115. * should be the default.
  2116. */
  2117. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2118. case GC_CLOCK_133_200:
  2119. case GC_CLOCK_100_200:
  2120. return 200000;
  2121. case GC_CLOCK_166_250:
  2122. return 250000;
  2123. case GC_CLOCK_100_133:
  2124. return 133000;
  2125. }
  2126. /* Shouldn't happen */
  2127. return 0;
  2128. }
  2129. static int i830_get_display_clock_speed(struct drm_device *dev)
  2130. {
  2131. return 133000;
  2132. }
  2133. /**
  2134. * Return the pipe currently connected to the panel fitter,
  2135. * or -1 if the panel fitter is not present or not in use
  2136. */
  2137. int intel_panel_fitter_pipe (struct drm_device *dev)
  2138. {
  2139. struct drm_i915_private *dev_priv = dev->dev_private;
  2140. u32 pfit_control;
  2141. /* i830 doesn't have a panel fitter */
  2142. if (IS_I830(dev))
  2143. return -1;
  2144. pfit_control = I915_READ(PFIT_CONTROL);
  2145. /* See if the panel fitter is in use */
  2146. if ((pfit_control & PFIT_ENABLE) == 0)
  2147. return -1;
  2148. /* 965 can place panel fitter on either pipe */
  2149. if (IS_I965G(dev))
  2150. return (pfit_control >> 29) & 0x3;
  2151. /* older chips can only use pipe 1 */
  2152. return 1;
  2153. }
  2154. struct fdi_m_n {
  2155. u32 tu;
  2156. u32 gmch_m;
  2157. u32 gmch_n;
  2158. u32 link_m;
  2159. u32 link_n;
  2160. };
  2161. static void
  2162. fdi_reduce_ratio(u32 *num, u32 *den)
  2163. {
  2164. while (*num > 0xffffff || *den > 0xffffff) {
  2165. *num >>= 1;
  2166. *den >>= 1;
  2167. }
  2168. }
  2169. #define DATA_N 0x800000
  2170. #define LINK_N 0x80000
  2171. static void
  2172. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2173. int link_clock, struct fdi_m_n *m_n)
  2174. {
  2175. u64 temp;
  2176. m_n->tu = 64; /* default size */
  2177. temp = (u64) DATA_N * pixel_clock;
  2178. temp = div_u64(temp, link_clock);
  2179. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2180. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2181. m_n->gmch_n = DATA_N;
  2182. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2183. temp = (u64) LINK_N * pixel_clock;
  2184. m_n->link_m = div_u64(temp, link_clock);
  2185. m_n->link_n = LINK_N;
  2186. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2187. }
  2188. struct intel_watermark_params {
  2189. unsigned long fifo_size;
  2190. unsigned long max_wm;
  2191. unsigned long default_wm;
  2192. unsigned long guard_size;
  2193. unsigned long cacheline_size;
  2194. };
  2195. /* Pineview has different values for various configs */
  2196. static struct intel_watermark_params pineview_display_wm = {
  2197. PINEVIEW_DISPLAY_FIFO,
  2198. PINEVIEW_MAX_WM,
  2199. PINEVIEW_DFT_WM,
  2200. PINEVIEW_GUARD_WM,
  2201. PINEVIEW_FIFO_LINE_SIZE
  2202. };
  2203. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2204. PINEVIEW_DISPLAY_FIFO,
  2205. PINEVIEW_MAX_WM,
  2206. PINEVIEW_DFT_HPLLOFF_WM,
  2207. PINEVIEW_GUARD_WM,
  2208. PINEVIEW_FIFO_LINE_SIZE
  2209. };
  2210. static struct intel_watermark_params pineview_cursor_wm = {
  2211. PINEVIEW_CURSOR_FIFO,
  2212. PINEVIEW_CURSOR_MAX_WM,
  2213. PINEVIEW_CURSOR_DFT_WM,
  2214. PINEVIEW_CURSOR_GUARD_WM,
  2215. PINEVIEW_FIFO_LINE_SIZE,
  2216. };
  2217. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2218. PINEVIEW_CURSOR_FIFO,
  2219. PINEVIEW_CURSOR_MAX_WM,
  2220. PINEVIEW_CURSOR_DFT_WM,
  2221. PINEVIEW_CURSOR_GUARD_WM,
  2222. PINEVIEW_FIFO_LINE_SIZE
  2223. };
  2224. static struct intel_watermark_params g4x_wm_info = {
  2225. G4X_FIFO_SIZE,
  2226. G4X_MAX_WM,
  2227. G4X_MAX_WM,
  2228. 2,
  2229. G4X_FIFO_LINE_SIZE,
  2230. };
  2231. static struct intel_watermark_params i945_wm_info = {
  2232. I945_FIFO_SIZE,
  2233. I915_MAX_WM,
  2234. 1,
  2235. 2,
  2236. I915_FIFO_LINE_SIZE
  2237. };
  2238. static struct intel_watermark_params i915_wm_info = {
  2239. I915_FIFO_SIZE,
  2240. I915_MAX_WM,
  2241. 1,
  2242. 2,
  2243. I915_FIFO_LINE_SIZE
  2244. };
  2245. static struct intel_watermark_params i855_wm_info = {
  2246. I855GM_FIFO_SIZE,
  2247. I915_MAX_WM,
  2248. 1,
  2249. 2,
  2250. I830_FIFO_LINE_SIZE
  2251. };
  2252. static struct intel_watermark_params i830_wm_info = {
  2253. I830_FIFO_SIZE,
  2254. I915_MAX_WM,
  2255. 1,
  2256. 2,
  2257. I830_FIFO_LINE_SIZE
  2258. };
  2259. static struct intel_watermark_params ironlake_display_wm_info = {
  2260. ILK_DISPLAY_FIFO,
  2261. ILK_DISPLAY_MAXWM,
  2262. ILK_DISPLAY_DFTWM,
  2263. 2,
  2264. ILK_FIFO_LINE_SIZE
  2265. };
  2266. static struct intel_watermark_params ironlake_display_srwm_info = {
  2267. ILK_DISPLAY_SR_FIFO,
  2268. ILK_DISPLAY_MAX_SRWM,
  2269. ILK_DISPLAY_DFT_SRWM,
  2270. 2,
  2271. ILK_FIFO_LINE_SIZE
  2272. };
  2273. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2274. ILK_CURSOR_SR_FIFO,
  2275. ILK_CURSOR_MAX_SRWM,
  2276. ILK_CURSOR_DFT_SRWM,
  2277. 2,
  2278. ILK_FIFO_LINE_SIZE
  2279. };
  2280. /**
  2281. * intel_calculate_wm - calculate watermark level
  2282. * @clock_in_khz: pixel clock
  2283. * @wm: chip FIFO params
  2284. * @pixel_size: display pixel size
  2285. * @latency_ns: memory latency for the platform
  2286. *
  2287. * Calculate the watermark level (the level at which the display plane will
  2288. * start fetching from memory again). Each chip has a different display
  2289. * FIFO size and allocation, so the caller needs to figure that out and pass
  2290. * in the correct intel_watermark_params structure.
  2291. *
  2292. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2293. * on the pixel size. When it reaches the watermark level, it'll start
  2294. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2295. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2296. * will occur, and a display engine hang could result.
  2297. */
  2298. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2299. struct intel_watermark_params *wm,
  2300. int pixel_size,
  2301. unsigned long latency_ns)
  2302. {
  2303. long entries_required, wm_size;
  2304. /*
  2305. * Note: we need to make sure we don't overflow for various clock &
  2306. * latency values.
  2307. * clocks go from a few thousand to several hundred thousand.
  2308. * latency is usually a few thousand
  2309. */
  2310. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2311. 1000;
  2312. entries_required /= wm->cacheline_size;
  2313. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2314. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2315. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2316. /* Don't promote wm_size to unsigned... */
  2317. if (wm_size > (long)wm->max_wm)
  2318. wm_size = wm->max_wm;
  2319. if (wm_size <= 0)
  2320. wm_size = wm->default_wm;
  2321. return wm_size;
  2322. }
  2323. struct cxsr_latency {
  2324. int is_desktop;
  2325. int is_ddr3;
  2326. unsigned long fsb_freq;
  2327. unsigned long mem_freq;
  2328. unsigned long display_sr;
  2329. unsigned long display_hpll_disable;
  2330. unsigned long cursor_sr;
  2331. unsigned long cursor_hpll_disable;
  2332. };
  2333. static struct cxsr_latency cxsr_latency_table[] = {
  2334. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2335. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2336. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2337. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2338. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2339. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2340. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2341. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2342. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2343. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2344. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2345. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2346. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2347. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2348. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2349. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2350. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2351. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2352. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2353. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2354. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2355. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2356. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2357. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2358. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2359. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2360. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2361. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2362. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2363. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2364. };
  2365. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
  2366. int fsb, int mem)
  2367. {
  2368. int i;
  2369. struct cxsr_latency *latency;
  2370. if (fsb == 0 || mem == 0)
  2371. return NULL;
  2372. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2373. latency = &cxsr_latency_table[i];
  2374. if (is_desktop == latency->is_desktop &&
  2375. is_ddr3 == latency->is_ddr3 &&
  2376. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2377. return latency;
  2378. }
  2379. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2380. return NULL;
  2381. }
  2382. static void pineview_disable_cxsr(struct drm_device *dev)
  2383. {
  2384. struct drm_i915_private *dev_priv = dev->dev_private;
  2385. u32 reg;
  2386. /* deactivate cxsr */
  2387. reg = I915_READ(DSPFW3);
  2388. reg &= ~(PINEVIEW_SELF_REFRESH_EN);
  2389. I915_WRITE(DSPFW3, reg);
  2390. DRM_INFO("Big FIFO is disabled\n");
  2391. }
  2392. /*
  2393. * Latency for FIFO fetches is dependent on several factors:
  2394. * - memory configuration (speed, channels)
  2395. * - chipset
  2396. * - current MCH state
  2397. * It can be fairly high in some situations, so here we assume a fairly
  2398. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2399. * set this value too high, the FIFO will fetch frequently to stay full)
  2400. * and power consumption (set it too low to save power and we might see
  2401. * FIFO underruns and display "flicker").
  2402. *
  2403. * A value of 5us seems to be a good balance; safe for very low end
  2404. * platforms but not overly aggressive on lower latency configs.
