fork.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/config.h>
  13. #include <linux/slab.h>
  14. #include <linux/init.h>
  15. #include <linux/unistd.h>
  16. #include <linux/smp_lock.h>
  17. #include <linux/module.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/completion.h>
  20. #include <linux/namespace.h>
  21. #include <linux/personality.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/sem.h>
  24. #include <linux/file.h>
  25. #include <linux/key.h>
  26. #include <linux/binfmts.h>
  27. #include <linux/mman.h>
  28. #include <linux/fs.h>
  29. #include <linux/capability.h>
  30. #include <linux/cpu.h>
  31. #include <linux/cpuset.h>
  32. #include <linux/security.h>
  33. #include <linux/swap.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/jiffies.h>
  36. #include <linux/futex.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/cn_proc.h>
  45. #include <asm/pgtable.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/tlbflush.h>
  51. /*
  52. * Protected counters by write_lock_irq(&tasklist_lock)
  53. */
  54. unsigned long total_forks; /* Handle normal Linux uptimes. */
  55. int nr_threads; /* The idle threads do not count.. */
  56. int max_threads; /* tunable limit on nr_threads */
  57. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  58. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  59. EXPORT_SYMBOL(tasklist_lock);
  60. int nr_processes(void)
  61. {
  62. int cpu;
  63. int total = 0;
  64. for_each_online_cpu(cpu)
  65. total += per_cpu(process_counts, cpu);
  66. return total;
  67. }
  68. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  69. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  70. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  71. static kmem_cache_t *task_struct_cachep;
  72. #endif
  73. /* SLAB cache for signal_struct structures (tsk->signal) */
  74. static kmem_cache_t *signal_cachep;
  75. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  76. kmem_cache_t *sighand_cachep;
  77. /* SLAB cache for files_struct structures (tsk->files) */
  78. kmem_cache_t *files_cachep;
  79. /* SLAB cache for fs_struct structures (tsk->fs) */
  80. kmem_cache_t *fs_cachep;
  81. /* SLAB cache for vm_area_struct structures */
  82. kmem_cache_t *vm_area_cachep;
  83. /* SLAB cache for mm_struct structures (tsk->mm) */
  84. static kmem_cache_t *mm_cachep;
  85. void free_task(struct task_struct *tsk)
  86. {
  87. free_thread_info(tsk->thread_info);
  88. free_task_struct(tsk);
  89. }
  90. EXPORT_SYMBOL(free_task);
  91. void __put_task_struct_cb(struct rcu_head *rhp)
  92. {
  93. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  94. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  95. WARN_ON(atomic_read(&tsk->usage));
  96. WARN_ON(tsk == current);
  97. if (unlikely(tsk->audit_context))
  98. audit_free(tsk);
  99. security_task_free(tsk);
  100. free_uid(tsk->user);
  101. put_group_info(tsk->group_info);
  102. if (!profile_handoff_task(tsk))
  103. free_task(tsk);
  104. }
  105. void __init fork_init(unsigned long mempages)
  106. {
  107. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  108. #ifndef ARCH_MIN_TASKALIGN
  109. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  110. #endif
  111. /* create a slab on which task_structs can be allocated */
  112. task_struct_cachep =
  113. kmem_cache_create("task_struct", sizeof(struct task_struct),
  114. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  115. #endif
  116. /*
  117. * The default maximum number of threads is set to a safe
  118. * value: the thread structures can take up at most half
  119. * of memory.
  120. */
  121. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  122. /*
  123. * we need to allow at least 20 threads to boot a system
  124. */
  125. if(max_threads < 20)
  126. max_threads = 20;
  127. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  128. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  129. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  130. init_task.signal->rlim[RLIMIT_NPROC];
  131. }
  132. static struct task_struct *dup_task_struct(struct task_struct *orig)
  133. {
  134. struct task_struct *tsk;
  135. struct thread_info *ti;
  136. prepare_to_copy(orig);
  137. tsk = alloc_task_struct();
  138. if (!tsk)
  139. return NULL;
  140. ti = alloc_thread_info(tsk);
  141. if (!ti) {
  142. free_task_struct(tsk);
  143. return NULL;
  144. }
  145. *tsk = *orig;
  146. tsk->thread_info = ti;
  147. setup_thread_stack(tsk, orig);
  148. /* One for us, one for whoever does the "release_task()" (usually parent) */
  149. atomic_set(&tsk->usage,2);
  150. atomic_set(&tsk->fs_excl, 0);
  151. tsk->btrace_seq = 0;
  152. return tsk;
  153. }
  154. #ifdef CONFIG_MMU
  155. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  156. {
  157. struct vm_area_struct *mpnt, *tmp, **pprev;
  158. struct rb_node **rb_link, *rb_parent;
  159. int retval;
  160. unsigned long charge;
  161. struct mempolicy *pol;
  162. down_write(&oldmm->mmap_sem);
  163. flush_cache_mm(oldmm);
  164. down_write(&mm->mmap_sem);
  165. mm->locked_vm = 0;
  166. mm->mmap = NULL;
  167. mm->mmap_cache = NULL;
  168. mm->free_area_cache = oldmm->mmap_base;
  169. mm->cached_hole_size = ~0UL;
  170. mm->map_count = 0;
  171. cpus_clear(mm->cpu_vm_mask);
  172. mm->mm_rb = RB_ROOT;
  173. rb_link = &mm->mm_rb.rb_node;
  174. rb_parent = NULL;
  175. pprev = &mm->mmap;
  176. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  177. struct file *file;
  178. if (mpnt->vm_flags & VM_DONTCOPY) {
  179. long pages = vma_pages(mpnt);
  180. mm->total_vm -= pages;
  181. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  182. -pages);
  183. continue;
  184. }
  185. charge = 0;
  186. if (mpnt->vm_flags & VM_ACCOUNT) {
  187. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  188. if (security_vm_enough_memory(len))
  189. goto fail_nomem;
  190. charge = len;
  191. }
  192. tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  193. if (!tmp)
  194. goto fail_nomem;
  195. *tmp = *mpnt;
  196. pol = mpol_copy(vma_policy(mpnt));
  197. retval = PTR_ERR(pol);
  198. if (IS_ERR(pol))
  199. goto fail_nomem_policy;
  200. vma_set_policy(tmp, pol);
  201. tmp->vm_flags &= ~VM_LOCKED;
  202. tmp->vm_mm = mm;
  203. tmp->vm_next = NULL;
  204. anon_vma_link(tmp);
  205. file = tmp->vm_file;
  206. if (file) {
  207. struct inode *inode = file->f_dentry->d_inode;
  208. get_file(file);
  209. if (tmp->vm_flags & VM_DENYWRITE)
  210. atomic_dec(&inode->i_writecount);
  211. /* insert tmp into the share list, just after mpnt */
  212. spin_lock(&file->f_mapping->i_mmap_lock);
  213. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  214. flush_dcache_mmap_lock(file->f_mapping);
  215. vma_prio_tree_add(tmp, mpnt);
  216. flush_dcache_mmap_unlock(file->f_mapping);
  217. spin_unlock(&file->f_mapping->i_mmap_lock);
  218. }
  219. /*
  220. * Link in the new vma and copy the page table entries.
