dma.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/slab.h>
  27. #include <mach/edma.h>
  28. /* Offsets matching "struct edmacc_param" */
  29. #define PARM_OPT 0x00
  30. #define PARM_SRC 0x04
  31. #define PARM_A_B_CNT 0x08
  32. #define PARM_DST 0x0c
  33. #define PARM_SRC_DST_BIDX 0x10
  34. #define PARM_LINK_BCNTRLD 0x14
  35. #define PARM_SRC_DST_CIDX 0x18
  36. #define PARM_CCNT 0x1c
  37. #define PARM_SIZE 0x20
  38. /* Offsets for EDMA CC global channel registers and their shadows */
  39. #define SH_ER 0x00 /* 64 bits */
  40. #define SH_ECR 0x08 /* 64 bits */
  41. #define SH_ESR 0x10 /* 64 bits */
  42. #define SH_CER 0x18 /* 64 bits */
  43. #define SH_EER 0x20 /* 64 bits */
  44. #define SH_EECR 0x28 /* 64 bits */
  45. #define SH_EESR 0x30 /* 64 bits */
  46. #define SH_SER 0x38 /* 64 bits */
  47. #define SH_SECR 0x40 /* 64 bits */
  48. #define SH_IER 0x50 /* 64 bits */
  49. #define SH_IECR 0x58 /* 64 bits */
  50. #define SH_IESR 0x60 /* 64 bits */
  51. #define SH_IPR 0x68 /* 64 bits */
  52. #define SH_ICR 0x70 /* 64 bits */
  53. #define SH_IEVAL 0x78
  54. #define SH_QER 0x80
  55. #define SH_QEER 0x84
  56. #define SH_QEECR 0x88
  57. #define SH_QEESR 0x8c
  58. #define SH_QSER 0x90
  59. #define SH_QSECR 0x94
  60. #define SH_SIZE 0x200
  61. /* Offsets for EDMA CC global registers */
  62. #define EDMA_REV 0x0000
  63. #define EDMA_CCCFG 0x0004
  64. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  65. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  66. #define EDMA_QDMAQNUM 0x0260
  67. #define EDMA_QUETCMAP 0x0280
  68. #define EDMA_QUEPRI 0x0284
  69. #define EDMA_EMR 0x0300 /* 64 bits */
  70. #define EDMA_EMCR 0x0308 /* 64 bits */
  71. #define EDMA_QEMR 0x0310
  72. #define EDMA_QEMCR 0x0314
  73. #define EDMA_CCERR 0x0318
  74. #define EDMA_CCERRCLR 0x031c
  75. #define EDMA_EEVAL 0x0320
  76. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  77. #define EDMA_QRAE 0x0380 /* 4 registers */
  78. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  79. #define EDMA_QSTAT 0x0600 /* 2 registers */
  80. #define EDMA_QWMTHRA 0x0620
  81. #define EDMA_QWMTHRB 0x0624
  82. #define EDMA_CCSTAT 0x0640
  83. #define EDMA_M 0x1000 /* global channel registers */
  84. #define EDMA_ECR 0x1008
  85. #define EDMA_ECRH 0x100C
  86. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  87. #define EDMA_PARM 0x4000 /* 128 param entries */
  88. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  89. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  90. #define CHMAP_EXIST BIT(24)
  91. #define EDMA_MAX_DMACH 64
  92. #define EDMA_MAX_PARAMENTRY 512
  93. #define EDMA_MAX_CC 2
  94. /*****************************************************************************/
  95. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  96. static inline unsigned int edma_read(unsigned ctlr, int offset)
  97. {
  98. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  99. }
  100. static inline void edma_write(unsigned ctlr, int offset, int val)
  101. {
  102. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  103. }
  104. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  105. unsigned or)
  106. {
  107. unsigned val = edma_read(ctlr, offset);
  108. val &= and;
  109. val |= or;
  110. edma_write(ctlr, offset, val);
  111. }
  112. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  113. {
  114. unsigned val = edma_read(ctlr, offset);
  115. val &= and;
  116. edma_write(ctlr, offset, val);
  117. }
  118. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  119. {
  120. unsigned val = edma_read(ctlr, offset);
  121. val |= or;
  122. edma_write(ctlr, offset, val);
  123. }
  124. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  125. {
  126. return edma_read(ctlr, offset + (i << 2));
  127. }
  128. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  129. unsigned val)
  130. {
  131. edma_write(ctlr, offset + (i << 2), val);
  132. }
  133. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  134. unsigned and, unsigned or)
  135. {
  136. edma_modify(ctlr, offset + (i << 2), and, or);
  137. }
  138. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  139. {
  140. edma_or(ctlr, offset + (i << 2), or);
  141. }
  142. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  143. unsigned or)
  144. {
  145. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  146. }
  147. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  148. unsigned val)
  149. {
  150. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  151. }
  152. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  153. {
  154. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  155. }
  156. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  157. int i)
  158. {
  159. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  160. }
  161. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  162. {
  163. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  164. }
  165. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  166. unsigned val)
  167. {
  168. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  169. }
  170. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  171. int param_no)
  172. {
  173. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  174. }
  175. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  176. unsigned val)
  177. {
  178. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  179. }
  180. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  181. unsigned and, unsigned or)
  182. {
  183. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  184. }
  185. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  186. unsigned and)
  187. {
  188. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  189. }
  190. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  191. unsigned or)
  192. {
  193. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  194. }
  195. /*****************************************************************************/
  196. /* actual number of DMA channels and slots on this silicon */
  197. struct edma {
  198. /* how many dma resources of each type */
  199. unsigned num_channels;
  200. unsigned num_region;
  201. unsigned num_slots;
  202. unsigned num_tc;
  203. unsigned num_cc;
  204. enum dma_event_q default_queue;
  205. /* list of channels with no even trigger; terminated by "-1" */
  206. const s8 *noevent;
  207. /* The edma_inuse bit for each PaRAM slot is clear unless the
  208. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  209. */
  210. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  211. /* The edma_unused bit for each channel is clear unless
  212. * it is not being used on this platform. It uses a bit
  213. * of SOC-specific initialization code.
