elevator.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <trace/block.h>
  37. #include <linux/hash.h>
  38. #include <linux/uaccess.h>
  39. #include "blk.h"
  40. static DEFINE_SPINLOCK(elv_list_lock);
  41. static LIST_HEAD(elv_list);
  42. DEFINE_TRACE(block_rq_abort);
  43. /*
  44. * Merge hash stuff.
  45. */
  46. static const int elv_hash_shift = 6;
  47. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  48. #define ELV_HASH_FN(sec) \
  49. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  50. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  51. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  52. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  53. DEFINE_TRACE(block_rq_insert);
  54. DEFINE_TRACE(block_rq_issue);
  55. /*
  56. * Query io scheduler to see if the current process issuing bio may be
  57. * merged with rq.
  58. */
  59. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  60. {
  61. struct request_queue *q = rq->q;
  62. struct elevator_queue *e = q->elevator;
  63. if (e->ops->elevator_allow_merge_fn)
  64. return e->ops->elevator_allow_merge_fn(q, rq, bio);
  65. return 1;
  66. }
  67. /*
  68. * can we safely merge with this request?
  69. */
  70. int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  71. {
  72. if (!rq_mergeable(rq))
  73. return 0;
  74. /*
  75. * Don't merge file system requests and discard requests
  76. */
  77. if (bio_discard(bio) != bio_discard(rq->bio))
  78. return 0;
  79. /*
  80. * different data direction or already started, don't merge
  81. */
  82. if (bio_data_dir(bio) != rq_data_dir(rq))
  83. return 0;
  84. /*
  85. * must be same device and not a special request
  86. */
  87. if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
  88. return 0;
  89. /*
  90. * only merge integrity protected bio into ditto rq
  91. */
  92. if (bio_integrity(bio) != blk_integrity_rq(rq))
  93. return 0;
  94. if (!elv_iosched_allow_merge(rq, bio))
  95. return 0;
  96. return 1;
  97. }
  98. EXPORT_SYMBOL(elv_rq_merge_ok);
  99. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  100. {
  101. int ret = ELEVATOR_NO_MERGE;
  102. /*
  103. * we can merge and sequence is ok, check if it's possible
  104. */
  105. if (elv_rq_merge_ok(__rq, bio)) {
  106. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  107. ret = ELEVATOR_BACK_MERGE;
  108. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  109. ret = ELEVATOR_FRONT_MERGE;
  110. }
  111. return ret;
  112. }
  113. static struct elevator_type *elevator_find(const char *name)
  114. {
  115. struct elevator_type *e;
  116. list_for_each_entry(e, &elv_list, list) {
  117. if (!strcmp(e->elevator_name, name))
  118. return e;
  119. }
  120. return NULL;
  121. }
  122. static void elevator_put(struct elevator_type *e)
  123. {
  124. module_put(e->elevator_owner);
  125. }
  126. static struct elevator_type *elevator_get(const char *name)
  127. {
  128. struct elevator_type *e;
  129. spin_lock(&elv_list_lock);
  130. e = elevator_find(name);
  131. if (!e) {
  132. char elv[ELV_NAME_MAX + strlen("-iosched")];
  133. spin_unlock(&elv_list_lock);
  134. if (!strcmp(name, "anticipatory"))
  135. sprintf(elv, "as-iosched");
  136. else
  137. sprintf(elv, "%s-iosched", name);
  138. request_module("%s", elv);
  139. spin_lock(&elv_list_lock);
  140. e = elevator_find(name);
  141. }
  142. if (e && !try_module_get(e->elevator_owner))
  143. e = NULL;
  144. spin_unlock(&elv_list_lock);
  145. return e;
  146. }
  147. static void *elevator_init_queue(struct request_queue *q,
  148. struct elevator_queue *eq)
  149. {
  150. return eq->ops->elevator_init_fn(q);
  151. }
  152. static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
  153. void *data)
  154. {
  155. q->elevator = eq;
  156. eq->elevator_data = data;
  157. }
  158. static char chosen_elevator[16];
  159. static int __init elevator_setup(char *str)
  160. {
  161. /*
  162. * Be backwards-compatible with previous kernels, so users
  163. * won't get the wrong elevator.