  221. */
  222. *pprev = tmp;
  223. pprev = &tmp->vm_next;
  224. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  225. rb_link = &tmp->vm_rb.rb_right;
  226. rb_parent = &tmp->vm_rb;
  227. mm->map_count++;
  228. retval = copy_page_range(mm, oldmm, mpnt);
  229. if (tmp->vm_ops && tmp->vm_ops->open)
  230. tmp->vm_ops->open(tmp);
  231. if (retval)
  232. goto out;
  233. }
  234. retval = 0;
  235. out:
  236. up_write(&mm->mmap_sem);
  237. flush_tlb_mm(oldmm);
  238. up_write(&oldmm->mmap_sem);
  239. return retval;
  240. fail_nomem_policy:
  241. kmem_cache_free(vm_area_cachep, tmp);
  242. fail_nomem:
  243. retval = -ENOMEM;
  244. vm_unacct_memory(charge);
  245. goto out;
  246. }
  247. static inline int mm_alloc_pgd(struct mm_struct * mm)
  248. {
  249. mm->pgd = pgd_alloc(mm);
  250. if (unlikely(!mm->pgd))
  251. return -ENOMEM;
  252. return 0;
  253. }
  254. static inline void mm_free_pgd(struct mm_struct * mm)
  255. {
  256. pgd_free(mm->pgd);
  257. }
  258. #else
  259. #define dup_mmap(mm, oldmm) (0)
  260. #define mm_alloc_pgd(mm) (0)
  261. #define mm_free_pgd(mm)
  262. #endif /* CONFIG_MMU */
  263. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  264. #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
  265. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  266. #include <linux/init_task.h>
  267. static struct mm_struct * mm_init(struct mm_struct * mm)
  268. {
  269. atomic_set(&mm->mm_users, 1);
  270. atomic_set(&mm->mm_count, 1);
  271. init_rwsem(&mm->mmap_sem);
  272. INIT_LIST_HEAD(&mm->mmlist);
  273. mm->core_waiters = 0;
  274. mm->nr_ptes = 0;
  275. set_mm_counter(mm, file_rss, 0);
  276. set_mm_counter(mm, anon_rss, 0);
  277. spin_lock_init(&mm->page_table_lock);
  278. rwlock_init(&mm->ioctx_list_lock);
  279. mm->ioctx_list = NULL;
  280. mm->free_area_cache = TASK_UNMAPPED_BASE;
  281. mm->cached_hole_size = ~0UL;
  282. if (likely(!mm_alloc_pgd(mm))) {
  283. mm->def_flags = 0;
  284. return mm;
  285. }
  286. free_mm(mm);
  287. return NULL;
  288. }
  289. /*
  290. * Allocate and initialize an mm_struct.
  291. */
  292. struct mm_struct * mm_alloc(void)
  293. {
  294. struct mm_struct * mm;
  295. mm = allocate_mm();
  296. if (mm) {
  297. memset(mm, 0, sizeof(*mm));
  298. mm = mm_init(mm);
  299. }
  300. return mm;
  301. }
  302. /*
  303. * Called when the last reference to the mm
  304. * is dropped: either by a lazy thread or by
  305. * mmput. Free the page directory and the mm.
  306. */
  307. void fastcall __mmdrop(struct mm_struct *mm)
  308. {
  309. BUG_ON(mm == &init_mm);
  310. mm_free_pgd(mm);
  311. destroy_context(mm);
  312. free_mm(mm);
  313. }
  314. /*
  315. * Decrement the use count and release all resources for an mm.
  316. */
  317. void mmput(struct mm_struct *mm)
  318. {
  319. if (atomic_dec_and_test(&mm->mm_users)) {
  320. exit_aio(mm);
  321. exit_mmap(mm);
  322. if (!list_empty(&mm->mmlist)) {
  323. spin_lock(&mmlist_lock);
  324. list_del(&mm->mmlist);
  325. spin_unlock(&mmlist_lock);
  326. }
  327. put_swap_token(mm);
  328. mmdrop(mm);
  329. }
  330. }
  331. EXPORT_SYMBOL_GPL(mmput);
  332. /**
  333. * get_task_mm - acquire a reference to the task's mm
  334. *
  335. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  336. * this kernel workthread has transiently adopted a user mm with use_mm,
  337. * to do its AIO) is not set and if so returns a reference to it, after
  338. * bumping up the use count. User must release the mm via mmput()
  339. * after use. Typically used by /proc and ptrace.
  340. */
  341. struct mm_struct *get_task_mm(struct task_struct *task)
  342. {
  343. struct mm_struct *mm;
  344. task_lock(task);
  345. mm = task->mm;
  346. if (mm) {
  347. if (task->flags & PF_BORROWED_MM)
  348. mm = NULL;
  349. else
  350. atomic_inc(&mm->mm_users);
  351. }
  352. task_unlock(task);
  353. return mm;
  354. }
  355. EXPORT_SYMBOL_GPL(get_task_mm);
  356. /* Please note the differences between mmput and mm_release.
  357. * mmput is called whenever we stop holding onto a mm_struct,
  358. * error success whatever.
  359. *
  360. * mm_release is called after a mm_struct has been removed
  361. * from the current process.
  362. *
  363. * This difference is important for error handling, when we
  364. * only half set up a mm_struct for a new process and need to restore
  365. * the old one. Because we mmput the new mm_struct before
  366. * restoring the old one. . .