  214. */
  215. DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  216. unsigned irq_res_start;
  217. unsigned irq_res_end;
  218. struct dma_interrupt_data {
  219. void (*callback)(unsigned channel, unsigned short ch_status,
  220. void *data);
  221. void *data;
  222. } intr_data[EDMA_MAX_DMACH];
  223. };
  224. static struct edma *edma_info[EDMA_MAX_CC];
  225. static int arch_num_cc;
  226. /* dummy param set used to (re)initialize parameter RAM slots */
  227. static const struct edmacc_param dummy_paramset = {
  228. .link_bcntrld = 0xffff,
  229. .ccnt = 1,
  230. };
  231. /*****************************************************************************/
  232. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  233. enum dma_event_q queue_no)
  234. {
  235. int bit = (ch_no & 0x7) * 4;
  236. /* default to low priority queue */
  237. if (queue_no == EVENTQ_DEFAULT)
  238. queue_no = edma_info[ctlr]->default_queue;
  239. queue_no &= 7;
  240. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  241. ~(0x7 << bit), queue_no << bit);
  242. }
  243. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  244. {
  245. int bit = queue_no * 4;
  246. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  247. }
  248. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  249. int priority)
  250. {
  251. int bit = queue_no * 4;
  252. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  253. ((priority & 0x7) << bit));
  254. }
  255. /**
  256. * map_dmach_param - Maps channel number to param entry number
  257. *
  258. * This maps the dma channel number to param entry numberter. In
  259. * other words using the DMA channel mapping registers a param entry
  260. * can be mapped to any channel
  261. *
  262. * Callers are responsible for ensuring the channel mapping logic is
  263. * included in that particular EDMA variant (Eg : dm646x)
  264. *
  265. */
  266. static void __init map_dmach_param(unsigned ctlr)
  267. {
  268. int i;
  269. for (i = 0; i < EDMA_MAX_DMACH; i++)
  270. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  271. }
  272. static inline void
  273. setup_dma_interrupt(unsigned lch,
  274. void (*callback)(unsigned channel, u16 ch_status, void *data),
  275. void *data)
  276. {
  277. unsigned ctlr;
  278. ctlr = EDMA_CTLR(lch);
  279. lch = EDMA_CHAN_SLOT(lch);
  280. if (!callback) {
  281. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  282. (1 << (lch & 0x1f)));
  283. }
  284. edma_info[ctlr]->intr_data[lch].callback = callback;
  285. edma_info[ctlr]->intr_data[lch].data = data;
  286. if (callback) {
  287. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  288. (1 << (lch & 0x1f)));
  289. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  290. (1 << (lch & 0x1f)));
  291. }
  292. }
  293. static int irq2ctlr(int irq)
  294. {
  295. if (irq >= edma_info[0]->irq_res_start &&
  296. irq <= edma_info[0]->irq_res_end)
  297. return 0;
  298. else if (irq >= edma_info[1]->irq_res_start &&
  299. irq <= edma_info[1]->irq_res_end)
  300. return 1;
  301. return -1;
  302. }
  303. /******************************************************************************
  304. *
  305. * DMA interrupt handler
  306. *
  307. *****************************************************************************/
  308. static irqreturn_t dma_irq_handler(int irq, void *data)
  309. {
  310. int i;
  311. unsigned ctlr;
  312. unsigned int cnt = 0;
  313. ctlr = irq2ctlr(irq);
  314. dev_dbg(data, "dma_irq_handler\n");
  315. if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
  316. && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
  317. return IRQ_NONE;
  318. while (1) {
  319. int j;
  320. if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
  321. edma_shadow0_read_array(ctlr, SH_IER, 0))
  322. j = 0;
  323. else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
  324. edma_shadow0_read_array(ctlr, SH_IER, 1))
  325. j = 1;
  326. else
  327. break;
  328. dev_dbg(data, "IPR%d %08x\n", j,
  329. edma_shadow0_read_array(ctlr, SH_IPR, j));
  330. for (i = 0; i < 32; i++) {
  331. int k = (j << 5) + i;
  332. if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
  333. && (edma_shadow0_read_array(ctlr,
  334. SH_IER, j) & BIT(i))) {
  335. /* Clear the corresponding IPR bits */
  336. edma_shadow0_write_array(ctlr, SH_ICR, j,
  337. (1 << i));
  338. if (edma_info[ctlr]->intr_data[k].callback) {
  339. edma_info[ctlr]->intr_data[k].callback(
  340. k, DMA_COMPLETE,
  341. edma_info[ctlr]->intr_data[k].
  342. data);
  343. }
  344. }
  345. }
  346. cnt++;
  347. if (cnt > 10)
  348. break;
  349. }
  350. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  351. return IRQ_HANDLED;
  352. }
  353. /******************************************************************************
  354. *
  355. * DMA error interrupt handler
  356. *
  357. *****************************************************************************/
  358. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  359. {
  360. int i;
  361. unsigned ctlr;
  362. unsigned int cnt = 0;
  363. ctlr = irq2ctlr(irq);
  364. dev_dbg(data, "dma_ccerr_handler\n");
  365. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  366. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  367. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  368. (edma_read(ctlr, EDMA_CCERR) == 0))
  369. return IRQ_NONE;
  370. while (1) {
  371. int j = -1;
  372. if (edma_read_array(ctlr, EDMA_EMR, 0))
  373. j = 0;
  374. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  375. j = 1;
  376. if (j >= 0) {
  377. dev_dbg(data, "EMR%d %08x\n", j,
  378. edma_read_array(ctlr, EDMA_EMR, j));
  379. for (i = 0; i < 32; i++) {
  380. int k = (j << 5) + i;
  381. if (edma_read_array(ctlr, EDMA_EMR, j) &
  382. (1 << i)) {
  383. /* Clear the corresponding EMR bits */
  384. edma_write_array(ctlr, EDMA_EMCR, j,
  385. 1 << i);
  386. /* Clear any SER */
  387. edma_shadow0_write_array(ctlr, SH_SECR,
  388. j, (1 << i));
  389. if (edma_info[ctlr]->intr_data[k].