  164. */
  165. if (!strcmp(str, "as"))
  166. strcpy(chosen_elevator, "anticipatory");
  167. else
  168. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  169. return 1;
  170. }
  171. __setup("elevator=", elevator_setup);
  172. static struct kobj_type elv_ktype;
  173. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  174. struct elevator_type *e)
  175. {
  176. struct elevator_queue *eq;
  177. int i;
  178. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  179. if (unlikely(!eq))
  180. goto err;
  181. eq->ops = &e->ops;
  182. eq->elevator_type = e;
  183. kobject_init(&eq->kobj, &elv_ktype);
  184. mutex_init(&eq->sysfs_lock);
  185. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  186. GFP_KERNEL, q->node);
  187. if (!eq->hash)
  188. goto err;
  189. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  190. INIT_HLIST_HEAD(&eq->hash[i]);
  191. return eq;
  192. err:
  193. kfree(eq);
  194. elevator_put(e);
  195. return NULL;
  196. }
  197. static void elevator_release(struct kobject *kobj)
  198. {
  199. struct elevator_queue *e;
  200. e = container_of(kobj, struct elevator_queue, kobj);
  201. elevator_put(e->elevator_type);
  202. kfree(e->hash);
  203. kfree(e);
  204. }
  205. int elevator_init(struct request_queue *q, char *name)
  206. {
  207. struct elevator_type *e = NULL;
  208. struct elevator_queue *eq;
  209. int ret = 0;
  210. void *data;
  211. INIT_LIST_HEAD(&q->queue_head);
  212. q->last_merge = NULL;
  213. q->end_sector = 0;
  214. q->boundary_rq = NULL;
  215. if (name) {
  216. e = elevator_get(name);
  217. if (!e)
  218. return -EINVAL;
  219. }
  220. if (!e && *chosen_elevator) {
  221. e = elevator_get(chosen_elevator);
  222. if (!e)
  223. printk(KERN_ERR "I/O scheduler %s not found\n",
  224. chosen_elevator);
  225. }
  226. if (!e) {
  227. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  228. if (!e) {
  229. printk(KERN_ERR
  230. "Default I/O scheduler not found. " \
  231. "Using noop.\n");
  232. e = elevator_get("noop");
  233. }
  234. }
  235. eq = elevator_alloc(q, e);
  236. if (!eq)
  237. return -ENOMEM;
  238. data = elevator_init_queue(q, eq);
  239. if (!data) {
  240. kobject_put(&eq->kobj);
  241. return -ENOMEM;
  242. }
  243. elevator_attach(q, eq, data);
  244. return ret;
  245. }
  246. EXPORT_SYMBOL(elevator_init);
  247. void elevator_exit(struct elevator_queue *e)
  248. {
  249. mutex_lock(&e->sysfs_lock);
  250. if (e->ops->elevator_exit_fn)
  251. e->ops->elevator_exit_fn(e);
  252. e->ops = NULL;
  253. mutex_unlock(&e->sysfs_lock);
  254. kobject_put(&e->kobj);
  255. }
  256. EXPORT_SYMBOL(elevator_exit);
  257. static void elv_activate_rq(struct request_queue *q, struct request *rq)
  258. {
  259. struct elevator_queue *e = q->elevator;
  260. if (e->ops->elevator_activate_req_fn)
  261. e->ops->elevator_activate_req_fn(q, rq);
  262. }
  263. static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  264. {
  265. struct elevator_queue *e = q->elevator;
  266. if (e->ops->elevator_deactivate_req_fn)
  267. e->ops->elevator_deactivate_req_fn(q, rq);
  268. }
  269. static inline void __elv_rqhash_del(struct request *rq)
  270. {
  271. hlist_del_init(&rq->hash);
  272. }
  273. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  274. {
  275. if (ELV_ON_HASH(rq))
  276. __elv_rqhash_del(rq);
  277. }
  278. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  279. {
  280. struct elevator_queue *e = q->elevator;
  281. BUG_ON(ELV_ON_HASH(rq));
  282. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  283. }
  284. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  285. {
  286. __elv_rqhash_del(rq);
  287. elv_rqhash_add(q, rq);
  288. }
  289. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  290. {
  291. struct elevator_queue *e = q->elevator;
  292. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  293. struct hlist_node *entry, *next;
  294. struct request *rq;
  295. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  296. BUG_ON(!ELV_ON_HASH(rq));
  297. if (unlikely(!rq_mergeable(rq))) {
  298. __elv_rqhash_del(rq);
  299. continue;
  300. }
  301. if (rq_hash_key(rq) == offset)
  302. return rq;
  303. }
  304. return NULL;
  305. }
  306. /*
  307. * RB-tree support functions for inserting/lookup/removal of requests
  308. * in a sorted RB tree.