  367. * Eric Biederman 10 January 1998
  368. */
  369. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  370. {
  371. struct completion *vfork_done = tsk->vfork_done;
  372. /* Get rid of any cached register state */
  373. deactivate_mm(tsk, mm);
  374. /* notify parent sleeping on vfork() */
  375. if (vfork_done) {
  376. tsk->vfork_done = NULL;
  377. complete(vfork_done);
  378. }
  379. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  380. u32 __user * tidptr = tsk->clear_child_tid;
  381. tsk->clear_child_tid = NULL;
  382. /*
  383. * We don't check the error code - if userspace has
  384. * not set up a proper pointer then tough luck.
  385. */
  386. put_user(0, tidptr);
  387. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  388. }
  389. }
  390. /*
  391. * Allocate a new mm structure and copy contents from the
  392. * mm structure of the passed in task structure.
  393. */
  394. static struct mm_struct *dup_mm(struct task_struct *tsk)
  395. {
  396. struct mm_struct *mm, *oldmm = current->mm;
  397. int err;
  398. if (!oldmm)
  399. return NULL;
  400. mm = allocate_mm();
  401. if (!mm)
  402. goto fail_nomem;
  403. memcpy(mm, oldmm, sizeof(*mm));
  404. if (!mm_init(mm))
  405. goto fail_nomem;
  406. if (init_new_context(tsk, mm))
  407. goto fail_nocontext;
  408. err = dup_mmap(mm, oldmm);
  409. if (err)
  410. goto free_pt;
  411. mm->hiwater_rss = get_mm_rss(mm);
  412. mm->hiwater_vm = mm->total_vm;
  413. return mm;
  414. free_pt:
  415. mmput(mm);
  416. fail_nomem:
  417. return NULL;
  418. fail_nocontext:
  419. /*
  420. * If init_new_context() failed, we cannot use mmput() to free the mm
  421. * because it calls destroy_context()
  422. */
  423. mm_free_pgd(mm);
  424. free_mm(mm);
  425. return NULL;
  426. }
  427. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  428. {
  429. struct mm_struct * mm, *oldmm;
  430. int retval;
  431. tsk->min_flt = tsk->maj_flt = 0;
  432. tsk->nvcsw = tsk->nivcsw = 0;
  433. tsk->mm = NULL;
  434. tsk->active_mm = NULL;
  435. /*
  436. * Are we cloning a kernel thread?
  437. *
  438. * We need to steal a active VM for that..
  439. */
  440. oldmm = current->mm;
  441. if (!oldmm)
  442. return 0;
  443. if (clone_flags & CLONE_VM) {
  444. atomic_inc(&oldmm->mm_users);
  445. mm = oldmm;
  446. goto good_mm;
  447. }
  448. retval = -ENOMEM;
  449. mm = dup_mm(tsk);
  450. if (!mm)
  451. goto fail_nomem;
  452. good_mm:
  453. tsk->mm = mm;
  454. tsk->active_mm = mm;
  455. return 0;
  456. fail_nomem:
  457. return retval;
  458. }
  459. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  460. {
  461. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  462. /* We don't need to lock fs - think why ;-) */
  463. if (fs) {
  464. atomic_set(&fs->count, 1);
  465. rwlock_init(&fs->lock);
  466. fs->umask = old->umask;
  467. read_lock(&old->lock);
  468. fs->rootmnt = mntget(old->rootmnt);
  469. fs->root = dget(old->root);
  470. fs->pwdmnt = mntget(old->pwdmnt);
  471. fs->pwd = dget(old->pwd);
  472. if (old->altroot) {
  473. fs->altrootmnt = mntget(old->altrootmnt);
  474. fs->altroot = dget(old->altroot);
  475. } else {
  476. fs->altrootmnt = NULL;
  477. fs->altroot = NULL;
  478. }
  479. read_unlock(&old->lock);
  480. }
  481. return fs;
  482. }
  483. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  484. {
  485. return __copy_fs_struct(old);
  486. }
  487. EXPORT_SYMBOL_GPL(copy_fs_struct);
  488. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  489. {
  490. if (clone_flags & CLONE_FS) {
  491. atomic_inc(&current->fs->count);
  492. return 0;
  493. }
  494. tsk->fs = __copy_fs_struct(current->fs);
  495. if (!tsk->fs)
  496. return -ENOMEM;
  497. return 0;
  498. }
  499. static int count_open_files(struct fdtable *fdt)
  500. {
  501. int size = fdt->max_fdset;
  502. int i;
  503. /* Find the last open fd */
  504. for (i = size/(8*sizeof(long)); i > 0; ) {
  505. if (fdt->open_fds->fds_bits[--i])
  506. break;
  507. }
  508. i = (i+1) * 8 * sizeof(long);
  509. return i;
  510. }
  511. static struct files_struct *alloc_files(void)
  512. {
  513. struct files_struct *newf;
  514. struct fdtable *fdt;
  515. newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
  516. if (!newf)
  517. goto out;
  518. atomic_set(&newf->count, 1);
  519. spin_lock_init(&newf->file_lock);
  520. newf->next_fd = 0;
  521. fdt = &newf->fdtab;
  522. fdt->max_fds = NR_OPEN_DEFAULT;
  523. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  524. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  525. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  526. fdt->fd = &newf->fd_array[0];
  527. INIT_RCU_HEAD(&fdt->rcu);
  528. fdt->free_files = NULL;
  529. fdt->next = NULL;
  530. rcu_assign_pointer(newf->fdt, fdt);
  531. out:
  532. return newf;
  533. }
  534. /*
  535. * Allocate a new files structure and copy contents from the
  536. * passed in files structure.
  537. */
  538. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  539. {
  540. struct files_struct *newf;
  541. struct file **old_fds, **new_fds;
  542. int open_files, size, i, expand;
  543. struct fdtable *old_fdt, *new_fdt;
  544. newf = alloc_files();
  545. if (!newf)
  546. goto out;
  547. spin_lock(&oldf->file_lock);
  548. old_fdt = files_fdtable(oldf);
  549. new_fdt = files_fdtable(newf);
  550. size = old_fdt->max_fdset;
  551. open_files = count_open_files(old_fdt);
  552. expand = 0;
  553. /*
  554. * Check whether we need to allocate a larger fd array or fd set.