  2405. */
  2406. static const int latency_ns = 5000;
  2407. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2408. {
  2409. struct drm_i915_private *dev_priv = dev->dev_private;
  2410. uint32_t dsparb = I915_READ(DSPARB);
  2411. int size;
  2412. if (plane == 0)
  2413. size = dsparb & 0x7f;
  2414. else
  2415. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  2416. (dsparb & 0x7f);
  2417. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2418. plane ? "B" : "A", size);
  2419. return size;
  2420. }
  2421. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2422. {
  2423. struct drm_i915_private *dev_priv = dev->dev_private;
  2424. uint32_t dsparb = I915_READ(DSPARB);
  2425. int size;
  2426. if (plane == 0)
  2427. size = dsparb & 0x1ff;
  2428. else
  2429. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  2430. (dsparb & 0x1ff);
  2431. size >>= 1; /* Convert to cachelines */
  2432. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2433. plane ? "B" : "A", size);
  2434. return size;
  2435. }
  2436. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2437. {
  2438. struct drm_i915_private *dev_priv = dev->dev_private;
  2439. uint32_t dsparb = I915_READ(DSPARB);
  2440. int size;
  2441. size = dsparb & 0x7f;
  2442. size >>= 2; /* Convert to cachelines */
  2443. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2444. plane ? "B" : "A",
  2445. size);
  2446. return size;
  2447. }
  2448. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2449. {
  2450. struct drm_i915_private *dev_priv = dev->dev_private;
  2451. uint32_t dsparb = I915_READ(DSPARB);
  2452. int size;
  2453. size = dsparb & 0x7f;
  2454. size >>= 1; /* Convert to cachelines */
  2455. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2456. plane ? "B" : "A", size);
  2457. return size;
  2458. }
  2459. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2460. int planeb_clock, int sr_hdisplay, int pixel_size)
  2461. {
  2462. struct drm_i915_private *dev_priv = dev->dev_private;
  2463. u32 reg;
  2464. unsigned long wm;
  2465. struct cxsr_latency *latency;
  2466. int sr_clock;
  2467. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2468. dev_priv->fsb_freq, dev_priv->mem_freq);
  2469. if (!latency) {
  2470. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2471. pineview_disable_cxsr(dev);
  2472. return;
  2473. }
  2474. if (!planea_clock || !planeb_clock) {
  2475. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2476. /* Display SR */
  2477. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2478. pixel_size, latency->display_sr);
  2479. reg = I915_READ(DSPFW1);
  2480. reg &= ~DSPFW_SR_MASK;
  2481. reg |= wm << DSPFW_SR_SHIFT;
  2482. I915_WRITE(DSPFW1, reg);
  2483. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2484. /* cursor SR */
  2485. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2486. pixel_size, latency->cursor_sr);
  2487. reg = I915_READ(DSPFW3);
  2488. reg &= ~DSPFW_CURSOR_SR_MASK;
  2489. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2490. I915_WRITE(DSPFW3, reg);
  2491. /* Display HPLL off SR */
  2492. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2493. pixel_size, latency->display_hpll_disable);
  2494. reg = I915_READ(DSPFW3);
  2495. reg &= ~DSPFW_HPLL_SR_MASK;
  2496. reg |= wm & DSPFW_HPLL_SR_MASK;
  2497. I915_WRITE(DSPFW3, reg);
  2498. /* cursor HPLL off SR */
  2499. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2500. pixel_size, latency->cursor_hpll_disable);
  2501. reg = I915_READ(DSPFW3);
  2502. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2503. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2504. I915_WRITE(DSPFW3, reg);
  2505. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2506. /* activate cxsr */
  2507. reg = I915_READ(DSPFW3);
  2508. reg |= PINEVIEW_SELF_REFRESH_EN;
  2509. I915_WRITE(DSPFW3, reg);
  2510. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2511. } else {
  2512. pineview_disable_cxsr(dev);
  2513. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2514. }
  2515. }
  2516. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2517. int planeb_clock, int sr_hdisplay, int pixel_size)
  2518. {
  2519. struct drm_i915_private *dev_priv = dev->dev_private;
  2520. int total_size, cacheline_size;
  2521. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2522. struct intel_watermark_params planea_params, planeb_params;
  2523. unsigned long line_time_us;
  2524. int sr_clock, sr_entries = 0, entries_required;
  2525. /* Create copies of the base settings for each pipe */
  2526. planea_params = planeb_params = g4x_wm_info;
  2527. /* Grab a couple of global values before we overwrite them */
  2528. total_size = planea_params.fifo_size;
  2529. cacheline_size = planea_params.cacheline_size;
  2530. /*
  2531. * Note: we need to make sure we don't overflow for various clock &
  2532. * latency values.
  2533. * clocks go from a few thousand to several hundred thousand.
  2534. * latency is usually a few thousand
  2535. */
  2536. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2537. 1000;
  2538. entries_required /= G4X_FIFO_LINE_SIZE;
  2539. planea_wm = entries_required + planea_params.guard_size;
  2540. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2541. 1000;
  2542. entries_required /= G4X_FIFO_LINE_SIZE;
  2543. planeb_wm = entries_required + planeb_params.guard_size;
  2544. cursora_wm = cursorb_wm = 16;
  2545. cursor_sr = 32;
  2546. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2547. /* Calc sr entries for one plane configs */
  2548. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2549. /* self-refresh has much higher latency */
  2550. static const int sr_latency_ns = 12000;
  2551. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2552. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2553. /* Use ns/us then divide to preserve precision */
  2554. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2555. pixel_size * sr_hdisplay) / 1000;
  2556. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2557. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2558. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2559. } else {
  2560. /* Turn off self refresh if both pipes are enabled */
  2561. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2562. & ~FW_BLC_SELF_EN);
  2563. }
  2564. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2565. planea_wm, planeb_wm, sr_entries);
  2566. planea_wm &= 0x3f;
  2567. planeb_wm &= 0x3f;
  2568. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2569. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2570. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2571. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2572. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2573. /* HPLL off in SR has some issues on G4x... disable it */
  2574. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2575. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2576. }
  2577. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2578. int planeb_clock, int sr_hdisplay, int pixel_size)
  2579. {
  2580. struct drm_i915_private *dev_priv = dev->dev_private;
  2581. unsigned long line_time_us;
  2582. int sr_clock, sr_entries, srwm = 1;
  2583. /* Calc sr entries for one plane configs */
  2584. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2585. /* self-refresh has much higher latency */
  2586. static const int sr_latency_ns = 12000;
  2587. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2588. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2589. /* Use ns/us then divide to preserve precision */
  2590. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2591. pixel_size * sr_hdisplay) / 1000;
  2592. sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
  2593. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2594. srwm = I945_FIFO_SIZE - sr_entries;
  2595. if (srwm < 0)
  2596. srwm = 1;
  2597. srwm &= 0x3f;
  2598. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2599. } else {
  2600. /* Turn off self refresh if both pipes are enabled */
  2601. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2602. & ~FW_BLC_SELF_EN);
  2603. }
  2604. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2605. srwm);
  2606. /* 965 has limitations... */
  2607. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2608. (8 << 0));
  2609. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2610. }
  2611. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2612. int planeb_clock, int sr_hdisplay, int pixel_size)
  2613. {
  2614. struct drm_i915_private *dev_priv = dev->dev_private;
  2615. uint32_t fwater_lo;
  2616. uint32_t fwater_hi;
  2617. int total_size, cacheline_size, cwm, srwm = 1;
  2618. int planea_wm, planeb_wm;
  2619. struct intel_watermark_params planea_params, planeb_params;
  2620. unsigned long line_time_us;
  2621. int sr_clock, sr_entries = 0;
  2622. /* Create copies of the base settings for each pipe */
  2623. if (IS_I965GM(dev) || IS_I945GM(dev))
  2624. planea_params = planeb_params = i945_wm_info;
  2625. else if (IS_I9XX(dev))
  2626. planea_params = planeb_params = i915_wm_info;
  2627. else
  2628. planea_params = planeb_params = i855_wm_info;
  2629. /* Grab a couple of global values before we overwrite them */
  2630. total_size = planea_params.fifo_size;
  2631. cacheline_size = planea_params.cacheline_size;
  2632. /* Update per-plane FIFO sizes */
  2633. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2634. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2635. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2636. pixel_size, latency_ns);
  2637. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2638. pixel_size, latency_ns);
  2639. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2640. /*
  2641. * Overlay gets an aggressive default since video jitter is bad.
  2642. */
  2643. cwm = 2;
  2644. /* Calc sr entries for one plane configs */
  2645. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2646. (!planea_clock || !planeb_clock)) {
  2647. /* self-refresh has much higher latency */
  2648. static const int sr_latency_ns = 6000;
  2649. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2650. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2651. /* Use ns/us then divide to preserve precision */
  2652. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2653. pixel_size * sr_hdisplay) / 1000;
  2654. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2655. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2656. srwm = total_size - sr_entries;
  2657. if (srwm < 0)
  2658. srwm = 1;
  2659. if (IS_I945G(dev) || IS_I945GM(dev))
  2660. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2661. else if (IS_I915GM(dev)) {
  2662. /* 915M has a smaller SRWM field */
  2663. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2664. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2665. }
  2666. } else {
  2667. /* Turn off self refresh if both pipes are enabled */
  2668. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2669. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2670. & ~FW_BLC_SELF_EN);
  2671. } else if (IS_I915GM(dev)) {
  2672. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2673. }
  2674. }
  2675. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2676. planea_wm, planeb_wm, cwm, srwm);
  2677. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2678. fwater_hi = (cwm & 0x1f);
  2679. /* Set request length to 8 cachelines per fetch */
  2680. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2681. fwater_hi = fwater_hi | (1 << 8);
  2682. I915_WRITE(FW_BLC, fwater_lo);
  2683. I915_WRITE(FW_BLC2, fwater_hi);
  2684. }
  2685. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2686. int unused2, int pixel_size)
  2687. {
  2688. struct drm_i915_private *dev_priv = dev->dev_private;
  2689. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2690. int planea_wm;
  2691. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2692. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2693. pixel_size, latency_ns);
  2694. fwater_lo |= (3<<8) | planea_wm;
  2695. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2696. I915_WRITE(FW_BLC, fwater_lo);
  2697. }
  2698. #define ILK_LP0_PLANE_LATENCY 700
  2699. static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
  2700. int planeb_clock, int sr_hdisplay, int pixel_size)
  2701. {
  2702. struct drm_i915_private *dev_priv = dev->dev_private;
  2703. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  2704. int sr_wm, cursor_wm;
  2705. unsigned long line_time_us;
  2706. int sr_clock, entries_required;
  2707. u32 reg_value;
  2708. /* Calculate and update the watermark for plane A */
  2709. if (planea_clock) {
  2710. entries_required = ((planea_clock / 1000) * pixel_size *
  2711. ILK_LP0_PLANE_LATENCY) / 1000;
  2712. entries_required = DIV_ROUND_UP(entries_required,
  2713. ironlake_display_wm_info.cacheline_size);
  2714. planea_wm = entries_required +
  2715. ironlake_display_wm_info.guard_size;
  2716. if (planea_wm > (int)ironlake_display_wm_info.max_wm)
  2717. planea_wm = ironlake_display_wm_info.max_wm;
  2718. cursora_wm = 16;
  2719. reg_value = I915_READ(WM0_PIPEA_ILK);
  2720. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2721. reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
  2722. (cursora_wm & WM0_PIPE_CURSOR_MASK);
  2723. I915_WRITE(WM0_PIPEA_ILK, reg_value);
  2724. DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
  2725. "cursor: %d\n", planea_wm, cursora_wm);
  2726. }
  2727. /* Calculate and update the watermark for plane B */
  2728. if (planeb_clock) {
  2729. entries_required = ((planeb_clock / 1000) * pixel_size *
  2730. ILK_LP0_PLANE_LATENCY) / 1000;
  2731. entries_required = DIV_ROUND_UP(entries_required,
  2732. ironlake_display_wm_info.cacheline_size);
  2733. planeb_wm = entries_required +
  2734. ironlake_display_wm_info.guard_size;
  2735. if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
  2736. planeb_wm = ironlake_display_wm_info.max_wm;
  2737. cursorb_wm = 16;
  2738. reg_value = I915_READ(WM0_PIPEB_ILK);
  2739. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2740. reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
  2741. (cursorb_wm & WM0_PIPE_CURSOR_MASK);
  2742. I915_WRITE(WM0_PIPEB_ILK, reg_value);
  2743. DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
  2744. "cursor: %d\n", planeb_wm, cursorb_wm);
  2745. }
  2746. /*
  2747. * Calculate and update the self-refresh watermark only when one
  2748. * display plane is used.
  2749. */
  2750. if (!planea_clock || !planeb_clock) {
  2751. int line_count;
  2752. /* Read the self-refresh latency. The unit is 0.5us */
  2753. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2754. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2755. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2756. /* Use ns/us then divide to preserve precision */
  2757. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2758. / 1000;
  2759. /* calculate the self-refresh watermark for display plane */
  2760. entries_required = line_count * sr_hdisplay * pixel_size;
  2761. entries_required = DIV_ROUND_UP(entries_required,
  2762. ironlake_display_srwm_info.cacheline_size);
  2763. sr_wm = entries_required +
  2764. ironlake_display_srwm_info.guard_size;
  2765. /* calculate the self-refresh watermark for display cursor */
  2766. entries_required = line_count * pixel_size * 64;
  2767. entries_required = DIV_ROUND_UP(entries_required,
  2768. ironlake_cursor_srwm_info.cacheline_size);
  2769. cursor_wm = entries_required +
  2770. ironlake_cursor_srwm_info.guard_size;
  2771. /* configure watermark and enable self-refresh */
  2772. reg_value = I915_READ(WM1_LP_ILK);
  2773. reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
  2774. WM1_LP_CURSOR_MASK);
  2775. reg_value |= WM1_LP_SR_EN |
  2776. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2777. (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
  2778. I915_WRITE(WM1_LP_ILK, reg_value);
  2779. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2780. "cursor %d\n", sr_wm, cursor_wm);
  2781. } else {
  2782. /* Turn off self refresh if both pipes are enabled */
  2783. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  2784. }
  2785. }
  2786. /**
  2787. * intel_update_watermarks - update FIFO watermark values based on current modes
  2788. *
  2789. * Calculate watermark values for the various WM regs based on current mode
  2790. * and plane configuration.
  2791. *
  2792. * There are several cases to deal with here:
  2793. * - normal (i.e. non-self-refresh)
  2794. * - self-refresh (SR) mode
  2795. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2796. * - lines are small relative to FIFO size (buffer can hold more than 2
  2797. * lines), so need to account for TLB latency
  2798. *
  2799. * The normal calculation is:
  2800. * watermark = dotclock * bytes per pixel * latency
  2801. * where latency is platform & configuration dependent (we assume pessimal
  2802. * values here).