  309. */
  310. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  311. {
  312. struct rb_node **p = &root->rb_node;
  313. struct rb_node *parent = NULL;
  314. struct request *__rq;
  315. while (*p) {
  316. parent = *p;
  317. __rq = rb_entry(parent, struct request, rb_node);
  318. if (rq->sector < __rq->sector)
  319. p = &(*p)->rb_left;
  320. else if (rq->sector > __rq->sector)
  321. p = &(*p)->rb_right;
  322. else
  323. return __rq;
  324. }
  325. rb_link_node(&rq->rb_node, parent, p);
  326. rb_insert_color(&rq->rb_node, root);
  327. return NULL;
  328. }
  329. EXPORT_SYMBOL(elv_rb_add);
  330. void elv_rb_del(struct rb_root *root, struct request *rq)
  331. {
  332. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  333. rb_erase(&rq->rb_node, root);
  334. RB_CLEAR_NODE(&rq->rb_node);
  335. }
  336. EXPORT_SYMBOL(elv_rb_del);
  337. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  338. {
  339. struct rb_node *n = root->rb_node;
  340. struct request *rq;
  341. while (n) {
  342. rq = rb_entry(n, struct request, rb_node);
  343. if (sector < rq->sector)
  344. n = n->rb_left;
  345. else if (sector > rq->sector)
  346. n = n->rb_right;
  347. else
  348. return rq;
  349. }
  350. return NULL;
  351. }
  352. EXPORT_SYMBOL(elv_rb_find);
  353. /*
  354. * Insert rq into dispatch queue of q. Queue lock must be held on
  355. * entry. rq is sort instead into the dispatch queue. To be used by
  356. * specific elevators.
  357. */
  358. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  359. {
  360. sector_t boundary;
  361. struct list_head *entry;
  362. int stop_flags;
  363. if (q->last_merge == rq)
  364. q->last_merge = NULL;
  365. elv_rqhash_del(q, rq);
  366. q->nr_sorted--;
  367. boundary = q->end_sector;
  368. stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
  369. list_for_each_prev(entry, &q->queue_head) {
  370. struct request *pos = list_entry_rq(entry);
  371. if (blk_discard_rq(rq) != blk_discard_rq(pos))
  372. break;
  373. if (rq_data_dir(rq) != rq_data_dir(pos))
  374. break;
  375. if (pos->cmd_flags & stop_flags)
  376. break;
  377. if (rq->sector >= boundary) {
  378. if (pos->sector < boundary)
  379. continue;
  380. } else {
  381. if (pos->sector >= boundary)
  382. break;
  383. }
  384. if (rq->sector >= pos->sector)
  385. break;
  386. }
  387. list_add(&rq->queuelist, entry);
  388. }
  389. EXPORT_SYMBOL(elv_dispatch_sort);
  390. /*
  391. * Insert rq into dispatch queue of q. Queue lock must be held on
  392. * entry. rq is added to the back of the dispatch queue. To be used by
  393. * specific elevators.
  394. */
  395. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  396. {
  397. if (q->last_merge == rq)
  398. q->last_merge = NULL;
  399. elv_rqhash_del(q, rq);
  400. q->nr_sorted--;
  401. q->end_sector = rq_end_sector(rq);
  402. q->boundary_rq = rq;
  403. list_add_tail(&rq->queuelist, &q->queue_head);
  404. }
  405. EXPORT_SYMBOL(elv_dispatch_add_tail);
  406. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  407. {
  408. struct elevator_queue *e = q->elevator;
  409. struct request *__rq;
  410. int ret;
  411. /*
  412. * First try one-hit cache.