  555. * Note: we're not a clone task, so the open count won't change.
  556. */
  557. if (open_files > new_fdt->max_fdset) {
  558. new_fdt->max_fdset = 0;
  559. expand = 1;
  560. }
  561. if (open_files > new_fdt->max_fds) {
  562. new_fdt->max_fds = 0;
  563. expand = 1;
  564. }
  565. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  566. if (expand) {
  567. spin_unlock(&oldf->file_lock);
  568. spin_lock(&newf->file_lock);
  569. *errorp = expand_files(newf, open_files-1);
  570. spin_unlock(&newf->file_lock);
  571. if (*errorp < 0)
  572. goto out_release;
  573. new_fdt = files_fdtable(newf);
  574. /*
  575. * Reacquire the oldf lock and a pointer to its fd table
  576. * who knows it may have a new bigger fd table. We need
  577. * the latest pointer.
  578. */
  579. spin_lock(&oldf->file_lock);
  580. old_fdt = files_fdtable(oldf);
  581. }
  582. old_fds = old_fdt->fd;
  583. new_fds = new_fdt->fd;
  584. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  585. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  586. for (i = open_files; i != 0; i--) {
  587. struct file *f = *old_fds++;
  588. if (f) {
  589. get_file(f);
  590. } else {
  591. /*
  592. * The fd may be claimed in the fd bitmap but not yet
  593. * instantiated in the files array if a sibling thread
  594. * is partway through open(). So make sure that this
  595. * fd is available to the new process.
  596. */
  597. FD_CLR(open_files - i, new_fdt->open_fds);
  598. }
  599. rcu_assign_pointer(*new_fds++, f);
  600. }
  601. spin_unlock(&oldf->file_lock);
  602. /* compute the remainder to be cleared */
  603. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  604. /* This is long word aligned thus could use a optimized version */
  605. memset(new_fds, 0, size);
  606. if (new_fdt->max_fdset > open_files) {
  607. int left = (new_fdt->max_fdset-open_files)/8;
  608. int start = open_files / (8 * sizeof(unsigned long));
  609. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  610. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  611. }
  612. out:
  613. return newf;
  614. out_release:
  615. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  616. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  617. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  618. kmem_cache_free(files_cachep, newf);
  619. goto out;
  620. }
  621. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  622. {
  623. struct files_struct *oldf, *newf;
  624. int error = 0;
  625. /*
  626. * A background process may not have any files ...
  627. */
  628. oldf = current->files;
  629. if (!oldf)
  630. goto out;
  631. if (clone_flags & CLONE_FILES) {
  632. atomic_inc(&oldf->count);
  633. goto out;
  634. }
  635. /*
  636. * Note: we may be using current for both targets (See exec.c)
  637. * This works because we cache current->files (old) as oldf. Don't
  638. * break this.
  639. */
  640. tsk->files = NULL;
  641. error = -ENOMEM;
  642. newf = dup_fd(oldf, &error);
  643. if (!newf)
  644. goto out;
  645. tsk->files = newf;
  646. error = 0;
  647. out:
  648. return error;
  649. }
  650. /*
  651. * Helper to unshare the files of the current task.
  652. * We don't want to expose copy_files internals to
  653. * the exec layer of the kernel.
  654. */
  655. int unshare_files(void)
  656. {
  657. struct files_struct *files = current->files;
  658. int rc;
  659. BUG_ON(!files);
  660. /* This can race but the race causes us to copy when we don't
  661. need to and drop the copy */
  662. if(atomic_read(&files->count) == 1)
  663. {
  664. atomic_inc(&files->count);
  665. return 0;
  666. }
  667. rc = copy_files(0, current);
  668. if(rc)
  669. current->files = files;
  670. return rc;
  671. }
  672. EXPORT_SYMBOL(unshare_files);
  673. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  674. {
  675. struct sighand_struct *sig;
  676. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  677. atomic_inc(&current->sighand->count);
  678. return 0;
  679. }
  680. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  681. rcu_assign_pointer(tsk->sighand, sig);
  682. if (!sig)
  683. return -ENOMEM;
  684. atomic_set(&sig->count, 1);
  685. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  686. return 0;
  687. }
  688. void __cleanup_sighand(struct sighand_struct *sighand)
  689. {
  690. if (atomic_dec_and_test(&sighand->count))
  691. kmem_cache_free(sighand_cachep, sighand);
  692. }
  693. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  694. {
  695. struct signal_struct *sig;
  696. int ret;
  697. if (clone_flags & CLONE_THREAD) {
  698. atomic_inc(&current->signal->count);
  699. atomic_inc(&current->signal->live);
  700. return 0;
  701. }
  702. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  703. tsk->signal = sig;
  704. if (!sig)
  705. return -ENOMEM;
  706. ret = copy_thread_group_keys(tsk);
  707. if (ret < 0) {
  708. kmem_cache_free(signal_cachep, sig);
  709. return ret;
  710. }
  711. atomic_set(&sig->count, 1);
  712. atomic_set(&sig->live, 1);
  713. init_waitqueue_head(&sig->wait_chldexit);
  714. sig->flags = 0;
  715. sig->group_exit_code = 0;
  716. sig->group_exit_task = NULL;
  717. sig->group_stop_count = 0;
  718. sig->curr_target = NULL;
  719. init_sigpending(&sig->shared_pending);
  720. INIT_LIST_HEAD(&sig->posix_timers);
  721. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  722. sig->it_real_incr.tv64 = 0;
  723. sig->real_timer.function = it_real_fn;
  724. sig->tsk = tsk;
  725. sig->it_virt_expires = cputime_zero;
  726. sig->it_virt_incr = cputime_zero;
  727. sig->it_prof_expires = cputime_zero;
  728. sig->it_prof_incr = cputime_zero;
  729. sig->leader = 0; /* session leadership doesn't inherit */
  730. sig->tty_old_pgrp = 0;
  731. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  732. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  733. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  734. sig->sched_time = 0;
  735. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  736. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  737. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  738. task_lock(current->group_leader);
  739. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  740. task_unlock(current->group_leader);
  741. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  742. /*
  743. * New sole thread in the process gets an expiry time
  744. * of the whole CPU time limit.