  2803. *
  2804. * The SR calculation is:
  2805. * watermark = (trunc(latency/line time)+1) * surface width *
  2806. * bytes per pixel
  2807. * where
  2808. * line time = htotal / dotclock
  2809. * and latency is assumed to be high, as above.
  2810. *
  2811. * The final value programmed to the register should always be rounded up,
  2812. * and include an extra 2 entries to account for clock crossings.
  2813. *
  2814. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2815. * to set the non-SR watermarks to 8.
  2816. */
  2817. static void intel_update_watermarks(struct drm_device *dev)
  2818. {
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. struct drm_crtc *crtc;
  2821. struct intel_crtc *intel_crtc;
  2822. int sr_hdisplay = 0;
  2823. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2824. int enabled = 0, pixel_size = 0;
  2825. if (!dev_priv->display.update_wm)
  2826. return;
  2827. /* Get the clock config from both planes */
  2828. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2829. intel_crtc = to_intel_crtc(crtc);
  2830. if (crtc->enabled) {
  2831. enabled++;
  2832. if (intel_crtc->plane == 0) {
  2833. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  2834. intel_crtc->pipe, crtc->mode.clock);
  2835. planea_clock = crtc->mode.clock;
  2836. } else {
  2837. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  2838. intel_crtc->pipe, crtc->mode.clock);
  2839. planeb_clock = crtc->mode.clock;
  2840. }
  2841. sr_hdisplay = crtc->mode.hdisplay;
  2842. sr_clock = crtc->mode.clock;
  2843. if (crtc->fb)
  2844. pixel_size = crtc->fb->bits_per_pixel / 8;
  2845. else
  2846. pixel_size = 4; /* by default */
  2847. }
  2848. }
  2849. if (enabled <= 0)
  2850. return;
  2851. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  2852. sr_hdisplay, pixel_size);
  2853. }
  2854. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  2855. struct drm_display_mode *mode,
  2856. struct drm_display_mode *adjusted_mode,
  2857. int x, int y,
  2858. struct drm_framebuffer *old_fb)
  2859. {
  2860. struct drm_device *dev = crtc->dev;
  2861. struct drm_i915_private *dev_priv = dev->dev_private;
  2862. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2863. int pipe = intel_crtc->pipe;
  2864. int plane = intel_crtc->plane;
  2865. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  2866. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2867. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  2868. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  2869. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  2870. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  2871. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  2872. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  2873. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  2874. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  2875. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  2876. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  2877. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  2878. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  2879. int refclk, num_connectors = 0;
  2880. intel_clock_t clock, reduced_clock;
  2881. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  2882. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  2883. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  2884. bool is_edp = false;
  2885. struct drm_mode_config *mode_config = &dev->mode_config;
  2886. struct drm_encoder *encoder;
  2887. struct intel_encoder *intel_encoder = NULL;
  2888. const intel_limit_t *limit;
  2889. int ret;
  2890. struct fdi_m_n m_n = {0};
  2891. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  2892. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  2893. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  2894. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  2895. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  2896. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  2897. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  2898. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  2899. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  2900. int lvds_reg = LVDS;
  2901. u32 temp;
  2902. int sdvo_pixel_multiply;
  2903. int target_clock;
  2904. drm_vblank_pre_modeset(dev, pipe);
  2905. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  2906. if (!encoder || encoder->crtc != crtc)
  2907. continue;
  2908. intel_encoder = enc_to_intel_encoder(encoder);
  2909. switch (intel_encoder->type) {
  2910. case INTEL_OUTPUT_LVDS:
  2911. is_lvds = true;
  2912. break;
  2913. case INTEL_OUTPUT_SDVO:
  2914. case INTEL_OUTPUT_HDMI:
  2915. is_sdvo = true;
  2916. if (intel_encoder->needs_tv_clock)
  2917. is_tv = true;
  2918. break;
  2919. case INTEL_OUTPUT_DVO:
  2920. is_dvo = true;
  2921. break;
  2922. case INTEL_OUTPUT_TVOUT:
  2923. is_tv = true;
  2924. break;
  2925. case INTEL_OUTPUT_ANALOG:
  2926. is_crt = true;
  2927. break;
  2928. case INTEL_OUTPUT_DISPLAYPORT:
  2929. is_dp = true;
  2930. break;
  2931. case INTEL_OUTPUT_EDP:
  2932. is_edp = true;
  2933. break;
  2934. }
  2935. num_connectors++;
  2936. }
  2937. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  2938. refclk = dev_priv->lvds_ssc_freq * 1000;
  2939. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  2940. refclk / 1000);
  2941. } else if (IS_I9XX(dev)) {
  2942. refclk = 96000;
  2943. if (HAS_PCH_SPLIT(dev))
  2944. refclk = 120000; /* 120Mhz refclk */
  2945. } else {
  2946. refclk = 48000;
  2947. }
  2948. /*
  2949. * Returns a set of divisors for the desired target clock with the given
  2950. * refclk, or FALSE. The returned values represent the clock equation:
  2951. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  2952. */
  2953. limit = intel_limit(crtc);
  2954. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  2955. if (!ok) {
  2956. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  2957. drm_vblank_post_modeset(dev, pipe);
  2958. return -EINVAL;
  2959. }
  2960. if (is_lvds && dev_priv->lvds_downclock_avail) {
  2961. has_reduced_clock = limit->find_pll(limit, crtc,
  2962. dev_priv->lvds_downclock,
  2963. refclk,
  2964. &reduced_clock);
  2965. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  2966. /*
  2967. * If the different P is found, it means that we can't
  2968. * switch the display clock by using the FP0/FP1.
  2969. * In such case we will disable the LVDS downclock
  2970. * feature.
  2971. */
  2972. DRM_DEBUG_KMS("Different P is found for "
  2973. "LVDS clock/downclock\n");
  2974. has_reduced_clock = 0;
  2975. }
  2976. }
  2977. /* SDVO TV has fixed PLL values depend on its clock range,
  2978. this mirrors vbios setting. */
  2979. if (is_sdvo && is_tv) {
  2980. if (adjusted_mode->clock >= 100000
  2981. && adjusted_mode->clock < 140500) {
  2982. clock.p1 = 2;
  2983. clock.p2 = 10;
  2984. clock.n = 3;
  2985. clock.m1 = 16;
  2986. clock.m2 = 8;
  2987. } else if (adjusted_mode->clock >= 140500
  2988. && adjusted_mode->clock <= 200000) {
  2989. clock.p1 = 1;
  2990. clock.p2 = 10;
  2991. clock.n = 6;
  2992. clock.m1 = 12;
  2993. clock.m2 = 8;
  2994. }
  2995. }
  2996. /* FDI link */
  2997. if (HAS_PCH_SPLIT(dev)) {
  2998. int lane = 0, link_bw, bpp;
  2999. /* eDP doesn't require FDI link, so just set DP M/N
  3000. according to current link config */
  3001. if (is_edp) {
  3002. target_clock = mode->clock;
  3003. intel_edp_link_config(intel_encoder,
  3004. &lane, &link_bw);
  3005. } else {
  3006. /* DP over FDI requires target mode clock
  3007. instead of link clock */
  3008. if (is_dp)
  3009. target_clock = mode->clock;
  3010. else
  3011. target_clock = adjusted_mode->clock;
  3012. link_bw = 270000;
  3013. }
  3014. /* determine panel color depth */
  3015. temp = I915_READ(pipeconf_reg);
  3016. temp &= ~PIPE_BPC_MASK;
  3017. if (is_lvds) {
  3018. int lvds_reg = I915_READ(PCH_LVDS);
  3019. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3020. if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3021. temp |= PIPE_8BPC;
  3022. else
  3023. temp |= PIPE_6BPC;
  3024. } else if (is_edp) {
  3025. switch (dev_priv->edp_bpp/3) {
  3026. case 8:
  3027. temp |= PIPE_8BPC;
  3028. break;
  3029. case 10:
  3030. temp |= PIPE_10BPC;
  3031. break;
  3032. case 6:
  3033. temp |= PIPE_6BPC;
  3034. break;
  3035. case 12:
  3036. temp |= PIPE_12BPC;
  3037. break;
  3038. }
  3039. } else
  3040. temp |= PIPE_8BPC;
  3041. I915_WRITE(pipeconf_reg, temp);
  3042. I915_READ(pipeconf_reg);
  3043. switch (temp & PIPE_BPC_MASK) {
  3044. case PIPE_8BPC:
  3045. bpp = 24;
  3046. break;
  3047. case PIPE_10BPC:
  3048. bpp = 30;
  3049. break;
  3050. case PIPE_6BPC:
  3051. bpp = 18;
  3052. break;
  3053. case PIPE_12BPC:
  3054. bpp = 36;
  3055. break;
  3056. default:
  3057. DRM_ERROR("unknown pipe bpc value\n");
  3058. bpp = 24;
  3059. }
  3060. if (!lane) {
  3061. /*
  3062. * Account for spread spectrum to avoid
  3063. * oversubscribing the link. Max center spread
  3064. * is 2.5%; use 5% for safety's sake.
  3065. */
  3066. u32 bps = target_clock * bpp * 21 / 20;
  3067. lane = bps / (link_bw * 8) + 1;
  3068. }
  3069. intel_crtc->fdi_lanes = lane;
  3070. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3071. }
  3072. /* Ironlake: try to setup display ref clock before DPLL
  3073. * enabling. This is only under driver's control after
  3074. * PCH B stepping, previous chipset stepping should be
  3075. * ignoring this setting.
  3076. */
  3077. if (HAS_PCH_SPLIT(dev)) {
  3078. temp = I915_READ(PCH_DREF_CONTROL);
  3079. /* Always enable nonspread source */
  3080. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3081. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3082. I915_WRITE(PCH_DREF_CONTROL, temp);
  3083. POSTING_READ(PCH_DREF_CONTROL);
  3084. temp &= ~DREF_SSC_SOURCE_MASK;
  3085. temp |= DREF_SSC_SOURCE_ENABLE;
  3086. I915_WRITE(PCH_DREF_CONTROL, temp);
  3087. POSTING_READ(PCH_DREF_CONTROL);
  3088. udelay(200);
  3089. if (is_edp) {
  3090. if (dev_priv->lvds_use_ssc) {
  3091. temp |= DREF_SSC1_ENABLE;
  3092. I915_WRITE(PCH_DREF_CONTROL, temp);
  3093. POSTING_READ(PCH_DREF_CONTROL);
  3094. udelay(200);
  3095. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3096. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3097. I915_WRITE(PCH_DREF_CONTROL, temp);
  3098. POSTING_READ(PCH_DREF_CONTROL);
  3099. } else {
  3100. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3101. I915_WRITE(PCH_DREF_CONTROL, temp);
  3102. POSTING_READ(PCH_DREF_CONTROL);
  3103. }
  3104. }
  3105. }
  3106. if (IS_PINEVIEW(dev)) {
  3107. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3108. if (has_reduced_clock)
  3109. fp2 = (1 << reduced_clock.n) << 16 |
  3110. reduced_clock.m1 << 8 | reduced_clock.m2;
  3111. } else {
  3112. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3113. if (has_reduced_clock)
  3114. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3115. reduced_clock.m2;
  3116. }
  3117. if (!HAS_PCH_SPLIT(dev))
  3118. dpll = DPLL_VGA_MODE_DIS;
  3119. if (IS_I9XX(dev)) {
  3120. if (is_lvds)
  3121. dpll |= DPLLB_MODE_LVDS;
  3122. else
  3123. dpll |= DPLLB_MODE_DAC_SERIAL;
  3124. if (is_sdvo) {
  3125. dpll |= DPLL_DVO_HIGH_SPEED;
  3126. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3127. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3128. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3129. else if (HAS_PCH_SPLIT(dev))
  3130. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3131. }
  3132. if (is_dp)
  3133. dpll |= DPLL_DVO_HIGH_SPEED;
  3134. /* compute bitmask from p1 value */
  3135. if (IS_PINEVIEW(dev))
  3136. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3137. else {
  3138. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3139. /* also FPA1 */
  3140. if (HAS_PCH_SPLIT(dev))
  3141. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3142. if (IS_G4X(dev) && has_reduced_clock)
  3143. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3144. }
  3145. switch (clock.p2) {
  3146. case 5:
  3147. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3148. break;
  3149. case 7:
  3150. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3151. break;
  3152. case 10:
  3153. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3154. break;
  3155. case 14:
  3156. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3157. break;
  3158. }
  3159. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3160. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3161. } else {
  3162. if (is_lvds) {
  3163. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3164. } else {
  3165. if (clock.p1 == 2)
  3166. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3167. else
  3168. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3169. if (clock.p2 == 4)
  3170. dpll |= PLL_P2_DIVIDE_BY_4;
  3171. }
  3172. }
  3173. if (is_sdvo && is_tv)
  3174. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3175. else if (is_tv)
  3176. /* XXX: just matching BIOS for now */
  3177. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3178. dpll |= 3;
  3179. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3180. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3181. else
  3182. dpll |= PLL_REF_INPUT_DREFCLK;
  3183. /* setup pipeconf */
  3184. pipeconf = I915_READ(pipeconf_reg);
  3185. /* Set up the display plane register */
  3186. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3187. /* Ironlake's plane is forced to pipe, bit 24 is to
  3188. enable color space conversion */
  3189. if (!HAS_PCH_SPLIT(dev)) {
  3190. if (pipe == 0)
  3191. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3192. else
  3193. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3194. }
  3195. if (pipe == 0 && !IS_I965G(dev)) {
  3196. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3197. * core speed.