  413. */
  414. if (q->last_merge) {
  415. ret = elv_try_merge(q->last_merge, bio);
  416. if (ret != ELEVATOR_NO_MERGE) {
  417. *req = q->last_merge;
  418. return ret;
  419. }
  420. }
  421. if (blk_queue_nomerges(q))
  422. return ELEVATOR_NO_MERGE;
  423. /*
  424. * See if our hash lookup can find a potential backmerge.
  425. */
  426. __rq = elv_rqhash_find(q, bio->bi_sector);
  427. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  428. *req = __rq;
  429. return ELEVATOR_BACK_MERGE;
  430. }
  431. if (e->ops->elevator_merge_fn)
  432. return e->ops->elevator_merge_fn(q, req, bio);
  433. return ELEVATOR_NO_MERGE;
  434. }
  435. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  436. {
  437. struct elevator_queue *e = q->elevator;
  438. if (e->ops->elevator_merged_fn)
  439. e->ops->elevator_merged_fn(q, rq, type);
  440. if (type == ELEVATOR_BACK_MERGE)
  441. elv_rqhash_reposition(q, rq);
  442. q->last_merge = rq;
  443. }
  444. void elv_merge_requests(struct request_queue *q, struct request *rq,
  445. struct request *next)
  446. {
  447. struct elevator_queue *e = q->elevator;
  448. if (e->ops->elevator_merge_req_fn)
  449. e->ops->elevator_merge_req_fn(q, rq, next);
  450. elv_rqhash_reposition(q, rq);
  451. elv_rqhash_del(q, next);
  452. q->nr_sorted--;
  453. q->last_merge = rq;
  454. }
  455. void elv_requeue_request(struct request_queue *q, struct request *rq)
  456. {
  457. /*
  458. * it already went through dequeue, we need to decrement the
  459. * in_flight count again
  460. */
  461. if (blk_account_rq(rq)) {
  462. q->in_flight--;
  463. if (blk_sorted_rq(rq))
  464. elv_deactivate_rq(q, rq);
  465. }
  466. rq->cmd_flags &= ~REQ_STARTED;
  467. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  468. }
  469. void elv_drain_elevator(struct request_queue *q)
  470. {
  471. static int printed;
  472. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  473. ;
  474. if (q->nr_sorted == 0)
  475. return;
  476. if (printed++ < 10) {
  477. printk(KERN_ERR "%s: forced dispatching is broken "
  478. "(nr_sorted=%u), please report this\n",
  479. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  480. }
  481. }
  482. /*
  483. * Call with queue lock held, interrupts disabled
  484. */
  485. void elv_quiesce_start(struct request_queue *q)
  486. {
  487. queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
  488. /*
  489. * make sure we don't have any requests in flight
  490. */
  491. elv_drain_elevator(q);
  492. while (q->rq.elvpriv) {
  493. __blk_run_queue(q);
  494. spin_unlock_irq(q->queue_lock);
  495. msleep(10);
  496. spin_lock_irq(q->queue_lock);
  497. elv_drain_elevator(q);
  498. }
  499. }
  500. void elv_quiesce_end(struct request_queue *q)
  501. {
  502. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  503. }
  504. void elv_insert(struct request_queue *q, struct request *rq, int where)
  505. {
  506. struct list_head *pos;
  507. unsigned ordseq;
  508. int unplug_it = 1;
  509. trace_block_rq_insert(q, rq);
  510. rq->q = q;
  511. switch (where) {
  512. case ELEVATOR_INSERT_FRONT:
  513. rq->cmd_flags |= REQ_SOFTBARRIER;
  514. list_add(&rq->queuelist, &q->queue_head);
  515. break;
  516. case ELEVATOR_INSERT_BACK:
  517. rq->cmd_flags |= REQ_SOFTBARRIER;
  518. elv_drain_elevator(q);
  519. list_add_tail(&rq->queuelist, &q->queue_head);
  520. /*
  521. * We kick the queue here for the following reasons.
  522. * - The elevator might have returned NULL previously
  523. * to delay requests and returned them now. As the
  524. * queue wasn't empty before this request, ll_rw_blk
  525. * won't run the queue on return, resulting in hang.
  526. * - Usually, back inserted requests won't be merged
  527. * with anything. There's no point in delaying queue
  528. * processing.