  745. */
  746. tsk->it_prof_expires =
  747. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  748. }
  749. return 0;
  750. }
  751. void __cleanup_signal(struct signal_struct *sig)
  752. {
  753. exit_thread_group_keys(sig);
  754. kmem_cache_free(signal_cachep, sig);
  755. }
  756. static inline void cleanup_signal(struct task_struct *tsk)
  757. {
  758. struct signal_struct *sig = tsk->signal;
  759. atomic_dec(&sig->live);
  760. if (atomic_dec_and_test(&sig->count))
  761. __cleanup_signal(sig);
  762. }
  763. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  764. {
  765. unsigned long new_flags = p->flags;
  766. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  767. new_flags |= PF_FORKNOEXEC;
  768. if (!(clone_flags & CLONE_PTRACE))
  769. p->ptrace = 0;
  770. p->flags = new_flags;
  771. }
  772. asmlinkage long sys_set_tid_address(int __user *tidptr)
  773. {
  774. current->clear_child_tid = tidptr;
  775. return current->pid;
  776. }
  777. /*
  778. * This creates a new process as a copy of the old one,
  779. * but does not actually start it yet.
  780. *
  781. * It copies the registers, and all the appropriate
  782. * parts of the process environment (as per the clone
  783. * flags). The actual kick-off is left to the caller.
  784. */
  785. static task_t *copy_process(unsigned long clone_flags,
  786. unsigned long stack_start,
  787. struct pt_regs *regs,
  788. unsigned long stack_size,
  789. int __user *parent_tidptr,
  790. int __user *child_tidptr,
  791. int pid)
  792. {
  793. int retval;
  794. struct task_struct *p = NULL;
  795. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  796. return ERR_PTR(-EINVAL);
  797. /*
  798. * Thread groups must share signals as well, and detached threads
  799. * can only be started up within the thread group.
  800. */
  801. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  802. return ERR_PTR(-EINVAL);
  803. /*
  804. * Shared signal handlers imply shared VM. By way of the above,
  805. * thread groups also imply shared VM. Blocking this case allows
  806. * for various simplifications in other code.
  807. */
  808. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  809. return ERR_PTR(-EINVAL);
  810. retval = security_task_create(clone_flags);
  811. if (retval)
  812. goto fork_out;
  813. retval = -ENOMEM;
  814. p = dup_task_struct(current);
  815. if (!p)
  816. goto fork_out;
  817. retval = -EAGAIN;
  818. if (atomic_read(&p->user->processes) >=
  819. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  820. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  821. p->user != &root_user)
  822. goto bad_fork_free;
  823. }
  824. atomic_inc(&p->user->__count);
  825. atomic_inc(&p->user->processes);
  826. get_group_info(p->group_info);
  827. /*
  828. * If multiple threads are within copy_process(), then this check
  829. * triggers too late. This doesn't hurt, the check is only there
  830. * to stop root fork bombs.
  831. */
  832. if (nr_threads >= max_threads)
  833. goto bad_fork_cleanup_count;
  834. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  835. goto bad_fork_cleanup_count;
  836. if (p->binfmt && !try_module_get(p->binfmt->module))
  837. goto bad_fork_cleanup_put_domain;
  838. p->did_exec = 0;
  839. copy_flags(clone_flags, p);
  840. p->pid = pid;
  841. retval = -EFAULT;
  842. if (clone_flags & CLONE_PARENT_SETTID)
  843. if (put_user(p->pid, parent_tidptr))
  844. goto bad_fork_cleanup;
  845. p->proc_dentry = NULL;
  846. INIT_LIST_HEAD(&p->children);
  847. INIT_LIST_HEAD(&p->sibling);
  848. p->vfork_done = NULL;
  849. spin_lock_init(&p->alloc_lock);
  850. spin_lock_init(&p->proc_lock);
  851. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  852. init_sigpending(&p->pending);
  853. p->utime = cputime_zero;
  854. p->stime = cputime_zero;
  855. p->sched_time = 0;
  856. p->rchar = 0; /* I/O counter: bytes read */
  857. p->wchar = 0; /* I/O counter: bytes written */
  858. p->syscr = 0; /* I/O counter: read syscalls */
  859. p->syscw = 0; /* I/O counter: write syscalls */
  860. acct_clear_integrals(p);
  861. p->it_virt_expires = cputime_zero;
  862. p->it_prof_expires = cputime_zero;
  863. p->it_sched_expires = 0;
  864. INIT_LIST_HEAD(&p->cpu_timers[0]);
  865. INIT_LIST_HEAD(&p->cpu_timers[1]);
  866. INIT_LIST_HEAD(&p->cpu_timers[2]);
  867. p->lock_depth = -1; /* -1 = no lock */
  868. do_posix_clock_monotonic_gettime(&p->start_time);
  869. p->security = NULL;
  870. p->io_context = NULL;
  871. p->io_wait = NULL;
  872. p->audit_context = NULL;
  873. cpuset_fork(p);
  874. #ifdef CONFIG_NUMA
  875. p->mempolicy = mpol_copy(p->mempolicy);
  876. if (IS_ERR(p->mempolicy)) {
  877. retval = PTR_ERR(p->mempolicy);
  878. p->mempolicy = NULL;
  879. goto bad_fork_cleanup_cpuset;
  880. }
  881. mpol_fix_fork_child_flag(p);
  882. #endif
  883. #ifdef CONFIG_DEBUG_MUTEXES
  884. p->blocked_on = NULL; /* not blocked yet */
  885. #endif
  886. p->tgid = p->pid;
  887. if (clone_flags & CLONE_THREAD)
  888. p->tgid = current->tgid;
  889. if ((retval = security_task_alloc(p)))
  890. goto bad_fork_cleanup_policy;
  891. if ((retval = audit_alloc(p)))
  892. goto bad_fork_cleanup_security;
  893. /* copy all the process information */
  894. if ((retval = copy_semundo(clone_flags, p)))
  895. goto bad_fork_cleanup_audit;
  896. if ((retval = copy_files(clone_flags, p)))
  897. goto bad_fork_cleanup_semundo;
  898. if ((retval = copy_fs(clone_flags, p)))
  899. goto bad_fork_cleanup_files;
  900. if ((retval = copy_sighand(clone_flags, p)))
  901. goto bad_fork_cleanup_fs;
  902. if ((retval = copy_signal(clone_flags, p)))
  903. goto bad_fork_cleanup_sighand;
  904. if ((retval = copy_mm(clone_flags, p)))
  905. goto bad_fork_cleanup_signal;
  906. if ((retval = copy_keys(clone_flags, p)))
  907. goto bad_fork_cleanup_mm;
  908. if ((retval = copy_namespace(clone_flags, p)))
  909. goto bad_fork_cleanup_keys;
  910. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  911. if (retval)
  912. goto bad_fork_cleanup_namespace;
  913. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  914. /*
  915. * Clear TID on mm_release()?