  3198. *
  3199. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3200. * pipe == 0 check?
  3201. */
  3202. if (mode->clock >
  3203. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3204. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  3205. else
  3206. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  3207. }
  3208. /* Disable the panel fitter if it was on our pipe */
  3209. if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
  3210. I915_WRITE(PFIT_CONTROL, 0);
  3211. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3212. drm_mode_debug_printmodeline(mode);
  3213. /* assign to Ironlake registers */
  3214. if (HAS_PCH_SPLIT(dev)) {
  3215. fp_reg = pch_fp_reg;
  3216. dpll_reg = pch_dpll_reg;
  3217. }
  3218. if (is_edp) {
  3219. ironlake_disable_pll_edp(crtc);
  3220. } else if ((dpll & DPLL_VCO_ENABLE)) {
  3221. I915_WRITE(fp_reg, fp);
  3222. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3223. I915_READ(dpll_reg);
  3224. udelay(150);
  3225. }
  3226. /* enable transcoder DPLL */
  3227. if (HAS_PCH_CPT(dev)) {
  3228. temp = I915_READ(PCH_DPLL_SEL);
  3229. if (trans_dpll_sel == 0)
  3230. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  3231. else
  3232. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3233. I915_WRITE(PCH_DPLL_SEL, temp);
  3234. I915_READ(PCH_DPLL_SEL);
  3235. udelay(150);
  3236. }
  3237. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3238. * This is an exception to the general rule that mode_set doesn't turn
  3239. * things on.
  3240. */
  3241. if (is_lvds) {
  3242. u32 lvds;
  3243. if (HAS_PCH_SPLIT(dev))
  3244. lvds_reg = PCH_LVDS;
  3245. lvds = I915_READ(lvds_reg);
  3246. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3247. if (pipe == 1) {
  3248. if (HAS_PCH_CPT(dev))
  3249. lvds |= PORT_TRANS_B_SEL_CPT;
  3250. else
  3251. lvds |= LVDS_PIPEB_SELECT;
  3252. } else {
  3253. if (HAS_PCH_CPT(dev))
  3254. lvds &= ~PORT_TRANS_SEL_MASK;
  3255. else
  3256. lvds &= ~LVDS_PIPEB_SELECT;
  3257. }
  3258. /* set the corresponsding LVDS_BORDER bit */
  3259. lvds |= dev_priv->lvds_border_bits;
  3260. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3261. * set the DPLLs for dual-channel mode or not.
  3262. */
  3263. if (clock.p2 == 7)
  3264. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3265. else
  3266. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3267. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3268. * appropriately here, but we need to look more thoroughly into how
  3269. * panels behave in the two modes.
  3270. */
  3271. /* set the dithering flag */
  3272. if (IS_I965G(dev)) {
  3273. if (dev_priv->lvds_dither) {
  3274. if (HAS_PCH_SPLIT(dev)) {
  3275. pipeconf |= PIPE_ENABLE_DITHER;
  3276. pipeconf |= PIPE_DITHER_TYPE_ST01;
  3277. } else
  3278. lvds |= LVDS_ENABLE_DITHER;
  3279. } else {
  3280. if (HAS_PCH_SPLIT(dev)) {
  3281. pipeconf &= ~PIPE_ENABLE_DITHER;
  3282. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3283. } else
  3284. lvds &= ~LVDS_ENABLE_DITHER;
  3285. }
  3286. }
  3287. I915_WRITE(lvds_reg, lvds);
  3288. I915_READ(lvds_reg);
  3289. }
  3290. if (is_dp)
  3291. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3292. else if (HAS_PCH_SPLIT(dev)) {
  3293. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3294. if (pipe == 0) {
  3295. I915_WRITE(TRANSA_DATA_M1, 0);
  3296. I915_WRITE(TRANSA_DATA_N1, 0);
  3297. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3298. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3299. } else {
  3300. I915_WRITE(TRANSB_DATA_M1, 0);
  3301. I915_WRITE(TRANSB_DATA_N1, 0);
  3302. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3303. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3304. }
  3305. }
  3306. if (!is_edp) {
  3307. I915_WRITE(fp_reg, fp);
  3308. I915_WRITE(dpll_reg, dpll);
  3309. I915_READ(dpll_reg);
  3310. /* Wait for the clocks to stabilize. */
  3311. udelay(150);
  3312. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3313. if (is_sdvo) {
  3314. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3315. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  3316. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  3317. } else
  3318. I915_WRITE(dpll_md_reg, 0);
  3319. } else {
  3320. /* write it again -- the BIOS does, after all */
  3321. I915_WRITE(dpll_reg, dpll);
  3322. }
  3323. I915_READ(dpll_reg);
  3324. /* Wait for the clocks to stabilize. */
  3325. udelay(150);
  3326. }
  3327. if (is_lvds && has_reduced_clock && i915_powersave) {
  3328. I915_WRITE(fp_reg + 4, fp2);
  3329. intel_crtc->lowfreq_avail = true;
  3330. if (HAS_PIPE_CXSR(dev)) {
  3331. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3332. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3333. }
  3334. } else {
  3335. I915_WRITE(fp_reg + 4, fp);
  3336. intel_crtc->lowfreq_avail = false;
  3337. if (HAS_PIPE_CXSR(dev)) {
  3338. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3339. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3340. }
  3341. }
  3342. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3343. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3344. /* the chip adds 2 halflines automatically */
  3345. adjusted_mode->crtc_vdisplay -= 1;
  3346. adjusted_mode->crtc_vtotal -= 1;
  3347. adjusted_mode->crtc_vblank_start -= 1;
  3348. adjusted_mode->crtc_vblank_end -= 1;
  3349. adjusted_mode->crtc_vsync_end -= 1;
  3350. adjusted_mode->crtc_vsync_start -= 1;
  3351. } else
  3352. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3353. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  3354. ((adjusted_mode->crtc_htotal - 1) << 16));
  3355. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  3356. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3357. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  3358. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3359. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  3360. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3361. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  3362. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3363. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  3364. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3365. /* pipesrc and dspsize control the size that is scaled from, which should
  3366. * always be the user's requested size.
  3367. */
  3368. if (!HAS_PCH_SPLIT(dev)) {
  3369. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  3370. (mode->hdisplay - 1));
  3371. I915_WRITE(dsppos_reg, 0);
  3372. }
  3373. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3374. if (HAS_PCH_SPLIT(dev)) {
  3375. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  3376. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  3377. I915_WRITE(link_m1_reg, m_n.link_m);
  3378. I915_WRITE(link_n1_reg, m_n.link_n);
  3379. if (is_edp) {
  3380. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3381. } else {
  3382. /* enable FDI RX PLL too */
  3383. temp = I915_READ(fdi_rx_reg);
  3384. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  3385. I915_READ(fdi_rx_reg);
  3386. udelay(200);
  3387. /* enable FDI TX PLL too */
  3388. temp = I915_READ(fdi_tx_reg);
  3389. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  3390. I915_READ(fdi_tx_reg);
  3391. /* enable FDI RX PCDCLK */
  3392. temp = I915_READ(fdi_rx_reg);
  3393. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  3394. I915_READ(fdi_rx_reg);
  3395. udelay(200);
  3396. }
  3397. }
  3398. I915_WRITE(pipeconf_reg, pipeconf);
  3399. I915_READ(pipeconf_reg);
  3400. intel_wait_for_vblank(dev);
  3401. if (IS_IRONLAKE(dev)) {
  3402. /* enable address swizzle for tiling buffer */
  3403. temp = I915_READ(DISP_ARB_CTL);
  3404. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3405. }
  3406. I915_WRITE(dspcntr_reg, dspcntr);
  3407. /* Flush the plane changes */
  3408. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3409. if ((IS_I965G(dev) || plane == 0))
  3410. intel_update_fbc(crtc, &crtc->mode);
  3411. intel_update_watermarks(dev);
  3412. drm_vblank_post_modeset(dev, pipe);
  3413. return ret;
  3414. }
  3415. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3416. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3417. {
  3418. struct drm_device *dev = crtc->dev;
  3419. struct drm_i915_private *dev_priv = dev->dev_private;
  3420. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3421. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3422. int i;
  3423. /* The clocks have to be on to load the palette. */
  3424. if (!crtc->enabled)
  3425. return;
  3426. /* use legacy palette for Ironlake */
  3427. if (HAS_PCH_SPLIT(dev))
  3428. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3429. LGC_PALETTE_B;
  3430. for (i = 0; i < 256; i++) {
  3431. I915_WRITE(palreg + 4 * i,
  3432. (intel_crtc->lut_r[i] << 16) |
  3433. (intel_crtc->lut_g[i] << 8) |
  3434. intel_crtc->lut_b[i]);
  3435. }
  3436. }
  3437. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3438. struct drm_file *file_priv,
  3439. uint32_t handle,
  3440. uint32_t width, uint32_t height)
  3441. {
  3442. struct drm_device *dev = crtc->dev;
  3443. struct drm_i915_private *dev_priv = dev->dev_private;
  3444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3445. struct drm_gem_object *bo;
  3446. struct drm_i915_gem_object *obj_priv;
  3447. int pipe = intel_crtc->pipe;
  3448. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  3449. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  3450. uint32_t temp = I915_READ(control);
  3451. size_t addr;
  3452. int ret;
  3453. DRM_DEBUG_KMS("\n");
  3454. /* if we want to turn off the cursor ignore width and height */
  3455. if (!handle) {
  3456. DRM_DEBUG_KMS("cursor off\n");
  3457. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3458. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3459. temp |= CURSOR_MODE_DISABLE;
  3460. } else {
  3461. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3462. }
  3463. addr = 0;
  3464. bo = NULL;
  3465. mutex_lock(&dev->struct_mutex);
  3466. goto finish;
  3467. }
  3468. /* Currently we only support 64x64 cursors */
  3469. if (width != 64 || height != 64) {
  3470. DRM_ERROR("we currently only support 64x64 cursors\n");
  3471. return -EINVAL;
  3472. }
  3473. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3474. if (!bo)
  3475. return -ENOENT;
  3476. obj_priv = to_intel_bo(bo);
  3477. if (bo->size < width * height * 4) {
  3478. DRM_ERROR("buffer is to small\n");
  3479. ret = -ENOMEM;
  3480. goto fail;
  3481. }
  3482. /* we only need to pin inside GTT if cursor is non-phy */
  3483. mutex_lock(&dev->struct_mutex);
  3484. if (!dev_priv->info->cursor_needs_physical) {
  3485. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3486. if (ret) {
  3487. DRM_ERROR("failed to pin cursor bo\n");
  3488. goto fail_locked;
  3489. }
  3490. addr = obj_priv->gtt_offset;
  3491. } else {
  3492. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  3493. if (ret) {
  3494. DRM_ERROR("failed to attach phys object\n");
  3495. goto fail_locked;
  3496. }
  3497. addr = obj_priv->phys_obj->handle->busaddr;
  3498. }
  3499. if (!IS_I9XX(dev))
  3500. I915_WRITE(CURSIZE, (height << 12) | width);
  3501. /* Hooray for CUR*CNTR differences */
  3502. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3503. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3504. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3505. temp |= (pipe << 28); /* Connect to correct pipe */
  3506. } else {
  3507. temp &= ~(CURSOR_FORMAT_MASK);
  3508. temp |= CURSOR_ENABLE;
  3509. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  3510. }
  3511. finish:
  3512. I915_WRITE(control, temp);
  3513. I915_WRITE(base, addr);
  3514. if (intel_crtc->cursor_bo) {
  3515. if (dev_priv->info->cursor_needs_physical) {
  3516. if (intel_crtc->cursor_bo != bo)
  3517. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3518. } else
  3519. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3520. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3521. }
  3522. mutex_unlock(&dev->struct_mutex);
  3523. intel_crtc->cursor_addr = addr;
  3524. intel_crtc->cursor_bo = bo;
  3525. return 0;
  3526. fail_locked:
  3527. mutex_unlock(&dev->struct_mutex);
  3528. fail:
  3529. drm_gem_object_unreference_unlocked(bo);
  3530. return ret;
  3531. }
  3532. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3533. {
  3534. struct drm_device *dev = crtc->dev;
  3535. struct drm_i915_private *dev_priv = dev->dev_private;
  3536. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3537. struct intel_framebuffer *intel_fb;
  3538. int pipe = intel_crtc->pipe;
  3539. uint32_t temp = 0;
  3540. uint32_t adder;
  3541. if (crtc->fb) {
  3542. intel_fb = to_intel_framebuffer(crtc->fb);
  3543. intel_mark_busy(dev, intel_fb->obj);
  3544. }
  3545. if (x < 0) {
  3546. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3547. x = -x;
  3548. }
  3549. if (y < 0) {
  3550. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3551. y = -y;
  3552. }
  3553. temp |= x << CURSOR_X_SHIFT;
  3554. temp |= y << CURSOR_Y_SHIFT;
  3555. adder = intel_crtc->cursor_addr;
  3556. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  3557. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  3558. return 0;
  3559. }
  3560. /** Sets the color ramps on behalf of RandR */
  3561. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3562. u16 blue, int regno)
  3563. {
  3564. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3565. intel_crtc->lut_r[regno] = red >> 8;
  3566. intel_crtc->lut_g[regno] = green >> 8;
  3567. intel_crtc->lut_b[regno] = blue >> 8;
  3568. }
  3569. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3570. u16 *blue, int regno)
  3571. {
  3572. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3573. *red = intel_crtc->lut_r[regno] << 8;
  3574. *green = intel_crtc->lut_g[regno] << 8;
  3575. *blue = intel_crtc->lut_b[regno] << 8;
  3576. }
  3577. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3578. u16 *blue, uint32_t size)
  3579. {
  3580. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3581. int i;
  3582. if (size != 256)
  3583. return;
  3584. for (i = 0; i < 256; i++) {
  3585. intel_crtc->lut_r[i] = red[i] >> 8;
  3586. intel_crtc->lut_g[i] = green[i] >> 8;
  3587. intel_crtc->lut_b[i] = blue[i] >> 8;
  3588. }
  3589. intel_crtc_load_lut(crtc);
  3590. }
  3591. /**
  3592. * Get a pipe with a simple mode set on it for doing load-based monitor
  3593. * detection.