  529. */
  530. __blk_run_queue(q);
  531. break;
  532. case ELEVATOR_INSERT_SORT:
  533. BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
  534. rq->cmd_flags |= REQ_SORTED;
  535. q->nr_sorted++;
  536. if (rq_mergeable(rq)) {
  537. elv_rqhash_add(q, rq);
  538. if (!q->last_merge)
  539. q->last_merge = rq;
  540. }
  541. /*
  542. * Some ioscheds (cfq) run q->request_fn directly, so
  543. * rq cannot be accessed after calling
  544. * elevator_add_req_fn.
  545. */
  546. q->elevator->ops->elevator_add_req_fn(q, rq);
  547. break;
  548. case ELEVATOR_INSERT_REQUEUE:
  549. /*
  550. * If ordered flush isn't in progress, we do front
  551. * insertion; otherwise, requests should be requeued
  552. * in ordseq order.
  553. */
  554. rq->cmd_flags |= REQ_SOFTBARRIER;
  555. /*
  556. * Most requeues happen because of a busy condition,
  557. * don't force unplug of the queue for that case.
  558. */
  559. unplug_it = 0;
  560. if (q->ordseq == 0) {
  561. list_add(&rq->queuelist, &q->queue_head);
  562. break;
  563. }
  564. ordseq = blk_ordered_req_seq(rq);
  565. list_for_each(pos, &q->queue_head) {
  566. struct request *pos_rq = list_entry_rq(pos);
  567. if (ordseq <= blk_ordered_req_seq(pos_rq))
  568. break;
  569. }
  570. list_add_tail(&rq->queuelist, pos);
  571. break;
  572. default:
  573. printk(KERN_ERR "%s: bad insertion point %d\n",
  574. __func__, where);
  575. BUG();
  576. }
  577. if (unplug_it && blk_queue_plugged(q)) {
  578. int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
  579. - q->in_flight;
  580. if (nrq >= q->unplug_thresh)
  581. __generic_unplug_device(q);
  582. }
  583. }
  584. void __elv_add_request(struct request_queue *q, struct request *rq, int where,
  585. int plug)
  586. {
  587. if (q->ordcolor)
  588. rq->cmd_flags |= REQ_ORDERED_COLOR;
  589. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  590. /*
  591. * toggle ordered color
  592. */
  593. if (blk_barrier_rq(rq))
  594. q->ordcolor ^= 1;
  595. /*
  596. * barriers implicitly indicate back insertion
  597. */
  598. if (where == ELEVATOR_INSERT_SORT)
  599. where = ELEVATOR_INSERT_BACK;
  600. /*
  601. * this request is scheduling boundary, update
  602. * end_sector
  603. */
  604. if (blk_fs_request(rq) || blk_discard_rq(rq)) {
  605. q->end_sector = rq_end_sector(rq);
  606. q->boundary_rq = rq;
  607. }
  608. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  609. where == ELEVATOR_INSERT_SORT)
  610. where = ELEVATOR_INSERT_BACK;
  611. if (plug)
  612. blk_plug_device(q);
  613. elv_insert(q, rq, where);
  614. }
  615. EXPORT_SYMBOL(__elv_add_request);
  616. void elv_add_request(struct request_queue *q, struct request *rq, int where,
  617. int plug)
  618. {
  619. unsigned long flags;
  620. spin_lock_irqsave(q->queue_lock, flags);
  621. __elv_add_request(q, rq, where, plug);
  622. spin_unlock_irqrestore(q->queue_lock, flags);
  623. }
  624. EXPORT_SYMBOL(elv_add_request);
  625. static inline struct request *__elv_next_request(struct request_queue *q)
  626. {
  627. struct request *rq;
  628. while (1) {
  629. while (!list_empty(&q->queue_head)) {
  630. rq = list_entry_rq(q->queue_head.next);
  631. if (blk_do_ordered(q, &rq))
  632. return rq;
  633. }
  634. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  635. return NULL;
  636. }
  637. }
  638. struct request *elv_next_request(struct request_queue *q)
  639. {
  640. struct request *rq;
  641. int ret;
  642. while ((rq = __elv_next_request(q)) != NULL) {
  643. if (!(rq->cmd_flags & REQ_STARTED)) {
  644. /*
  645. * This is the first time the device driver
  646. * sees this request (possibly after
  647. * requeueing). Notify IO scheduler.