  916. */
  917. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  918. p->robust_list = NULL;
  919. #ifdef CONFIG_COMPAT
  920. p->compat_robust_list = NULL;
  921. #endif
  922. /*
  923. * sigaltstack should be cleared when sharing the same VM
  924. */
  925. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  926. p->sas_ss_sp = p->sas_ss_size = 0;
  927. /*
  928. * Syscall tracing should be turned off in the child regardless
  929. * of CLONE_PTRACE.
  930. */
  931. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  932. #ifdef TIF_SYSCALL_EMU
  933. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  934. #endif
  935. /* Our parent execution domain becomes current domain
  936. These must match for thread signalling to apply */
  937. p->parent_exec_id = p->self_exec_id;
  938. /* ok, now we should be set up.. */
  939. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  940. p->pdeath_signal = 0;
  941. p->exit_state = 0;
  942. /*
  943. * Ok, make it visible to the rest of the system.
  944. * We dont wake it up yet.
  945. */
  946. p->group_leader = p;
  947. INIT_LIST_HEAD(&p->thread_group);
  948. INIT_LIST_HEAD(&p->ptrace_children);
  949. INIT_LIST_HEAD(&p->ptrace_list);
  950. /* Perform scheduler related setup. Assign this task to a CPU. */
  951. sched_fork(p, clone_flags);
  952. /* Need tasklist lock for parent etc handling! */
  953. write_lock_irq(&tasklist_lock);
  954. /*
  955. * The task hasn't been attached yet, so its cpus_allowed mask will
  956. * not be changed, nor will its assigned CPU.
  957. *
  958. * The cpus_allowed mask of the parent may have changed after it was
  959. * copied first time - so re-copy it here, then check the child's CPU
  960. * to ensure it is on a valid CPU (and if not, just force it back to
  961. * parent's CPU). This avoids alot of nasty races.
  962. */
  963. p->cpus_allowed = current->cpus_allowed;
  964. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  965. !cpu_online(task_cpu(p))))
  966. set_task_cpu(p, smp_processor_id());
  967. /* CLONE_PARENT re-uses the old parent */
  968. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  969. p->real_parent = current->real_parent;
  970. else
  971. p->real_parent = current;
  972. p->parent = p->real_parent;
  973. spin_lock(&current->sighand->siglock);
  974. /*
  975. * Process group and session signals need to be delivered to just the
  976. * parent before the fork or both the parent and the child after the
  977. * fork. Restart if a signal comes in before we add the new process to
  978. * it's process group.
  979. * A fatal signal pending means that current will exit, so the new
  980. * thread can't slip out of an OOM kill (or normal SIGKILL).
  981. */
  982. recalc_sigpending();
  983. if (signal_pending(current)) {
  984. spin_unlock(&current->sighand->siglock);
  985. write_unlock_irq(&tasklist_lock);
  986. retval = -ERESTARTNOINTR;
  987. goto bad_fork_cleanup_namespace;
  988. }
  989. if (clone_flags & CLONE_THREAD) {
  990. /*
  991. * Important: if an exit-all has been started then
  992. * do not create this new thread - the whole thread
  993. * group is supposed to exit anyway.
  994. */
  995. if (current->signal->flags & SIGNAL_GROUP_EXIT) {
  996. spin_unlock(&current->sighand->siglock);
  997. write_unlock_irq(&tasklist_lock);
  998. retval = -EAGAIN;
  999. goto bad_fork_cleanup_namespace;
  1000. }
  1001. p->group_leader = current->group_leader;
  1002. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1003. if (!cputime_eq(current->signal->it_virt_expires,
  1004. cputime_zero) ||
  1005. !cputime_eq(current->signal->it_prof_expires,
  1006. cputime_zero) ||
  1007. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1008. !list_empty(&current->signal->cpu_timers[0]) ||
  1009. !list_empty(&current->signal->cpu_timers[1]) ||
  1010. !list_empty(&current->signal->cpu_timers[2])) {
  1011. /*
  1012. * Have child wake up on its first tick to check
  1013. * for process CPU timers.