  390. callback) {
  391. edma_info[ctlr]->intr_data[k].
  392. callback(k,
  393. DMA_CC_ERROR,
  394. edma_info[ctlr]->intr_data
  395. [k].data);
  396. }
  397. }
  398. }
  399. } else if (edma_read(ctlr, EDMA_QEMR)) {
  400. dev_dbg(data, "QEMR %02x\n",
  401. edma_read(ctlr, EDMA_QEMR));
  402. for (i = 0; i < 8; i++) {
  403. if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
  404. /* Clear the corresponding IPR bits */
  405. edma_write(ctlr, EDMA_QEMCR, 1 << i);
  406. edma_shadow0_write(ctlr, SH_QSECR,
  407. (1 << i));
  408. /* NOTE: not reported!! */
  409. }
  410. }
  411. } else if (edma_read(ctlr, EDMA_CCERR)) {
  412. dev_dbg(data, "CCERR %08x\n",
  413. edma_read(ctlr, EDMA_CCERR));
  414. /* FIXME: CCERR.BIT(16) ignored! much better
  415. * to just write CCERRCLR with CCERR value...
  416. */
  417. for (i = 0; i < 8; i++) {
  418. if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
  419. /* Clear the corresponding IPR bits */
  420. edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
  421. /* NOTE: not reported!! */
  422. }
  423. }
  424. }
  425. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
  426. && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
  427. && (edma_read(ctlr, EDMA_QEMR) == 0)
  428. && (edma_read(ctlr, EDMA_CCERR) == 0)) {
  429. break;
  430. }
  431. cnt++;
  432. if (cnt > 10)
  433. break;
  434. }
  435. edma_write(ctlr, EDMA_EEVAL, 1);
  436. return IRQ_HANDLED;
  437. }
  438. /******************************************************************************
  439. *
  440. * Transfer controller error interrupt handlers
  441. *
  442. *****************************************************************************/
  443. #define tc_errs_handled false /* disabled as long as they're NOPs */
  444. static irqreturn_t dma_tc0err_handler(int irq, void *data)
  445. {
  446. dev_dbg(data, "dma_tc0err_handler\n");
  447. return IRQ_HANDLED;
  448. }
  449. static irqreturn_t dma_tc1err_handler(int irq, void *data)
  450. {
  451. dev_dbg(data, "dma_tc1err_handler\n");
  452. return IRQ_HANDLED;
  453. }
  454. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  455. unsigned int num_slots,
  456. unsigned int start_slot)
  457. {
  458. int i, j;
  459. unsigned int count = num_slots;
  460. int stop_slot = start_slot;
  461. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  462. for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
  463. j = EDMA_CHAN_SLOT(i);
  464. if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
  465. /* Record our current beginning slot */
  466. if (count == num_slots)
  467. stop_slot = i;
  468. count--;
  469. set_bit(j, tmp_inuse);
  470. if (count == 0)
  471. break;
  472. } else {
  473. clear_bit(j, tmp_inuse);
  474. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  475. stop_slot = i;
  476. break;
  477. } else
  478. count = num_slots;
  479. }
  480. }
  481. /*
  482. * We have to clear any bits that we set
  483. * if we run out parameter RAM slots, i.e we do find a set
  484. * of contiguous parameter RAM slots but do not find the exact number
  485. * requested as we may reach the total number of parameter RAM slots
  486. */
  487. if (i == edma_info[ctlr]->num_slots)
  488. stop_slot = i;
  489. for (j = start_slot; j < stop_slot; j++)
  490. if (test_bit(j, tmp_inuse))
  491. clear_bit(j, edma_info[ctlr]->edma_inuse);
  492. if (count)
  493. return -EBUSY;
  494. for (j = i - num_slots + 1; j <= i; ++j)
  495. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  496. &dummy_paramset, PARM_SIZE);
  497. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  498. }
  499. static int prepare_unused_channel_list(struct device *dev, void *data)
  500. {
  501. struct platform_device *pdev = to_platform_device(dev);
  502. int i, ctlr;
  503. for (i = 0; i < pdev->num_resources; i++) {
  504. if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  505. (int)pdev->resource[i].start >= 0) {
  506. ctlr = EDMA_CTLR(pdev->resource[i].start);
  507. clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  508. edma_info[ctlr]->edma_unused);
  509. }
  510. }
  511. return 0;
  512. }
  513. /*-----------------------------------------------------------------------*/
  514. static bool unused_chan_list_done;
  515. /* Resource alloc/free: dma channels, parameter RAM slots */
  516. /**
  517. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  518. * @channel: specific channel to allocate; negative for "any unmapped channel"
  519. * @callback: optional; to be issued on DMA completion or errors
  520. * @data: passed to callback
  521. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  522. * Controller (TC) executes requests using this channel. Use
  523. * EVENTQ_DEFAULT unless you really need a high priority queue.
  524. *
  525. * This allocates a DMA channel and its associated parameter RAM slot.
  526. * The parameter RAM is initialized to hold a dummy transfer.
  527. *
  528. * Normal use is to pass a specific channel number as @channel, to make
  529. * use of hardware events mapped to that channel. When the channel will
  530. * be used only for software triggering or event chaining, channels not
  531. * mapped to hardware events (or mapped to unused events) are preferable.
  532. *
  533. * DMA transfers start from a channel using edma_start(), or by
  534. * chaining. When the transfer described in that channel's parameter RAM
  535. * slot completes, that slot's data may be reloaded through a link.
  536. *
  537. * DMA errors are only reported to the @callback associated with the
  538. * channel driving that transfer, but transfer completion callbacks can
  539. * be sent to another channel under control of the TCC field in
  540. * the option word of the transfer's parameter RAM set. Drivers must not
  541. * use DMA transfer completion callbacks for channels they did not allocate.
  542. * (The same applies to TCC codes used in transfer chaining.)
  543. *
  544. * Returns the number of the channel, else negative errno.