  648. */
  649. if (blk_sorted_rq(rq))
  650. elv_activate_rq(q, rq);
  651. /*
  652. * just mark as started even if we don't start
  653. * it, a request that has been delayed should
  654. * not be passed by new incoming requests
  655. */
  656. rq->cmd_flags |= REQ_STARTED;
  657. trace_block_rq_issue(q, rq);
  658. }
  659. if (!q->boundary_rq || q->boundary_rq == rq) {
  660. q->end_sector = rq_end_sector(rq);
  661. q->boundary_rq = NULL;
  662. }
  663. if (rq->cmd_flags & REQ_DONTPREP)
  664. break;
  665. if (q->dma_drain_size && rq->data_len) {
  666. /*
  667. * make sure space for the drain appears we
  668. * know we can do this because max_hw_segments
  669. * has been adjusted to be one fewer than the
  670. * device can handle
  671. */
  672. rq->nr_phys_segments++;
  673. }
  674. if (!q->prep_rq_fn)
  675. break;
  676. ret = q->prep_rq_fn(q, rq);
  677. if (ret == BLKPREP_OK) {
  678. break;
  679. } else if (ret == BLKPREP_DEFER) {
  680. /*
  681. * the request may have been (partially) prepped.
  682. * we need to keep this request in the front to
  683. * avoid resource deadlock. REQ_STARTED will
  684. * prevent other fs requests from passing this one.
  685. */
  686. if (q->dma_drain_size && rq->data_len &&
  687. !(rq->cmd_flags & REQ_DONTPREP)) {
  688. /*
  689. * remove the space for the drain we added
  690. * so that we don't add it again
  691. */
  692. --rq->nr_phys_segments;
  693. }
  694. rq = NULL;
  695. break;
  696. } else if (ret == BLKPREP_KILL) {
  697. rq->cmd_flags |= REQ_QUIET;
  698. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  699. } else {
  700. printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
  701. break;
  702. }
  703. }
  704. return rq;
  705. }
  706. EXPORT_SYMBOL(elv_next_request);
  707. void elv_dequeue_request(struct request_queue *q, struct request *rq)
  708. {
  709. BUG_ON(list_empty(&rq->queuelist));
  710. BUG_ON(ELV_ON_HASH(rq));
  711. list_del_init(&rq->queuelist);
  712. /*
  713. * the time frame between a request being removed from the lists
  714. * and to it is freed is accounted as io that is in progress at
  715. * the driver side.
  716. */
  717. if (blk_account_rq(rq))
  718. q->in_flight++;
  719. }
  720. int elv_queue_empty(struct request_queue *q)
  721. {
  722. struct elevator_queue *e = q->elevator;
  723. if (!list_empty(&q->queue_head))
  724. return 0;
  725. if (e->ops->elevator_queue_empty_fn)
  726. return e->ops->elevator_queue_empty_fn(q);
  727. return 1;
  728. }
  729. EXPORT_SYMBOL(elv_queue_empty);
  730. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  731. {
  732. struct elevator_queue *e = q->elevator;
  733. if (e->ops->elevator_latter_req_fn)
  734. return e->ops->elevator_latter_req_fn(q, rq);
  735. return NULL;
  736. }
  737. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  738. {
  739. struct elevator_queue *e = q->elevator;
  740. if (e->ops->elevator_former_req_fn)
  741. return e->ops->elevator_former_req_fn(q, rq);
  742. return NULL;
  743. }
  744. int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  745. {
  746. struct elevator_queue *e = q->elevator;
  747. if (e->ops->elevator_set_req_fn)
  748. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  749. rq->elevator_private = NULL;
  750. return 0;
  751. }
  752. void elv_put_request(struct request_queue *q, struct request *rq)
  753. {
  754. struct elevator_queue *e = q->elevator;
  755. if (e->ops->elevator_put_req_fn)
  756. e->ops->elevator_put_req_fn(rq);
  757. }
  758. int elv_may_queue(struct request_queue *q, int rw)
  759. {
  760. struct elevator_queue *e = q->elevator;
  761. if (e->ops->elevator_may_queue_fn)
  762. return e->ops->elevator_may_queue_fn(q, rw);
  763. return ELV_MQUEUE_MAY;
  764. }
  765. void elv_abort_queue(struct request_queue *q)
  766. {
  767. struct request *rq;
  768. while (!list_empty(&q->queue_head)) {
  769. rq = list_entry_rq(q->queue_head.next);
  770. rq->cmd_flags |= REQ_QUIET;
  771. trace_block_rq_abort(q, rq);
  772. __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
  773. }
  774. }
  775. EXPORT_SYMBOL(elv_abort_queue);
  776. void elv_completed_request(struct request_queue *q, struct request *rq)
  777. {
  778. struct elevator_queue *e = q->elevator;
  779. /*
  780. * request is released from the driver, io must be done
  781. */
  782. if (blk_account_rq(rq)) {
  783. q->in_flight--;
  784. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  785. e->ops->elevator_completed_req_fn(q, rq);
  786. }
  787. /*
  788. * Check if the queue is waiting for fs requests to be
  789. * drained for flush sequence.