  3594. *
  3595. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3596. * its requirements. The pipe will be connected to no other encoders.
  3597. *
  3598. * Currently this code will only succeed if there is a pipe with no encoders
  3599. * configured for it. In the future, it could choose to temporarily disable
  3600. * some outputs to free up a pipe for its use.
  3601. *
  3602. * \return crtc, or NULL if no pipes are available.
  3603. */
  3604. /* VESA 640x480x72Hz mode to set on the pipe */
  3605. static struct drm_display_mode load_detect_mode = {
  3606. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3607. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3608. };
  3609. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3610. struct drm_connector *connector,
  3611. struct drm_display_mode *mode,
  3612. int *dpms_mode)
  3613. {
  3614. struct intel_crtc *intel_crtc;
  3615. struct drm_crtc *possible_crtc;
  3616. struct drm_crtc *supported_crtc =NULL;
  3617. struct drm_encoder *encoder = &intel_encoder->enc;
  3618. struct drm_crtc *crtc = NULL;
  3619. struct drm_device *dev = encoder->dev;
  3620. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3621. struct drm_crtc_helper_funcs *crtc_funcs;
  3622. int i = -1;
  3623. /*
  3624. * Algorithm gets a little messy:
  3625. * - if the connector already has an assigned crtc, use it (but make
  3626. * sure it's on first)
  3627. * - try to find the first unused crtc that can drive this connector,
  3628. * and use that if we find one
  3629. * - if there are no unused crtcs available, try to use the first
  3630. * one we found that supports the connector
  3631. */
  3632. /* See if we already have a CRTC for this connector */
  3633. if (encoder->crtc) {
  3634. crtc = encoder->crtc;
  3635. /* Make sure the crtc and connector are running */
  3636. intel_crtc = to_intel_crtc(crtc);
  3637. *dpms_mode = intel_crtc->dpms_mode;
  3638. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3639. crtc_funcs = crtc->helper_private;
  3640. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3641. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3642. }
  3643. return crtc;
  3644. }
  3645. /* Find an unused one (if possible) */
  3646. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3647. i++;
  3648. if (!(encoder->possible_crtcs & (1 << i)))
  3649. continue;
  3650. if (!possible_crtc->enabled) {
  3651. crtc = possible_crtc;
  3652. break;
  3653. }
  3654. if (!supported_crtc)
  3655. supported_crtc = possible_crtc;
  3656. }
  3657. /*
  3658. * If we didn't find an unused CRTC, don't use any.
  3659. */
  3660. if (!crtc) {
  3661. return NULL;
  3662. }
  3663. encoder->crtc = crtc;
  3664. connector->encoder = encoder;
  3665. intel_encoder->load_detect_temp = true;
  3666. intel_crtc = to_intel_crtc(crtc);
  3667. *dpms_mode = intel_crtc->dpms_mode;
  3668. if (!crtc->enabled) {
  3669. if (!mode)
  3670. mode = &load_detect_mode;
  3671. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3672. } else {
  3673. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3674. crtc_funcs = crtc->helper_private;
  3675. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3676. }
  3677. /* Add this connector to the crtc */
  3678. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3679. encoder_funcs->commit(encoder);
  3680. }
  3681. /* let the connector get through one full cycle before testing */
  3682. intel_wait_for_vblank(dev);
  3683. return crtc;
  3684. }
  3685. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3686. struct drm_connector *connector, int dpms_mode)
  3687. {
  3688. struct drm_encoder *encoder = &intel_encoder->enc;
  3689. struct drm_device *dev = encoder->dev;
  3690. struct drm_crtc *crtc = encoder->crtc;
  3691. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3692. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3693. if (intel_encoder->load_detect_temp) {
  3694. encoder->crtc = NULL;
  3695. connector->encoder = NULL;
  3696. intel_encoder->load_detect_temp = false;
  3697. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3698. drm_helper_disable_unused_functions(dev);
  3699. }
  3700. /* Switch crtc and encoder back off if necessary */
  3701. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3702. if (encoder->crtc == crtc)
  3703. encoder_funcs->dpms(encoder, dpms_mode);
  3704. crtc_funcs->dpms(crtc, dpms_mode);
  3705. }
  3706. }
  3707. /* Returns the clock of the currently programmed mode of the given pipe. */
  3708. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3709. {
  3710. struct drm_i915_private *dev_priv = dev->dev_private;
  3711. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3712. int pipe = intel_crtc->pipe;
  3713. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3714. u32 fp;
  3715. intel_clock_t clock;
  3716. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3717. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3718. else
  3719. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3720. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3721. if (IS_PINEVIEW(dev)) {
  3722. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3723. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3724. } else {
  3725. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3726. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3727. }
  3728. if (IS_I9XX(dev)) {
  3729. if (IS_PINEVIEW(dev))
  3730. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3731. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3732. else
  3733. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3734. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3735. switch (dpll & DPLL_MODE_MASK) {
  3736. case DPLLB_MODE_DAC_SERIAL:
  3737. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3738. 5 : 10;
  3739. break;
  3740. case DPLLB_MODE_LVDS:
  3741. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3742. 7 : 14;
  3743. break;
  3744. default:
  3745. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3746. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3747. return 0;
  3748. }
  3749. /* XXX: Handle the 100Mhz refclk */
  3750. intel_clock(dev, 96000, &clock);
  3751. } else {
  3752. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3753. if (is_lvds) {
  3754. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  3755. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3756. clock.p2 = 14;
  3757. if ((dpll & PLL_REF_INPUT_MASK) ==
  3758. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  3759. /* XXX: might not be 66MHz */
  3760. intel_clock(dev, 66000, &clock);
  3761. } else
  3762. intel_clock(dev, 48000, &clock);
  3763. } else {
  3764. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  3765. clock.p1 = 2;
  3766. else {
  3767. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  3768. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  3769. }
  3770. if (dpll & PLL_P2_DIVIDE_BY_4)
  3771. clock.p2 = 4;
  3772. else
  3773. clock.p2 = 2;
  3774. intel_clock(dev, 48000, &clock);
  3775. }
  3776. }
  3777. /* XXX: It would be nice to validate the clocks, but we can't reuse
  3778. * i830PllIsValid() because it relies on the xf86_config connector
  3779. * configuration being accurate, which it isn't necessarily.
  3780. */
  3781. return clock.dot;
  3782. }
  3783. /** Returns the currently programmed mode of the given pipe. */
  3784. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  3785. struct drm_crtc *crtc)
  3786. {
  3787. struct drm_i915_private *dev_priv = dev->dev_private;
  3788. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3789. int pipe = intel_crtc->pipe;
  3790. struct drm_display_mode *mode;
  3791. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  3792. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  3793. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  3794. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  3795. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  3796. if (!mode)
  3797. return NULL;
  3798. mode->clock = intel_crtc_clock_get(dev, crtc);
  3799. mode->hdisplay = (htot & 0xffff) + 1;
  3800. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  3801. mode->hsync_start = (hsync & 0xffff) + 1;
  3802. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  3803. mode->vdisplay = (vtot & 0xffff) + 1;
  3804. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  3805. mode->vsync_start = (vsync & 0xffff) + 1;
  3806. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  3807. drm_mode_set_name(mode);
  3808. drm_mode_set_crtcinfo(mode, 0);
  3809. return mode;
  3810. }
  3811. #define GPU_IDLE_TIMEOUT 500 /* ms */
  3812. /* When this timer fires, we've been idle for awhile */
  3813. static void intel_gpu_idle_timer(unsigned long arg)
  3814. {
  3815. struct drm_device *dev = (struct drm_device *)arg;
  3816. drm_i915_private_t *dev_priv = dev->dev_private;
  3817. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3818. dev_priv->busy = false;
  3819. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3820. }
  3821. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  3822. static void intel_crtc_idle_timer(unsigned long arg)
  3823. {
  3824. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  3825. struct drm_crtc *crtc = &intel_crtc->base;
  3826. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  3827. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3828. intel_crtc->busy = false;
  3829. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3830. }
  3831. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  3832. {
  3833. struct drm_device *dev = crtc->dev;
  3834. drm_i915_private_t *dev_priv = dev->dev_private;
  3835. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3836. int pipe = intel_crtc->pipe;
  3837. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3838. int dpll = I915_READ(dpll_reg);
  3839. if (HAS_PCH_SPLIT(dev))
  3840. return;
  3841. if (!dev_priv->lvds_downclock_avail)
  3842. return;
  3843. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  3844. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  3845. /* Unlock panel regs */
  3846. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3847. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  3848. I915_WRITE(dpll_reg, dpll);
  3849. dpll = I915_READ(dpll_reg);
  3850. intel_wait_for_vblank(dev);
  3851. dpll = I915_READ(dpll_reg);
  3852. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  3853. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  3854. /* ...and lock them again */
  3855. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3856. }
  3857. /* Schedule downclock */
  3858. if (schedule)
  3859. mod_timer(&intel_crtc->idle_timer, jiffies +
  3860. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3861. }
  3862. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  3863. {
  3864. struct drm_device *dev = crtc->dev;
  3865. drm_i915_private_t *dev_priv = dev->dev_private;
  3866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3867. int pipe = intel_crtc->pipe;
  3868. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3869. int dpll = I915_READ(dpll_reg);
  3870. if (HAS_PCH_SPLIT(dev))
  3871. return;
  3872. if (!dev_priv->lvds_downclock_avail)
  3873. return;
  3874. /*
  3875. * Since this is called by a timer, we should never get here in
  3876. * the manual case.