  545. */
  546. int edma_alloc_channel(int channel,
  547. void (*callback)(unsigned channel, u16 ch_status, void *data),
  548. void *data,
  549. enum dma_event_q eventq_no)
  550. {
  551. unsigned i, done = 0, ctlr = 0;
  552. int ret = 0;
  553. if (!unused_chan_list_done) {
  554. /*
  555. * Scan all the platform devices to find out the EDMA channels
  556. * used and clear them in the unused list, making the rest
  557. * available for ARM usage.
  558. */
  559. ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  560. prepare_unused_channel_list);
  561. if (ret < 0)
  562. return ret;
  563. unused_chan_list_done = true;
  564. }
  565. if (channel >= 0) {
  566. ctlr = EDMA_CTLR(channel);
  567. channel = EDMA_CHAN_SLOT(channel);
  568. }
  569. if (channel < 0) {
  570. for (i = 0; i < arch_num_cc; i++) {
  571. channel = 0;
  572. for (;;) {
  573. channel = find_next_bit(edma_info[i]->
  574. edma_unused,
  575. edma_info[i]->num_channels,
  576. channel);
  577. if (channel == edma_info[i]->num_channels)
  578. break;
  579. if (!test_and_set_bit(channel,
  580. edma_info[i]->edma_inuse)) {
  581. done = 1;
  582. ctlr = i;
  583. break;
  584. }
  585. channel++;
  586. }
  587. if (done)
  588. break;
  589. }
  590. if (!done)
  591. return -ENOMEM;
  592. } else if (channel >= edma_info[ctlr]->num_channels) {
  593. return -EINVAL;
  594. } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
  595. return -EBUSY;
  596. }
  597. /* ensure access through shadow region 0 */
  598. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
  599. /* ensure no events are pending */
  600. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  601. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  602. &dummy_paramset, PARM_SIZE);
  603. if (callback)
  604. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  605. callback, data);
  606. map_dmach_queue(ctlr, channel, eventq_no);
  607. return EDMA_CTLR_CHAN(ctlr, channel);
  608. }
  609. EXPORT_SYMBOL(edma_alloc_channel);
  610. /**
  611. * edma_free_channel - deallocate DMA channel
  612. * @channel: dma channel returned from edma_alloc_channel()
  613. *
  614. * This deallocates the DMA channel and associated parameter RAM slot
  615. * allocated by edma_alloc_channel().
  616. *
  617. * Callers are responsible for ensuring the channel is inactive, and
  618. * will not be reactivated by linking, chaining, or software calls to
  619. * edma_start().
  620. */
  621. void edma_free_channel(unsigned channel)
  622. {
  623. unsigned ctlr;
  624. ctlr = EDMA_CTLR(channel);
  625. channel = EDMA_CHAN_SLOT(channel);
  626. if (channel >= edma_info[ctlr]->num_channels)
  627. return;
  628. setup_dma_interrupt(channel, NULL, NULL);
  629. /* REVISIT should probably take out of shadow region 0 */
  630. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  631. &dummy_paramset, PARM_SIZE);
  632. clear_bit(channel, edma_info[ctlr]->edma_inuse);
  633. }
  634. EXPORT_SYMBOL(edma_free_channel);
  635. /**
  636. * edma_alloc_slot - allocate DMA parameter RAM
  637. * @slot: specific slot to allocate; negative for "any unused slot"
  638. *
  639. * This allocates a parameter RAM slot, initializing it to hold a
  640. * dummy transfer. Slots allocated using this routine have not been
  641. * mapped to a hardware DMA channel, and will normally be used by
  642. * linking to them from a slot associated with a DMA channel.
  643. *
  644. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  645. * slots may be allocated on behalf of DSP firmware.
  646. *
  647. * Returns the number of the slot, else negative errno.
  648. */
  649. int edma_alloc_slot(unsigned ctlr, int slot)
  650. {
  651. if (slot >= 0)
  652. slot = EDMA_CHAN_SLOT(slot);
  653. if (slot < 0) {
  654. slot = edma_info[ctlr]->num_channels;
  655. for (;;) {
  656. slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
  657. edma_info[ctlr]->num_slots, slot);
  658. if (slot == edma_info[ctlr]->num_slots)
  659. return -ENOMEM;
  660. if (!test_and_set_bit(slot,
  661. edma_info[ctlr]->edma_inuse))
  662. break;
  663. }
  664. } else if (slot < edma_info[ctlr]->num_channels ||
  665. slot >= edma_info[ctlr]->num_slots) {
  666. return -EINVAL;
  667. } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
  668. return -EBUSY;
  669. }
  670. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  671. &dummy_paramset, PARM_SIZE);
  672. return EDMA_CTLR_CHAN(ctlr, slot);
  673. }
  674. EXPORT_SYMBOL(edma_alloc_slot);
  675. /**
  676. * edma_free_slot - deallocate DMA parameter RAM
  677. * @slot: parameter RAM slot returned from edma_alloc_slot()
  678. *
  679. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  680. * Callers are responsible for ensuring the slot is inactive, and will
  681. * not be activated.
  682. */
  683. void edma_free_slot(unsigned slot)
  684. {
  685. unsigned ctlr;
  686. ctlr = EDMA_CTLR(slot);
  687. slot = EDMA_CHAN_SLOT(slot);
  688. if (slot < edma_info[ctlr]->num_channels ||
  689. slot >= edma_info[ctlr]->num_slots)
  690. return;
  691. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  692. &dummy_paramset, PARM_SIZE);
  693. clear_bit(slot, edma_info[ctlr]->edma_inuse);
  694. }
  695. EXPORT_SYMBOL(edma_free_slot);
  696. /**
  697. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  698. * The API will return the starting point of a set of
  699. * contiguous parameter RAM slots that have been requested
  700. *
  701. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  702. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  703. * @count: number of contiguous Paramter RAM slots
  704. * @slot - the start value of Parameter RAM slot that should be passed if id
  705. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  706. *
  707. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  708. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  709. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  710. *
  711. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  712. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  713. * argument to the API.