  1014. */
  1015. p->it_prof_expires = jiffies_to_cputime(1);
  1016. }
  1017. }
  1018. /*
  1019. * inherit ioprio
  1020. */
  1021. p->ioprio = current->ioprio;
  1022. if (likely(p->pid)) {
  1023. add_parent(p);
  1024. if (unlikely(p->ptrace & PT_PTRACED))
  1025. __ptrace_link(p, current->parent);
  1026. if (thread_group_leader(p)) {
  1027. p->signal->tty = current->signal->tty;
  1028. p->signal->pgrp = process_group(current);
  1029. p->signal->session = current->signal->session;
  1030. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1031. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1032. list_add_tail(&p->tasks, &init_task.tasks);
  1033. __get_cpu_var(process_counts)++;
  1034. }
  1035. attach_pid(p, PIDTYPE_PID, p->pid);
  1036. nr_threads++;
  1037. }
  1038. total_forks++;
  1039. spin_unlock(&current->sighand->siglock);
  1040. write_unlock_irq(&tasklist_lock);
  1041. proc_fork_connector(p);
  1042. return p;
  1043. bad_fork_cleanup_namespace:
  1044. exit_namespace(p);
  1045. bad_fork_cleanup_keys:
  1046. exit_keys(p);
  1047. bad_fork_cleanup_mm:
  1048. if (p->mm)
  1049. mmput(p->mm);
  1050. bad_fork_cleanup_signal:
  1051. cleanup_signal(p);
  1052. bad_fork_cleanup_sighand:
  1053. __cleanup_sighand(p->sighand);
  1054. bad_fork_cleanup_fs:
  1055. exit_fs(p); /* blocking */
  1056. bad_fork_cleanup_files:
  1057. exit_files(p); /* blocking */
  1058. bad_fork_cleanup_semundo:
  1059. exit_sem(p);
  1060. bad_fork_cleanup_audit:
  1061. audit_free(p);
  1062. bad_fork_cleanup_security:
  1063. security_task_free(p);
  1064. bad_fork_cleanup_policy:
  1065. #ifdef CONFIG_NUMA
  1066. mpol_free(p->mempolicy);
  1067. bad_fork_cleanup_cpuset:
  1068. #endif
  1069. cpuset_exit(p);
  1070. bad_fork_cleanup:
  1071. if (p->binfmt)
  1072. module_put(p->binfmt->module);
  1073. bad_fork_cleanup_put_domain:
  1074. module_put(task_thread_info(p)->exec_domain->module);
  1075. bad_fork_cleanup_count:
  1076. put_group_info(p->group_info);
  1077. atomic_dec(&p->user->processes);
  1078. free_uid(p->user);
  1079. bad_fork_free:
  1080. free_task(p);
  1081. fork_out:
  1082. return ERR_PTR(retval);
  1083. }
  1084. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1085. {
  1086. memset(regs, 0, sizeof(struct pt_regs));
  1087. return regs;
  1088. }
  1089. task_t * __devinit fork_idle(int cpu)
  1090. {
  1091. task_t *task;
  1092. struct pt_regs regs;
  1093. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1094. if (!task)
  1095. return ERR_PTR(-ENOMEM);
  1096. init_idle(task, cpu);
  1097. return task;
  1098. }
  1099. static inline int fork_traceflag (unsigned clone_flags)
  1100. {
  1101. if (clone_flags & CLONE_UNTRACED)
  1102. return 0;
  1103. else if (clone_flags & CLONE_VFORK) {
  1104. if (current->ptrace & PT_TRACE_VFORK)
  1105. return PTRACE_EVENT_VFORK;
  1106. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1107. if (current->ptrace & PT_TRACE_CLONE)
  1108. return PTRACE_EVENT_CLONE;
  1109. } else if (current->ptrace & PT_TRACE_FORK)
  1110. return PTRACE_EVENT_FORK;
  1111. return 0;
  1112. }
  1113. /*
  1114. * Ok, this is the main fork-routine.
  1115. *
  1116. * It copies the process, and if successful kick-starts
  1117. * it and waits for it to finish using the VM if required.
  1118. */
  1119. long do_fork(unsigned long clone_flags,
  1120. unsigned long stack_start,
  1121. struct pt_regs *regs,
  1122. unsigned long stack_size,
  1123. int __user *parent_tidptr,
  1124. int __user *child_tidptr)
  1125. {
  1126. struct task_struct *p;
  1127. int trace = 0;
  1128. long pid = alloc_pidmap();
  1129. if (pid < 0)
  1130. return -EAGAIN;
  1131. if (unlikely(current->ptrace)) {
  1132. trace = fork_traceflag (clone_flags);
  1133. if (trace)
  1134. clone_flags |= CLONE_PTRACE;
  1135. }
  1136. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
  1137. /*
  1138. * Do this prior waking up the new thread - the thread pointer
  1139. * might get invalid after that point, if the thread exits quickly.
  1140. */
  1141. if (!IS_ERR(p)) {
  1142. struct completion vfork;
  1143. if (clone_flags & CLONE_VFORK) {
  1144. p->vfork_done = &vfork;
  1145. init_completion(&vfork);
  1146. }
  1147. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1148. /*
  1149. * We'll start up with an immediate SIGSTOP.
  1150. */
  1151. sigaddset(&p->pending.signal, SIGSTOP);
  1152. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1153. }
  1154. if (!(clone_flags & CLONE_STOPPED))
  1155. wake_up_new_task(p, clone_flags);
  1156. else
  1157. p->state = TASK_STOPPED;
  1158. if (unlikely (trace)) {
  1159. current->ptrace_message = pid;
  1160. ptrace_notify ((trace << 8) | SIGTRAP);
  1161. }
  1162. if (clone_flags & CLONE_VFORK) {
  1163. wait_for_completion(&vfork);
  1164. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
  1165. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1166. }
  1167. } else {
  1168. free_pidmap(pid);
  1169. pid = PTR_ERR(p);
  1170. }
  1171. return pid;
  1172. }
  1173. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1174. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1175. #endif
  1176. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1177. {
  1178. struct sighand_struct *sighand = data;
  1179. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1180. SLAB_CTOR_CONSTRUCTOR)
  1181. spin_lock_init(&sighand->siglock);
  1182. }
  1183. void __init proc_caches_init(void)
  1184. {
  1185. sighand_cachep = kmem_cache_create("sighand_cache",
  1186. sizeof(struct sighand_struct), 0,
  1187. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1188. sighand_ctor, NULL);
  1189. signal_cachep = kmem_cache_create("signal_cache",
  1190. sizeof(struct signal_struct), 0,
  1191. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1192. files_cachep = kmem_cache_create("files_cache",
  1193. sizeof(struct files_struct), 0,
  1194. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1195. fs_cachep = kmem_cache_create("fs_cache",
  1196. sizeof(struct fs_struct), 0,
  1197. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1198. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1199. sizeof(struct vm_area_struct), 0,
  1200. SLAB_PANIC, NULL, NULL);
  1201. mm_cachep = kmem_cache_create("mm_struct",
  1202. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1203. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1204. }
  1205. /*
  1206. * Check constraints on flags passed to the unshare system call and
  1207. * force unsharing of additional process context as appropriate.
  1208. */
  1209. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1210. {
  1211. /*
  1212. * If unsharing a thread from a thread group, must also
  1213. * unshare vm.
  1214. */
  1215. if (*flags_ptr & CLONE_THREAD)
  1216. *flags_ptr |= CLONE_VM;
  1217. /*
  1218. * If unsharing vm, must also unshare signal handlers.
  1219. */
  1220. if (*flags_ptr & CLONE_VM)
  1221. *flags_ptr |= CLONE_SIGHAND;
  1222. /*
  1223. * If unsharing signal handlers and the task was created
  1224. * using CLONE_THREAD, then must unshare the thread
  1225. */
  1226. if ((*flags_ptr & CLONE_SIGHAND) &&
  1227. (atomic_read(&current->signal->count) > 1))
  1228. *flags_ptr |= CLONE_THREAD;
  1229. /*
  1230. * If unsharing namespace, must also unshare filesystem information.