  3877. */
  3878. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  3879. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  3880. /* Unlock panel regs */
  3881. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3882. dpll |= DISPLAY_RATE_SELECT_FPA1;
  3883. I915_WRITE(dpll_reg, dpll);
  3884. dpll = I915_READ(dpll_reg);
  3885. intel_wait_for_vblank(dev);
  3886. dpll = I915_READ(dpll_reg);
  3887. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  3888. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  3889. /* ...and lock them again */
  3890. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3891. }
  3892. }
  3893. /**
  3894. * intel_idle_update - adjust clocks for idleness
  3895. * @work: work struct
  3896. *
  3897. * Either the GPU or display (or both) went idle. Check the busy status
  3898. * here and adjust the CRTC and GPU clocks as necessary.
  3899. */
  3900. static void intel_idle_update(struct work_struct *work)
  3901. {
  3902. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3903. idle_work);
  3904. struct drm_device *dev = dev_priv->dev;
  3905. struct drm_crtc *crtc;
  3906. struct intel_crtc *intel_crtc;
  3907. if (!i915_powersave)
  3908. return;
  3909. mutex_lock(&dev->struct_mutex);
  3910. i915_update_gfx_val(dev_priv);
  3911. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3912. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  3913. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3914. }
  3915. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3916. /* Skip inactive CRTCs */
  3917. if (!crtc->fb)
  3918. continue;
  3919. intel_crtc = to_intel_crtc(crtc);
  3920. if (!intel_crtc->busy)
  3921. intel_decrease_pllclock(crtc);
  3922. }
  3923. mutex_unlock(&dev->struct_mutex);
  3924. }
  3925. /**
  3926. * intel_mark_busy - mark the GPU and possibly the display busy
  3927. * @dev: drm device
  3928. * @obj: object we're operating on
  3929. *
  3930. * Callers can use this function to indicate that the GPU is busy processing
  3931. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  3932. * buffer), we'll also mark the display as busy, so we know to increase its
  3933. * clock frequency.
  3934. */
  3935. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  3936. {
  3937. drm_i915_private_t *dev_priv = dev->dev_private;
  3938. struct drm_crtc *crtc = NULL;
  3939. struct intel_framebuffer *intel_fb;
  3940. struct intel_crtc *intel_crtc;
  3941. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3942. return;
  3943. if (!dev_priv->busy) {
  3944. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3945. u32 fw_blc_self;
  3946. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  3947. fw_blc_self = I915_READ(FW_BLC_SELF);
  3948. fw_blc_self &= ~FW_BLC_SELF_EN;
  3949. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  3950. }
  3951. dev_priv->busy = true;
  3952. } else
  3953. mod_timer(&dev_priv->idle_timer, jiffies +
  3954. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  3955. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3956. if (!crtc->fb)
  3957. continue;
  3958. intel_crtc = to_intel_crtc(crtc);
  3959. intel_fb = to_intel_framebuffer(crtc->fb);
  3960. if (intel_fb->obj == obj) {
  3961. if (!intel_crtc->busy) {
  3962. if (IS_I945G(dev) || IS_I945GM(dev)) {
  3963. u32 fw_blc_self;
  3964. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  3965. fw_blc_self = I915_READ(FW_BLC_SELF);
  3966. fw_blc_self &= ~FW_BLC_SELF_EN;
  3967. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  3968. }
  3969. /* Non-busy -> busy, upclock */
  3970. intel_increase_pllclock(crtc, true);
  3971. intel_crtc->busy = true;
  3972. } else {
  3973. /* Busy -> busy, put off timer */
  3974. mod_timer(&intel_crtc->idle_timer, jiffies +
  3975. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3976. }
  3977. }
  3978. }
  3979. }
  3980. static void intel_crtc_destroy(struct drm_crtc *crtc)
  3981. {
  3982. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3983. drm_crtc_cleanup(crtc);
  3984. kfree(intel_crtc);
  3985. }
  3986. struct intel_unpin_work {
  3987. struct work_struct work;
  3988. struct drm_device *dev;
  3989. struct drm_gem_object *old_fb_obj;
  3990. struct drm_gem_object *pending_flip_obj;
  3991. struct drm_pending_vblank_event *event;
  3992. int pending;
  3993. };
  3994. static void intel_unpin_work_fn(struct work_struct *__work)
  3995. {
  3996. struct intel_unpin_work *work =
  3997. container_of(__work, struct intel_unpin_work, work);
  3998. mutex_lock(&work->dev->struct_mutex);
  3999. i915_gem_object_unpin(work->old_fb_obj);
  4000. drm_gem_object_unreference(work->pending_flip_obj);
  4001. drm_gem_object_unreference(work->old_fb_obj);
  4002. mutex_unlock(&work->dev->struct_mutex);
  4003. kfree(work);
  4004. }
  4005. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4006. {
  4007. drm_i915_private_t *dev_priv = dev->dev_private;
  4008. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4009. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4010. struct intel_unpin_work *work;
  4011. struct drm_i915_gem_object *obj_priv;
  4012. struct drm_pending_vblank_event *e;
  4013. struct timeval now;
  4014. unsigned long flags;
  4015. /* Ignore early vblank irqs */
  4016. if (intel_crtc == NULL)
  4017. return;
  4018. spin_lock_irqsave(&dev->event_lock, flags);
  4019. work = intel_crtc->unpin_work;
  4020. if (work == NULL || !work->pending) {
  4021. spin_unlock_irqrestore(&dev->event_lock, flags);
  4022. return;
  4023. }
  4024. intel_crtc->unpin_work = NULL;
  4025. drm_vblank_put(dev, intel_crtc->pipe);
  4026. if (work->event) {
  4027. e = work->event;
  4028. do_gettimeofday(&now);
  4029. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4030. e->event.tv_sec = now.tv_sec;
  4031. e->event.tv_usec = now.tv_usec;
  4032. list_add_tail(&e->base.link,
  4033. &e->base.file_priv->event_list);
  4034. wake_up_interruptible(&e->base.file_priv->event_wait);
  4035. }
  4036. spin_unlock_irqrestore(&dev->event_lock, flags);
  4037. obj_priv = to_intel_bo(work->pending_flip_obj);
  4038. /* Initial scanout buffer will have a 0 pending flip count */
  4039. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4040. atomic_dec_and_test(&obj_priv->pending_flip))
  4041. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4042. schedule_work(&work->work);
  4043. }
  4044. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4045. {
  4046. drm_i915_private_t *dev_priv = dev->dev_private;
  4047. struct intel_crtc *intel_crtc =
  4048. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4049. unsigned long flags;
  4050. spin_lock_irqsave(&dev->event_lock, flags);
  4051. if (intel_crtc->unpin_work) {
  4052. intel_crtc->unpin_work->pending = 1;
  4053. } else {
  4054. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4055. }
  4056. spin_unlock_irqrestore(&dev->event_lock, flags);
  4057. }
  4058. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4059. struct drm_framebuffer *fb,
  4060. struct drm_pending_vblank_event *event)
  4061. {
  4062. struct drm_device *dev = crtc->dev;
  4063. struct drm_i915_private *dev_priv = dev->dev_private;
  4064. struct intel_framebuffer *intel_fb;
  4065. struct drm_i915_gem_object *obj_priv;
  4066. struct drm_gem_object *obj;
  4067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4068. struct intel_unpin_work *work;
  4069. unsigned long flags;
  4070. int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
  4071. int ret, pipesrc;
  4072. work = kzalloc(sizeof *work, GFP_KERNEL);
  4073. if (work == NULL)
  4074. return -ENOMEM;
  4075. work->event = event;
  4076. work->dev = crtc->dev;
  4077. intel_fb = to_intel_framebuffer(crtc->fb);
  4078. work->old_fb_obj = intel_fb->obj;
  4079. INIT_WORK(&work->work, intel_unpin_work_fn);
  4080. /* We borrow the event spin lock for protecting unpin_work */
  4081. spin_lock_irqsave(&dev->event_lock, flags);
  4082. if (intel_crtc->unpin_work) {
  4083. spin_unlock_irqrestore(&dev->event_lock, flags);
  4084. kfree(work);
  4085. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4086. return -EBUSY;
  4087. }
  4088. intel_crtc->unpin_work = work;
  4089. spin_unlock_irqrestore(&dev->event_lock, flags);
  4090. intel_fb = to_intel_framebuffer(fb);
  4091. obj = intel_fb->obj;
  4092. mutex_lock(&dev->struct_mutex);
  4093. ret = intel_pin_and_fence_fb_obj(dev, obj);
  4094. if (ret != 0) {
  4095. mutex_unlock(&dev->struct_mutex);
  4096. spin_lock_irqsave(&dev->event_lock, flags);
  4097. intel_crtc->unpin_work = NULL;
  4098. spin_unlock_irqrestore(&dev->event_lock, flags);
  4099. kfree(work);
  4100. DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
  4101. to_intel_bo(obj));
  4102. return ret;
  4103. }
  4104. /* Reference the objects for the scheduled work. */
  4105. drm_gem_object_reference(work->old_fb_obj);
  4106. drm_gem_object_reference(obj);
  4107. crtc->fb = fb;
  4108. i915_gem_object_flush_write_domain(obj);
  4109. drm_vblank_get(dev, intel_crtc->pipe);
  4110. obj_priv = to_intel_bo(obj);
  4111. atomic_inc(&obj_priv->pending_flip);
  4112. work->pending_flip_obj = obj;
  4113. BEGIN_LP_RING(4);
  4114. OUT_RING(MI_DISPLAY_FLIP |
  4115. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4116. OUT_RING(fb->pitch);
  4117. if (IS_I965G(dev)) {
  4118. OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
  4119. pipesrc = I915_READ(pipesrc_reg);
  4120. OUT_RING(pipesrc & 0x0fff0fff);
  4121. } else {
  4122. OUT_RING(obj_priv->gtt_offset);
  4123. OUT_RING(MI_NOOP);
  4124. }
  4125. ADVANCE_LP_RING();
  4126. mutex_unlock(&dev->struct_mutex);
  4127. return 0;
  4128. }
  4129. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  4130. .dpms = intel_crtc_dpms,
  4131. .mode_fixup = intel_crtc_mode_fixup,
  4132. .mode_set = intel_crtc_mode_set,
  4133. .mode_set_base = intel_pipe_set_base,
  4134. .prepare = intel_crtc_prepare,
  4135. .commit = intel_crtc_commit,
  4136. .load_lut = intel_crtc_load_lut,
  4137. };
  4138. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4139. .cursor_set = intel_crtc_cursor_set,
  4140. .cursor_move = intel_crtc_cursor_move,
  4141. .gamma_set = intel_crtc_gamma_set,
  4142. .set_config = drm_crtc_helper_set_config,
  4143. .destroy = intel_crtc_destroy,
  4144. .page_flip = intel_crtc_page_flip,
  4145. };
  4146. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4147. {
  4148. drm_i915_private_t *dev_priv = dev->dev_private;
  4149. struct intel_crtc *intel_crtc;
  4150. int i;
  4151. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4152. if (intel_crtc == NULL)
  4153. return;
  4154. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4155. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4156. intel_crtc->pipe = pipe;
  4157. intel_crtc->plane = pipe;
  4158. for (i = 0; i < 256; i++) {
  4159. intel_crtc->lut_r[i] = i;
  4160. intel_crtc->lut_g[i] = i;
  4161. intel_crtc->lut_b[i] = i;
  4162. }
  4163. /* Swap pipes & planes for FBC on pre-965 */
  4164. intel_crtc->pipe = pipe;
  4165. intel_crtc->plane = pipe;
  4166. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  4167. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4168. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  4169. }
  4170. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4171. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4172. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4173. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4174. intel_crtc->cursor_addr = 0;
  4175. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  4176. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4177. intel_crtc->busy = false;
  4178. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4179. (unsigned long)intel_crtc);
  4180. }
  4181. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4182. struct drm_file *file_priv)
  4183. {
  4184. drm_i915_private_t *dev_priv = dev->dev_private;
  4185. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4186. struct drm_mode_object *drmmode_obj;
  4187. struct intel_crtc *crtc;
  4188. if (!dev_priv) {
  4189. DRM_ERROR("called with no initialization\n");
  4190. return -EINVAL;
  4191. }
  4192. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4193. DRM_MODE_OBJECT_CRTC);
  4194. if (!drmmode_obj) {
  4195. DRM_ERROR("no such CRTC id\n");
  4196. return -EINVAL;
  4197. }
  4198. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4199. pipe_from_crtc_id->pipe = crtc->pipe;
  4200. return 0;
  4201. }
  4202. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  4203. {
  4204. struct drm_crtc *crtc = NULL;