  714. *
  715. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  716. * starts looking for a set of contiguous parameter RAMs from the "slot"
  717. * that is passed as an argument to the API. On failure the API will try to
  718. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  719. * RAM slots
  720. */
  721. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  722. {
  723. /*
  724. * The start slot requested should be greater than
  725. * the number of channels and lesser than the total number
  726. * of slots
  727. */
  728. if ((id != EDMA_CONT_PARAMS_ANY) &&
  729. (slot < edma_info[ctlr]->num_channels ||
  730. slot >= edma_info[ctlr]->num_slots))
  731. return -EINVAL;
  732. /*
  733. * The number of parameter RAM slots requested cannot be less than 1
  734. * and cannot be more than the number of slots minus the number of
  735. * channels
  736. */
  737. if (count < 1 || count >
  738. (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
  739. return -EINVAL;
  740. switch (id) {
  741. case EDMA_CONT_PARAMS_ANY:
  742. return reserve_contiguous_slots(ctlr, id, count,
  743. edma_info[ctlr]->num_channels);
  744. case EDMA_CONT_PARAMS_FIXED_EXACT:
  745. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  746. return reserve_contiguous_slots(ctlr, id, count, slot);
  747. default:
  748. return -EINVAL;
  749. }
  750. }
  751. EXPORT_SYMBOL(edma_alloc_cont_slots);
  752. /**
  753. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  754. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  755. * @count: the number of contiguous parameter RAM slots to be freed
  756. *
  757. * This deallocates the parameter RAM slots allocated by
  758. * edma_alloc_cont_slots.
  759. * Callers/applications need to keep track of sets of contiguous
  760. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  761. * API.
  762. * Callers are responsible for ensuring the slots are inactive, and will
  763. * not be activated.
  764. */
  765. int edma_free_cont_slots(unsigned slot, int count)
  766. {
  767. unsigned ctlr, slot_to_free;
  768. int i;
  769. ctlr = EDMA_CTLR(slot);
  770. slot = EDMA_CHAN_SLOT(slot);
  771. if (slot < edma_info[ctlr]->num_channels ||
  772. slot >= edma_info[ctlr]->num_slots ||
  773. count < 1)
  774. return -EINVAL;
  775. for (i = slot; i < slot + count; ++i) {
  776. ctlr = EDMA_CTLR(i);
  777. slot_to_free = EDMA_CHAN_SLOT(i);
  778. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  779. &dummy_paramset, PARM_SIZE);
  780. clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
  781. }
  782. return 0;
  783. }
  784. EXPORT_SYMBOL(edma_free_cont_slots);
  785. /*-----------------------------------------------------------------------*/
  786. /* Parameter RAM operations (i) -- read/write partial slots */
  787. /**
  788. * edma_set_src - set initial DMA source address in parameter RAM slot
  789. * @slot: parameter RAM slot being configured
  790. * @src_port: physical address of source (memory, controller FIFO, etc)
  791. * @addressMode: INCR, except in very rare cases
  792. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  793. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  794. *
  795. * Note that the source address is modified during the DMA transfer
  796. * according to edma_set_src_index().
  797. */
  798. void edma_set_src(unsigned slot, dma_addr_t src_port,
  799. enum address_mode mode, enum fifo_width width)
  800. {
  801. unsigned ctlr;
  802. ctlr = EDMA_CTLR(slot);
  803. slot = EDMA_CHAN_SLOT(slot);
  804. if (slot < edma_info[ctlr]->num_slots) {
  805. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  806. if (mode) {
  807. /* set SAM and program FWID */
  808. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  809. } else {
  810. /* clear SAM */
  811. i &= ~SAM;
  812. }
  813. edma_parm_write(ctlr, PARM_OPT, slot, i);
  814. /* set the source port address
  815. in source register of param structure */
  816. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  817. }
  818. }
  819. EXPORT_SYMBOL(edma_set_src);
  820. /**
  821. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  822. * @slot: parameter RAM slot being configured
  823. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  824. * @addressMode: INCR, except in very rare cases
  825. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  826. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  827. *
  828. * Note that the destination address is modified during the DMA transfer
  829. * according to edma_set_dest_index().
  830. */
  831. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  832. enum address_mode mode, enum fifo_width width)
  833. {
  834. unsigned ctlr;
  835. ctlr = EDMA_CTLR(slot);
  836. slot = EDMA_CHAN_SLOT(slot);
  837. if (slot < edma_info[ctlr]->num_slots) {
  838. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  839. if (mode) {
  840. /* set DAM and program FWID */
  841. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  842. } else {
  843. /* clear DAM */
  844. i &= ~DAM;
  845. }
  846. edma_parm_write(ctlr, PARM_OPT, slot, i);
  847. /* set the destination port address
  848. in dest register of param structure */
  849. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  850. }
  851. }
  852. EXPORT_SYMBOL(edma_set_dest);
  853. /**
  854. * edma_get_position - returns the current transfer points
  855. * @slot: parameter RAM slot being examined
  856. * @src: pointer to source port position
  857. * @dst: pointer to destination port position
  858. *
  859. * Returns current source and destination addresses for a particular
  860. * parameter RAM slot. Its channel should not be active when this is called.
  861. */
  862. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  863. {
  864. struct edmacc_param temp;
  865. unsigned ctlr;
  866. ctlr = EDMA_CTLR(slot);
  867. slot = EDMA_CHAN_SLOT(slot);
  868. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  869. if (src != NULL)
  870. *src = temp.src;
  871. if (dst != NULL)
  872. *dst = temp.dst;
  873. }
  874. EXPORT_SYMBOL(edma_get_position);
  875. /**
  876. * edma_set_src_index - configure DMA source address indexing
  877. * @slot: parameter RAM slot being configured
  878. * @src_bidx: byte offset between source arrays in a frame
  879. * @src_cidx: byte offset between source frames in a block
  880. *
  881. * Offsets are specified to support either contiguous or discontiguous
  882. * memory transfers, or repeated access to a hardware register, as needed.
  883. * When accessing hardware registers, both offsets are normally zero.