  790. */
  791. if (unlikely(q->ordseq)) {
  792. struct request *next = NULL;
  793. if (!list_empty(&q->queue_head))
  794. next = list_entry_rq(q->queue_head.next);
  795. if (!q->in_flight &&
  796. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  797. (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
  798. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  799. __blk_run_queue(q);
  800. }
  801. }
  802. }
  803. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  804. static ssize_t
  805. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  806. {
  807. struct elv_fs_entry *entry = to_elv(attr);
  808. struct elevator_queue *e;
  809. ssize_t error;
  810. if (!entry->show)
  811. return -EIO;
  812. e = container_of(kobj, struct elevator_queue, kobj);
  813. mutex_lock(&e->sysfs_lock);
  814. error = e->ops ? entry->show(e, page) : -ENOENT;
  815. mutex_unlock(&e->sysfs_lock);
  816. return error;
  817. }
  818. static ssize_t
  819. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  820. const char *page, size_t length)
  821. {
  822. struct elv_fs_entry *entry = to_elv(attr);
  823. struct elevator_queue *e;
  824. ssize_t error;
  825. if (!entry->store)
  826. return -EIO;
  827. e = container_of(kobj, struct elevator_queue, kobj);
  828. mutex_lock(&e->sysfs_lock);
  829. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  830. mutex_unlock(&e->sysfs_lock);
  831. return error;
  832. }
  833. static struct sysfs_ops elv_sysfs_ops = {
  834. .show = elv_attr_show,
  835. .store = elv_attr_store,
  836. };
  837. static struct kobj_type elv_ktype = {
  838. .sysfs_ops = &elv_sysfs_ops,
  839. .release = elevator_release,
  840. };
  841. int elv_register_queue(struct request_queue *q)
  842. {
  843. struct elevator_queue *e = q->elevator;
  844. int error;
  845. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  846. if (!error) {
  847. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  848. if (attr) {
  849. while (attr->attr.name) {
  850. if (sysfs_create_file(&e->kobj, &attr->attr))
  851. break;
  852. attr++;
  853. }
  854. }
  855. kobject_uevent(&e->kobj, KOBJ_ADD);
  856. }
  857. return error;
  858. }
  859. static void __elv_unregister_queue(struct elevator_queue *e)
  860. {
  861. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  862. kobject_del(&e->kobj);
  863. }
  864. void elv_unregister_queue(struct request_queue *q)
  865. {
  866. if (q)
  867. __elv_unregister_queue(q->elevator);
  868. }
  869. void elv_register(struct elevator_type *e)
  870. {
  871. char *def = "";
  872. spin_lock(&elv_list_lock);
  873. BUG_ON(elevator_find(e->elevator_name));
  874. list_add_tail(&e->list, &elv_list);
  875. spin_unlock(&elv_list_lock);
  876. if (!strcmp(e->elevator_name, chosen_elevator) ||
  877. (!*chosen_elevator &&
  878. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  879. def = " (default)";
  880. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  881. def);
  882. }
  883. EXPORT_SYMBOL_GPL(elv_register);
  884. void elv_unregister(struct elevator_type *e)
  885. {
  886. struct task_struct *g, *p;
  887. /*
  888. * Iterate every thread in the process to remove the io contexts.