  1231. */
  1232. if (*flags_ptr & CLONE_NEWNS)
  1233. *flags_ptr |= CLONE_FS;
  1234. }
  1235. /*
  1236. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1237. */
  1238. static int unshare_thread(unsigned long unshare_flags)
  1239. {
  1240. if (unshare_flags & CLONE_THREAD)
  1241. return -EINVAL;
  1242. return 0;
  1243. }
  1244. /*
  1245. * Unshare the filesystem structure if it is being shared
  1246. */
  1247. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1248. {
  1249. struct fs_struct *fs = current->fs;
  1250. if ((unshare_flags & CLONE_FS) &&
  1251. (fs && atomic_read(&fs->count) > 1)) {
  1252. *new_fsp = __copy_fs_struct(current->fs);
  1253. if (!*new_fsp)
  1254. return -ENOMEM;
  1255. }
  1256. return 0;
  1257. }
  1258. /*
  1259. * Unshare the namespace structure if it is being shared
  1260. */
  1261. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1262. {
  1263. struct namespace *ns = current->namespace;
  1264. if ((unshare_flags & CLONE_NEWNS) &&
  1265. (ns && atomic_read(&ns->count) > 1)) {
  1266. if (!capable(CAP_SYS_ADMIN))
  1267. return -EPERM;
  1268. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1269. if (!*new_nsp)
  1270. return -ENOMEM;
  1271. }
  1272. return 0;
  1273. }
  1274. /*
  1275. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1276. * supported yet
  1277. */
  1278. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1279. {
  1280. struct sighand_struct *sigh = current->sighand;
  1281. if ((unshare_flags & CLONE_SIGHAND) &&
  1282. (sigh && atomic_read(&sigh->count) > 1))
  1283. return -EINVAL;
  1284. else
  1285. return 0;
  1286. }
  1287. /*
  1288. * Unshare vm if it is being shared
  1289. */
  1290. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1291. {
  1292. struct mm_struct *mm = current->mm;
  1293. if ((unshare_flags & CLONE_VM) &&
  1294. (mm && atomic_read(&mm->mm_users) > 1)) {
  1295. return -EINVAL;
  1296. }
  1297. return 0;
  1298. }
  1299. /*
  1300. * Unshare file descriptor table if it is being shared
  1301. */
  1302. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1303. {
  1304. struct files_struct *fd = current->files;
  1305. int error = 0;
  1306. if ((unshare_flags & CLONE_FILES) &&
  1307. (fd && atomic_read(&fd->count) > 1)) {
  1308. *new_fdp = dup_fd(fd, &error);
  1309. if (!*new_fdp)
  1310. return error;
  1311. }
  1312. return 0;
  1313. }
  1314. /*
  1315. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1316. * supported yet
  1317. */
  1318. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1319. {
  1320. if (unshare_flags & CLONE_SYSVSEM)
  1321. return -EINVAL;
  1322. return 0;
  1323. }
  1324. /*
  1325. * unshare allows a process to 'unshare' part of the process
  1326. * context which was originally shared using clone. copy_*
  1327. * functions used by do_fork() cannot be used here directly
  1328. * because they modify an inactive task_struct that is being
  1329. * constructed. Here we are modifying the current, active,
  1330. * task_struct.
  1331. */
  1332. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1333. {
  1334. int err = 0;
  1335. struct fs_struct *fs, *new_fs = NULL;
  1336. struct namespace *ns, *new_ns = NULL;
  1337. struct sighand_struct *sigh, *new_sigh = NULL;
  1338. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1339. struct files_struct *fd, *new_fd = NULL;
  1340. struct sem_undo_list *new_ulist = NULL;
  1341. check_unshare_flags(&unshare_flags);
  1342. /* Return -EINVAL for all unsupported flags */
  1343. err = -EINVAL;
  1344. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1345. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
  1346. goto bad_unshare_out;
  1347. if ((err = unshare_thread(unshare_flags)))
  1348. goto bad_unshare_out;
  1349. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1350. goto bad_unshare_cleanup_thread;
  1351. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1352. goto bad_unshare_cleanup_fs;
  1353. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1354. goto bad_unshare_cleanup_ns;
  1355. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1356. goto bad_unshare_cleanup_sigh;
  1357. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1358. goto bad_unshare_cleanup_vm;
  1359. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1360. goto bad_unshare_cleanup_fd;
  1361. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
  1362. task_lock(current);
  1363. if (new_fs) {
  1364. fs = current->fs;
  1365. current->fs = new_fs;
  1366. new_fs = fs;
  1367. }
  1368. if (new_ns) {
  1369. ns = current->namespace;
  1370. current->namespace = new_ns;
  1371. new_ns = ns;
  1372. }
  1373. if (new_sigh) {
  1374. sigh = current->sighand;
  1375. rcu_assign_pointer(current->sighand, new_sigh);
  1376. new_sigh = sigh;
  1377. }
  1378. if (new_mm) {
  1379. mm = current->mm;
  1380. active_mm = current->active_mm;
  1381. current->mm = new_mm;
  1382. current->active_mm = new_mm;
  1383. activate_mm(active_mm, new_mm);
  1384. new_mm = mm;
  1385. }
  1386. if (new_fd) {
  1387. fd = current->files;
  1388. current->files = new_fd;
  1389. new_fd = fd;
  1390. }
  1391. task_unlock(current);
  1392. }
  1393. bad_unshare_cleanup_fd:
  1394. if (new_fd)
  1395. put_files_struct(new_fd);
  1396. bad_unshare_cleanup_vm:
  1397. if (new_mm)
  1398. mmput(new_mm);
  1399. bad_unshare_cleanup_sigh:
  1400. if (new_sigh)
  1401. if (atomic_dec_and_test(&new_sigh->count))
  1402. kmem_cache_free(sighand_cachep, new_sigh);
  1403. bad_unshare_cleanup_ns:
  1404. if (new_ns)
  1405. put_namespace(new_ns);
  1406. bad_unshare_cleanup_fs:
  1407. if (new_fs)
  1408. put_fs_struct(new_fs);
  1409. bad_unshare_cleanup_thread:
  1410. bad_unshare_out:
  1411. return err;
  1412. }