  884. */
  885. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  886. {
  887. unsigned ctlr;
  888. ctlr = EDMA_CTLR(slot);
  889. slot = EDMA_CHAN_SLOT(slot);
  890. if (slot < edma_info[ctlr]->num_slots) {
  891. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  892. 0xffff0000, src_bidx);
  893. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  894. 0xffff0000, src_cidx);
  895. }
  896. }
  897. EXPORT_SYMBOL(edma_set_src_index);
  898. /**
  899. * edma_set_dest_index - configure DMA destination address indexing
  900. * @slot: parameter RAM slot being configured
  901. * @dest_bidx: byte offset between destination arrays in a frame
  902. * @dest_cidx: byte offset between destination frames in a block
  903. *
  904. * Offsets are specified to support either contiguous or discontiguous
  905. * memory transfers, or repeated access to a hardware register, as needed.
  906. * When accessing hardware registers, both offsets are normally zero.
  907. */
  908. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  909. {
  910. unsigned ctlr;
  911. ctlr = EDMA_CTLR(slot);
  912. slot = EDMA_CHAN_SLOT(slot);
  913. if (slot < edma_info[ctlr]->num_slots) {
  914. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  915. 0x0000ffff, dest_bidx << 16);
  916. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  917. 0x0000ffff, dest_cidx << 16);
  918. }
  919. }
  920. EXPORT_SYMBOL(edma_set_dest_index);
  921. /**
  922. * edma_set_transfer_params - configure DMA transfer parameters
  923. * @slot: parameter RAM slot being configured
  924. * @acnt: how many bytes per array (at least one)
  925. * @bcnt: how many arrays per frame (at least one)
  926. * @ccnt: how many frames per block (at least one)
  927. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  928. * the value to reload into bcnt when it decrements to zero
  929. * @sync_mode: ASYNC or ABSYNC
  930. *
  931. * See the EDMA3 documentation to understand how to configure and link
  932. * transfers using the fields in PaRAM slots. If you are not doing it
  933. * all at once with edma_write_slot(), you will use this routine
  934. * plus two calls each for source and destination, setting the initial
  935. * address and saying how to index that address.
  936. *
  937. * An example of an A-Synchronized transfer is a serial link using a
  938. * single word shift register. In that case, @acnt would be equal to
  939. * that word size; the serial controller issues a DMA synchronization
  940. * event to transfer each word, and memory access by the DMA transfer
  941. * controller will be word-at-a-time.
  942. *
  943. * An example of an AB-Synchronized transfer is a device using a FIFO.
  944. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  945. * The controller with the FIFO issues DMA synchronization events when
  946. * the FIFO threshold is reached, and the DMA transfer controller will
  947. * transfer one frame to (or from) the FIFO. It will probably use
  948. * efficient burst modes to access memory.
  949. */
  950. void edma_set_transfer_params(unsigned slot,
  951. u16 acnt, u16 bcnt, u16 ccnt,
  952. u16 bcnt_rld, enum sync_dimension sync_mode)
  953. {
  954. unsigned ctlr;
  955. ctlr = EDMA_CTLR(slot);
  956. slot = EDMA_CHAN_SLOT(slot);
  957. if (slot < edma_info[ctlr]->num_slots) {
  958. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  959. 0x0000ffff, bcnt_rld << 16);
  960. if (sync_mode == ASYNC)
  961. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  962. else
  963. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  964. /* Set the acount, bcount, ccount registers */
  965. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  966. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  967. }
  968. }
  969. EXPORT_SYMBOL(edma_set_transfer_params);
  970. /**
  971. * edma_link - link one parameter RAM slot to another
  972. * @from: parameter RAM slot originating the link
  973. * @to: parameter RAM slot which is the link target
  974. *
  975. * The originating slot should not be part of any active DMA transfer.
  976. */
  977. void edma_link(unsigned from, unsigned to)
  978. {
  979. unsigned ctlr_from, ctlr_to;
  980. ctlr_from = EDMA_CTLR(from);
  981. from = EDMA_CHAN_SLOT(from);
  982. ctlr_to = EDMA_CTLR(to);
  983. to = EDMA_CHAN_SLOT(to);
  984. if (from >= edma_info[ctlr_from]->num_slots)
  985. return;
  986. if (to >= edma_info[ctlr_to]->num_slots)
  987. return;
  988. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  989. PARM_OFFSET(to));
  990. }
  991. EXPORT_SYMBOL(edma_link);
  992. /**
  993. * edma_unlink - cut link from one parameter RAM slot
  994. * @from: parameter RAM slot originating the link
  995. *
  996. * The originating slot should not be part of any active DMA transfer.
  997. * Its link is set to 0xffff.
  998. */
  999. void edma_unlink(unsigned from)
  1000. {
  1001. unsigned ctlr;
  1002. ctlr = EDMA_CTLR(from);
  1003. from = EDMA_CHAN_SLOT(from);
  1004. if (from >= edma_info[ctlr]->num_slots)
  1005. return;
  1006. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  1007. }
  1008. EXPORT_SYMBOL(edma_unlink);
  1009. /*-----------------------------------------------------------------------*/
  1010. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  1011. /**
  1012. * edma_write_slot - write parameter RAM data for slot
  1013. * @slot: number of parameter RAM slot being modified
  1014. * @param: data to be written into parameter RAM slot
  1015. *
  1016. * Use this to assign all parameters of a transfer at once. This
  1017. * allows more efficient setup of transfers than issuing multiple
  1018. * calls to set up those parameters in small pieces, and provides
  1019. * complete control over all transfer options.
  1020. */
  1021. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  1022. {
  1023. unsigned ctlr;
  1024. ctlr = EDMA_CTLR(slot);
  1025. slot = EDMA_CHAN_SLOT(slot);
  1026. if (slot >= edma_info[ctlr]->num_slots)
  1027. return;
  1028. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1029. PARM_SIZE);
  1030. }
  1031. EXPORT_SYMBOL(edma_write_slot);
  1032. /**
  1033. * edma_read_slot - read parameter RAM data from slot
  1034. * @slot: number of parameter RAM slot being copied
  1035. * @param: where to store copy of parameter RAM data
  1036. *
  1037. * Use this to read data from a parameter RAM slot, perhaps to
  1038. * save them as a template for later reuse.