  4205. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4206. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4207. if (intel_crtc->pipe == pipe)
  4208. break;
  4209. }
  4210. return crtc;
  4211. }
  4212. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4213. {
  4214. int index_mask = 0;
  4215. struct drm_encoder *encoder;
  4216. int entry = 0;
  4217. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4218. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4219. if (type_mask & intel_encoder->clone_mask)
  4220. index_mask |= (1 << entry);
  4221. entry++;
  4222. }
  4223. return index_mask;
  4224. }
  4225. static void intel_setup_outputs(struct drm_device *dev)
  4226. {
  4227. struct drm_i915_private *dev_priv = dev->dev_private;
  4228. struct drm_encoder *encoder;
  4229. intel_crt_init(dev);
  4230. /* Set up integrated LVDS */
  4231. if (IS_MOBILE(dev) && !IS_I830(dev))
  4232. intel_lvds_init(dev);
  4233. if (HAS_PCH_SPLIT(dev)) {
  4234. int found;
  4235. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4236. intel_dp_init(dev, DP_A);
  4237. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4238. /* PCH SDVOB multiplex with HDMIB */
  4239. found = intel_sdvo_init(dev, PCH_SDVOB);
  4240. if (!found)
  4241. intel_hdmi_init(dev, HDMIB);
  4242. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4243. intel_dp_init(dev, PCH_DP_B);
  4244. }
  4245. if (I915_READ(HDMIC) & PORT_DETECTED)
  4246. intel_hdmi_init(dev, HDMIC);
  4247. if (I915_READ(HDMID) & PORT_DETECTED)
  4248. intel_hdmi_init(dev, HDMID);
  4249. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4250. intel_dp_init(dev, PCH_DP_C);
  4251. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  4252. intel_dp_init(dev, PCH_DP_D);
  4253. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4254. bool found = false;
  4255. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4256. DRM_DEBUG_KMS("probing SDVOB\n");
  4257. found = intel_sdvo_init(dev, SDVOB);
  4258. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4259. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4260. intel_hdmi_init(dev, SDVOB);
  4261. }
  4262. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4263. DRM_DEBUG_KMS("probing DP_B\n");
  4264. intel_dp_init(dev, DP_B);
  4265. }
  4266. }
  4267. /* Before G4X SDVOC doesn't have its own detect register */
  4268. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4269. DRM_DEBUG_KMS("probing SDVOC\n");
  4270. found = intel_sdvo_init(dev, SDVOC);
  4271. }
  4272. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4273. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4274. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4275. intel_hdmi_init(dev, SDVOC);
  4276. }
  4277. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4278. DRM_DEBUG_KMS("probing DP_C\n");
  4279. intel_dp_init(dev, DP_C);
  4280. }
  4281. }
  4282. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4283. (I915_READ(DP_D) & DP_DETECTED)) {
  4284. DRM_DEBUG_KMS("probing DP_D\n");
  4285. intel_dp_init(dev, DP_D);
  4286. }
  4287. } else if (IS_GEN2(dev))
  4288. intel_dvo_init(dev);
  4289. if (SUPPORTS_TV(dev))
  4290. intel_tv_init(dev);
  4291. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4292. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4293. encoder->possible_crtcs = intel_encoder->crtc_mask;
  4294. encoder->possible_clones = intel_encoder_clones(dev,
  4295. intel_encoder->clone_mask);
  4296. }
  4297. }
  4298. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4299. {
  4300. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4301. drm_framebuffer_cleanup(fb);
  4302. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4303. kfree(intel_fb);
  4304. }
  4305. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4306. struct drm_file *file_priv,
  4307. unsigned int *handle)
  4308. {
  4309. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4310. struct drm_gem_object *object = intel_fb->obj;
  4311. return drm_gem_handle_create(file_priv, object, handle);
  4312. }
  4313. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4314. .destroy = intel_user_framebuffer_destroy,
  4315. .create_handle = intel_user_framebuffer_create_handle,
  4316. };
  4317. int intel_framebuffer_init(struct drm_device *dev,
  4318. struct intel_framebuffer *intel_fb,
  4319. struct drm_mode_fb_cmd *mode_cmd,
  4320. struct drm_gem_object *obj)
  4321. {
  4322. int ret;
  4323. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4324. if (ret) {
  4325. DRM_ERROR("framebuffer init failed %d\n", ret);
  4326. return ret;
  4327. }
  4328. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4329. intel_fb->obj = obj;
  4330. return 0;
  4331. }
  4332. static struct drm_framebuffer *
  4333. intel_user_framebuffer_create(struct drm_device *dev,
  4334. struct drm_file *filp,
  4335. struct drm_mode_fb_cmd *mode_cmd)
  4336. {
  4337. struct drm_gem_object *obj;
  4338. struct intel_framebuffer *intel_fb;
  4339. int ret;
  4340. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4341. if (!obj)
  4342. return NULL;
  4343. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4344. if (!intel_fb)
  4345. return NULL;
  4346. ret = intel_framebuffer_init(dev, intel_fb,
  4347. mode_cmd, obj);
  4348. if (ret) {
  4349. drm_gem_object_unreference_unlocked(obj);
  4350. kfree(intel_fb);
  4351. return NULL;
  4352. }
  4353. return &intel_fb->base;
  4354. }
  4355. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4356. .fb_create = intel_user_framebuffer_create,
  4357. .output_poll_changed = intel_fb_output_poll_changed,
  4358. };
  4359. static struct drm_gem_object *
  4360. intel_alloc_power_context(struct drm_device *dev)
  4361. {
  4362. struct drm_gem_object *pwrctx;
  4363. int ret;
  4364. pwrctx = i915_gem_alloc_object(dev, 4096);
  4365. if (!pwrctx) {
  4366. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4367. return NULL;
  4368. }
  4369. mutex_lock(&dev->struct_mutex);
  4370. ret = i915_gem_object_pin(pwrctx, 4096);
  4371. if (ret) {
  4372. DRM_ERROR("failed to pin power context: %d\n", ret);
  4373. goto err_unref;
  4374. }
  4375. ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
  4376. if (ret) {
  4377. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4378. goto err_unpin;
  4379. }
  4380. mutex_unlock(&dev->struct_mutex);
  4381. return pwrctx;
  4382. err_unpin:
  4383. i915_gem_object_unpin(pwrctx);
  4384. err_unref:
  4385. drm_gem_object_unreference(pwrctx);
  4386. mutex_unlock(&dev->struct_mutex);
  4387. return NULL;
  4388. }
  4389. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4390. {
  4391. struct drm_i915_private *dev_priv = dev->dev_private;
  4392. u16 rgvswctl;
  4393. rgvswctl = I915_READ16(MEMSWCTL);
  4394. if (rgvswctl & MEMCTL_CMD_STS) {
  4395. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4396. return false; /* still busy with another command */
  4397. }
  4398. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4399. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4400. I915_WRITE16(MEMSWCTL, rgvswctl);
  4401. POSTING_READ16(MEMSWCTL);
  4402. rgvswctl |= MEMCTL_CMD_STS;
  4403. I915_WRITE16(MEMSWCTL, rgvswctl);
  4404. return true;
  4405. }
  4406. void ironlake_enable_drps(struct drm_device *dev)
  4407. {
  4408. struct drm_i915_private *dev_priv = dev->dev_private;
  4409. u32 rgvmodectl = I915_READ(MEMMODECTL);
  4410. u8 fmax, fmin, fstart, vstart;
  4411. int i = 0;
  4412. /* 100ms RC evaluation intervals */
  4413. I915_WRITE(RCUPEI, 100000);
  4414. I915_WRITE(RCDNEI, 100000);
  4415. /* Set max/min thresholds to 90ms and 80ms respectively */
  4416. I915_WRITE(RCBMAXAVG, 90000);
  4417. I915_WRITE(RCBMINAVG, 80000);
  4418. I915_WRITE(MEMIHYST, 1);
  4419. /* Set up min, max, and cur for interrupt handling */
  4420. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4421. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4422. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4423. MEMMODE_FSTART_SHIFT;
  4424. fstart = fmax;
  4425. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4426. PXVFREQ_PX_SHIFT;
  4427. dev_priv->fmax = fstart; /* IPS callback will increase this */
  4428. dev_priv->fstart = fstart;
  4429. dev_priv->max_delay = fmax;
  4430. dev_priv->min_delay = fmin;
  4431. dev_priv->cur_delay = fstart;
  4432. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
  4433. fstart);
  4434. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4435. /*
  4436. * Interrupts will be enabled in ironlake_irq_postinstall
  4437. */
  4438. I915_WRITE(VIDSTART, vstart);
  4439. POSTING_READ(VIDSTART);
  4440. rgvmodectl |= MEMMODE_SWMODE_EN;
  4441. I915_WRITE(MEMMODECTL, rgvmodectl);
  4442. while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
  4443. if (i++ > 100) {
  4444. DRM_ERROR("stuck trying to change perf mode\n");
  4445. break;
  4446. }
  4447. msleep(1);
  4448. }
  4449. msleep(1);
  4450. ironlake_set_drps(dev, fstart);
  4451. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  4452. I915_READ(0x112e0);
  4453. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  4454. dev_priv->last_count2 = I915_READ(0x112f4);
  4455. getrawmonotonic(&dev_priv->last_time2);
  4456. }
  4457. void ironlake_disable_drps(struct drm_device *dev)
  4458. {
  4459. struct drm_i915_private *dev_priv = dev->dev_private;
  4460. u16 rgvswctl = I915_READ16(MEMSWCTL);
  4461. /* Ack interrupts, disable EFC interrupt */
  4462. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4463. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4464. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4465. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4466. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4467. /* Go back to the starting frequency */
  4468. ironlake_set_drps(dev, dev_priv->fstart);
  4469. msleep(1);
  4470. rgvswctl |= MEMCTL_CMD_STS;
  4471. I915_WRITE(MEMSWCTL, rgvswctl);
  4472. msleep(1);
  4473. }
  4474. static unsigned long intel_pxfreq(u32 vidfreq)
  4475. {
  4476. unsigned long freq;
  4477. int div = (vidfreq & 0x3f0000) >> 16;
  4478. int post = (vidfreq & 0x3000) >> 12;
  4479. int pre = (vidfreq & 0x7);
  4480. if (!pre)
  4481. return 0;
  4482. freq = ((div * 133333) / ((1<<post) * pre));
  4483. return freq;
  4484. }
  4485. void intel_init_emon(struct drm_device *dev)
  4486. {
  4487. struct drm_i915_private *dev_priv = dev->dev_private;
  4488. u32 lcfuse;
  4489. u8 pxw[16];
  4490. int i;
  4491. /* Disable to program */
  4492. I915_WRITE(ECR, 0);
  4493. POSTING_READ(ECR);
  4494. /* Program energy weights for various events */
  4495. I915_WRITE(SDEW, 0x15040d00);
  4496. I915_WRITE(CSIEW0, 0x007f0000);
  4497. I915_WRITE(CSIEW1, 0x1e220004);
  4498. I915_WRITE(CSIEW2, 0x04000004);
  4499. for (i = 0; i < 5; i++)
  4500. I915_WRITE(PEW + (i * 4), 0);
  4501. for (i = 0; i < 3; i++)
  4502. I915_WRITE(DEW + (i * 4), 0);
  4503. /* Program P-state weights to account for frequency power adjustment */
  4504. for (i = 0; i < 16; i++) {
  4505. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4506. unsigned long freq = intel_pxfreq(pxvidfreq);
  4507. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4508. PXVFREQ_PX_SHIFT;
  4509. unsigned long val;
  4510. val = vid * vid;
  4511. val *= (freq / 1000);
  4512. val *= 255;
  4513. val /= (127*127*900);
  4514. if (val > 0xff)
  4515. DRM_ERROR("bad pxval: %ld\n", val);
  4516. pxw[i] = val;
  4517. }
  4518. /* Render standby states get 0 weight */
  4519. pxw[14] = 0;
  4520. pxw[15] = 0;
  4521. for (i = 0; i < 4; i++) {
  4522. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4523. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4524. I915_WRITE(PXW + (i * 4), val);
  4525. }
  4526. /* Adjust magic regs to magic values (more experimental results) */
  4527. I915_WRITE(OGW0, 0);
  4528. I915_WRITE(OGW1, 0);
  4529. I915_WRITE(EG0, 0x00007f00);
  4530. I915_WRITE(EG1, 0x0000000e);
  4531. I915_WRITE(EG2, 0x000e0000);
  4532. I915_WRITE(EG3, 0x68000300);
  4533. I915_WRITE(EG4, 0x42000000);
  4534. I915_WRITE(EG5, 0x00140031);
  4535. I915_WRITE(EG6, 0);
  4536. I915_WRITE(EG7, 0);
  4537. for (i = 0; i < 8; i++)
  4538. I915_WRITE(PXWL + (i * 4), 0);
  4539. /* Enable PMON + select events */
  4540. I915_WRITE(ECR, 0x80000019);
  4541. lcfuse = I915_READ(LCFUSE02);
  4542. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  4543. }
  4544. void intel_init_clock_gating(struct drm_device *dev)
  4545. {
  4546. struct drm_i915_private *dev_priv = dev->dev_private;
  4547. /*
  4548. * Disable clock gating reported to work incorrectly according to the
  4549. * specs, but enable as much else as we can.