  889. */
  890. if (e->ops.trim) {
  891. read_lock(&tasklist_lock);
  892. do_each_thread(g, p) {
  893. task_lock(p);
  894. if (p->io_context)
  895. e->ops.trim(p->io_context);
  896. task_unlock(p);
  897. } while_each_thread(g, p);
  898. read_unlock(&tasklist_lock);
  899. }
  900. spin_lock(&elv_list_lock);
  901. list_del_init(&e->list);
  902. spin_unlock(&elv_list_lock);
  903. }
  904. EXPORT_SYMBOL_GPL(elv_unregister);
  905. /*
  906. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  907. * we don't free the old io scheduler, before we have allocated what we
  908. * need for the new one. this way we have a chance of going back to the old
  909. * one, if the new one fails init for some reason.
  910. */
  911. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  912. {
  913. struct elevator_queue *old_elevator, *e;
  914. void *data;
  915. /*
  916. * Allocate new elevator
  917. */
  918. e = elevator_alloc(q, new_e);
  919. if (!e)
  920. return 0;
  921. data = elevator_init_queue(q, e);
  922. if (!data) {
  923. kobject_put(&e->kobj);
  924. return 0;
  925. }
  926. /*
  927. * Turn on BYPASS and drain all requests w/ elevator private data
  928. */
  929. spin_lock_irq(q->queue_lock);
  930. elv_quiesce_start(q);
  931. /*
  932. * Remember old elevator.
  933. */
  934. old_elevator = q->elevator;
  935. /*
  936. * attach and start new elevator
  937. */
  938. elevator_attach(q, e, data);
  939. spin_unlock_irq(q->queue_lock);
  940. __elv_unregister_queue(old_elevator);
  941. if (elv_register_queue(q))
  942. goto fail_register;
  943. /*
  944. * finally exit old elevator and turn off BYPASS.
  945. */
  946. elevator_exit(old_elevator);
  947. spin_lock_irq(q->queue_lock);
  948. elv_quiesce_end(q);
  949. spin_unlock_irq(q->queue_lock);
  950. blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
  951. return 1;
  952. fail_register:
  953. /*
  954. * switch failed, exit the new io scheduler and reattach the old
  955. * one again (along with re-adding the sysfs dir)
  956. */
  957. elevator_exit(e);
  958. q->elevator = old_elevator;
  959. elv_register_queue(q);
  960. spin_lock_irq(q->queue_lock);
  961. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  962. spin_unlock_irq(q->queue_lock);
  963. return 0;
  964. }
  965. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  966. size_t count)
  967. {
  968. char elevator_name[ELV_NAME_MAX];
  969. struct elevator_type *e;
  970. strlcpy(elevator_name, name, sizeof(elevator_name));
  971. strstrip(elevator_name);
  972. e = elevator_get(elevator_name);
  973. if (!e) {
  974. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  975. return -EINVAL;
  976. }
  977. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  978. elevator_put(e);
  979. return count;
  980. }
  981. if (!elevator_switch(q, e))
  982. printk(KERN_ERR "elevator: switch to %s failed\n",
  983. elevator_name);
  984. return count;
  985. }
  986. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  987. {
  988. struct elevator_queue *e = q->elevator;
  989. struct elevator_type *elv = e->elevator_type;
  990. struct elevator_type *__e;
  991. int len = 0;
  992. spin_lock(&elv_list_lock);
  993. list_for_each_entry(__e, &elv_list, list) {
  994. if (!strcmp(elv->elevator_name, __e->elevator_name))
  995. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  996. else
  997. len += sprintf(name+len, "%s ", __e->elevator_name);
  998. }
  999. spin_unlock(&elv_list_lock);
  1000. len += sprintf(len+name, "\n");
  1001. return len;
  1002. }
  1003. struct request *elv_rb_former_request(struct request_queue *q,
  1004. struct request *rq)
  1005. {
  1006. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  1007. if (rbprev)
  1008. return rb_entry_rq(rbprev);
  1009. return NULL;
  1010. }
  1011. EXPORT_SYMBOL(elv_rb_former_request);
  1012. struct request *elv_rb_latter_request(struct request_queue *q,
  1013. struct request *rq)
  1014. {
  1015. struct rb_node *rbnext = rb_next(&rq->rb_node);
  1016. if (rbnext)
  1017. return rb_entry_rq(rbnext);
  1018. return NULL;
  1019. }
  1020. EXPORT_SYMBOL(elv_rb_latter_request);