  1039. */
  1040. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1041. {
  1042. unsigned ctlr;
  1043. ctlr = EDMA_CTLR(slot);
  1044. slot = EDMA_CHAN_SLOT(slot);
  1045. if (slot >= edma_info[ctlr]->num_slots)
  1046. return;
  1047. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1048. PARM_SIZE);
  1049. }
  1050. EXPORT_SYMBOL(edma_read_slot);
  1051. /*-----------------------------------------------------------------------*/
  1052. /* Various EDMA channel control operations */
  1053. /**
  1054. * edma_pause - pause dma on a channel
  1055. * @channel: on which edma_start() has been called
  1056. *
  1057. * This temporarily disables EDMA hardware events on the specified channel,
  1058. * preventing them from triggering new transfers on its behalf
  1059. */
  1060. void edma_pause(unsigned channel)
  1061. {
  1062. unsigned ctlr;
  1063. ctlr = EDMA_CTLR(channel);
  1064. channel = EDMA_CHAN_SLOT(channel);
  1065. if (channel < edma_info[ctlr]->num_channels) {
  1066. unsigned int mask = (1 << (channel & 0x1f));
  1067. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1068. }
  1069. }
  1070. EXPORT_SYMBOL(edma_pause);
  1071. /**
  1072. * edma_resume - resumes dma on a paused channel
  1073. * @channel: on which edma_pause() has been called
  1074. *
  1075. * This re-enables EDMA hardware events on the specified channel.
  1076. */
  1077. void edma_resume(unsigned channel)
  1078. {
  1079. unsigned ctlr;
  1080. ctlr = EDMA_CTLR(channel);
  1081. channel = EDMA_CHAN_SLOT(channel);
  1082. if (channel < edma_info[ctlr]->num_channels) {
  1083. unsigned int mask = (1 << (channel & 0x1f));
  1084. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1085. }
  1086. }
  1087. EXPORT_SYMBOL(edma_resume);
  1088. /**
  1089. * edma_start - start dma on a channel
  1090. * @channel: channel being activated
  1091. *
  1092. * Channels with event associations will be triggered by their hardware
  1093. * events, and channels without such associations will be triggered by
  1094. * software. (At this writing there is no interface for using software
  1095. * triggers except with channels that don't support hardware triggers.)
  1096. *
  1097. * Returns zero on success, else negative errno.
  1098. */
  1099. int edma_start(unsigned channel)
  1100. {
  1101. unsigned ctlr;
  1102. ctlr = EDMA_CTLR(channel);
  1103. channel = EDMA_CHAN_SLOT(channel);
  1104. if (channel < edma_info[ctlr]->num_channels) {
  1105. int j = channel >> 5;
  1106. unsigned int mask = (1 << (channel & 0x1f));
  1107. /* EDMA channels without event association */
  1108. if (test_bit(channel, edma_info[ctlr]->edma_unused)) {
  1109. pr_debug("EDMA: ESR%d %08x\n", j,
  1110. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1111. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1112. return 0;
  1113. }
  1114. /* EDMA channel with event association */
  1115. pr_debug("EDMA: ER%d %08x\n", j,
  1116. edma_shadow0_read_array(ctlr, SH_ER, j));
  1117. /* Clear any pending event or error */
  1118. edma_write_array(ctlr, EDMA_ECR, j, mask);
  1119. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1120. /* Clear any SER */
  1121. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1122. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1123. pr_debug("EDMA: EER%d %08x\n", j,
  1124. edma_shadow0_read_array(ctlr, SH_EER, j));
  1125. return 0;
  1126. }
  1127. return -EINVAL;
  1128. }
  1129. EXPORT_SYMBOL(edma_start);
  1130. /**
  1131. * edma_stop - stops dma on the channel passed
  1132. * @channel: channel being deactivated
  1133. *
  1134. * When @lch is a channel, any active transfer is paused and
  1135. * all pending hardware events are cleared. The current transfer
  1136. * may not be resumed, and the channel's Parameter RAM should be
  1137. * reinitialized before being reused.
  1138. */
  1139. void edma_stop(unsigned channel)
  1140. {
  1141. unsigned ctlr;
  1142. ctlr = EDMA_CTLR(channel);
  1143. channel = EDMA_CHAN_SLOT(channel);
  1144. if (channel < edma_info[ctlr]->num_channels) {
  1145. int j = channel >> 5;
  1146. unsigned int mask = (1 << (channel & 0x1f));
  1147. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1148. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1149. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1150. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1151. pr_debug("EDMA: EER%d %08x\n", j,
  1152. edma_shadow0_read_array(ctlr, SH_EER, j));
  1153. /* REVISIT: consider guarding against inappropriate event
  1154. * chaining by overwriting with dummy_paramset.
  1155. */
  1156. }
  1157. }
  1158. EXPORT_SYMBOL(edma_stop);
  1159. /******************************************************************************
  1160. *
  1161. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1162. * been removed before EDMA has finished.It is usedful for removable media.
  1163. * Arguments:
  1164. * ch_no - channel no
  1165. *
  1166. * Return: zero on success, or corresponding error no on failure
  1167. *
  1168. * FIXME this should not be needed ... edma_stop() should suffice.