  4550. */
  4551. if (HAS_PCH_SPLIT(dev)) {
  4552. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4553. if (IS_IRONLAKE(dev)) {
  4554. /* Required for FBC */
  4555. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4556. /* Required for CxSR */
  4557. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4558. I915_WRITE(PCH_3DCGDIS0,
  4559. MARIUNIT_CLOCK_GATE_DISABLE |
  4560. SVSMUNIT_CLOCK_GATE_DISABLE);
  4561. }
  4562. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4563. /*
  4564. * According to the spec the following bits should be set in
  4565. * order to enable memory self-refresh
  4566. * The bit 22/21 of 0x42004
  4567. * The bit 5 of 0x42020
  4568. * The bit 15 of 0x45000
  4569. */
  4570. if (IS_IRONLAKE(dev)) {
  4571. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4572. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4573. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4574. I915_WRITE(ILK_DSPCLK_GATE,
  4575. (I915_READ(ILK_DSPCLK_GATE) |
  4576. ILK_DPARB_CLK_GATE));
  4577. I915_WRITE(DISP_ARB_CTL,
  4578. (I915_READ(DISP_ARB_CTL) |
  4579. DISP_FBC_WM_DIS));
  4580. }
  4581. return;
  4582. } else if (IS_G4X(dev)) {
  4583. uint32_t dspclk_gate;
  4584. I915_WRITE(RENCLK_GATE_D1, 0);
  4585. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4586. GS_UNIT_CLOCK_GATE_DISABLE |
  4587. CL_UNIT_CLOCK_GATE_DISABLE);
  4588. I915_WRITE(RAMCLK_GATE_D, 0);
  4589. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4590. OVRUNIT_CLOCK_GATE_DISABLE |
  4591. OVCUNIT_CLOCK_GATE_DISABLE;
  4592. if (IS_GM45(dev))
  4593. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4594. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4595. } else if (IS_I965GM(dev)) {
  4596. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4597. I915_WRITE(RENCLK_GATE_D2, 0);
  4598. I915_WRITE(DSPCLK_GATE_D, 0);
  4599. I915_WRITE(RAMCLK_GATE_D, 0);
  4600. I915_WRITE16(DEUC, 0);
  4601. } else if (IS_I965G(dev)) {
  4602. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4603. I965_RCC_CLOCK_GATE_DISABLE |
  4604. I965_RCPB_CLOCK_GATE_DISABLE |
  4605. I965_ISC_CLOCK_GATE_DISABLE |
  4606. I965_FBC_CLOCK_GATE_DISABLE);
  4607. I915_WRITE(RENCLK_GATE_D2, 0);
  4608. } else if (IS_I9XX(dev)) {
  4609. u32 dstate = I915_READ(D_STATE);
  4610. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4611. DSTATE_DOT_CLOCK_GATING;
  4612. I915_WRITE(D_STATE, dstate);
  4613. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4614. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4615. } else if (IS_I830(dev)) {
  4616. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4617. }
  4618. /*
  4619. * GPU can automatically power down the render unit if given a page
  4620. * to save state.
  4621. */
  4622. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  4623. struct drm_i915_gem_object *obj_priv = NULL;
  4624. if (dev_priv->pwrctx) {
  4625. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4626. } else {
  4627. struct drm_gem_object *pwrctx;
  4628. pwrctx = intel_alloc_power_context(dev);
  4629. if (pwrctx) {
  4630. dev_priv->pwrctx = pwrctx;
  4631. obj_priv = to_intel_bo(pwrctx);
  4632. }
  4633. }
  4634. if (obj_priv) {
  4635. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  4636. I915_WRITE(MCHBAR_RENDER_STANDBY,
  4637. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  4638. }
  4639. }
  4640. }
  4641. /* Set up chip specific display functions */
  4642. static void intel_init_display(struct drm_device *dev)
  4643. {
  4644. struct drm_i915_private *dev_priv = dev->dev_private;
  4645. /* We always want a DPMS function */
  4646. if (HAS_PCH_SPLIT(dev))
  4647. dev_priv->display.dpms = ironlake_crtc_dpms;
  4648. else
  4649. dev_priv->display.dpms = i9xx_crtc_dpms;
  4650. if (I915_HAS_FBC(dev)) {
  4651. if (IS_GM45(dev)) {
  4652. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4653. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4654. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4655. } else if (IS_I965GM(dev)) {
  4656. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4657. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4658. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4659. }
  4660. /* 855GM needs testing */
  4661. }
  4662. /* Returns the core display clock speed */
  4663. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  4664. dev_priv->display.get_display_clock_speed =
  4665. i945_get_display_clock_speed;
  4666. else if (IS_I915G(dev))
  4667. dev_priv->display.get_display_clock_speed =
  4668. i915_get_display_clock_speed;
  4669. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  4670. dev_priv->display.get_display_clock_speed =
  4671. i9xx_misc_get_display_clock_speed;
  4672. else if (IS_I915GM(dev))
  4673. dev_priv->display.get_display_clock_speed =
  4674. i915gm_get_display_clock_speed;
  4675. else if (IS_I865G(dev))
  4676. dev_priv->display.get_display_clock_speed =
  4677. i865_get_display_clock_speed;
  4678. else if (IS_I85X(dev))
  4679. dev_priv->display.get_display_clock_speed =
  4680. i855_get_display_clock_speed;
  4681. else /* 852, 830 */
  4682. dev_priv->display.get_display_clock_speed =
  4683. i830_get_display_clock_speed;
  4684. /* For FIFO watermark updates */
  4685. if (HAS_PCH_SPLIT(dev)) {
  4686. if (IS_IRONLAKE(dev)) {
  4687. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  4688. dev_priv->display.update_wm = ironlake_update_wm;
  4689. else {
  4690. DRM_DEBUG_KMS("Failed to get proper latency. "
  4691. "Disable CxSR\n");
  4692. dev_priv->display.update_wm = NULL;
  4693. }
  4694. } else
  4695. dev_priv->display.update_wm = NULL;
  4696. } else if (IS_PINEVIEW(dev)) {
  4697. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4698. dev_priv->is_ddr3,
  4699. dev_priv->fsb_freq,
  4700. dev_priv->mem_freq)) {
  4701. DRM_INFO("failed to find known CxSR latency "
  4702. "(found ddr%s fsb freq %d, mem freq %d), "
  4703. "disabling CxSR\n",
  4704. (dev_priv->is_ddr3 == 1) ? "3": "2",
  4705. dev_priv->fsb_freq, dev_priv->mem_freq);
  4706. /* Disable CxSR and never update its watermark again */
  4707. pineview_disable_cxsr(dev);
  4708. dev_priv->display.update_wm = NULL;
  4709. } else
  4710. dev_priv->display.update_wm = pineview_update_wm;
  4711. } else if (IS_G4X(dev))
  4712. dev_priv->display.update_wm = g4x_update_wm;
  4713. else if (IS_I965G(dev))
  4714. dev_priv->display.update_wm = i965_update_wm;
  4715. else if (IS_I9XX(dev)) {
  4716. dev_priv->display.update_wm = i9xx_update_wm;
  4717. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4718. } else if (IS_I85X(dev)) {
  4719. dev_priv->display.update_wm = i9xx_update_wm;
  4720. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4721. } else {
  4722. dev_priv->display.update_wm = i830_update_wm;
  4723. if (IS_845G(dev))
  4724. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4725. else
  4726. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4727. }
  4728. }
  4729. void intel_modeset_init(struct drm_device *dev)
  4730. {
  4731. struct drm_i915_private *dev_priv = dev->dev_private;
  4732. int num_pipe;
  4733. int i;
  4734. drm_mode_config_init(dev);
  4735. dev->mode_config.min_width = 0;
  4736. dev->mode_config.min_height = 0;
  4737. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  4738. intel_init_display(dev);
  4739. if (IS_I965G(dev)) {
  4740. dev->mode_config.max_width = 8192;
  4741. dev->mode_config.max_height = 8192;
  4742. } else if (IS_I9XX(dev)) {
  4743. dev->mode_config.max_width = 4096;
  4744. dev->mode_config.max_height = 4096;
  4745. } else {
  4746. dev->mode_config.max_width = 2048;
  4747. dev->mode_config.max_height = 2048;
  4748. }
  4749. /* set memory base */
  4750. if (IS_I9XX(dev))
  4751. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  4752. else
  4753. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  4754. if (IS_MOBILE(dev) || IS_I9XX(dev))
  4755. num_pipe = 2;
  4756. else
  4757. num_pipe = 1;
  4758. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  4759. num_pipe, num_pipe > 1 ? "s" : "");
  4760. for (i = 0; i < num_pipe; i++) {
  4761. intel_crtc_init(dev, i);
  4762. }
  4763. intel_setup_outputs(dev);
  4764. intel_init_clock_gating(dev);
  4765. if (IS_IRONLAKE_M(dev)) {
  4766. ironlake_enable_drps(dev);
  4767. intel_init_emon(dev);
  4768. }
  4769. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  4770. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  4771. (unsigned long)dev);
  4772. intel_setup_overlay(dev);
  4773. }
  4774. void intel_modeset_cleanup(struct drm_device *dev)
  4775. {
  4776. struct drm_i915_private *dev_priv = dev->dev_private;
  4777. struct drm_crtc *crtc;
  4778. struct intel_crtc *intel_crtc;
  4779. mutex_lock(&dev->struct_mutex);
  4780. drm_kms_helper_poll_fini(dev);
  4781. intel_fbdev_fini(dev);
  4782. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4783. /* Skip inactive CRTCs */
  4784. if (!crtc->fb)
  4785. continue;
  4786. intel_crtc = to_intel_crtc(crtc);
  4787. intel_increase_pllclock(crtc, false);
  4788. del_timer_sync(&intel_crtc->idle_timer);
  4789. }
  4790. del_timer_sync(&dev_priv->idle_timer);
  4791. if (dev_priv->display.disable_fbc)
  4792. dev_priv->display.disable_fbc(dev);
  4793. if (dev_priv->pwrctx) {
  4794. struct drm_i915_gem_object *obj_priv;
  4795. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4796. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  4797. I915_READ(PWRCTXA);
  4798. i915_gem_object_unpin(dev_priv->pwrctx);
  4799. drm_gem_object_unreference(dev_priv->pwrctx);
  4800. }
  4801. if (IS_IRONLAKE_M(dev))
  4802. ironlake_disable_drps(dev);
  4803. mutex_unlock(&dev->struct_mutex);
  4804. drm_mode_config_cleanup(dev);
  4805. }
  4806. /*
  4807. * Return which encoder is currently attached for connector.
  4808. */
  4809. struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
  4810. {
  4811. struct drm_mode_object *obj;
  4812. struct drm_encoder *encoder;
  4813. int i;
  4814. for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
  4815. if (connector->encoder_ids[i] == 0)
  4816. break;
  4817. obj = drm_mode_object_find(connector->dev,
  4818. connector->encoder_ids[i],
  4819. DRM_MODE_OBJECT_ENCODER);
  4820. if (!obj)
  4821. continue;
  4822. encoder = obj_to_encoder(obj);
  4823. return encoder;
  4824. }
  4825. return NULL;
  4826. }
  4827. /*
  4828. * set vga decode state - true == enable VGA decode
  4829. */
  4830. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  4831. {
  4832. struct drm_i915_private *dev_priv = dev->dev_private;
  4833. u16 gmch_ctrl;
  4834. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  4835. if (state)
  4836. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  4837. else
  4838. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  4839. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  4840. return 0;
  4841. }