  1169. *
  1170. *****************************************************************************/
  1171. void edma_clean_channel(unsigned channel)
  1172. {
  1173. unsigned ctlr;
  1174. ctlr = EDMA_CTLR(channel);
  1175. channel = EDMA_CHAN_SLOT(channel);
  1176. if (channel < edma_info[ctlr]->num_channels) {
  1177. int j = (channel >> 5);
  1178. unsigned int mask = 1 << (channel & 0x1f);
  1179. pr_debug("EDMA: EMR%d %08x\n", j,
  1180. edma_read_array(ctlr, EDMA_EMR, j));
  1181. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1182. /* Clear the corresponding EMR bits */
  1183. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1184. /* Clear any SER */
  1185. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1186. edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
  1187. }
  1188. }
  1189. EXPORT_SYMBOL(edma_clean_channel);
  1190. /*
  1191. * edma_clear_event - clear an outstanding event on the DMA channel
  1192. * Arguments:
  1193. * channel - channel number
  1194. */
  1195. void edma_clear_event(unsigned channel)
  1196. {
  1197. unsigned ctlr;
  1198. ctlr = EDMA_CTLR(channel);
  1199. channel = EDMA_CHAN_SLOT(channel);
  1200. if (channel >= edma_info[ctlr]->num_channels)
  1201. return;
  1202. if (channel < 32)
  1203. edma_write(ctlr, EDMA_ECR, 1 << channel);
  1204. else
  1205. edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
  1206. }
  1207. EXPORT_SYMBOL(edma_clear_event);
  1208. /*-----------------------------------------------------------------------*/
  1209. static int __init edma_probe(struct platform_device *pdev)
  1210. {
  1211. struct edma_soc_info *info = pdev->dev.platform_data;
  1212. const s8 (*queue_priority_mapping)[2];
  1213. const s8 (*queue_tc_mapping)[2];
  1214. int i, j, found = 0;
  1215. int status = -1;
  1216. int irq[EDMA_MAX_CC] = {0, 0};
  1217. int err_irq[EDMA_MAX_CC] = {0, 0};
  1218. struct resource *r[EDMA_MAX_CC] = {NULL};
  1219. resource_size_t len[EDMA_MAX_CC];
  1220. char res_name[10];
  1221. char irq_name[10];
  1222. if (!info)
  1223. return -ENODEV;
  1224. for (j = 0; j < EDMA_MAX_CC; j++) {
  1225. sprintf(res_name, "edma_cc%d", j);
  1226. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1227. res_name);
  1228. if (!r[j]) {
  1229. if (found)
  1230. break;
  1231. else
  1232. return -ENODEV;
  1233. } else
  1234. found = 1;
  1235. len[j] = resource_size(r[j]);
  1236. r[j] = request_mem_region(r[j]->start, len[j],
  1237. dev_name(&pdev->dev));
  1238. if (!r[j]) {
  1239. status = -EBUSY;
  1240. goto fail1;
  1241. }
  1242. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1243. if (!edmacc_regs_base[j]) {
  1244. status = -EBUSY;
  1245. goto fail1;
  1246. }
  1247. edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
  1248. if (!edma_info[j]) {
  1249. status = -ENOMEM;
  1250. goto fail1;
  1251. }
  1252. memset(edma_info[j], 0, sizeof(struct edma));
  1253. edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
  1254. EDMA_MAX_DMACH);
  1255. edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
  1256. EDMA_MAX_PARAMENTRY);
  1257. edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
  1258. EDMA_MAX_CC);
  1259. edma_info[j]->default_queue = info[j].default_queue;
  1260. if (!edma_info[j]->default_queue)
  1261. edma_info[j]->default_queue = EVENTQ_1;
  1262. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1263. edmacc_regs_base[j]);
  1264. for (i = 0; i < edma_info[j]->num_slots; i++)
  1265. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1266. &dummy_paramset, PARM_SIZE);
  1267. /* Mark all channels as unused */
  1268. memset(edma_info[j]->edma_unused, 0xff,
  1269. sizeof(edma_info[j]->edma_unused));
  1270. sprintf(irq_name, "edma%d", j);
  1271. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1272. edma_info[j]->irq_res_start = irq[j];
  1273. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1274. &pdev->dev);
  1275. if (status < 0) {
  1276. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1277. irq[j], status);
  1278. goto fail;
  1279. }
  1280. sprintf(irq_name, "edma%d_err", j);
  1281. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1282. edma_info[j]->irq_res_end = err_irq[j];
  1283. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1284. "edma_error", &pdev->dev);
  1285. if (status < 0) {
  1286. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1287. err_irq[j], status);
  1288. goto fail;
  1289. }
  1290. /* Everything lives on transfer controller 1 until otherwise
  1291. * specified. This way, long transfers on the low priority queue
  1292. * started by the codec engine will not cause audio defects.
  1293. */
  1294. for (i = 0; i < edma_info[j]->num_channels; i++)
  1295. map_dmach_queue(j, i, EVENTQ_1);
  1296. queue_tc_mapping = info[j].queue_tc_mapping;
  1297. queue_priority_mapping = info[j].queue_priority_mapping;
  1298. /* Event queue to TC mapping */
  1299. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1300. map_queue_tc(j, queue_tc_mapping[i][0],
  1301. queue_tc_mapping[i][1]);
  1302. /* Event queue priority mapping */
  1303. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1304. assign_priority_to_queue(j,
  1305. queue_priority_mapping[i][0],
  1306. queue_priority_mapping[i][1]);
  1307. /* Map the channel to param entry if channel mapping logic
  1308. * exist
  1309. */
  1310. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1311. map_dmach_param(j);
  1312. for (i = 0; i < info[j].n_region; i++) {
  1313. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1314. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1315. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1316. }
  1317. arch_num_cc++;
  1318. }
  1319. if (tc_errs_handled) {
  1320. status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
  1321. "edma_tc0", &pdev->dev);
  1322. if (status < 0) {
  1323. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1324. IRQ_TCERRINT0, status);
  1325. return status;
  1326. }
  1327. status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
  1328. "edma_tc1", &pdev->dev);
  1329. if (status < 0) {
  1330. dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
  1331. IRQ_TCERRINT, status);
  1332. return status;
  1333. }
  1334. }
  1335. return 0;
  1336. fail:
  1337. for (i = 0; i < EDMA_MAX_CC; i++) {
  1338. if (err_irq[i])
  1339. free_irq(err_irq[i], &pdev->dev);
  1340. if (irq[i])
  1341. free_irq(irq[i], &pdev->dev);
  1342. }
  1343. fail1:
  1344. for (i = 0; i < EDMA_MAX_CC; i++) {
  1345. if (r[i])
  1346. release_mem_region(r[i]->start, len[i]);
  1347. if (edmacc_regs_base[i])
  1348. iounmap(edmacc_regs_base[i]);
  1349. kfree(edma_info[i]);
  1350. }
  1351. return status;
  1352. }
  1353. static struct platform_driver edma_driver = {
  1354. .driver.name = "edma",
  1355. };
  1356. static int __init edma_init(void)
  1357. {
  1358. return platform_driver_probe(&edma_driver, edma_probe);
  1359. }
  1360. arch_initcall(edma_init);